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OF COMPLEX PROJECTIVE SPACE

BOWEN LIU

Abstract. It’s interesting, also important to consider the rigidity of
CPn, that is to determine whether a complex manifold with certain geo-
metrical and topological information is biholomorphic to CPn or not. In
this note we survey some classical results and key techniques of unique-
ness of Kähler structure of CPn, and introduce some refinements given
recently.
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1. Classical results

In 1957, Hirzebruch and Kodaira showed in [HK57] that if a Kähler man-
ifold M is diffeomorphic to CPn, then
(1) M is biholomorphic to CPn if n is odd.
(2) M is biholomorphic to CPn if n is even and c1(M) 6= −(n+ 1)ω, where

ω ∈ H2(M,Z) is a positive generator.
The key technique of their proof is that if M is diffeomorphic to CPn, then
the total Pontrjagin class of M is the same as the one of CPn. Hirzebruch
also observed that their results can be improved if the Pontrjagin calsses are
topological invariants, which is the first problem he proposed in [Hir54], and
he also observed exotic complex structure of CP3 is closely related to the
complex structure of S6 in [Hir54], and a detailed proof of this observation
can be found in the closing remarks in [Tos17].

Novikov proved that rational Pontrjagin classes of a closed smooth man-
ifold are indeeed homeomorphism invariants in [Nov65], and since M has
torsion-free integral cohomology if M is homeomorphic to CPn, we obtain
the invariance of integral Pontrjagin classes, which improves the results of
Hirzebruch from diffeomorphism to homeomorphism.

Later in [Yau77] Yau proved the case c1(M) = −(n+1)ω can not happen
by using his Chern number inequality, and he also proved that in the case
of surface, the hypothesis “homeomorphism” can be relaxed to “homotopy
equivalence” and the Kähler condition is unnecessary. All in all, the stories
till now can be summarized as the following two theorems.

Theorem 1.1 ([HK57],[Yau77]). If a Kähler manifold is homeomorphic to
CPn, then it must be biholomorphic to CPn.

Theorem 1.2 ([Yau77]). If a compact surface is homotopy equivalent to
CPn, then it must be biholomorphic to CPn.

A Key question is, is “Kähler” in Theorem 1.1 necessary? In other words,
whether a complex manifold which is homotopy equivalent, homeomorphic
or diffeomorphic to CPn must be CPn or not.

It’s shown in [MY68] (for n = 3) and [Hsi66] (for n ≥ 4) that for every
n ≥ 3 the homotopy type of CPn supports infinitely many inequivalent
smooth structure distinguished by their Pontrjagin classes, so a complex
manifold which is diffeomorphic to CPn may not be CPn.

However, if we assume Kähler condition, there are some improvements as
follows.
(1) Fujita showed in [Fuj80] that if M is a Fano n-manifold such that the

cohomology ring H∗(M,Z) is isomorphic to H∗(CPn,Z) = Z[x]/(xn+1),
then M is biholomorphic to CPn when n ≤ 5.

(2) Lanteri and Struppa extended the results of Fujita in dimension 3 in
[LS86]. To be explicit, they showed that any compact Kähler 3-manifold
with the same cohomology ring as CP3 is biholomorphic to CP3.
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(3) Libgober and Wood showed that a compact Kähler manifold which is
homotopy equivalent to CPn must be biholomorphic to CPn when n ≤ 6
in [LW90].

In section 3, we will introduce some remarks given by Ping Li in [Li16], which
refined the classical results under some symmetry condition and finiteness
of fundamental group.
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2. Key techniques

In this section we collect some key techniques shown in [Tos17] and [Li16],
which are used to determine whether a compact Kähler manifold is biholo-
morphic to CPn or not under certain geometrical of topological conditions.

2.1. Rigidity criterion. In order to determine whether a compact Käh-
ler manifold is biholomorphic to CPn or not, we mainly use the following
criterion which is given by Kobayashi and Ochiai in [KO73].

Theorem 2.1. If M is a compact Kähler manifold and L is a positive line
bundle on M with

´
M cn1 (L) = 1 and dimH0(M,L) = n + 1, then M is

biholomorphic to CPn.

Proof. Let {φ1, . . . , φn} be a basis of H0(M,L) and let Dj = {φj = 0} be
the corresponding divisors. Define Vn = M and

Vn−k = D1 ∩ · · · ∩Dk

for 1 ≤ k ≤ n.

Lemma 2.1. For each 0 ≤ r ≤ n we have that
(1) Vn−r is irreducible, of dimension n− r and Poincaré dual to cr1(L).
(2) The sequence

0 → span{φ1, . . . , φr} → H0(M,L) → H0(Vn−r, L)

is exact, where the last map is given by restriction.

Proof. The proof of the lemma is by induction on r, the case r = 0 being
obvious. Supppose (1) and (2) holds for r − 1, we see that Vn−r+1 is irre-
ducible and that φr is not identically zero on it. Hence Vn−r = {x ∈ Vn−r+1 |
φr(x) = 0} is an effective divisor on Vn−r+1 and so it can be expressed as a
sum of irreducible subvarieties of dimension n− r. Since cr−1

1 (L) is dual to
Vn−r+1 and c1(L) is dual to Dr we see that cr1(L) is dual to Vn−r. If Vn−r

were reducible, then Vn−r = V ′ + V ′′ and so

1 =

ˆ
M

cn1 (L)

=

ˆ
M

cr1(L)c
n−r
1 (L)

=

ˆ
Vn−r

cn−r
1 (L)

=

ˆ
V ′

cn−r
1 (L) +

ˆ
V ′′

cn−r
1 (L).

But since L is positive, the last two terms are both positive integers, and this
is a contradiction. Thus (1) is proved. As for (2). the restriction sequence

0 → OVn−r+1 → OVn−r+1(L) → OVn−r(L) → 0
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gives

0 → H0(Vn−r+1,O) → H0(Vn−r+1, L) → H0(Vn−r, L) → . . . ,

where the first map is given by multiplication by φr. This means the kernel
of the restriction map H0(Vn−r+1, L) → H0(Vn−r, L) is spanned by φr. This
together with the statement in (2) for r − 1 proves (2) for (2). □

Now we apply Lemma 2.1 with r = n and see that V0 is a single point
and that φn+1 does not vanish there. So given any point of M there is a
section of L that does not vanish there, that is L is base-point free. Then L
induces a holomorphic map by

f : M → CPn

x 7→ {φ ∈ H0(M,L) | φ(x) = 0}.

If y ∈ CPn corresponds to a hyperplane, which is spanned by some sections
φ1, . . . , φn, then f(x) = y if and only if φ1(x) = · · · = φn(x) = 0. Again by
Lemma 2.1 with r = n says that x = V0 exists and is unique. This shows
f is a bijection, and since any bijective holomorphic map is biholomorphic,
this completes the proof. □

If M is a compact Kähler manifold which has the same cohomology group
with CPn, then by a simple argument of long exact sequence one has

c1 : Pic(M) → H2(M,Z)

is bijective, which allows us to construct holomorphic line bundle L with a
given 2-form as its first Chern class. In order to satisfy the conditions in
Theorem 2.1, one way is to give a computable formula of χ(M,L) and use
vanishing theorems to conclude

dimH0(M,L) = χ(M,L).

In order to derive such a formula, the invariance of Pontrjagin classes plays
an important role.

2.2. Invariance of Pontrjagin classes.

Theorem 2.2. Let M be a compact complex n-manifold admitting Pontr-
jagin classes

pi(M) =

(
n+ 1

i

)
ω2i

for 0 ≤ i ≤ bn/2c, where ω is the generator of H2(M,Z). If L is a holomor-
phic line bundle on M , then

χ(M,L) =

ˆ
M

ec1(L)+
c1(M)

2

(
ω/2

sinh(ω/2)

)n+1

.
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Proof. By Hirzebruch-Riemann-Roch one has

χ(M,L) :=
∑
p≥0

(−1)p dimHp(M,L) =

ˆ
M

ec1(L)Td(M),

where Td(M) is the Todd genus of M . The Todd genus is defined in terms
of the Chern classes of M , but since in our case we only know the Pontrjagin
classes of M , we need to express Td(M) in terms of these. To do this, we
use the identity

Td(M) = e
c1(M)

2 Â(M).

Recall that Â(M) is the Â genus of M defined by

Â(M) =
∏
j≥0

√
γj/2

sinh(
√
γj/2)

,

where γj is given by the following formal summation∑
j≥0

pj(M)xj =
∏
j≥1

(1 + γjx).

Now thanks to the expression of Pontrjagin of M , one has∑
j≥0

pj(M)xj = (1 + ω2x)n+1,

which gives γ1 = · · · = γn+1 = ω2 and γj = 0 for j > n+1. Thus we obtain

χ(M,L) =

ˆ
M

ec1(L)Td(M)

=

ˆ
M

ec1(L)+
c1(M)

2 Â(M)

=

ˆ
M

ec1(L)+
c1(M)

2

(
ω/2

sinh(ω/2)

)n+1

.

□

Corollary 2.1. Let M be a compact Kähler manifold which is homeomor-
phic to CPn. If ω is a positive generator of H2(M,Z), then c1(M) = (n+1)ω
or −(n+ 1)ω, with the latter only possibly occurring when n is even.

Proof. Since ω is a generator of H2(M,Z), we may write c1(M) = λω. The
reduction mod 2 of c1(M) is the second Stiefel-Whitney class w2(M) ∈
H2(M,Z), which is a topological invariant. Hence it is equals to w2(CPn)
which equals c1(CPn) ≡ n+ 1 (mod 2). This shows c1(M) = (n+ 1 + 2s)ω
for some s ∈ Z. Since rational Pontrjagin classes are topological invariants,
and M has torsion-free integral cohomology, one has the Pontrjagin classes
are the same as CPn, that is

pi(M) =

(
n+ 1

i

)
ω2i
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By theorem 2.2, one has

χ(M,O) =

ˆ
M

e
n+1+2s

2
ω

(
ω/2

sinh(ω/2)

)n+1

=

ˆ
M

esω
(

ω

1− e−ω

)n+1

.

where the last equality holds by the identity
x

1− e−x
= e

x
2

x/2

sinh(x/2)
.

In order to compute above integral, note that
´
M ωn = 1 since ω is a positive

generator of H2(M,Z), and the integrals over M of all other powers of ω
are zero by definition, so it suffices to compute the coefficient of xn in the
power series expansion of

esx
(

x

1− e−x

)n+1

.

Let F (z) = esz( z
1−e−z )

n+1. Then Cauchy’s integral formula shows that the
coefficient that we are interested in equals the contour integral

1

2π
√
−1

˛
F (z)

zn+1
dz =

1

2π
√
−1

˛
esz

(1− e−z)n+1
.

A standard computation yields

χ(M,O) =

(
n+ s

n

)
.

On the other hand, since M is Kähler and has the same cohomology group
as CPn, one has χ(M,O) = 1. This shows

(
n+s
n

)
= 1, which can be rewritten

as
n! = (s+ n) . . . (s+ 1).

So if n is ood this implies s = 0, while if n is even, s is either 0 or −n−1. □
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3. Refinements of Ping Li

3.1. Topological conditions. As shown in [Tos17], Corollary 2.1 is the key
step in proof of Theorem 1.1. However, one can see that “homeomorphism”
is a quite strong assumption, and one can only assume necessary topological
conditions to give the same results.

Proposition 3.1 ([Li16]). Let M be a compact Kähler manifold. If its
integral cohomology ring and Pontrjagin classes are the same as those of
CPn, then c1(M) = (n + 1)ω or −(n + 1)ω, with the latter only possibly
occurring when n is even, where ω is a positive generator of H2(M,Z).

By the same proof, Ping Li obtained the same results as [HK57], and in
order to exclude the case c1(M) < 0, he added a condition about finiteness
of fundamental group, since M is compact, then its universal covering must
also be compact if π1(M) is finite. As a conclusion, he showed the following
result.

Theorem 3.1 ([Li16]). Let M be a compact Kähler manifold having the
same integral cohomology ring and Pontrjagin classes as CPn. Then
(1) M is biholomorphic to CPn if n is odd.
(2) M is biholomorphic to CPn if n is even and the fundamental group

π1(M) is finite.

3.2. Symmetry condition. Recall a classical conjecture which was posed
by Petrie in [Pet72], asserts that if M is an n-dimensional homotopy complex
projective space1 admitting an (effective and smooth) S1-action, then its
total Pontrjagin class is the same as the one of CPn.

Petrie himself verified this conjecture [Pet73] under the stronger hypothe-
sis that an n-dimensional torus acts (effectively and smoothly) on M . Dessai
and Wilking improved on Petrie’s result by showing that the conjecture holds
if a torus whose dimension is larger than (n + 1)/4 acts on M in [DW04].
Then combining Theorem 3.1 with Dessai–Wilking’s result, Ping Li gives
his second observation.

Theorem 3.2 ([Li16]). If a compact Kähler manifold is homotopy equiva-
lent to CPn and acted on effectively and smoothly by a torus whose dimen-
sion is larger than (n+ 1)/4, then it must be biholomorphic to CPn.

3.3. Refinement of results in n = 4. By using some concrete computa-
tions in n = 4. Ping Li showed the following result.

Theorem 3.3 ([Li16]). A compact Kähler manifold with finite fundamental
group and having the same integral cohomology ring as CP4 is biholomorphic
to CP4.

1A smooth closed 2n-dimensional manifold is called an n-dimensional homotopy com-
plex projective space if it’s homotopy equivalent to CPn.
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As is now well known that a Fano manifold is simply connected, which
is a corollary of the celebrated Calabi–Yau theorem, the conditions of the
fundamental group being finite and having the same integral cohomology
ring are strictly weaker than the assumptions in Fujita’s result.
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