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Part 1. Basic Complex Geometry
In this part, we mainly follows [Huy05] and [Dem12].

0. Review of complex analysis

0.1. One variable case. We first give a quick review about basic results
in holomorphic functions of one variable. Fix an open subset U ⊆ C. There
are too many ways to define a holomorphic function, and all of them are
equivalent.

Definition 0.1.1 (holomorphic). A function f : U → C is called holomor-
phic at z0 ∈ U , if there exists an open ball Bε(z0) ⊆ U with ε > 0 such that
f |Bε(z0) can be written as convergent power series, that is

f(z) =

∞∑
n=0

an(z − z0)n, z ∈ Bε(z0)

f is holomorphic om U , if f is holomorphic at any point of U .

Remark 0.1.1 (Cauchy-Riemann equation). The second definition is given
by Cauchy-Riemann equation. To be explicit, for a function f : U → C,
we can regard it as a function defined on R2, and write it as f(x, y) =
u(x, y) +

√
−1v(x, y), where u, v are real-valued functions, then f is holo-

morphic if and only if u, v are continuously differentiable and satisfy the
following Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

If we introduce the following two operators
∂

∂z
:=

1

2
(
∂

∂x
−
√
−1 ∂

∂y
)

∂

∂z
:=

1

2
(
∂

∂x
+
√
−1 ∂

∂y
)

Then Cauchy-Riemann equation is equivalent to ∂f
∂z = 0. Indeed,

∂f

∂z
=

1

2
(
∂f

∂x
+
√
−1∂f

∂y
)

=
1

2
(
∂u

∂x
+
√
−1∂v

∂x
+
√
−1∂u

∂y
− ∂v

∂y
)

= 0

Remark 0.1.2 (Cauchy integral formula). The third definition is given by
Cauchy integral formula. To be explicit, a function f : U → C is holomorphic
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if and only if f is continuously differentiable and for any Bε(z0) ⊆ U , the
following formula holds

f(z0) =
1

2π
√
−1

ˆ
∂Bε(z0)

f(z)

z − z0
dz

Here are some standard facts in complex analysis, which can be found in
any textbook.

Theorem 0.1.1 (maximum principle). Let U ⊆ C be open and connected.
If f : U → C is holomorphic and non-constant, then |f | has no local maxi-
mum in U .

Theorem 0.1.2 (identity theorem). If f, g : U → C are two holomorphic
functions a connected open subset U ⊆ C such that f(z) = g(z) for all z in
a non-empty subset V of U , then f = g.

Theorem 0.1.3 (Riemann extension theorem). Let f : Bε(z0)−{z0} → C be
a bounded holomorphic function, then f can be extended to a holomorphic
function f : Bε(z0)→ C.

Theorem 0.1.4 (Riemann mapping theorem). Let U ⊆ C be a simply-
connected proper open subset. Then U is biholomorphic to the unit ball.

Theorem 0.1.5 (Liouville). Every bounded holomorphic function f : C→
C is constant.

Remark 0.1.3. Liouville theorem implies that C is not biholomorphic to the
unit ball. It’s a striking difference to the real case since we know unit ball
is homeomorphic to R.

0.2. Several variables case. Now let U be an open subset of Cn. For any
w ∈ U , a polydisc Bε(w) = {z : |zi − wi| < εi}, where ε = (ε1, . . . , εn).

Definition 0.2.1 (holomorphic). A function f : U → C is called holomor-
phic at point w ∈ U , if there exists a polydisc Bε(w) ⊆ U such that the
restriction of f |Bε(w) is given by power series

∞∑
i1,...,in=0

ai1...in(z1 − w1)
i1 . . . (zn − wn)in

Remark 0.2.1 (equivalent definitions of holomorphic function).
(1) A function f : U → C is holomorphic, if it satisfies Cauchy-Riemann

equations for all coordinates zi = xi +
√
−1yi, that is

∂f

∂zi
= 0, i = 1, 2, . . . , n

where ∂
∂zi

:= 1
2(

∂
∂xi

+
√
−1 ∂

∂yi
)
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(2) A function f : U → C is holomorphic if and only if f is continuously
differentiable and for any z0 ∈ U , the following formula holds

f(z) =
1

(2π
√
−1)n

ˆ
∂Bε(w)

f(w)

(z1 − w1) . . . (zn − wn)
dw1 . . . dwn

Remark 0.2.2. Other results such as maximum theorem, identity theorem
and Liouville theorem generalize easily to the higher dimension. A version
of Riemann extension still holds true. However, Riemann mapping theorem
fails.
Exercise 0.2.1. Show that polydisc B(1,1)(0) ⊆ C2 is not biholomorphic to
the unit disk D = {z ∈ C2 : ‖z‖ < 1}.
Lemma 0.2.1 (local ∂∂-lemma). Let ω be a real (1, 1)-form defined on Cn.
Then ω is d-closed if and only if for any point z ∈ Cn, there exists an open
neighborhood U of z and a smooth function ϕ : U → R such that

ω =
√
−1∂∂ϕ.

Lemma 0.2.2. Let ϕ : Cn → R be a smooth function such that ∂∂f = 0.
Then for any point z ∈ Cn, there exists an open neighborhood U of z and a
holomorphic functions f : U → C such that ϕ = Re(f) over U .
Theorem 0.2.1 (Hartogs’ theorem). Suppose ε = (ε1, . . . , εn) and ε′ =
(ε′1, . . . , ε

′
n) are given such that for all i one has ε′i < εi. If n > 1, then

any holomorphic map f : Bε(0)\Bε′(0) → C can be uniquely extended to a
holomorphic map f : Bε(0)→ C.
Remark 0.2.3. This is only valid in dimension at least two.
Definition 0.2.2 (holomorphic). A function f : U → Cn is called holomor-
phic if all coordinate functions f1, . . . , fn are holomorphic functions U → C.
Definition 0.2.3 (biholomorphic). A holomorphic map f : U → V between
two open subsets U, V ⊆ Cn is biholomorphic if f is bijective and its inverse
f−1 is also holomorphic.
Definition 0.2.4 (complex Jacobian). Let f : U → Cn be a holomorphic
map, the complex Jacobian of f at point z ∈ U is the matrix

JC(f)(z) :=

(
∂fi
∂zj

(z)

)
1≤i≤n
1≤j≤m

where fi = zi ◦ f .
Remark 0.2.4. For each z ∈ U , the smooth map f : U ⊆ Cm = R2m →
Cn = R2n induces a R-linear map, which is denoted by JR(f)(z) : Tz R2m →
Tf(z)R2n. Suppose { ∂

∂xi
, ∂
∂yi
}1≤i≤m and { ∂

∂rj
, ∂
∂sj
}1≤j≤n are local frames of

Tz R2m and Tf(z)R2n respectively, then with respect to these basis one has

JR(f)(z) =

(
( ∂ui
∂xj

) ( ∂ui
∂yj

)

( ∂vi
∂xj

) ( ∂vi
∂yj

)

)
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where ui = ri ◦ f and vi = si ◦ f . If we consider its C-linear extension, with
respect to basis { ∂

∂zi
, ∂
∂zi
}1≤i≤m and { ∂

∂wj ,
∂
∂wj }1≤j≤n, it can be written as

JR(f)(z) =

(
( ∂fi
∂zj

) ( ∂fi
∂zj

)

(∂f i
∂zj

) (∂f i
∂zj

)

)
In particular, if f is holomorphic, then det JR(f) = det JC(f) det JC(f) =
| det JC(f)|2 ≥ 0.

Definition 0.2.5 (regular value). Let U ⊆ Cm be an open subset and let
f : U → Cn be a holomorphic map, z ∈ U is called regular point, if JC(f)(z)
is surjective. If every point z ∈ f−1(w) is regular point, then w is called a
regular value.

Remark 0.2.5. In particular, if f−1(w) = ∅, then w is also called a regular
value.

Theorem 0.2.2 (inverse function theorem). Let f : U → V be a holomor-
phic map between two open subsets U, V ⊆ Cn. If z ∈ U is a regular point,
then there exist open subsets z ∈ U ′ ⊆ U and f(z) ∈ V ′ ⊆ V such that f
induces a biholomorphic map f : U ′ → V ′.

Theorem 0.2.3 (implicit function theorem). Let U ⊆ Cm be an open subset
and let f : U → Cn be a holomorphic map, where m ≥ n. Suppose z0 ∈ U
is a point such that

det (JC(f)(z0)) 6= 0

Then there exist open subsets U1 ⊆ Cm−n, U2 ⊆ Cn and a holomorphic
map g : U1 → U2 such that U1 × U2 → U and f(z) = f(z0) if and only if
g(zn+1, . . . , zm) = (z1, . . . , zn).

Corollary 0.2.1. Let U ⊆ Cm be an open subset and f : U → Cn be a
holomorphic map. Suppose that z0 ∈ U such that JC(f)(z0) has maximal
rank. Then
(1) If m ≥ n, then there exists a biholomorphic map h : V → U ′, where U ′

is an open subset of U containing z0, and V is an open subset of Cn
containing f(z0), such that f(h(z1, . . . , zn)) = (z1, . . . , zn).

(2) If m ≤ n, then there exists a biholomorphic map g : V → V ′, where
V, V ′ are open subsets of Cn containing f(z0), such that g(f(z)) =
(z1, . . . , zm, 0, . . . , 0).
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1. Local theory

1.1. Algebraic germ.

1.1.1. Weierstrass’ theorems. Let f : Bε(0)→ C be a holomorphic function
defined on polydisc Bε(0). For any w = (z2, . . . , zn) we denote fw(z1) the
function f(z1, . . . , zn). Now we’re going to show that all zeros of f are caused
by a factor of f which has the form of a Weierstrass polynomial.

Definition 1.1.1 (Weierstrass polynomial). A Weierstrass polynomial is a
polynomial in z1 of the form

zd1 + α1(w)z
d−1
1 + · · ·+ αd(w)

where coefficients αi(w) are holomorphic functions on some small disc in
Cn−1 vanishing at the origin.

Remark 1.1.1. Recall the one variable case, any holomorphic function f(z)
with a zero of order d at the origin can be written as zdh(z), where h(0) 6= 0.
In fact, zd is a Weierstrass polynomial since in this case, αi are constants
which vanish at origin, that’s exactly zero.

Theorem 1.1.1 (Weierstrass preparation theorem). Let f : Bε(0) → C
be a holomorphic function on the polydisc Bε(0). Assume f(0) = 0 and
f0(z1) 6= 0. Then there exists a unique Weierstrass polynomial gw(z1) and a
holomorphic function h on some smaller polydisc Bε′(0) ⊆ Bε(0) such that
f = gh and h(0) 6= 0.

Proof. See Proposition 1.1.6 in Page8 of [Huy05]. □
Theorem 1.1.2 (Weierstrass division theorem). Let f ∈ OCn,0 and let
g ∈ OCn−1,0[z1] be a Weierstrass polynomial of degree d. Then there exist
r ∈ OCn−1,0[z1] of degree < d and h ∈ OCn,0 such that f = gh + r. The
functions h and r are uniquely determined.

Proof. See Proposition 1.1.17 in Page15 of [Huy05]. □
1.1.2. Stalk of sheaf of holomorphic functions. Let’s use OCn to denote the
sheaf2 of holomorphic functions on Cn, and use OCn,0 to denote its stalk at
origin. The elements in OCn,0 are called germs. It’s clear OCn,0 is a local
ring with maximal ideal m consisting of all functions that vanish at origin,
which implies units in OCn,0 are functions that don’t vanish at origin.

By using Weierstrass preparation theorem, one can derive more about
algebraic properties of OCn,0. For example, Weierstrass preparation theorem
can be rephrased by saying that after an appropriate coordinate choice any
function f ∈ OCn,0 can be uniquely written as f = gh, where h ∈ OCn,0 is a
unit and g ∈ OCn−1,0[z1] is a Weierstrass polynomial. Furthermore, it also
shows the following important property.

2Sheaf and its cohomology are important tools we will use once and again, if you’re
not familiar with it, see Appendix 20.
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Theorem 1.1.3. The local ring OCn,0 is a UFD.

Proof. We prove the assumption by induction on n. For n = 0, the ring
OCn,0 = C is a field, and thus a UFD. Suppose that OCn−1,0 is a UFD, for
f ∈ OCn,0 we choose coordinates such that Weierstrass preparation theorem
is applied, that is f = gh, where g ∈ OCn−1,0[z1] is a Weierstrass polynomial
and h is a unit in OCn,0. By induction we have OCn−1,0[z1] is UFD, then g

can be written as a product of irreducible elements of OCn−1,0[z1]. All that is
left to show is that any irreducible element in OCn−1,0[z1] is also irreducible
as an element in OCn,0.

Assume g ∈ OCn−1,0[z1] is a Weierstrass polynomial which is written as
the product of non-units gi ∈ OCn−1,0[z1]. There are two cases:
(1) gi ∈ OCn−1,0. By induction hypothesis, gi can be written as the product

of irreducible elements of OCn−1,0, which are also irreducible in OCn,0.
(2) gi /∈ OCn−1,0. In this case, gi satisfies the hypothesis of Weierstrass

preparation theorem since g is a Weierstrass polynomial, then gi is non-
trivial on the z1-line. So we can write gi = g̃ihi, where g̃i is also Weier-
strass polynomial.

Note that degree of g as a polynomial in z1 is finite, then repeating above
process leads to a decomposition, with factors are either irreducible Weier-
strass polynomials or elements in OCn−1,0.

Now it suffices to show any irreducible Weierstrass polynomial g is actu-
ally irreducible as an element of OCn,0. Suppose g = f1f2, where f1, f2 ∈
OCn,0 are non-units. We apply Weierstrass preparation theorem to ob-
tain fi = gihi, i = 1, 2, and thus g = (g1g2)(f1f2). By uniqueness one
has g = g1g2, which contradicts to the irreducibility of g as an element of
OCn−1,0[z1]. □

Another important fact is that OCn,0 is noetherian, which follows from
Weierstrass division theorem.

Theorem 1.1.4. The local UFD OCn,0 is noetherian.

Proof. We prove the assumption by induction on n. For n = 0, it’s clear since
any field is noetherian. Suppose that OCn−1,0 is noetherian, then Hilbert’s
basis theorem implies OCn−1,0[z1] is also noetherian. Let I ⊆ OCn,0 be a
non-trivial idea and choose 0 6= f ∈ I. Changing coordinates if neccessary,
we may assume Weierstrass preparation theorem is applied, that is f =
gh, where g ∈ OCn−1,0[z1] is a Weierstrass polynomial and h is a unit in
OCn,0, hence g ∈ I. Furthermore, we assume I ∩OCn−1,0[z1] is generated by
g1, . . . , gk.

For any other f̃ ∈ I, the Weierstrass division theorem implies f̃ = gh̃+ r

for some r ∈ OCn−1,0[z1]. Since f̃ , gh̃ ∈ I, we have r ∈ I and therefore
r ∈ I ∩ OCn−1,0[z1]. Thus f̃ = gh̃ +

∑k
i=1 aigi. This shows I is finitely

generated by elements g, g1, . . . , gk. □
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Corollary 1.1.1. Let g ∈ OCn,0 be an irreducible element. If f ∈ OCn,0

vanishes on Z(g) = {z | g(z) = 0}, then g divides f .
Proof. By Weierstrass preparation theorem we may assume g ∈ OCn−1,0[z1]
is a Weierstrass polynomial with degree d. By the Weierstrass division
theorem one finds h ∈ OCn,0 and r ∈ OCn−1,0[z1] of degree < d such that
f = gh + r. For w ∈ Cn−1, by assumption rw vanishes on the zero set gw.
If all of zeros of gw have multiplicity one, then rw ≡ 0 since rw is of degree
< d. Now it suffices to show the set w ∈ Cn−1 such that gw has zeros with
multiplicity > 1 is quite “small”.

Since g is irreducible and ∂g
∂z1

is of degree d−1, there exist elements h1, h2 ∈
OCn−1,0[z1] and 0 6= γ ∈ OCn−1,0 such that h1g + h2

∂g
∂z1

= γ. So if gw has a
zero ξ of multiplicity > 1, then γ(w) = h1(ξ, w)gw(ξ) + h2(ξ, w)

∂gw
∂z1

(ξ) = 0.
This shows such w is contained in the zero set of a non-trivial holomorphic
function γ ∈ OCn−1,0. Then the following exercise completes the proof. □
Exercise 1.1.1. Let U ⊆ Cn be open and connected. Show that for any
non-trivial holomorphic function f : U → C the complement U\Z(f) of the
zero set of f is connected and dense in U .
1.2. Analytic germ. For any f ∈ OCn,0, Z(f) is not well-defined in fact
since for another g ∈ OCn,0, which represents the same element with f , Z(f)
may not equal to Z(g). However, there always exists an open neighborhood
0 ∈ U ⊆ Cn such that Z(f) ∩ U = Z(g) ∩ U .
Definition 1.2.1 (germ of a set). The germ of a set in the origin 0 ∈ Cn is
given by a subset X ⊆ Cn. Two germs of a set in the origin X,Y ⊆ Cn are
same if there exists an open neighborhood 0 ∈ U ⊆ Cn such that X ∩ U =
Y ∩ U .

Unless otherwise specified, in this section we only consider germ of a set
in the origin, and for convenience we just call it a germ.
Example 1.2.1. For f ∈ OCn,0, Z(f) is a germ.
Definition 1.2.2 (analytic germ). A germ X ⊆ Cn is called analytic if there
exist elements f1, . . . , fk ∈ OCn,0 such that X = Z(f1, . . . , fk) :=

⋂k
i=1 Z(fi).

Example 1.2.2. Let A be a subset of OCn,0. If we use (A) to denote the
idea generated by A, then (A) is finitely generated since OCn,0 is noetherian.
Thus Z((A)) is an analytic germ.
Definition 1.2.3. Let X ⊆ Cn be a germ. Then I(X) denotes the set of
all elements f ∈ OCn,0 with X ⊆ Z(f).
Remark 1.2.1. It’s clear I(X) is an idea of OCn,0.
Lemma 1.2.1.
(1) If X1 ⊆ X2 are germs, then I(X2) ⊆ I(X1).
(2) If a1 ⊆ a2 are two ideas of OCn,0, then Z(a2) ⊆ Z(a1).
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(3) For any analytic germ one has Z(I(X)) = X.
(4) For any idea a of OCn,0 one has a ⊆ I(Z(a))

Proof. (1), (2) and (4) are clear. For (3). It’s clear X ⊆ Z(I(X)). On the
other hand since X is analytic germ there exist elements f1, . . . , fk ∈ OCn,0

such that X = Z(f1, . . . , fk) as germs, thus f1, . . . , fk ∈ I(X), so by (2) we
have Z(I(X)) ⊆ X = Z(f1, . . . , fk). This completes the proof of (3). □
Definition 1.2.4 (irreducible germ). An analytic germ is irreducible if the
following condition is satisfied: If X = X1 ∪X2, where X1, X2 are analytic
germs, then X = X1 or X = X2.
Lemma 1.2.2. An analytic germ X is irreducible if and only if I(X) ⊆
OCn,0 is a prime ideal.
Proof. If X is irreducible and f1f2 ∈ I(X), then X ⊆ Z(f1f2) = Z(f1) ∪
Z(f2), so we have X = (X ∩ Z(f1)) ∪ (X ∩ Z(f2)) is a union of analytic
germs. Then by irreducibility one has X = X ∩ Z(fi) for some i = 1 or
i = 2, and thus at least one of functions f1 or f2 vanishes on X. This shows
I(X) is prime.

Conversely, if I(X) is a prime ideal and let X = X1 ∪ X2 with X1 and
X2 are analytic. If fi ∈ I(Xi), i = 1, 2, then f1f2 ∈ I(X) since

X = X1 ∪X2 ⊆ Z(f1) ∪ Z(f2) = Z(f1f2)

Hence f1 ∈ I(X) or f2 ∈ I(X). Thus it suffices to shows that if X 6= X1

and X 6= X2, there exist elements f1 ∈ I(X1)\I(X) and f2 ∈ I(X2)\I(X).
This follows immediately from (1) of Lemma 1.2.1. □
Corollary 1.2.1. For f ∈ OCn,0, Z(f) is irreducible if and only if there
exists an irreducible g ∈ OCn,0 such that f = gk for some k ∈ Z>0.

Proof. If f = gk with g irreducible, then Z(f) = Z(g) and if h ∈ I(Z(g)),
then g divides h by Corollary 1.1.1, this shows I(Z(g)) = (g) and thus Z(f)
is irreducible since I(Z(f)) also equals to (g), which is prime. Conversely,
if f =

∏
gni
i , then Z(f) =

⋃
Z(gi), which cannot be irreducible except for

the case f = gk for some irreducible g. □
Lemma 1.2.3. Every decresing sequences of germs {Xi} is stationary.
Proof. Consider its corresponding sequence {I(Xi)}, it’s an increasing se-
quence, thus it’s stationary since OCn,0 is noetherian, this completes the
proof since for each i, Z(I(Xi)) = Xi. □

Theorem 1.2.1. Every germX admits a finite decompositionX =
⋃N
i=1Xi,

where Xi is irreducible for each i and Xi ⊊ Xj for i 6= j. The decomposition
is unique apart from the ordering.
Proof. It suffices to show uniqueness since existence follows from above
lemma. Assume X =

⋃N ′

l=1X
′
l is another decomposition, note that Xi =⋃N ′

l=1Xi∩X ′
l , we must have Xi = Xi∩X ′

l(i) since Xi is irreducible. Likewise
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one has X ′
l(i) ∩ Xj , so we i = j since Xi ⊊ Xj for i 6= j, and this shows

Xi = X ′
l(j) □

1.3. Hilbert’s Nullstellensatz.

Theorem 1.3.1. Let X ⊆ Cn be an irreducible analytic germ defined by a
prime ideal p ⊆ OCn,0. Then one can find a coordinate system

(z1, . . . , zn−d, zn−d+1, . . . , zn)

such that the projection (z1, . . . , zn)→ (zn−d+1, . . . , zn) induces a surjective
map of germs X → Cd and such that the induced ring homomorphism
OCd,0 → OCn,0/p is a finite integral ring extension.

Proof. See (4.19) of [Dem12]. □

Theorem 1.3.2 (Hilbert’s Nullstellensatz). If I ⊆ OCn,0 is any ideal, then√
I = I(Z(I)).

Proof. It easy to see
√
I ⊆ I(Z(I)). Conversely, it suffices to show I(Z(I)) ⊆

p for all prime ideals containing I since
√
I is the intersection of all prime

ideals p containing I. If one has

p =
√
p = I(Z(p))

then the results follows from Z(p) ⊆ Z(I). Thus we reduce the problem to
the case to I = p is a prime ideal. For f ∈ I(Z(p)), by Theorem 1.3.1 there
exists an appropriate coordinate system (z1, . . . , zn) such that the induced
element f ∈ OCn,0/p satisfies an irreducible algebraic equation fk+a1f

k−1
+

· · ·+ak = 0 with ai ∈ OCd,0. Since f vanishes along Z(p), the 0-th coefficient
ak does as well. As Z(p)→ Cd is surjective, this shows ak = 0. Hence above
algebraic equation cannot be irreducible unless k = 1. Therefore f = 0 and
thus f ∈ p. □

Corollary 1.3.1. There is a one to one correspondence between prime ideals
of OCn,0 and irreducible analytic germ given by X 7→ I(X) and p→ Z(p).

1.4. Dimension.

Definition 1.4.1 (dimension). Let X be an irreducible analytic germ de-
fined by a prime ideal p ⊆ OCn,0. Then the dimension of X is defined by
n− htp, where htp is the height of p.

Remark 1.4.1. For arbitrary analytic germ is of dimension d if all its irre-
ducible components are of the same dimension d.

Remark 1.4.2. If X ⊆ Cn is an irreducible analytic germ of codimensional
1, then the prime ideal p defining X is of height 1. A basic result in com-
mutative algebra says any prime ideal of height 1 in a UFD is principle.
Therefore, p = (f) for some irreducible f ∈ OCn,0.
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1.5. Meromorphic functions and relatively prime.
Definition 1.5.1. Let U ⊆ Cn be an open subset. A meromorphic function
f on U is a function on the complement of a nowhere dense subset S ⊆ U
with the following property: There exist an open covering {Ui} of U and
holomorphic functions gi, hi : U → C with hi|Ui\S · f |Ui\S = gi|Ui\S .

Remark 1.5.1. For any z ∈ U , the meromorphic function f in a neighborhood
of z is given by g/h, where g, h ∈ OCn,z. If we assume g, h are chosen to be
relatively prime, then they’re unique up to units.

Proposition 1.5.1. Let f ∈ OCn,0 be irreducible, then for sufficiently small
ε and z ∈ Bε(0) the induced element f ∈ OCn,z is irreducible.

Proof. Suppose f ∈ OCn,z is reducible, that is f = f1f2 where fi ∈ OCn,z

non-units, i.e. f1(z) = f2(z) = 0. Thus ∂f
∂z1

(z) = ∂f1
∂z1

(z)f2(z)+f1(z)
∂f2
∂z1

(z) =
0.

Thus the set of points z ∈ Bε(0) where f as an element of OCn,z is
reducible is contained in the analytic set Z(f, ∂f∂z1 ). Now it suffices to show
it’s a proper subset of Z(f) since f is irreducible, so is Z(f). If not, then
∂
∂z1

would vanish on Z(f). Since f is irreducible, we can apply Corollary
1.1.1 to obtain ∂f

∂z1
divides f , a contradiction. □

Proposition 1.5.2. If f, g ∈ OCn,0 are relatively prime, then they’re rela-
tively prime in OCn,z, for z in a sufficiently small neighborhood of 0.

Proof. Without lose of generality, we may assume f, g ∈ OCn−1,0[z1] are
Weierstrass polynomials, then f and g are relatively prime if and only if
their resultant R ∈ OCn−1 has non-zero germ at 0, therefore the germ of R
is also non-zero in a sufficiently small neighborhood of 0. □
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2. Complex manifold

2.1. Basic definitions and properties.
Definition 2.1.1 (holomorphic atlas). A holomorphic atlas on a smooth
manifold is an atlas {(Uα, ϕα)} of the form ϕα : Uα ∼= ϕα(Uα) ⊆ Cn such that
transition functions ϕαβ := ϕα ◦ϕ−1

β : ϕβ(Uαβ)→ ϕα(Uαβ) are holomorphic
functions. Furthermore,
(1) the pair (Uα, ϕα) is called a holomorphic chart.
(2) two holomorphic atlases are called equivalent, if the union of them is

still a holomorphic atlas.
Definition 2.1.2 (complex manifold). A complex n-manifold X is a smooth
2n-manifold admitting an equivalence class of holomorphic atlases.
Remark 2.1.1. A complex manifold is called connected, compact, simply-
connected and so on, if its underlying real manifold has this property.
Definition 2.1.3 (submanifold). Let X be a complex n-manifold and Y ⊆
Y be a smooth manifold of (real) dimension 2k. Then Y is a complex
submanifold if there exists a holomorphic atlas {(Ui, ϕi)} of X such that
ϕi : Ui ∩ Y ∼= ϕi(Ui) ∩ Ck.
Definition 2.1.4 (holomorphic map). Let X,Y be complex manifolds. A
continuous map f : X → Y is a holomorphic map if for any holomorphic
charts (U,ϕ) and (U ′, ϕ′) of X and Y respectively, the map ϕ′ ◦ f ◦ ϕ−1 :
ϕ(f−1(U ′) ∩ U)→ ϕ′(U ′) is holomorphic.
Definition 2.1.5 (biholomorphic). Let X,Y be two complex manifolds.
X,Y are called biholomorphic, if there exists a holomorphic homeomorphism
f : X → Y .
Definition 2.1.6 (holomorphic function). A holomorphic function on com-
plex manifold X is a holomorphic map f : X → C.
Notation 2.1.1. We always use OX to denote the sheaf of holomorphic
functions on complex manifold X, and use Γ(U,OX) to denote sections over
open subset U ⊆ X.
Proposition 2.1.1. Let X be a compact connected complex manifold.
Then Γ(X,OX) = C.
Proof. It’s clear from maximum principle. □
Definition 2.1.7 (meromorphic function). A meromorphic function on a
complex manifold X is a map f : X →

∐
x∈X Q(OX,x) which associates to

any x ∈ X an element fx ∈ Q(OX,x) such that for any x0 ∈ X there exists
a neighborhood x0 ∈ U ⊆ X and two holomorphic functions g, h : U → C
with fx = g/h for all x ∈ U .
Notation 2.1.2. We always use KX to denote the sheaf of meromorphic
functions on complex manifold X, and use K(X) to denote Γ(X,KX).
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Definition 2.1.8 (algebraic dimension). The algebraic dimension of a com-
pact connected complex manifold X is a(X) := trdegCK(X).

Proposition 2.1.2 (Siegel). Let X be a compact connected complex n-
manifold. Then

trdegCK(X) ≤ n

Proof. See Proposition 2.1.9 in Page54 of [Huy05]. □

2.2. Analytic subvariety.

Definition 2.2.1 (analytic subvariety). Let X be a complex manifold. An
analytic subvariety of X is a closed subset Y ⊆ X such that for any x ∈ Y
there exists an open neighborhood x ∈ U ⊆ X such that Y ∩U is a zero set
of finitely many holomorphic functions f1, . . . , fk ∈ O(U).

Remark 2.2.1. Obviously, any analytic subvariety X defines an analytic germ
in any point z ∈ X.

Definition 2.2.2 (irreducible analytic subvariety). An analytic subvariety
Y is called irreducible, if it cannot be written as the union Y = Y1 ∪ Y2 of
two proper analytic subvarieties Yi ⊆ Y, i = 1, 2.

Given an analytic subvariety Y of a complex manifold X.

Definition 2.2.3 (regular). A point x ∈ Y is called regular point, if the
functions f1, . . . , fk can be chosen such that ϕ(x) ∈ ϕ(U) is a regular point
of holomorphic map f : = (f1◦ϕ−1, . . . , fk◦ϕ−1) : ϕ(U)→ Ck, where (U,ϕ)
is a local chart of x.

Definition 2.2.4 (singular). A point x ∈ Y is singular, if it’s not regular.

Proposition 2.2.1. The set of regular points Yreg = Y \Ysing is a non-empty
submanifold of X. Furthermore, if Y is irreducible, then Yreg is connected.

Definition 2.2.5 (dimension). The dimension of an irreducible analytic
subvariety Y is defined by dimY = dimYreg.

2.3. Examples.

Example 2.3.1 (affine space). The n-dimensional complex plane Cn is a
complex manifold.

Example 2.3.2 (complex tori). If V is a complex vector space of dimension
n and Γ ⊆ V is a free abelian, discrete subgroup of order 2n, then X = V/Γ
is a complex manifold, which is called complex tori.

Remark 2.3.1. The underlying manifolds of complex tori with different Γ are
not very interesting since they are all diffeomorphic to (S1)2n. However, if
you pick two lattices Γ1,Γ2 randomly, then Cn /Γ1 and Cn /Γ2 will not be
biholomorphic to each other.
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Example 2.3.3 (projective space). The projective space CPn is a complex
manifold. Indeed, atlas are given by Ui = {[z] ∈ CPn | zj 6= 0}, 0 ≤ i ≤ n,
and ϕi is defined as

ϕi : Ui → Cn

[z] 7→ (
z0
zi
, . . . ,

ẑi

zi
, . . . ,

zn
zi

)

The transition functions are calculated as follows: For i < j

ϕi ◦ ϕ−1
j : (u1, . . . , un) 7→ (

u1
ui
, . . . ,

ûi
ui
, . . . ,

uj−1

ui
,
1

ui
,
uj+1

ui
, . . . ,

un
ui

)

It’s holomorphic on Ui ∩ Uj .

Remark 2.3.2. CPn is compact since CPn is diffeomorphic to S2n+1/S1,
which is called Hopf fiberation.

Definition 2.3.1 (projective manifold). A complex manifold X is called
projective if X is biholomorphic to a closed complex submanifold of some
projective space CPN .

Example 2.3.4 (Grassmannian manifold). The Grassmannian manifold

Gr(k, n+ 1) = {k-dimensional subspace of Cn+1}

Now we’re going to show Gr(k, n+1) is a manifold of dimension k(n+1−k).
Any W ∈ Gr(k, n + 1) is generated by the rows of a k × (n + 1) matrix A
of rank k. Let us denote the set of these matrices by Mk,n+1, which is
an open subset of the set of all k × (n + 1) matrices. The latter space is
a complex manifold which is canonically isomorphic to Ck(n+1). Thus we
obtain a natural surjection π : Mk,n+1 → Gr(k, n+1), which is the quotient
by the natural action of GL(k,C) on Mk,n+1.

Let’s fix an ordering {B1, . . . , Bm} of all k × k-minors of matrices A ∈
Mk,n+1. Define an open covering Gr(k, n + 1) =

⋃m
i=1 Ui, where Ui is the

open subset {π(A) | det(Bi) 6= 0}. Note that Ui is well-defined since if
π(A) = π(A′), then A and A′ differs an action of GL(k,C), so det(Bi) 6= 0
if and only if det(B′

i) 6= 0. So without lose of generality, we may assume
A is of form (Bi, Ci), where Ci is a k × (n + 1 − k) matrix. Then the map
ϕi : Ui → Ck(n+1−k), given by π(A)→ B−1

i Ci is well-defined, and {(Ui, ϕi)}
will give atlas of Gr(k, n+1), sicne all operations are matrix operation, thus
they’re holomorphic. This shows Gr(k, n + 1) is a complex manifold with
dimension k(n+ 1− k).

Remark 2.3.3. If V is a complex vector space of dimension n + 1, then
Gr(k, V ) is defined as the set consisting of all k-dimensional subspaces of V ,
which is biholomorphic to Gr(k, n+ 1).
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Example 2.3.5 (Plücker embedding). Let V be a complex vector space of
dimension n+ 1, then

Φ: Gr(k, V ) ↪→ CP(
k∧
V )

defined by W ⊆ V with basis w1, . . . , wk is mapped to [w1 ∧ · · · ∧ wk], is
called Plücker embedding. It’s well-defined, thanks to the following lemma.

Lemma 2.3.1. Let W be a complex vector space of dimension k, and B1 =
{w1, . . . , wk} and B2 = {v1, . . . , vk} are two basis for W . Then v1∧· · ·∧vk =
λw1 ∧ · · · ∧ wk for some λ ∈ C∗.

Proof. If we express wj = a1jv1+ · · ·+akjvk, then direct computation shows
that

w1 ∧ · · · ∧ wk = (a11v1 + · · ·+ ak1vk) ∧ · · · ∧ (a1kv1 + · · ·+ akkvk)

=
∑
σ∈Sk

sign(σ)a1σ(1) · · · akσ(k)v1 ∧ · · · ∧ vk

= λv1 ∧ · · · ∧ vk
Note that λ is exactly the determinant of the change of basis matrix from
B1 to B2. □
Remark 2.3.4. It’s a little bit complicated to check it’s injective.
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2.4. Vector bundle.

2.4.1. In viewpoint of transition functions.

Definition 2.4.1 (complex vector bundle). Let X be a smooth manifold.
A complex vector bundle E of rank r on X consists of the following data:
(1) E is a smooth manifold with surjective map π : E → X, such that

(1) For all x ∈ X, fibre Ex is a C-vector space of dimension r.
(2) For all x ∈ X, there exists x ∈ U ⊆ X and there is a homeomorphism

ϕ : π−1(U)→ U × Cr such that
π−1(U) U

U × Cr Cr

π

φ p1

p2

and for all y ∈ U , Ey
p2◦φ−→ Cr is a C-vector space isomorphism.

(U,ϕ) is called a trivialization of E over U .

Remark 2.4.1 (transition functions). Consider two local trivialization (Uα, ϕα), (Uβ , ϕβ).
Then ϕα ◦ ϕ−1

β : (Uα ∩ Uβ)× Cr → (Uα ∩ Uβ)× Cr induces

gαβ : Uα ∩ Uβ → GL(r,C)

where gαβ is called transition function. Furthermore, it satisfies
gαβgβγgγα = id on Uα ∩ Uβ ∩ Uγ

gαα = id on Uα

In fact, transition functions contain all information about this vector bundle
since a vector bundle is locally trivial, so how are these trivial pieces glued
together really matters.

Definition 2.4.2 (complex vector bundle). Let X be a smooth manifold.
A complex vector bundle E of rank r on X consists of the following data:

(1) open covering {Uα} of X.
(2) smooth functions {gαβ : Uα ∩ Uβ → GL(r,C)} satisfies

gαβgβγgγα = id on Uα ∩ Uβ ∩ Uγ
gαα = id on Uα

Remark 2.4.2. The two definitions above are equivalent. The first definition
implies the second clearly. The converse is a standard constructive method:
If we already have an open covering and a set of transition functions, the
vector bundle E is defined to be the quotient of the disjoint union

∐
Uα

(U ×
Cr) by the equivalence relation that puts (p′, v′) ∈ Uβ × Cr equivalent to
(p, v) ∈ Uα × Cr if and only if p = p′ and v′ = gαβ(p)v. To connect this
definition with the previous one, define the map π to send the equivalence
class of any given (p, v) to p.
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Definition 2.4.3 (holomorphic vector bundle). A holomorphic vector bun-
dle π : E → X over a complex manifold X is a complex vector bundle with
holomorphic transition functions.

Exercise 2.4.1. Show that the total space of a holomorphic vector bundle
E is a complex manifold.

Proof. Since we already have a complex structure on X, we need to pull it
back to E using π and use the holomorphic transition functions to show it
do gives a complex structure on E. □

Example 2.4.1 (trivial bundle). Let X be a smooth/complex manifold.
Then X × Cr is called trivial complex (holomorphic) vector bundle of rank
r on X.

Definition 2.4.4 (subbundle). Let π : E → X be a complex (holomorphic)
vector bundle. F ⊆ E is called a subbundle of rank s, if
(1) For all x ∈ X, F ∩ Ex is a subspace of Ex with dimension s.
(2) π|F : F → X induces a complex (holomorphic) vector bundle.

2.4.2. In viewpoint of sheaf. One may refer to Appendix 20 for more details
about sheaf.

Definition 2.4.5 (section). Let X be a complex manifold and π : E → X
be a complex (holomorphic) vector bundle. For any open subset U ⊆ X,
a section of E over U is a smooth/holomorphic map s : U → E such that
π ◦ s = idU .

Notation 2.4.1. The set of all smooth (or holomorphic) sections over open
subset U is denoted by C∞(U,E) (or Γ(U,E)).

One reason why sheaf plays an important role of study of complex geom-
etry is that you can regard a vector bundle as a special sheaf.

Definition 2.4.6 (sheaf of sections). Let X be a complex manifold and
π : E → X a holomorphic vector bundle. Then its sheaf of sections is defined
as

OX(E)(U) = Γ(U,E)

Example 2.4.2. Let E → X be trivial holomorphic vector bundle. Then
OX(E) is exactly sheaf of holomorphic functions.

Example 2.4.3 (locally free sheaf). A sheaf F over a topological space X
is called locally free, if there exists an open covering {Uα} of X such that
F |Uα

∼= O⊕r
Uα

of rank r.

Exercise 2.4.2. Let X be a complex manifold. There is one to one corre-
spondence over X:

{holomorphic vector bundles} 1−1←→ {locally free sheaves}
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Proof. If π : E → X is a holomorphic vector bundle, then OX(E) is a lo-
cally free sheaf. Indeed since we have local trivialization of holomorphic
vector bundle {Uα}, that is E|Uα

∼= Uα × Cr, and it’s known to all that
sections of a trivial holomorphic function is exactly holomorphic functions,
thus O(E)|Uα

∼= O⊕r
Uα

, that is OX(E) is a locally free sheaf.
Conversely, if E is locally free over an open covering {Uα} of X, then we

just need to glue Uα × Cr → Uα together to get a vector bundle. Therefore
we need a family of gluing data gαβ : (Uα∩Uβ)×Cr → (Uα∩Uβ)×Cr. Since
E is locally free, we have local isomorphism fα : E|Uα → O⊕r

Uα
. Restricting to

intersection Uα ∩ Uβ, we get

fαβ = fα|Uα∩Uβ
◦ f−1

β |Uα∩Uβ
: O⊕r

Uβ
|Uα∩Uβ

→ O⊕r
Uα
|Uα∩Uβ

Every such map is induced by a map

gαβ : (Uα ∩ Uβ)× Cr → (Uα ∩ Uβ)× Cr

that’s gluing data we desire. □

Definition 2.4.7 (cohomology of vector bundle). Let E be a holomorphic
vector bundle on a complex manifoldX. Then its q-th cohomologyHq(X,E)
is defined to be q-th sheaf cohomology of OX(E)

2.4.3. Algebraic construction. Let E,F be complex (holomorphic) vector
bundles on X with transition functions {gαβ}, {hαβ} respectively. Then by
algebraic construction we have
(1) E ⊕ F , given by transition functions {diag(gαβ , hαβ)}
(2) E ⊗ F , given by transition functions {gαβ ⊗ hαβ}.
(3) E∗, given by transition functions {(g−1

αβ )
T }.

(4) Hom(E,F ) := E∗ ⊗ F .
(5)

∧k E, given by transition functions {
∧r gαβ}.

(6) Let f : X → Y be a smooth/holomorphic map, π : E → Y is a vec-
tor bundle with transition functions {gαβ}, then transition functions of
pullback bundle f∗E is given by {gαβ ◦ f}.

Remark 2.4.3. Here is an explicit construction of pullback bundle defined
by

f∗E = {(x, e) ∈ X × E | f(x) = π(e)} ⊆ X × E

In fact, you can regard it as a push out as

f∗E E

X Y

π

f

In particular, pullback bundle has universal property.
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2.4.4. Hermitian structure. Let X be a smooth manifold and π : E → X be
a complex vector bundle.

Definition 2.4.8 (Hermitian metric). A Hermitian metric h on E is a global
section of E∗ ⊗ E.

Remark 2.4.4 (local form). Let {eα} be a local frame of E. Then Hermitian
metric h is given by

h = hαβe
α ⊗ eβ

where hαβ is a Hermitian matrix.

Proposition 2.4.1. Every complex vector bundle admits a Hermitian met-
ric.

Proof. Use partition of unity. □
2.4.5. Line bundle.

Definition 2.4.9 (line bundle). A complex (or holomorphic) line bundle L
is a complex (or holomorphic) vector bundle of rank one.

Proposition 2.4.2. Let L be a complex line bundle over X. Then L⊗ L∗

is the trivial bundle.

Proof. Suppose {gαβ} is the transition functions of L, by Section 2.4.3 it’s
clear to see the transition functions of L∗ ⊗ L is

(g−1
αβ )

T gαβ = g−1
αβgαβ = id

This completes the proof. □
Proposition 2.4.3. Let L be a holomorphic over a compact complex man-
ifold X. Then L is trivial if and only if both L and its dual L∗ admit
non-trivial global section.

Proposition 2.4.4. Let π : E → X be a complex line bundle. Then E is
a trivial line bundle if and ony if there exists a nowhere vanishing global
section s.

Proof. It’s clear there exists a nowhere vanishing global section if E is trivial.
Conversely, if there exists a nowhere vanishing global section s. Consider
the following map

ϕ : X × C→ E

(x, λ) 7→ λs(x)

It’s an isomorphism since fiberwisely one has ϕx(λ) = λs(x), and it’s injec-
tive thus isomorphism since s(x) 6= 0. □
Definition 2.4.10 (picard group). The picard group Pic(X) denotes set of
all holomorphic line bundles on X up to isomorphism, whose group structure
is given by tensor product.

Proposition 2.4.5. There is a natural isomorphism Pic(X) ∼= H1(X,O∗
X).



22

Proof. For a line bundle L, it’s completely determined by its transition func-
tions gαβ : Uαβ → C∗, which is holomorphic functions. It gives rise to an
element in Ȟ1(X,O∗

X) since gαβ satisfies cocycle conditions. Furthermore,
Čech cohomology3 computes the sheaf cohomology for reasonable topological
space, e.g. for manifolds. □

Remark 2.4.5. This proposition gives us a method to compute Picard group
of a complex manifold since there is exponential sequence as follows

0→ Z→ OX → O∗
X → 0

which is a exact sequence of sheaves, then it gives a long exact sequence of
cohomology groups as follows

· · · → H1(X,Z)→ H1(X,OX)→ H1(X,O∗
X)→ H2(X,Z)→ . . .

Thus Pic(X) can in principle be computed by above exact sequence. Roughly
speaking, Pic(X) has two parts:
(1) A discrete part, measured by its image in H2(X,Z).
(2) A continuous part coming from the H1(X,OX), which is possibly trivial.

Proposition 2.4.6. The set OCPn(−1) ⊆ CPn×Cn+1 that consists of all
pairs (l, z) ∈ CPn×Cn+1 with z ∈ l forms a holomorphic line bundle, called
tautological line bundle

Proof. Let π : OCPn(−1) → CPn be the projection to the first factor. Con-
sider open covering {Ui}ni=0 of CPn, where

Ui = {[l] = [l0 : · · · : ln] ∈ CPn | li 6= 0}

A canonical trivialization of OCPn(−1) over Ui is given by

ϕi : π
−1(Ui)→ Ui × C
(l, z) 7→ (l, zi)

Its transition function is computed as follows
ϕi ◦ ϕ−1

j : (Ui ∩ Uj)× C −→ (Ui ∩ Uj)× C

(l, w) 7→ (l, w
li
lj
)

where l = (l0 : · · · : ln). This shows its transition function gij(z) = zi/zj ∈
C∗ is holomorphic. □

Definition 2.4.11 (line bundles on CPn).
OCPn(−k) = OCPn(−1)⊗k k ∈ Z>0

OCPn(k) = (OCPn(−k))∗ k ∈ Z>0

OCPn(0) = CPn×C

3For more details, see Appendix 20.
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Proposition 2.4.7. For k ≥ 0. the space Γ(CPn,OCPn(k)) is canonically
isomorphic to the space C[z0, . . . , zn]k of all homogenous polynomials of
degree k.
Corollary 2.4.1. For k < 0 the line bundle OCPn(k) admits no global
holomorphic section.
Proof. It follows from above result and Proposition 2.4.3. □
2.5. Euler sequence and adjunction formula.
2.5.1. Euler sequence.
Proposition 2.5.1. On CPn there exists a natural short exact sequence of
holomorphic vector bundles

0→ OCPn
ϕ−→ OCPn(1)⊕n+1 ψ−→ T CPn → 0

Exercise 2.5.1. For Grassmannian manifold Gr(k, n), we have
0→ E → Gr(k, n)⊗ Cn → Q→ 0

Show that
TGr(k,n) ∼= Hom(E,Q)

2.5.2. Adjunction formula.
Proposition 2.5.2 (adjunction formula). Let π : L → X is a holomorphic
line bundle and s be a holomorphic section of L. Suppose that D = {x ∈
X | s(x) = 0} is a smooth submanifold of codimensional 1. Show that the
following sequence is exact

0→ TD → TX|D → L|D → 0

As a consequence
K∗
D
∼= K∗

D ⊗ L|D = (K∗
X ⊗ L)|D

Or equivalently
KD
∼= (KX ⊗ L)|D

This is called adjunction formula.
Proof. Firstly we have the following exact sequence

0→ TD → TX|D → ND → 0

where ND is the normal bundle. Now it suffices to show L|D is isomorphic
to the normal bundle of D. Note that s|D = 0 and s is not identically zero
on X, so ds gives an isomorphism between L|D and ND in fact. By taking
determinant we obtain the adjunction formula since for a exact sequence of
vector bundle

0→ A→ B → C → 0

we have
detB = detA⊗ detC

and determinant of a line bundle is itself. □
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Example 2.5.1. Let X = CPn and L = OCPn(−d). Proposition 2.4.7 shows
that D ⊆ CPn is a smooth hypersurface defined by zero set of a homogenous
polynomial with degree d. Then we have

K∗
D
∼= (K∗

X ⊗ L)|D
= (OCPn(n+ 1)⊗OCPn(−d))|D
∼= OCPn(n+ 1− d)|D

Remark 2.5.1. As a consequence, D is called
Fano d < n+ 1

Calabi-Yau d = n+ 1

general type d > n+ 1

These concepts we will define later.
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3. Divisor and line bundle

In this section, unless otherwise specified, we assume X is a complex
manifold.

3.1. Divisor.

Definition 3.1.1 (analytic hypersurface). An analytic hypersurface of X
is an analytic subvariety Y ⊆ X of codimensional one.

Remark 3.1.1. By Remark 1.4.2 one has a hypersurface is locally given as
the zero set of a non-trivial holomorphic function.

Definition 3.1.2 (divisor). A divisor D on X is a locally finite4 formal
linear combination D =

∑
ai[Yi] with Yi ⊆ X are irreducible hypersurfaces

and ai ∈ Z.

Definition 3.1.3 (divisor group). The divisor group Div(X) is the set of
all divisors endowed with the natural group structure.

Definition 3.1.4 (effective). A divisor D =
∑
ai[Yi] is called effective, if

ai ≥ 0 for all i. In this case, we write D ≥ 0.

Proposition 3.1.1. Every hypersurfaces Y defines an effective divisor
∑

[Yi] ∈
Div(X), where Yi are irreducible components of Y .

Proof. It suffices to show the irreducible components of a hypersurface Y is
locally finite. □

Let Y ⊆ X be a hypersurface and x ∈ Y . Suppose that Y defines an
irreducible germ in x, that is this germ is the zero set of an irreducible
g ∈ OX,x.

Definition 3.1.5 (order). Let f be a meromorphic function in a neighbor-
hood of x ∈ Y . Then the order ordY,x(f) of f in x with respect to Y is given
by

f = gordY,x(f)h

where h ∈ O∗
X,x.

Remark 3.1.2.
(1) The order of f in x with respect to Y is independent of the choice of g

since any two irreducible g, g′ ∈ OX,x with Z(g) = Z(g′) only differs by
an element in O∗

X,x.
(2) More globally, one can define order ordY (f) as ordY (f) = ordY,x(f) for

x ∈ Y such that Y defines an irreducible germ in x. Such a point x ∈ Y
always exists, for example, one can choose a regular point x ∈ Yreg.
Moreover, it’s independent of the choice of x since

4The sum is called locally finite, if for any x ∈ X, there exists an open neighborhood
x ∈ U ⊆ X such that only finite many coefficients ai ̸= 0 with Yi ∩ U ̸= ∅.
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Definition 3.1.6 (zeros and poles). Let f be a meromorphic function on
X. Then
(1) f has zeros of order d ≥ 0 along Y if ordY (f) = d.
(2) f has poles of order d ≥ 0 along Y if ordY (f) = −d.
Definition 3.1.7 (principal divisor). For f ∈ K(X), the divisor associated
to f is

(f) :=
∑

ordY (f)[Y ]

where the sum is taken over all irreducible hypersurfaces Y ⊆ X. A divisor
of this form is called principal.
Remark 3.1.3. The divisor (f) can be written as the difference of two effective
divisors (f) = Z(f)− P (f), where

Z(f) =
∑

ordY (f)>0

ordY (f)[Y ], P (f) =
∑

ordY (f)<0

ordY (f)[Y ]

Proposition 3.1.2. There exists a natural isomorphism
H0(X,K∗

X/O∗
X)
∼= Div(X)

Proof. An element f ∈ H0(X,K∗
X/O∗

X) is given by non-trivial meromorphic
functions fi ∈ K∗

X(Ui) such that fif−1
j is a holomorphic function without ze-

ros on Ui∩Uj , where {Ui} is an open covering of X. Thus for any irreducible
hypersurface Y ⊆ X with Y ∩ Ui ∩ Uj 6= ∅, one has ordY (fi) = ordY (fj).
Hence ordY (f) is well-defined for any irreducible hypersurface Y . Then one
associates to f the divisor (f) =

∑
ordY (f)[Y ] ∈ Div(X).

It’s clear this map is a group homomorphism. To see it’s bijective, we
define the inverse as follows. If D =

∑
ai[Yi] ∈ Div(X) is given, then there

exists an open covering {Ui} of X such that Yi∩Uj is defined by gij ∈ O(Uj)
which is unique up to elements in O∗(Uj). Let fj :=

∏
i g
ai
ij ∈ K∗

X(Uj) since
gij and gik defines the same irreducible hypersurface, they only differ by an
element in O∗(Uj ∩ Uk). Thus f glue to an element f ∈ H0(X,K∗

X/O∗
X).

It’s clear these two maps are inverse to each other. □
Remark 3.1.4. In algebraic geometry, elements in H0(X,K∗

X/O∗
X) are called

Cartier divisors and elements in Div(X) are called Weil divisors. Above
isomorphism still holds in the algebraic setting under a weak smoothness
assumption on X.
Corollary 3.1.1. There exists a natural group homomorphism

Div(X)→ Pic(X)

D 7→ O(D)

where O(D) is defined in the proof.
Proof. If D =

∑
ai[Yi] ∈ Div(X) corresponds to f ∈ H0(X,K∗

X/O∗
X), which

in turn is given by functions fi ∈ K∗
X(Ui) for an open covering {Ui}. Then

we define O(D) ∈ Div(X) with transition functions ψij := fif
−1
j ∈ O∗

X(Uij).
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If D,D′ are two divisors, without lose of generality we may assume they’re
given by {fi} and {f ′i} respectively on the same open covering, then D+D′,
then D+D′ corresponds to {fi+ f ′i}. By definition O(D+D′) is described
by {ψijψ′

ij}, hence O(D +D′) = O(D)⊗O(D′). □
Remark 3.1.5. In fact, above corollary can be derived from the following
exact sequence of sheaves

0→ O∗
X → K∗

X → K∗
X/O∗

X → 0

Then above group homomorphism is exactly the boundary map, the kernel
of which coincides with the image of H0(X,K∗

X) → H0(X,K∗
X/O∗

X), and
the latter by definition is the set of principal divisors.

Definition 3.1.8 (linearly equivalent). Two divisors D,D′ are called lin-
early equivalent, denoted by D ∼ D′, if D −D′ is a principal divisor.

Corollary 3.1.2. The group homomorphism Div(X) → Pic(X) factorizes
over an injection

Div(X)/∼ ↪→ Pic(X)

3.2. Relations between divisor and line bundle. In general, Div(X)/∼ ↪→
Pic(X) is a strict inclusion, but we will see if a line bundle admits a non-
trivial global section, then it’s contained in the image. In order to show this,
we need to construct a canonical map

H0(X,L)\{0} → Div(X)

s 7→ Z(s)

The map is constructed as follows: Let L ∈ Pic(X) on open covering {Ui}
be trivialized by ψi : L|Ui → OUi . Then divisor Z(s) is given by f := {fi :=
ψi(s|U} ∈ H0(X,K∗

X/O∗
X).

Proposition 3.2.1. For 0 6= s ∈ H0(X,L), the line bundle O(Z(s)) is
isomorphic to L.

Proposition 3.2.2. For any effective divisor D ∈ Div(X), there exists a
section 0 6= s ∈ H0(X,O(D)) with Z(s) = D.

Corollary 3.2.1. Non-trivial sections s1 ∈ H0(X,L1) and s2 ∈ H0(X,L2)
define linearly equivalent divisors Z(s1) ∼ Z(s2) if and only if L1

∼= L2.

Proof. If L1
∼= L2, then

If Z(s1) ∼ Z(s2), then by Corollary 3.1.2 one has O(Z(s1)) ∼= O(Z(s2)),
then this shows L1

∼= L2 since O(Z(si)) = Li, i = 1, 2. □
Corollary 3.2.2. The image of the natural map Div(X)→ Pic(X) is gen-
erated by those line bundles L ∈ Pic(X) with H0(X,L) 6= 0.

Proof. We have already seen if H0(X,L) 6= 0, then L is contained in the im-
age. Conversely, any divisor D =

∑
ai[Yi] can be written as D =

∑
a+i [Yi]−∑

a−j [Yj ] with a±k ≥ 0, and thus O(D) ∼= O(
∑
a+i [Yi])⊗O(

∑
a−j [Yj ])

∗. Both
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O(
∑
a+i [Yi]) and O(

∑
a−j [Yj ]) are associated to effective divisors, and there-

fore admit non-trivial global sections. □
Remark 3.2.1. For projective manifolds, the map Div(X) → Pic(X) is sur-
jective, but note that even for very easy manifolds, such as complex tori,
this is no longer the case.

3.3. Ample line bundle.
Definition 3.3.1 (base point). Let L be a holomorphic line bundle on a
complex manifold X. A point x ∈ X is a base point of L if s(x) = 0 for all
s ∈ H0(X,L).

Notation 3.3.1. The base locus Bs(L) is the set of all base points of L.

Remark 3.3.1. If dimH0(X,L) <∞, we can choose a basis of global sections
s1, . . . , sN of it, then Bs(L) = Z(s1) ∩ · · · ∩ Z(sN ) is an analytic subvariety.
Later we will see if X is compact, then dimH0(X,L) <∞.

Proposition 3.3.1. Let L be a holomorphic line bundle on a complex man-
ifold X and suppose s1, . . . , sN ∈ H0(X,L) is a basis. Then

ϕL : X\Bs(L)→ CPN

x 7→ (s0(x) : · · · : sN (x))
defines a holomorphic map such that ϕ∗

LOCPN (−1) ∼= L|X\Bs(L).

Definition 3.3.2 (ample line bundle). A holomorphic line bundle L on a
complex manifold X is called ample if for some k > 0 and some linear system
in H0(X,Lk) the associated map ϕ is an embedding.

Remark 3.3.2. By definition, a compact complex manifold is projective if
and only if it admits an ample line bundle.
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4. Tangent and cotangent bundle

4.1. Complex and holomorphic tangent bundle.

Definition 4.1.1 (complex tangent bundle). Let X be a smooth n-manifold
with an atlas {Uα, ϕα : Uα → Vα ⊆ Rn}. Then (real) tangent bundle TRX
is a vector bundle given by smooth transition functions

gαβ : Uα ∩ Uβ → GL(n,R)

x 7→ JR(ϕα ◦ ϕ−1
β )(ϕβ(x))

The complex tangent bundle TCX is defined as the complexification of TRX,
that is, TRX ⊗R C.

Definition 4.1.2 (holomorphic tangent bundle). Let X be a complex n-
manifold, with an atlas {Uα, ϕα : Uα → Vα ⊆ Cn}. Then holomorphic tan-
gent bundle TX is given by holomorphic transition functions

gαβ : Uα ∩ Uβ → GL(n,C)

z 7→ JC(ϕα ◦ ϕ−1
β )(ϕβ(z))

Remark 4.1.1 (relations between complex tangent bundle and holomorphic
tangent bundle). LetX be a complex n-manifold and {zi = xi+

√
−1yi}1≤i≤n

be a local coordinate of X. Then {x1, . . . , xn, y1, . . . , yn} gives a local co-
ordinate of its underlying real 2n-manifold, and there is an almost complex
structure J on TRX given by

J(
∂

∂xi
) =

∂

∂yi

J(
∂

∂yi
) = − ∂

∂xi

Thus complex tangent bundle TCX can be decomposed as TCX = T 1,0X ⊕
T 0,1X with respect to J , with local frames as follows:
(1) { ∂

∂zi
:= 1

2(
∂
∂xi
−
√
−1 ∂

∂yi
)} is a local frame of T 1,0X.

(2) { ∂
∂zi

:= 1
2(

∂
∂xi

+
√
−1 ∂

∂yi
)} is a local frame of T 0,1X.

Indeed, direct computation shows

J(
∂

∂zi
) =

1

2
(
∂

∂yi
+
√
−1 ∂

∂xi
) =

√
−1
2

(
∂

∂xi
−
√
−1 ∂

∂yi
) =
√
−1 ∂

∂zi

J(
∂

∂zi
) =

1

2
(
∂

∂yi
−
√
−1 ∂

∂xi
) = −

√
−1
2

(
∂

∂xi
+
√
−1 ∂

∂yi
) = −

√
−1 ∂

∂zi

and for any section s of TCX, one has the following decomposition

s =
1

2
(s−

√
−1J(s)) + 1

2
(s+

√
−1J(s))

Note that TX is isomorphic to (TRX, J) as complex vector bundle, and we
claim (TRX, J) is isomorphic to T 1,0X as a complex vector bundle. Indeed,
there is a natural inclusion TRX ↪→ TCX, if we compose this inclusion with
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projection TCX = T 1,0X⊕T 0,1
X → T 1,0X onto the first summand, we obtain

an C-isomorphism (TRX, J)→ T 1,0X with inverse map 2Re(-).
In particular, T 1,0X is isomorphic to TX as complex vector bundles, so we

can endow T 1,0X with holomorphic structure such that T 1,0X is isomorphic
to TX as holomorphic vector bundles, and thus we can use {dzi} as local
frame of holomorphic tangent bundle.

4.2. Bidegree forms. For complex manifold X, there is also an almost
complex structure on Ω1

X,R, that is dual bundle of TRX, and complexified
dual space of TRX admits an analogous decomposition:

Ω1
X,C = Ω1

X,R ⊗ C = Ω1,0
X ⊕ Ω0,1

X

There is also a decomposition on its k-th wedge product as follows:

ΩkX,C =

k∧
Ω1
X,C =

⊕
p+q=k

Ωp,qX

where Ωp,qX =
∧pΩ1,0

X ⊗
∧q Ω0,1

X .

Definition 4.2.1 ((p, q)-form). A k-form ω of type (p, q) is a smooth section
of Ωp,qX , that is

ω ∈ C∞(X,Ωp,qX ) ⊆ C∞(X,ΩkX,C)

Remark 4.2.1 (local form). Suppose {z1, . . . , zn} is a local coordinate of X,
and denote zi = xi+

√
−1yi. Then {dx1, . . . , dxn, dy1, . . . , dyn} gives a local

frame of Ω1
X,R, and induced almost complex structure is given by

J∗(dxi)(
∂

∂xi
) = dxi(J(

∂

∂xi
)) = dxi(

∂

∂yi
) = 0

J∗(dxi)(
∂

∂yi
) = dxi(J(

∂

∂yi
)) = dxi(− ∂

∂xi
) = −1

that is
J∗(dxi) = −dyi

J∗(dyi) = dxi

and similarly we have
(1) {dzi := dxi +

√
−1dyi} is a local frame of Ω1,0

X .
(2) {dzi := dxi −

√
−1dyi} is a local frame of Ω0,1

X .
For a k-form, it locally looks like∑

|I|=p,|J|=q
p+q=k

fIJdz
I ∧ dzJ

where fIJ are smooth functions, and a k-form is a (p, q)-form if and only if
locally it looks like ∑

|I|=p,|J |=q

fIJdz
I ∧ dzJ
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Exercise 4.2.1. For Cn ∼= R2n, one has

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = (

√
−1
2

)ndz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

Proof. It suffices to show the case n = 1, and we can compute directly as
follows

(

√
−1
2

)dz ∧ dz = (

√
−1
2

)(dx+
√
−1dy) ∧ (dx−

√
−1dy)

= (

√
−1
2

)(−2
√
−1dx ∧ dy)

= dx ∧ dy

□
4.3. Dolbeault operators. For complex manifold X, naturally there is a
differential operator

d: C∞(X,ΩkX,C)→ C∞(X,Ωk+1
X,C)

Since there is a decomposition for α ∈ C∞(X,ΩkX,C), it’s natural to ask how
to decompose dα ∈ C∞(X,Ωk+1

X,C).

Example 4.3.1. For smooth function α on X, locally a direct computation
shows

dα =
∂α

∂xi
dxi +

∂

∂yi
dyi

=
1

2
(
∂α

∂xi
−
√
−1 ∂α

∂yi
)dzi +

1

2
(
∂α

∂xi
+
√
−1 ∂α

∂yi
)dzi

=
∂α

∂zi
dzi +

∂α

∂zi
dzi

If we denote
∂α =

∂α

∂zi
dzi

∂α =
∂α

∂zi
dzi

then dα = ∂α + ∂α, where ∂α ∈ C∞(X,Ω1,0
X ) and ∂α ∈ C∞(X,Ω0,1

X ). In
general case, for α ∈ C∞(X,Ωp,qX ), locally looks like

α =
∑

|I|=p,|J |=q

αIJdz
J ∧ dzK

then

dα =
∑

|I|=p,|J |=q

∂αIJ
∂zl

dzl ∧ dzI ∧ dzJ +
∑

|I|=p,|J |=q

∂αIJ

∂zl
dzl ∧ zI ∧ zJ

Thus one can define
∂ : C∞(X,Ωp,qX )→ C∞(X,Ωp+1,q

X )

∂ : C∞(X,Ωp,qX )→ C∞(X,Ωp,q+1
X )
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such that d = ∂ + ∂.

Proposition 4.3.1.
(1)

∂(α ∧ β) = ∂α ∧ β + (−1)degαα ∧ ∂β
(2)

∂2 = ∂
2
= 0, ∂∂ + ∂∂ = 0

According to (2) of Proposition 4.3.1 there is following cochain complex

(4.1) 0→ C∞(X,Ωp,0X )
∂−→ C∞(X,Ωp,1X )

∂−→ . . .
∂−→ C∞(X,Ωp,nX )→ 0

Definition 4.3.1 (Dolbeault cohomology).
Hp,q(X) := Hq

∂
(C∞(X,Ωp,•X ))

Remark 4.3.1. Note that we have decomposition C∞(X,ΩkX,C) =
⊕

p+q=k C
∞(X,Ωp,qX ),

could we have the following decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

In fact, for compact Kähler manifold, such decomposition do holds, which
is called Hodge decomposition.

Example 4.3.2. Note that
Hp,0(X) = {α ∈ C∞(X,Ωp,0X ) | ∂α = 0}

For α ∈ C∞(X,Ωp,0X ) locally written as α =
∑

|I|=p αIdz
I , one has

∂α =
∑
|I|=p

∂αI

∂zl
dzl ∧ dzI = 0⇐⇒ ∂αI

∂zl
= 0

which implies αI is a holomorphic function. This showsHp,0(X) = Γ(X,ΩpX).

A natural question arises: what does this cohomology compute? In the
context of smooth manifolds, de Rham cohomology calculates the cohomol-
ogy of a constant sheaf, which heavily relies on the Poincaré lemma. In the
complex setting, Dolbeault cohomology Hp,q(X) determines the q-th sheaf
cohomology of ΩpX , which is based on the following lemma.

Proposition 4.3.2 (∂-Poincaré lemma). Let B be an sufficiently small open
disc in Cn. If α ∈ C∞(B,Ωp,qX ) is ∂-closed and q > 0, then there exists
β ∈ C∞(B,Ωp,q−1

X ) such that α = ∂β.

Proof. See Corollary 1.3.9 of Page47 of [Huy05]. □
Proposition 4.3.3 (functorial). Let f : X → Y be a holomorphic map
between complex manifolds with pullback

f∗ : C∞(Y,ΩkY,C)→ C∞(X,ΩkX,C)
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Then
f∗ : C∞(Y,Ωp,qY,C)→ C∞(X,Ωp,qX,C)

and it induces
f∗ : Hp,q(Y )→ Hp,q(X)

Example 4.3.3 (Dolbeault cohomology of a holomorphic vector bundle5).
For a holomorphic vector bundle E → X, we can also define

∂E : C∞(X,Ω0,q
X ⊗ E)→ C∞(X,Ω0,q+1

X ⊗ E)

satisfies ∂2E = 0. Let’s elaborate this construction: Since any global sec-
tion is glued together by local sections, we just need to define ∂E for lo-
cal sections and check is well-defined under the change of local chart. We
can choose a local holomorphic frame {e1, . . . , en} for E on U , so any
section s ∈ C∞(U,Ω0,q

X ⊗ E) locally can be written as s = si ⊗ ei with
si ∈ C∞(U,Ω0,q

X ). Then we can define
∂E(s) = ∂si ⊗ ei

It’s clear that this definition is independent of the choice of local chart since
the transition functions are holomorphic and ∂ kills them. Furthermore,
∂
2
E = 0 holds since ∂2 = 0. Thus we can construct a cochain complex and

define its cohomology, denoted by
Hq(X,E) = Hq

∂E
(C∞(X,Ω0,•

X ⊗ E))

and similarly Hq(X,E) computes the q-th sheaf cohomology of E.

5In previous case, E = Ωp,0
X
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Part 2. Complex Differential Geometry
5. Connections and its curvature

5.1. Connections on complex vector bundle. Let X be a complex man-
ifold and π : E → X be a complex vector bundle.

5.1.1. Basic definitions.

Definition 5.1.1 (connection). A connection on E is a C-linear operator

∇ : C∞(X,E)→ C∞(X,Ω1
X,C ⊗ E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇s

for f ∈ C∞(X) and s ∈ C∞(X,E).

Remark 5.1.1 (connection form). Let {eα} be a local frame of E. Then any
section s of E can be written as s = sαeα, and

∇(sαeα) = dsαeα + sα∇sα
= dsαeα + sαωβαeβ

where ωβα are 1-forms, which is called connection 1-form. In terms of Christof-
fel symbol, one has

ωβα = Γβiαdz
i + Γβ

iα
dzi

5.1.2. Curvature form. Now we’re going to extend connection to something
called exterior derivative defined on sections of vector bundle valued k-forms
as follows

d∇ : C∞(X,ΩkX,C ⊗ E)→ C∞(X,Ωk+1
X,C ⊗ E)

ω ⊗ s 7→ dω ⊗ s+ (−1)kω ∧∇s

Definition 5.1.2 (curvature form). Let E be a complex vector bundle over
a complex manifold X equipped with connection ∇. There exists a section
Θ ∈ C∞(X,Ω2

X,C ⊗ EndE), called curvature form, such that

(d∇)2s = Θ ∧ s

for all s ∈ C∞(X,ΩkX,C ⊗ E).

Remark 5.1.2 (local form). Let {eα} be a local frame of E. The curvature
form Θ can be written as

Θ = Θβ

ijα
dzi ∧ dzj ⊗ eα ⊗ eβ

where Θβ

ijα
can also be expressed in terms of Christoffel symbols just like

what we have seen in [Liu23].
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5.2. Chern connection. In this section, we will introduce additional struc-
tures to enhance the complexity of a vector bundle E over a complex mani-
fold X. These structures include Hermitian metrics and complex structures.
We will explore connections that align harmoniously with these structures,
similar to our approach in Riemannian geometry. By doing so, we will obtain
the Chern connection, which runs parallel to the Levi-Civita connection.

5.2.1. Compatiblity with Hermitian metric.
Definition 5.2.1 (Hermitian metric). Let E be a complex vector bundle.
A Hermitian metric h on E is a smooth section of E∗ ⊗ E∗.
Remark 5.2.1 (local form). Let {eα} be a local frame of E. Then a Hermitian
metric is determined by a positive definite Hermitian matrix (hαβ), that is

h = hαβe
α ⊗ eβ

where hαβ = h(eα, eβ).

Definition 5.2.2 (Hermitian vector bundle). A complex vector bundle E
together with a Hermitian metric h is called a Hermitian vector bundle
(E, h).
Remark 5.2.2 (metric weight). Let L be a Hermitian line bundle. A Hermit-
ian metric h is locally given by e−2φ, where ϕ is a smooth function, which is
called metric weight. Suppose {gαβ} is transition function of L with respect
to open covering {Uα}. Then h is given by a collection {hα ∈ C∞(Uα)} such
that hα = |gαβ |−2hβ. In other words, a Hermitian metric is a collection of
metric weights {ϕα ∈ C∞(Uα)} such that

ϕα = ϕβ + log |gαβ |
Definition 5.2.3 (sesquilinear map). For a Hermitian vector bundle (E, h)
over complex manifold X, there is a sesquilinear map

C∞(X,ΩpX,C ⊗ E)× C∞(X,ΩqX,C ⊗ E)→ C∞(X,Ωp+qX,C)

(s, t) 7→ {s, t}
locally given by

{sαeα, tβeβ} = hαβs
α ∧ tβ

Definition 5.2.4 (metric connection). A connection ∇ on a Hermitian vec-
tor bundle (E, h) is called a metric connection, if

d〈s, t〉 = {∇s, t}+ {s,∇t}
where s, t are sections of E.
Remark 5.2.3 (local form). If {eα} is a local frame of E, then

dhαβ = d〈eα, eβ〉
= {∇eα, eβ}+ {eα,∇eβ}

= ωγαhγβ + ωγβhαγ
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So in matrix notation, we have

dh = ωh+ hωT

In particular, if we take {eα} to be orthogonal local frame of E with respect
to h, we will find ω + ωT = 0, that is ω is skew-Hermitian matrix.

Proposition 5.2.1. Let (E, h) be a Hermitian vector bundle over a complex
manifold X. A connection ∇ is a metric connection if and only if

d{s, t} = {∇s, t}+ (−1)p{s,∇t}

where s ∈ C∞(X,ΩpX,C ⊗ E) and t ∈ C∞(X,ΩqX,C ⊗ E).

Proposition 5.2.2. Let (E, h) be a Hermitian vector bundle equipped with
connection ∇E . Then ∇E is a metric connection if and only if ∇E∗⊗E∗

h = 0.

Proof. Direct computation shows

∇E∗⊗E∗
(hαβe

α ⊗ eβ) = dhαβ ⊗ e
α ⊗ eβ + hαβ∇

E∗
eα ⊗ eβ + hαβe

α ⊗∇E
∗
eβ

= dhαβ ⊗ e
α ⊗ eβ − hαβω

α
γ e

γ ⊗ eβ − hαβω
β
γ e

α ⊗ eγ

= (dhαβ − ω
γ
αhγβ − ω

γ
βhαγ)e

α ⊗ eβ

This shows desired result. □

5.2.2. Compatiblity with complex structure. For a complex manifold X, we
have decomposition

Ω1
X,C = Ω1,0

X ⊕ Ω0,1
X

Let E → X be a complex vector bundle with connection ∇. Then we can
decompose ∇ = ∇1,0 +∇0,1 by composing the projection as follows

C∞(X,Ω1,0
X ⊗ E)

C∞(X,E) C∞(X,Ω1
X,C ⊗ E)

C∞(X,Ω0,1
X ⊗ E)

∇

If we write ∇ = d + ω locally, then

∇1,0 = ∂ + ω1,0

∇0,1 = ∂ + ω0,1

Definition 5.2.5 (complex connection). A connection ∇ on a holomorphic
vector bundle E over a complex manifold X is said to be compatible with
complex structure if ∇0,1 = ∂E .
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Remark 5.2.4 (local form). Let {eα} be a holomorphic local form of E, and
denote

∇eα = (Γβiαdz
i + Γβ

iα
dzi)eβ

that is
∇0,1eα = Γβ

iα
eβdz

i

But since {eα} is holomorphic, that is ∂Eeα = 0, which implies ∇ is complex
if and only if Γβ

iα
= 0.

5.2.3. Chern connection.

Theorem 5.2.1 (Chern connection). Let X be a complex manifold, (E, h)
a Hermitian holomorphic vector bundle. Then there exists a unique metric
connection called Chern connection such that it’s compatible with complex
structure.

Proof. If metric connection ∇ is compatible with complex structure, then
the following three equations are equivalent

dh = ωh+ hωt

∂h = ωh

∂h = hωt

since ω is a (1, 0)-valued matrix. This shows Chern connection is uniquely
determined by ω = (∂h)h−1. □

Remark 5.2.5 (local form). Chern connection is locally determined by
∂hαβ
∂zi

= Γγiαhγβ

Definition 5.2.6 (Chern curvature). Let X be a complex manifold and
(E, h) be a Hermitian holomorphic vector bundle. The Chern curvature Θh

of (E, h) is defined as the curvature of Chern connection with respect to h.

Corollary 5.2.1. Let X be a complex manifold and (E, h) a Hermitian
holomorphic vector bundle equipped with Chern connection ∇ locally given
by ω. Then
(1) ∂ω = ω ∧ ω.
(2) Θh = ∂ω.
(3) ∂Θh = 0.

Proof. For (1). Since ω = (∂h)h−1, then directly computation shows

∂ω = −∂h ∧ ∂(h−1)

= −∂h ∧ (−h−1∂hh−1)

= (∂h)h−1 ∧ (∂h)h−1

= ω ∧ ω
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For (2). Θh locally looks like

Θh = dω − ω ∧ ω = dω − ∂ω = ∂ω

For (3). It’s clear from (2). □

Remark 5.2.6 (local form). The Chern curvature can be expressed in terms
of Christoffel symbol as follows

Θh = Θγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ

where Θγ

ijα
= −∂Γγ

iα

∂zj
. In other type one has

Θijαβ = hγβΘ
γ

ijα

= −hγβ∂j(h
γδ ∂hαδ

∂zi
)

= −
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

5.2.4. Useful formulas of Chern connection. Let X be a complex manifold
and (E, h) be a Hermitian holomorphic vector bundle over X. Let ∇ be
Chern connection determined by Christoffel symbol Γβiα on (E, h) with cur-
vature Θh. Suppose {zi} is local coordinate of X, {eα} is the local frame of
E, and {eα} and {eα} denote local frames of E∗ and E respectively.

Proposition 5.2.3.

Γβiα = hβγ
∂hαγ
∂zi

Proof. See Remark 5.2.5. □

Proposition 5.2.4.

Θγ

ijα
= −

∂Γγiα
∂zj

Θijαβ = −
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

Proof. See Remark 5.2.6. □

Proposition 5.2.5.

∇ ∂

∂zi
eα = Γβiαeβ , ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = Γβ

iα
eβ

∇ ∂

∂zi
eα = −Γαiβeβ , ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = −Γα

iβ
eβ

Proof. It suffices to show the first two equalities, and others can be obtained
from taking conjugates and dualities. The first one holds from definition of
Christoffel symbol, and Γβ

iα
= 0 holds from the Remark 5.2.4. □

Corollary 5.2.2.
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(1) For s ∈ C∞(X,E), locally written as s = sαeα, one has

∇ ∂

∂zi
s = (

∂sβ

∂zi
+ sαΓβiα)eβ

∇ ∂

∂zi
s =

∂sβ

∂zi
eβ

(2) For s ∈ C∞(X,E), locally written as s = sαeα, one has

∇ ∂

∂zi
s =

∂sβ

∂zi
eβ

∇ ∂

∂zi
s = (

∂sβ

∂zi
+ sαΓβ

iα
)eβ

(3) For s ∈ C∞(X,E∗), locally written as s = sαe
α, one has

∇ ∂

∂zi
s = (

∂sβ
∂zi
− sαΓαiβ)eβ

∇ ∂

∂zi
s =

∂sβ
∂zi

eβ

(4) For s ∈ C∞(X,E
∗
), locally written as s = sαe

α, one has

∇ ∂

∂zi
s =

∂sβ
∂zi

eβ

∇ ∂

∂zi
s = (

∂sβ
∂zi
− sαΓγiβ)e

β

Proposition 5.2.6 (Ricci identity). For s ∈ C∞(X,E), locally written as
s = sαeα, one has

∇ ∂

∂zi
∇ ∂

∂zj
sβ −∇ ∂

∂zj
∇ ∂

∂zi
sβ = Θβ

ijα
sα

Proof. Direct computation shows

∇ ∂

∂zi
∇ ∂

∂zj
s = ∇ ∂

∂zi
(
∂sα

∂zj
eα)

=
∂2sβ

∂zi∂zj
eβ + Γβiα

∂sα

∂zj
eβ

that is
∇ ∂

∂zi
∇ ∂

∂zj
sβ =

∂2sβ

∂zi∂zj
+ Γβiα

∂sα

∂zj

Direct computation also shows

∇ ∂

∂zj
∇ ∂

∂zi
sβ =

∂2sβ

∂zj∂zi
+
∂sα

∂zj
Γβiα + sα

∂Γβiα
∂zj

Thus

∇ ∂

∂zi
∇ ∂

∂zj
sβ −∇ ∂

∂zj
∇ ∂

∂zi
sβ = −sα

∂Γβiα
∂zj

= Θβ

ijα
sα
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□

5.3. First Chern class.

5.3.1. First Chern class of complex line bundle. Let π : X → L be a complex
line bundle with connection ∇ over a complex manifold X. Then curvature
Θ is a global section of Ω2

X,C since EndL is trivial bundle. Furthermore,
Θ locally looks like dω since for line bundle ω ∧ ω = 0. An immediate
consequence is dΘ = 0, that is Θ gives a cohomology class

[Θ] ∈ H2(X,C)

Definition 5.3.1 (first Chern class of line bundle). Let L be a complex line
bundle over complex manifold X equipped with connection ∇. The first
Chern class of L is defined as

c1(L) := [

√
−1
2π

Θ] ∈ H2(X,C)

where Θ is the curvature of ∇.

Proposition 5.3.1 (topological invariance). c1(L) ∈ H2(X,C) is indepen-
dent of the choice of connection.

Proof. Let ∇̃ be another connection which is locally given by ω̃. Then for
section s of ΩkX,C ⊗ L, one has

(∇− ∇̃)s = (ds+ ω ∧ s)− (ds+ ω̃ ∧ s)
= (ω − ω̃) ∧ s

Note that ω − ω̃ is a global section of Ω1
X,C, so Θ− Θ̃ is exact. □

Proposition 5.3.2. Let π : L→ X be a complex line bundle over a complex
manifold X. Then c1(L) ∈ H2(X,R).

Proof. Equip L with a Hermitian metric h, then for a metric connection ∇,
locally we have

ω = −ω
Thus √

−1
2π

Θ = −
√
−1
2π

Θ = −
√
−1
2π

dω =

√
−1
2π

dω =

√
−1
2π

Θ

□

Remark 5.3.1. Here are two facts here we don’t prove:
(1) c1(L) ∈ H2(X,Z).
(2) L is determined by c1(L).

Definition 5.3.2 (first Chern class of vector bundle). Let E be a complex
vector bundle over complex manifold X. The first Chern class of E is defined
to be the first Chern class of detE.
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5.3.2. First Chern class of Hermitian holomorphic line bundle. Let X be a
complex manifold, (L, h) a Hermitian holomorphic line bundle, and ∇ is the
Chern connection of (L, h) with Chern curvature Θh. Then by Proposition
5.3.2 and Corollary 5.2.1, we have

[

√
−1
2π

Θh] ∈ H2(X,R) ∩H1,1(X)

Remark 5.3.2 (local form). Suppose Hermitian metric h is given by metric
weight {ϕα}, that is locally h = e−2φα . Then direct computation shows first
Chern class is locally given by

√
−1
2π

Θh =

√
−1
π

∂∂ϕα

Proposition 5.3.3. [
√
−1
2π Θh] ∈ H1,1(X) is independent of h.

Proof. Note that any two metric on a line bundle differ a smooth function
which is positive everywhere, so if h and h′ are two different metrics, we can
write ‖e(z)‖h′ = ef‖e(z)‖h for some globally defined smooth function f . So
by Remark 5.3.2, we have the difference of first Chern classes coming from
different metrics is

√
−1
π ∂∂f , and it’s trivial in H1,1(X) since f is globally

defined. □

5.4. Lefschetz (1, 1)-theorem. Now we know that given a Hermitian holo-
morphic line bundle (L, h), its Chern curvature we will get a real (1, 1)-form.
So we may wonder the converse of this statement. Is there any real (1, 1)-
form comes from such a Hermitian holomorphic line bundle? That’s main
theorem for this section.

Theorem 5.4.1 (Lefschetz (1, 1)-theorem). Let X be a complex manifold
and [ω] ∈ H2(X,R) ∩H1,1(X). If

[ω] ∈ im{H2(X,Z)→ H2(X,R)},
then there exists a Hermitian holomorphic line bundle (L, h) such that

√
−1
2π

Θh = ω

Before proving this theorem, let’s explain these notations. Here H2(X,Z)
and H2(X,R) are sheaf cohomology of constant sheaves Z and R. By de
Rham theorem6, there is no difference between sheaf cohomology of R and
de Rham cohomology, but it’s meaningless to consider de Rham cohomology
with Z-coefficient.

Here we use the isomorphisms
H2(X,Z) ∼= Ȟ2(X,Z)
H2(X,R) ∼= Ȟ2(X,R)

6See appendix 20.
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and consider the map in terms of Čech cohomology
Ȟ2(X,Z)→ Ȟ2(X,R).

Above isomorphism is called comparision theorem, and can be proved by
technique of spectral sequences in general. Here we give an explicit con-
struction in dimension two, that is, construct a Čech 2-cocycle from a closed
2-form.

In sketch, the philosophy of this construction is that we can descend the
degree of differential forms, but the price we pay is to consider functions
defined on intersections of many open subsets.
Proof of comparision theorem in dimension two. Let X be a smooth mani-
fold and Z1(X) ⊂ Ω1

X,R be the sheaf of closed 1-form. Then we have the
following sequence of sheaves

0→ R→ C∞(X)
d−→ Z1 → 0.

By Poincaré lemma it’s an exact sequence. Similarly, there is also an exact
sequence

0→ Z1 → Ω1
X,R

d−→ Z2 → 0,

where Z2 is the sheaf of closed 2-forms. By the definition of de Rham
cohomology, we have

H2(X,R) =
C∞(X,Z2)

dC∞(X,Ω1
X,R)

In order to avoid taking limit in Čech cohomology, we choose a good enough
open covering7 U = {Uα}α∈I such that
(1)

d: C∞(Uα,Ω
1
Uα,R)→ C∞(Uα, Z

2)

is surjective for any α ∈ I.
(2)

d: C∞(Uα ∩ Uβ)→ C∞(Uα ∩ Uβ , Z1)

is surjective for any α, β ∈ I.
Let ω be a closed 2-form. For any α ∈ I, we choose Aα ∈ C∞(Uα,Ω

1
Uα,R)

such that
ω|Uα = dAα.

Then ∏
α,β

(Aα −Aβ)

is a Čech 1-cocycle in C1(U, Z1) since d(Aα − Aβ)|Uα∩Uβ
= ω − ω = 0. For

any α, β ∈ I, we choose fαβ ∈ C∞(Uα ∩ Uβ) such that
(Aα −Aβ)αβ = dfαβ .

7In fact, it’s called Leray covering, and Leray’s theorem about Čech cohomology says
that the Čech cohomology with respect to Leray covering is exactly the Čech cohomology.
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Note that
fβγ − fαγ + fαβ |Uα∩Uβ∩Uγ

is d-closed by the same reason, and thus it’s locally constant. Then

ω̌ =
∏
α,β,γ

(fβγ − fαγ + fαβ)

is a Čech 2-cocycle in C2(U,R). Then by Leray’s theorem, we obtain a Čech
2-cocycle ω̌ ∈ Ȟ2(X,R) from a closed 2-form ω ∈ H2(X,R). □

Now let’s prove Lefschetz (1, 1)-theorem.

Proof of theorem 5.4.1. Let U = {Uα}α∈I be an open covering consisting of
open polydisk such that for all α, β ∈ I, the intersection Uα ∩ Uβ is simply-
connected.

For a d-closed real (1, 1)-form ω, after a refinement if neccessary, Lemma
0.2.1 implies that there exist smooth functions ϕα : Uα → R such that

ω|Uα =

√
−1
2π

∂∂ϕα.

Then on any two intersection Uα∩Uβ, one has ∂∂(ϕα−ϕβ) = 0. Again after
a refinement if neccessary, Lemma 0.2.2 implies that there exist holomorphic
functions fαβ such that

(ϕα − ϕβ)|Uα∩Uβ
= 2Re(fαβ) = fαβ + fαβ .

For
∏
fαβ ∈ C1(U,OX), one has

(δf)αβγ = (fβγ − fαγ + fαβ)|Uα∩Uβ∩Uγ

Since 2Re(fβγ − fαγ + fαβ)αβγ = 0, it must be a locally constant pure
imaginary number, that is, it lies in 2π

√
−1R(Uα ∩ Uβ ∩ Uγ).

For real 1-form
Aα =

√
−1
4π

(∂ϕα − ∂ϕα),

a direct computation shows that ω|Uα = dAα, and that’s why we define Aα
in this form.

Recall what we have done in the proof of comparision theorem: If we
want to find Čech cocycle which corresponding to ω, we need to consider
Aα −Aβ on the intersection Uα ∩ Uβ. A direct computation shows that

∂(ϕβ − ϕα) = ∂(fαβ + fαβ)

= ∂fαβ

= dfαβ

∂(ϕβ − ϕα) = dfαβ .

Thus
(Aβ −Aα)αβ =

√
−1
4π

d(fαβ − fαβ) =
1

2π
d(Im(fαβ)).
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Then the Čech 2-cocycle ω̌ corresponding to ω is

ω̌ =
∏

(
1

2π
Im(fβγ − fαγ + fαβ))αβγ

=
∏

(
1

2π
√
−1

(fβγ − fαγ + fαβ))αβγ .

By hypothesis one has [ω̌] is an image of [
∏
nαβγ ] ∈ Ȟ2(X,Z). However,

it doesn’t mean that fαβ are exactly integers, but not too bad, we just need
some correction terms, that is∏

(
1

2π
√
−1

(fβγ − fαγ + fαβ))αβγ =
∏

nαβγ + δ(
∏

cαβ)

where
∏
(cαβ) ∈ C1(U, R) is 1-cochain. If we define f ′αβ = fαβ − 2π

√
−1cαβ ,

then
(f ′βγ − f ′αγ + f ′αβ)αβγ = 2π

√
−1nαβγ ∈ 2π

√
−1Z(Uα ∩ Uβ ∩ Uγ).

Now consider the holomorphic function from Uα ∩ Uβ to C∗ defined by
gαβ = exp(−f ′αβ). A direct computation shows that it satisfies the cocycle
condition

gβγg
−1
αγ gαβ = 1,

since e2π
√
−1 = 1. Then {gαβ} is a collection of transition functions, and

gives a holomorphic line bundle L.
Now it suffices to construct a Hermitian metric on L, and calculate its

curvature to complete the proof. Note that
(ϕα − ϕβ)Uα∩Uβ

= 2Re(fαβ) = 2Re(fαβ)
′ = − log |gαβ |2.

Consider the Hermitian metric h, which is locally given by
hα = exp(−ϕα)

on Uα. It’s well-defined since hβ = |gαβ |2hα = gTαβhαgαβ . Moreover,
√
−1
2π

Θh =

√
−1
2π

∂∂ϕα = ω.

This completes the proof. □
Remark 5.4.1. Consider the exponential sequence

0→ Z 2π
√
−1−→ OX

exp−→ O∗
X → 0

and the induced long exact sequence

· · · → H1(X,O∗
X)

δ−→ H2(X,Z)→ H2(X,OX)→ . . . .

Let L be a holomorphic line bundle determined by its transition functions
{gαβ}. The proof for Lefschetz (1, 1)-theorem shows that δ maps {gαβ} to
−c1(L).
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6. Hermitian geometry

6.1. Hermitian manifold and Riemannian manifold. A Hermitian man-
ifold is a complex manifold X together with a Hermitian metric h on holo-
morphic tangent bundle TX. One way to construct a Hermitian metric on
TX is to consider special Riemannian metric on the underlying real mani-
fold.

Suppose {zi = xi +
√
−1xI} is a local coordinate of X, where 1 ≤ i ≤ n

and n + 1 ≤ I = i + n ≤ 2n. Then {xi, xI} gives a local coordinate
of underlying real manifold of X, and there is a natural almost complex
structure J on TRX which is given by

J(
∂

∂xi
) =

∂

∂xI

J(
∂

∂xI
) = − ∂

∂xi

Definition 6.1.1 (compatiblity). A Riemannian metric g on TRX is called
compatible with almost complex structure, if

g(V,W ) = g(JV, JW )

for all V,W ∈ C∞(X,TRX).

Proposition 6.1.1. Let g be a Riemannian metric on TRX which is com-
patible with J and locally given by

g = gijdx
i ⊗ dxj + giJdx

j ⊗ dxJ + gIjdx
I ⊗ dxj + gIJdx

I ⊗ dxJ

Then
gij = gIJ

giJ = gJi = −gjI = −gIj

Proof. Direct computation. □

Notation 6.1.1. (
gil giL

gIl gIL

)(
glj glJ
gLj gLJ

)
= I2n

In other words,
gilglj + giLgLj = δij

gilglJ + giLgLJ = 0

Let g be a Riemannian metric on underlying real manifold which is com-
patible with J . Then its C-linear extension gC gives a matrix

G =

(gC( ∂
∂zi
, ∂
∂zj

)
)
n×n

(
gC(

∂
∂zi
, ∂
∂zj

)
)
n×n(

gC(
∂
∂zi
, ∂
∂zj

)
)
n×n

(
gC(

∂
∂zi
, ∂
∂zj

)
)
n×n





46

Direct computation shows that

gC(
∂

∂zi
,
∂

∂zj
) = 0

gC(
∂

∂zi
,
∂

∂zj
) = 0

and if we denote H = (hij)n×n, where

(6.1) hij := gC(
∂

∂zi
,
∂

∂zj
) =

1

2
(gij +

√
−1giJ)

Then

G =

(
0 H
H 0

)
Moreover, H is a positive definite Hermitian matrix since G is a positive
definite symmetric matrix. Thus h gives a Hermitian metric on T 1,0X, which
makes X a Hermitian manifold. Conversely, if h is a Hermitian metric on
T 1,0X, there is also a Riemannian metric on TRX given by

gij = 2Rehij
giJ = 2 imhij
gIj = −giJ
gIJ = gij

From now on, g always denotes a Riemannian metric on the underlying
real manifold which is compatible with J , and h be the Hermitian metric
corresponding to g.

Proposition 6.1.2. √
det g = 2n deth

Proof. Direct computation shows

det g = det

(
(gij)n×n (giJ)n×n
(gIj)n×n (gIJ)n×n

)
(1)
= det

(
(gij)n×n (giJ)n×n
(−giJ)n×n (gij)n×n

)
= det

(
(gij +

√
−1giJ)n×n (giJ)n×n

(−giJ +
√
−1gij)n×n (gij)n×n

)
= det

(
(gij +

√
−1giJ)n×n (giJ)n×n
O (gij +

√
−1giJ)n×n

)
= (2n deth)2

where (1) holds from Proposition 6.1.1. □
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Notation 6.1.2. hij is defined by the (i, j)-entry of (H−1)T , that is hilhjl =
δij , and hij := hij . Note that

G−1 = (G−1)T =

(
0 (hij)n×n

(hij)n×n 0

)
Proposition 6.1.3.

hij = 2(gij −
√
−1giJ)

Proof. Direct computation shows

hilhjl = (gil −
√
−1giL)(gjl +

√
−1gjL)

= gilgjl + giLgjL +
√
−1(gilgjL − giLgjL)

= gilglj + giLgLj −
√
−1(gilglJ + giLgLj)

= δij

□
Definition 6.1.2 (fundamental form). The fundamental form ω of g is
defined as

ω(V,W ) := gC(JV,W )

where V,W ∈ C∞(X,TCX).

Proposition 6.1.4.
ω =
√
−1hijdz

i ∧ dzj

In particular, ω is a real (1, 1)-form.

Proof. Direct computation shows

ω(
∂

∂zi
,
∂

∂zj
) = gC(J(

∂

∂zi
),

∂

∂zj
) =
√
−1gC(

∂

∂zi
,
∂

∂zj
) = 0

ω(
∂

∂zi
,
∂

∂zj
) = gC(J(

∂

∂zi
),

∂

∂zj
) =
√
−1gC(

∂

∂zi
,
∂

∂zj
) =
√
−1hij

ω(
∂

∂zj
,
∂

∂zi
) = gC(J(

∂

∂zi
),

∂

∂zj
) = −

√
−1gC(

∂

∂zi
,
∂

∂zj
) = −

√
−1hij

ω(
∂

∂zi
,
∂

∂zj
) = gC(J(

∂

∂zi
),

∂

∂zj
) = −

√
−1gC(

∂

∂zi
,
∂

∂zj
) = 0

This shows
ω =
√
−1hijdz

i ⊗ dzj −
√
−1hijdz

i ⊗ dzj

=
√
−1hijdz

i ⊗ dzj −
√
−1hjidz

j ⊗ dzi

=
√
−1hijdz

i ∧ dzj

where the last step holds since h is Hermitian, that is hji = hij . □

Proposition 6.1.5.
2h+

√
−1ω = gC



48

Proof. Direct computation shows

h− 1

2
gC = hijdz

i ⊗ dzj − 1

2
(hijdz

i ⊗ dzj + hijdz
i ⊗ dzj)

=
1

2
hijdz

i ⊗ dzj − 1

2
hijdz

i ⊗ dzj

=
1

2
hijdz

i ∧ dzj

= −
√
−1
2

ω

□

Remark 6.1.1. In fact, Hermitian metric h, Riemannian metric g on underly-
ing real manifold and fundamental form ω are the same things on a complex
manifold X, and any of them gives a Hermitian structure on X.

h

ω gC

1 3

2

5
4

6

The explict correspondences are listed as follows:

1 2ω(-, -) = −Imh(-, -)
2 2h(-, -) = ω(-, J-)−

√
−1ω(-, -)

3 2gC(-, -) = Reh(-, -)
4 2h(-, -) = gC(-, -)−

√
−1gC(J-, -)

5 gC(-, -) = ω(-, J-)
6 ω(-, -) = gC(J-, -)

In later discussion, we may say a Hermitian manifold (X,h) or (X,ω) when
we’re emphasizing its Hermitian metric or fundamental form.

Theorem 6.1.1 (normal coordinate). Let (X,h) be a Hermitian manifold.
For any p ∈ X, there exists a local holomorphic coordinate {zi} centered at
p such that

hij(p) = δij and
∂hij

∂zk
+
∂hik
∂zj

= 0

Proof. Without lose of generality, we may assume

ω =
√
−1(δij + aijlw

l + aijlw
l +O(|w|2))dwi ∧ dwj

□
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6.2. Curvatures of Hermitian manifold. Sometimes we need to consider
Hermitian holomorphic vector bundles over a Hermitian manifold, so there
are two Hermitian metrics. In this case, in order to distinguish them, we
always say a Hermitian holomorphic vector bundle (E, h) over a Hermitian
manifold (X, g).

Definition 6.2.1 (curvatures of vector bundle). Let (E, h) be a Hermitian
holomorphic vector bundle on Hermitian manifold (X, g). Then
(1) the first Chern-Ricci curvature of (E, h) is locally given by

Ric(1)(h) =
√
−1hαβΘijαβdz

i ∧ dzj

(2) the second Chern-Ricci curvature of (E, h) is locally given by

Ric(2)(h) =
√
−1gijΘijαβe

α ⊗ eβ

(3) the Chern scalar curvature of (E, h) is locally given by

s = gijhαβΘijαβ

Remark 6.2.1. For convenience, we always use the following notations.
(1) Ric(1)(h) =

√
−1 trhΘh and Ric(2)(h) =

√
−1 trg Θh, where Θh is the

Chern curvature of (E, h).
(2) For a real (1, 1)-form ϕ locally written as

√
−1ϕijdzi∧dzj , trg ϕ denotes

the function gijϕij . In particular, the Chern scalar curvature is denoted
by trg trhΘh, where Θh is the Chern curvature of (E, h).

Definition 6.2.2 (curvatures of Hermitian manifold). Let (X,h) be a Her-
mitian manifold. Then
(1) the first (or second) Chern-Ricci curvature of (X,h) is defined to be

the first (or second) Chern-Ricci curvature of its holomorphic tangent
bundle.

(2) the Chern scalar curvature of (X,h) is defined to be the Chern scalar
curvature of its holomorphic tangent bundle.

Proposition 6.2.1. Let (E, h) be a Hermitian holomorphic vector bundle.
The first Chern-Ricci curvature of (E, h) gives the first Chern class of (E, h)
up to a scalar.

Proof. A direct computation shows
√
−1
2π

hαβ(−
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

) = −
√
−1
2π

∂2 log det(hαβ)

∂zi∂zj

Thus the first Chern-Ricci curvature of (E, h) gives the Chern curvature of
(detE, deth) up a scalar 1/2π, and by Definition 5.3.2 the first Chern class
of (E, h) is defined to be first Chern class of detE. □
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Definition 6.2.3 (holomorphic sectional curvature). Let (X,h) be a Her-
mitian manifold and v = vi ∂

∂zi
∈ TpX be a unit vector. The holomorphic

sectional curvature in the direction v is defined as

HSCp(v) := Θijklv
ivjvkvl

Definition 6.2.4 (holomorphic bisectional curvature). Let (X,h) be a Her-
mitian manifold and v = vi ∂

∂zi
, w = wi ∂

∂zi
∈ TpX be unit vectors. The

holomorphic sectional curvature in the direction v, w is defined as

HBSCp(v, w) := Θijklv
ivjwkwl

6.3. Useful formulas of Hermitian geometry. In this section we collect
some useful formulas in Hermitian geometry. Unless otherwise specified, we
assume (X,h) is a Hermitian n-manifold with fundamental form ω, and g is
the Riemannian metric on the underlying real manifold.

Proposition 6.3.1.

ωn = (
√
−1)nn! det(hij)dz

1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

Proof. Direct computation shows

ωn = (
√
−1)n(hijdz

i ∧ dzj)n

= (
√
−1)n

∑
σ∈Sn
τ∈Sn

hiσ(1)jτ(1)
. . . hiσ(n)jτ(n)

dziσ(1) ∧ dzjτ(1) ∧ · · · ∧ dziσ(n) ∧ dzjτ(n)

= (
√
−1)n

∑
σ∈Sn
τ∈Sn

(−1)|σ|(−1)|τ |hiσ(1)jτ(1)
. . . hiσ(n)jτ(n)

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

= (
√
−1)n

∑
σ∈Sn

∑
ρ∈Sn

(−1)|ρ|hiρ(1)j1 . . . hiρ(n)jn
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

= (
√
−1)nn! det(hij)dz

1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

□

Corollary 6.3.1.

ωn−1 = (
√
−1)n−1(n−1)!

∑
i1<···<in−1,il ̸=p

j1<···<jn−1,jl ̸=q

h(p, q)dzi1∧dzj1∧· · ·∧dzin−1∧dzjn−1

where h(p, q) the cofactor of h without row p and column q.
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Proof. Direct computation shows

ωn−1 = (
√
−1)n−1(hijdz

i ∧ dzj)n−1

= (
√
−1)n−1

∑
σ∈Sn−1
τ∈Sn−1

hiσ(1)jτ(1)
. . . hiσ(n−1)jτ(n−1)

dziσ(1) ∧ dzjτ(1) ∧ · · · ∧ dziσ(n−1) ∧ dzjτ(n−1)

= (
√
−1)n−1

∑
i1<···<in−1,il ̸=p

j1<···<jn−1,jl ̸=q

∑
σ∈Sn−1
ρ∈Sn−1

(−1)|ρ|hiρ(1)j1 . . . hiρ(n−1)jn−1
dzi1 ∧ dzj1 ∧ · · · ∧ dzin−1 ∧ dzjn−1

= (
√
−1)n−1(n− 1)!

∑
i1<···<in−1,il ̸=p

j1<···<jn−1,jl ̸=q

h(p, q)dzi1 ∧ dzj1 ∧ · · · ∧ dzin−1 ∧ dzjn−1

□

Corollary 6.3.2.

ωn−2 = (
√
−1)n−2(n−2)!

∑
i1<···<in−2,il ̸=p,s

j1<···<jn−2,jl ̸=q,t

h

(
p, q
s, t

)
dzi1∧dzj1∧· · ·∧dzin−2∧dzjn−2

where h
(
p, q
s, t

)
the cofactor of h without rows p, s and columns q, t.

Proposition 6.3.2. ωn/n! is the volume form of the underlying real mani-
fold with respect to g.

Proof. Direct computation shows

ωn
(1)
= (
√
−1)nn! det(hij)dz

1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

(2)
= n!2n det(hij)dx

1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

(3)
= n! vol

where
(1) holds from Proposition 6.3.1.
(2) holds from Exercise 4.2.1.
(3) holds from Proposition 6.1.2.

□

Proposition 6.3.3.
(1) If ϕ is a real (1, 1)-form, then

ϕ ∧ ωn−1 =
1

n
trω ϕ · ωn

(2) If ϕ is a (1, 0)-form, then
√
−1ϕ ∧ ϕ ∧ ωn−1 =

1

n
|ϕ|2 · ωn
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(3) If ϕ is a (0, 1)-form, then
√
−1ϕ ∧ ϕ ∧ ωn−1 = − 1

n
|ϕ|2 · ωn

Proof. For (1). Suppose ϕ =
√
−1ϕijdzi ∧ dzj . Then by Proposition 6.3.1

one has
1

n
trω ϕ · ωn = (

√
−1)n(n− 1)!hijϕij dethdz

1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

and by Corollary 6.3.1 one has

ϕ ∧ ωn−1 = (
√
−1)n(n− 1)!ϕijdz

i ∧ dzj ∧
∑

i1<···<in−1,il ̸=p

j1<···<jn−1,jl ̸=q

h(p, q)dzi1 ∧ dzj1 ∧ · · · ∧ dzin−1 ∧ dzjn−1

= (
√
−1)n(n− 1)!

∑
1≤p,q≤n

ϕpq(−1)p+qh(p, q)dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

Note that by expansion of determinant one has

hijϕij deth = hijϕij

n∑
k=1

hkj(−1)
k+jh(k, j) =

∑
1≤i,j≤n

ϕij(−1)
i+jh(i, j)

For (2). Suppose ϕ = ϕidz
i. Then

√
−1ϕ ∧ ϕ =

√
−1ϕiϕjdzi ∧ dzj

is a real (1, 1)-form, and it’s clear

trω
√
−1ϕ ∧ ϕ = |ϕ|2

then by (1) we obtain desired result, and (3) follows from (2) directly. □

Proposition 6.3.4.
〈dzi ∧ α, β〉 = 〈α, hpiιpβ〉

holds for α, β with appropriate bidegrees.

Proposition 6.3.5. Let (E, h) be a Hermitian holomorphic vector bundle
over a Hermitian manifold (X, g) and ϕ be a real (1, 1)-form. Then

{ϕ,ϕ} ωn−2

(n− 2)!
= (| trω ϕ|2 − |ϕ|2)

ωn

n!

Proof. Suppose ϕ =
√
−1ϕα

ij
dzi∧dzj⊗ eα. Then by Corollary 6.3.2 one has

LHS = (
√
−1)nϕα

ij
ϕβ
kl
hαβdz

i∧zj∧dzl∧zk∧
∑

i1<···<in−2,il ̸=p,s

j1<···<jn−2,jl ̸=q,t

g

(
p, q
s, t

)
dzi1∧dzj1∧· · ·∧dzin−2∧dzjn−2
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If we want to insert dzi ∧ dzj ∧ dzl ∧ dzk into
∑

i1<···<in−2,il ̸=p,s

j1<···<jn−2,jl ̸=q,t

dzi1 ∧ dzj1 ∧

· · · ∧ dzin−2 ∧ dzjn−2 , there are the following four cases
i = p, l = s, j = q, k = t

i = p, l = s, j = t, k = q

i = s, l = p, j = q, k = t

i = s, l = p, j = t, k = q

So case by case one has

ϕα
ij
ϕβ
kl
dzi ∧ dzj ∧ dzl ∧ dzk ∧

∑
i1<···<in−2,il ̸=p,s

j1<···<jn−2,jl ̸=q,t

dzi1 ∧ dzj1 ∧ · · · ∧ dzin−2 ∧ dzjn−2

=
∑

1≤p,q≤n
1≤s,t≤n

(ϕαpqϕ
β
ts − ϕ

α
ptϕ

β
qs − ϕ

α
sqϕ

β
tp + ϕαstϕ

β
qp)(−1)

p+q+t+sdz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

On the other hand, direct computation shows

| trω ϕ|2 = ϕα
ij
ϕβ
kl
gijglkhαβ

|ϕ2| = ϕα
ij
ϕβ
kl
gikgljhαβ

and thus
RHS = (

√
−1)nϕα

ij
ϕβ
kl
hαβ(g

ijglk − gikglj) det g
Note that Laplacian’s theorem implies

(gijglk − gikglj) det g = (gijglk − gikglj)
∑

1≤p,s≤n
1≤j,k≤n

(gpjgsk − gsjgpk)(−1)
p+j+s+kg

(
p, j
s, k

)

= (δipδ
l
s − δisδlp − δisδlp + δipδ

l
s)(−1)p+j+s+kg

(
p, j
s, k

)
This shows the RHS equals to the LHS. □

6.4. Gauduchon metric.

Theorem 6.4.1 (Gauduchon metric). If X be a complex manifold, then
there exists a Hermitian metric ω such that

∂∂ωn−1 = 0,

which is called Gauduchon metric.

Proof. See [Gau77]. □

Corollary 6.4.1. Let f : X → R be a smooth function on a compact com-
plex manifold X. If √

−1∂∂f ≥ 0,

then f is a constant.
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Proof. Let ω be the Gauduchon metric on X. Then

0 ≤
ˆ
X

√
−1∂∂f ∧ ωn−1 =

ˆ
X

√
−1f ∧ ∂∂ωn−1 = 0

which implies
√
−1∂∂f = 0. Note that

(6.2) ∂∂f2 = ∂(2f∂f) = 2∂f ∧ ∂f + 2f∂∂f = 2∂f ∧ ∂f

Then

0
(1)
=

ˆ
X

√
−1∂∂f2 ∧ ωn−1

(2)
= 2

ˆ
X

√
−1∂f ∧ ∂f ∧ ωn−1

(3)
=

2

n

ˆ
X
|∂f |2ωn

where
(1) holds from ω is a Gauduchon metric.
(2) holds from equation (6.2).
(3) holds from (2) of Proposition 6.3.3.

This shows ∂f = 0, and this also shows df = 0 since f is real-valued, that
is f is a constant. □

Corollary 6.4.2. Let f : X → R be a smooth function on a compact com-
plex manifold X. If there exists a Hermitian metric ω such that

√
−1 trω ∂∂f ≥ 0,

then f is a constant.

Proof. By (1) of Proposition 6.3.3 one has
ˆ
X

√
−1 trω ∂∂f ∧ ωn =

ˆ
X
n
√
−1∂∂f ∧ ωn−1

The argument in above corollary still works. □

6.5. Second fundamental form. Let (E, h) be a Hermitian holomorphic
vector bundle over complex manifold X with rank r and S be a holomorphic
subbundle of E with rank s. Then there is an exact sequence of holomorphic
vector bundles

0→ S → E → Q→ 0

where Q is the quotient bundle, which is isomorphic to S⊥ as complex vector
bundle.
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6.5.1. Second fundamental form of subbundle. Suppose ∇E is the Chern
connection on E and define ∇S := πS ◦ ∇E , where πS : E → S is the
orthogonal projection.
(1) It’s clear ∇S is compatible with complex structure of S since ∇E is

Chern connection of E, and S is holomorphic subbundle of E.
(2) For sections s, t of S, one has

dh(s, t) = h(∇Es, t) + h(s,∇Et)
(a)
= h(πS ◦ ∇Es, t) + h(s, πS ◦ ∇Et)
= h(∇Ss, t) + h(s,∇St),

where (a) holds from πS is orthogonal projection.
This shows that ∇S is the Chern connection of S with respect to Hermitian
metric induced by the one on E.

Definition 6.5.1 (second fundamental form). The second fundamental
form of the subbundle S of E is defined as

B = ∇E −∇S : C∞(X,S)→ C∞(X,Ω1,0
X ⊗Q).

Remark 6.5.1 (local form). For p ∈ X, suppose {eα}1≤α≤r is a holomorphic
local frame of E such that {eα}1≤α≤s is a holomorphic local frame of S, and
for convenience we assume hαβ(p) = δαβ. By formula of Chern connection,
for 1 ≤ α ≤ s, one has

∇Eeα(p) =
r∑

β=1

hαβ
∂zi

(p)dzi ⊗ eβ

∇Seα(p) =
s∑

β=1

hαβ
∂zi

(p)dzi ⊗ eβ

Then for 1 ≤ α ≤ s, one has

Beα(p) =
r∑

β=s+1

hαβ
∂zi

(p)dzi ⊗ eβ

Thus with respect to local frame we choose, one has

B(p) =
s∑

α=1

r∑
β=s+1

hαβ
∂zi

(p)dzi ⊗ eα ⊗ eβ

One has its conjugate transpose is

B∗(p) =
r∑

β=s+1

s∑
α=1

hβα
∂zj

(p)dzj ⊗ eβ ⊗ eα
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then B∗ ∧B gives a section of Ω1,1
X ⊗ S∗ ⊗ S. To be explicit, for 1 ≤ α ≤ s,

one has
B∗ ∧Beα(p) = B∗(

r∑
γ=s+1

hαγ
∂zi

(p)dzi ⊗ eγ)

= −
s∑

β=1

r∑
γ=s+1

hαγ
∂zi

hγβ
∂zj

(p)dzi ∧ dzjeβ

which implies

B∗ ∧B(p) = −
s∑

α,β=1


r∑

γ=s+1

∂hαγ
∂zi

∂hγβ
∂zj

(p)

 dzi ∧ dzj ⊗ eα ⊗ eβ

On the other hand, direct computation shows

EΘ|S(p)− SΘ(p) =

s∑
α,β=1


r∑

γ=s+1

∂hαγ
∂zi

∂hγβ
∂zj

(p)

 dzi ∧ dzj ⊗ eα ⊗ eβ

Thus
SΘ = EΘ|S +B∗ ∧B

where B∗ is conjugate transpose of B since eβ = δββe
β.

6.5.2. Second fundamental form of quotient bundle. Here we consider the
following exact sequence

0→ Q∗ → E∗ → S∗ → 0

The second fundamental form C of quotient bundle Q is defined as the
second fundamental form of subbundle Q∗.
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7. Kähler geometry

7.1. Kähler manifold.

Definition 7.1.1 (Kähler manifold). A Hermitian manifold (X,h) is called
a Kähler manifold, if its fundamental form ω is d-closed8.

Remark 7.1.1. Note that dω = 0 is equivalent to ∂ω = 0, and is also equiv-
alent to ∂ω = 0 since ω is a real (1, 1)-form.

Remark 7.1.2 (local form). By Proposition 6.1.4 one has
ω =
√
−1hijdz

i ∧ dzj

So Kähler condition dω can be computed explicitly as follows
dω =

√
−1d(hijdz

i ∧ dzj)

=
√
−1(

∂hij
∂zk

dzk ∧ dzi ∧ dzj −
∂hij

∂zk
dzi ∧ dzk ∧ dzj)

= 0

So locally Kähler condition can be written as follows
∂khij = ∂ihkj
∂khij = ∂jhik

holds for all i, j, k.

Proposition 7.1.1. Let (X,h) be a Kähler manifold. Then the first Chern-
Ricci curvature coincides with the second Chern-Ricci curvature.

Proof. Note that

Θijkl = −
∂2hij

∂zk∂zl
+ hpq

∂hkq
∂zi

∂hpl
∂zj

Thus if (X,h) is Kähler, then
Θijkl = Θkjil = Θilkj

As a consequence, one has

Ric(1)(h) =
√
−1hklΘijkldz

i ∧ dzj =
√
−1hklΘklijdz

i ∧ dzj = Ric(2)(h)

This completes the proof. □
Definition 7.1.2 (Kähler-Einstein metric). A Kähler metric ω is called a
Kähler-Einstein metric, if there exists λ ∈ R such that

Ric(ω) = λω

Example 7.1.1. Any complex curve9 X is Kähler since dω = 0 automati-
cally holds.

8ω is called Kähler form and h is called Kähler metric.
9In other words, a Riemann surface.
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Proposition 7.1.2. A submanifold of a Kähler manifold is still Kähler.

Proof. If (X,ω) is a Kähler manifold and Y is a submanifold, the restriction
of ω to Y gives Kähler form of Y . □

Proposition 7.1.3. Let (X,ω) be a compact Kähler n-manifold. Then
H2k(X,R) 6= 0 for 0 ≤ k ≤ n.

Proof. Note that d(ωk) = 0 holds for 0 ≤ k ≤ n since dω = 0, that is
[ωk] ∈ H2k(X,R). By Proposition 6.3.2 one has ωn = n! vol, so the integral
pairing ˆ

X
ωk ∧ ωn−k = n!

ˆ
X
vol 6= 0

implies [ωk] 6= 0 for 0 ≤ k ≤ n. □

Theorem 7.1.1. Let (X,h) be a Kähler manifold. Then there exists a
holomorphic coordinate (z1, . . . , zn) such that

hij(z) = δij −Θijkl(p)z
kzl +O(|z|2).

7.2. Levi-Civita connection encounters Chern connection. Let X be
a complex n-manifold and {zi = xi +

√
−1xI} be a local coordinate of X,

where 1 ≤ i ≤ n and n + 1 ≤ I = i + n ≤ 2n. Then {xi, xI} gives a local
coordinate of underlying real manifold of X. Let g be a Riemannian metric
on TRX which is compatible with natural almost complex structure J on
TRX with Levi-Civita connection ∇. Now consider C-linear extension of ∇

∇̃ : C∞(X,TCX)→ C∞(X,Ω1
X,C ⊗ TCX)

It’s clear ∇̃ gives a connection on TCX.

Notation 7.2.1. For A ∈ {1, . . . , n, 1, . . . , n}, we denote

zA =

{
zi A = i

zi A = i

Proposition 7.2.1. Let { ∂
∂zi
, ∂
∂zi
} be a local frame of TCX. Then

∇̃ ∂

∂zA

∂

∂zB
= ΓCAB

∂

∂zC
=

1

2
hCE(

∂hEB
∂zA

+
∂hAE
∂zB

− ∂hAB
∂zE

)
∂

∂zC

where A,B,C,E ∈ {1, . . . , n, 1, . . . , n}.

Proof. By proof of Koszul formula, it suffices to check
(1) ∇̃ is compatible with gC.
(2) ∇̃ is torsion-free, that is for X,Y ∈ C∞(X,TCX), one has

∇̃XY − ∇̃YX = [X,Y ]

Above two claims can be checked easily by using the fact ∇ is Levi-Civita
connection and the C-linearity of ∇̃. □
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Corollary 7.2.1.

Γk
ij
= Γkij =

1

2
hkl(

∂hjl
∂zi

+
∂hil
∂zj

)

Γk
ij
= Γk

ij
=

1

2
hkl(

∂hjl
∂zi
−
∂hji

∂zl
)

Γkij = Γk
ij
= 0

Proof. Note that
hij = hij = hij = hij = 0

□
Theorem 7.2.1. Let (X,h) be a Kähler manifold with induced Riemannian
metric g on underlying real manifold, and suppose ∇ is Levi-Civita connec-
tion with respect to g. Then Chern connection with respect to h can be
obtained from the restriction of C-linear extension of ∇ to T 1,0X.
Proof. Let ∇̃ be the C-linear extension of ∇ and { ∂

∂zi
} be a local frame of

T 1,0X. Then by definition one has

∇̃ ∂

∂zj
= Γkijdz

i ⊗ ∂

∂zk
+ Γkijdz

i ⊗ ∂

∂zk
+ Γk

ij
dzi ⊗ ∂

∂zk
+ Γk

ij
dzi ⊗ ∂

∂zk

By Corollary 7.2.1 one has Γkij = 0 automatically, and if Kähler condition
holds, then

Γkij = hkl
∂hjl
∂zi

Γk
ij
= Γk

ij
= 0

Thus ∇̃|T 1,0X gives a connection on T 1,0X, and by formula of Chern con-
nection, it’s exactly the Chern connection with respect to h. □
7.3. Curvatures of Kähler metric. In this section, let (X,h) be a Kähler
manifold with induced Riemannian metric g on underlying real manifold,
and suppose {zi = xi+

√
−1xI} is a local coordinate of X, where 1 ≤ i ≤ n

and n+ 1 ≤ I = i+ n ≤ 2n.
Notation 7.3.1.
(1)

Rijkl = R(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
)

RijKL = R(
∂

∂xi
,
∂

∂xj
,
∂

∂xK
,
∂

∂xL
)

where R is curvature tensor of Levi-Civita connection ∇ with respect to
g.

(2)

Θijkl = Θ(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂zl
)

where Θ is Chern curvature with respect to h.
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7.3.1. Ricci curvature and scalar curvature.

Lemma 7.3.1.
Rijkl = RijKL

RijKl = −RijkL

Proof. It follows from Kähler condition. □

Corollary 7.3.1.
Rij = RIJ

RiJ = RJi = −RjI = −RIj

Proof. It follows from Proposition 6.1.1 and Lemma 7.3.1. □

Theorem 7.3.1.
Θij =

1

2
(Rij +

√
−1RiJ)

where Θij is given by Ric(h) =
√
−1Θijdz

i ∧ dzj , while Rij and RiJ are
Riemannian Ricci curvatures.

Proof. Suppose { ∂
∂xi
, ∂
∂xI
} is an orthonormal frame of real tangent bundle

with respect to g, and thus {ui := 1√
2
( ∂
∂xi
−
√
−1 ∂

∂xI
)} gives an orthonormal

frame of holomorphic tangent bundle with respect to h. Then

Θij =
∑
k

(
R(

∂

∂zi
,
∂

∂zj
, uk, uk)

)

=
∑
k

1

2

R( ∂

∂xi
,
∂

∂xj
, uk, uk)︸ ︷︷ ︸

part I

+
√
−1R( ∂

∂xi
,
∂

∂xJ
, uk, uk)︸ ︷︷ ︸

part II


For part I, one has∑
k

R(
∂

∂xi
,
∂

∂xj
, uk, uk) =

∑
k

1

2
R(

∂

∂xi
,
∂

∂xj
,
∂

∂xk
−
√
−1 ∂

∂xK
,
∂

∂xk
+
√
−1 ∂

∂xK
)

=
∑
k

√
−1
2

(RijkK −RijKk)

=
∑
k

√
−1RijkK

=
∑
k

√
−1(−RkijK −RjkiK)

=
∑
k

√
−1(RkiJk +RKiJK)

=
√
−1RiJ



61

Here we used Lemma 7.3.1 and first Bianchi identity. Similarly for part II
one has∑
k

√
−1R( ∂

∂xi
,
∂

∂xJ
, uk, uk) =

∑
k

√
−1
2

R(
∂

∂xi
,
∂

∂xJ
,
∂

∂xk
−
√
−1 ∂

∂xK
,
∂

∂xk
+
√
−1 ∂

∂xK
)

=
∑
k

−RiJkK

=
∑
k

(RkiJK +RJkiK)

=
∑
k

(Rkijk +RKijK)

= Rij

This shows the desired result. □

Corollary 7.3.2. Let (X,h) be a Kähler manifold with induced Riemannian
metric g on underlying real manifold. Then
(1) h has positive Chern-Ricci curvature if and only if g has positive Ricci

curvature.
(2) h is Kähler-Einstein with Einstein constant λ if and only if g is an

Einstein metric with Einstein constant λ.

Corollary 7.3.3. Let (X,h) be a Kähler manifold with induced Riemannian
metric g on underlying real manifold. Let sR be the Riemannian scalar
curvature and s is the Chern scalar curvature. Then sR = 2s.

Proof. On one hand, direct computation shows

s = hijΘij

= 2(gij −
√
−1giJ) · 1

2
(Rij +

√
−1RiJ)

= gijRij + giJRiJ

On the other hand,

sR = gijRij + giJRiJ + gIjRIj + gIJRij

(1)
= 2gijRij + 2giJRiJ

= 2s

where (1) holds from Proposition 6.1.1 and Corollary 7.3.1. □

7.3.2. Holomorphic sectional curvature and holomorphic bisectional curva-
ture. Recall that for a Hermitian manifold (X,h) and unit vectors v =
vi ∂
∂zi
, w = wi ∂

∂zi
∈ TpX, the holomorphic sectional curvature is defined by

HSCp(v) = Θijklv
ivjvkvl
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and the holomorphic bisectional curvature is defined by
HBSCp(v, w) = Θijklv

ivjwkwl

Now suppose (X,h) is a Kähler manifold, we will see the holomorphic sec-
tional curvature and holomorphic bisectional curvature are closely related
to the Riemannian sectional curvature.

Suppose unit vectors v, w ∈ TpX are given by

v =
1√
2
(x−

√
−1Jx)

w =
1√
2
(y −

√
−1Jy)

where x, y are real vectors with g(x, x) = g(y, y) = 1. Then the holomorphic
bisectional curvature is computed by

R(v, v, w, w) =
1

2
R(x−

√
−1Jx, x+

√
−1Jx,w, w)

=
√
−1R(x, Jx,w, w)

= −R(x, Jx, y, Jy)
= R(x, y, y, x) +R(x, Jy, Jy, x)

In particular, the holomorphic sectional curvature of v is exactly the sec-
tional curvature of the plane spanned by x and Jx.

Note that the holomorphic bisectional curvature is a sum of two sectional
curvatures. Hence the holomorphic bisectional curvature carries less infor-
mation than the sectional curvature. On the other hand, the holomorphic
bisectional curvature carries more information that the Ricci curvature, since
for real vector x, one has

Ricp(x) =
n∑
i=1

(
R(

∂

∂xi
, x, x,

∂

∂xi
) +R(J(

∂

∂xi
), x, x, J(

∂

∂xi
))

)
As a consequence, positive sectional curvature implies positive holomorphic
bisectional curvature, and positive holomorphic bisectional curvature implies
positive Ricci curvature.

Definition 7.3.1 (constant holomorphic sectional curvature). Let (X,h)
be a Kähler manifold. (X,h) has constant holomorphic sectional curvature
c if

HSCp(v) = c

for all unit vector v ∈ TpX.

Remark 7.3.1. In other words, the sectional curvature of all J-invariant
planes equal to c, that it, R(x, Jx, Jx, x) = c for all unit real vector x.

The definition given above is the the most natural way to define constant
holomorphic sectional curvature, and now let’s try to give another descrip-
tions which is easy to use.
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Proposition 7.3.1. Let (X,h) be a Kähler manifold with constant holo-
morphic sectional curvature c. Then R = cR0, where

R0(X,Y, Z,W ) =
1

4
{g(X,W )g(Y, Z)− g(Y,W )g(X,Z)− g(X, JZ)g(Y, JW )

+g(X, JW )g(Y, JZ)− 2g(X, JY )g(Z, JW )}

Proof. See Proposition 7.3 of Chapter IX in [KN69]. □
Proposition 7.3.2. Let (X,h) be a Kähler manifold. It has constant holo-
morphic sectional curvature c if and only if

Θijkl =
c

2
(hijhkl + hilhkj)

Proof. A direct computation shows

Θijkl =R(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂zl
)

=cR0(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂zl
)

=
c

4

{
g(

∂

∂zi
,
∂

∂zl
)g(

∂

∂zj
,
∂

∂zk
)− g( ∂

∂zj
,
∂

∂zl
)g(

∂

∂zi
,
∂

∂zk
)− g( ∂

∂zi
, J

∂

∂zk
)g(

∂

∂zj
, J

∂

∂zl
)

+g(
∂

∂zi
, J

∂

∂zl
)g(

∂

∂zj
, J

∂

∂zk
)− 2g(

∂

∂zi
, J

∂

∂zj
)g(

∂

∂zk
, J

∂

∂zl
)

}
=
c

4
(hilhkj + hilhkj + 2hijhkl)

=
c

2
(hilhkj + hijhkl)

On the other hand, it’s clear (X,h) has constant holomorphic sectional cur-
vature c if Θijkl =

c
2(hijhkl + hilhkj). □

Remark 7.3.2.
(1) Above formula differs a sign from the one given in Proposition 7.6 of

Chapter IX in [KN69], since the curvature notation we defined here
differs a sign from the one defined by Kobayashi.

(2) In [Tia00], he called this by constant holomorphic bisectional curvature,
and it maybe a bit confusing for beginners. If (X,h) has constant holo-
morphic sectional curvature, in this case you have that the bisectional
curvature of X,Y equals

R(X, JX, JY, Y ) =
c

2

(
1 + g(X,Y )2 + g(X, JY )

)
As you can see, this expression is not constant (as you vary X,Y among
unit vectors), but it varies between c/2 and c according to the relative
position of the 2-planes spanned by (X, JX) and (Y, JY ). In particu-
lar you see that there is no such thing as a non-flat “Kähler manifold
with constant holomorphic bisectional curvature”, because if there was
such a thing, in particular the holomorphic sectional curvature would
be constant, but then the curvature tensor would be given by the above
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formula, and the bisectional curvature would actually be NOT constant
unless c = 0, that is, all the curvatures are constant because the metric
is flat.

7.4. Fubini-Study metric.
Proposition 7.4.1 (Fubini-Study metric). Let CPn =

⋃n
i=0 Ui be the canon-

ical open covering, that is Ui = {(z0 : · · · : zn) | zi 6= 0}. Then there is a
Kähler metric ωFS on CPn, called Fubini-Study metric, such that

ωFS |Ui =

√
−1
2

∂∂ log

(∑n
l=0 |zl|2

|zi|2

)
Proof. Note that ωFS |Ui can be written as

ωFS |Ui =

√
−1
2

∂∂ log(
n∑
l=1

|wl|2 + 1)

where wl = zl/zi. The following steps show that {ωFS |Ui}ni=0 gives a real
(1, 1)-form which is closed.
(1) It’s globally defined since direct computation shows

log(

∑n
k=0 |zl|2

|zi|2
) = log(

|zj |2

|zi|2

∑n
k=0 |zl|2

|zj |2
))

= log(
|zj |2

|zi|2
) + log(

∑n
k=0 |zl|2

|zj |2
)

= log(

∑n
k=0 |zl|2

|zj |2
)

where the last equality holds since |zj |2/|zi|2 is a nowhere vanishing
holomorphic function.

(2) It’s real since ∂∂ = ∂∂ = −∂∂.
(3) It’s ∂-closed since each ωFS |Ui is ∂-closed.
It remains to show ω is positive. A direct computation yields

∂∂ log(1 +
n∑
l=1

|wl|2) = 1

(1 +
∑n

l=1 |wl|2)2
hijdw

i ∧ dwj

where hij = (1+
∑n

l=1 |wl|2)δij−wiwj . Now it suffices to show hij is positive
definite, for u 6= 0, one has

uT (hij)u = (u, u) + (w,w)(u, u)− uTwwTu
= (u, u) + (w,w)(u, u)− (u,w)(w, u)

= (u, u) + (w,w)(u, u)− (w, u)(w, u)

= (u, u) + (w,w)(u, u)− |(w, u)|2 > 0

□
Corollary 7.4.1. Any projective manifold is Kähler.



65

Proof. By Proposition 7.1.2, the submanifold of Kähler manifold is still Käh-
ler. □
Proposition 7.4.2. OCPn(1) is a positive holomorphic line bundle.

Proof. Note that line bundle OCPn(1) can be given transition functions
{Ui, gij}, where {Ui} is canonical open covering and gij = zj/zi. Consider
hi : Ui → R>0 given by

hi =
|zi|2∑n
l=0 |zl|2

Then hi can be glued together to obtain a Hermitian metric on OCPn(1)
since hi = hj |gij |2. And it’s clear to see Hermitian metric corresponding to
curvature of Chern connection with respect to this metric is Fubini-Study
metric. □
Remark 7.4.1. Note that OCPn(−1) is a subbundle of CPn×Cn+1, so we can
obtain a natural Hermitian metric of OCPn(−1) by restricting standard Her-
mitian metric of CPn×Cn+1, and Hermitian metric on OCPn(1) we defined
before is exactly the dual metric of this natural metric.

Theorem 7.4.1. The Fubini-Study metric ωFS on CPn is a Kähler-Einstein
metric with Einstein constant n+1 and has constant holomorphic sectional
curvature.

Remark 7.4.2.
(1) In our definition (or the one given by Kobayashi in [KN69]), Fubini-

Study metric has constant holomorphic sectional curvature 2, and in
the definition given by Gang Tian in [Tia00], Fubini-Study metric has
constant holomorphic sectional curvature 1, but it doesn’t matter since
up to a rescaling they’re all the same.

(2) There are other models that have constant holomorphic sectional cur-
vature, such as

Example 7.4.1. Let X = Cn equipped with ω =
√
−1/2dzi ∧ dzi. Then

(X,ω) is flat, and thus has constant holomorphic sectional curvature 0.

Example 7.4.2. Let X = Bn = {z ∈ Cn : |z| < 1} equipped with

ω =

√
−1
2

∂∂ log(1− |z|2)

Then (X,ω) has constant holomorphic sectional curvature −2.

Also, there is a theorem parallel to the Hopf’s theorem in Riemannian
geometry.

Theorem 7.4.2 (uniformizaiton theorem). If (X,h) is a complete Kähler
manifold of constant holomorphic sectional curvature, then its universal
covering is one of above examples. Moverover, up to rescaling, h pulls
back to one of the metrics in the above examples.
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Part 3. Hodge theory
8. Hodge theorem

8.1. Hodge star and adjoint operators. Let (X,ω) be a compact Her-
mitian manifold. A (p, q)-form α can be locally written as

α =
1

p!× q!
αi1...ipj1...jqdz

i1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

Then for α, β ∈ C∞(X,Ωp,qX ), the local inner product is defined as

〈α, β〉 = 1

p!× q!
hi1k1 . . . hipkphl1j1 . . . hlqjqαi1...ipj1...jqβk1...kpl1...lq

which is a smooth function on X.

Definition 8.1.1 (inner product on (p, q)-form). An inner product on the
space of (p, q)-form is defined as

(α, β) :=

ˆ
X
〈α, β〉ω

n

n!

where α, β ∈ C∞(X,Ωp,qX ). This also gives an inner product on ΩkX,C =⊕
p+q=k Ω

p,q
X .

Holding the inner product (-, -), the formal adjoint operator of d is defined
as an operator

d∗ : C∞(X,ΩkX,C)→ C∞(X,Ωk−1
X,C)

satisfying (α, dβ) = (d∗α, β) for α, β with appropriate degrees, similarly one
can define ∂∗ and ∂∗. In order to construct these adjoint operators, we need
to introduce the well-known Hodge star operator.

Definition 8.1.2 (Hodge star operator). There exists an operator

? : C∞(X,Ωp,qX )→ C∞(X,Ωn−q,n−pX )

such that
(α, β) =

ˆ
X
α ∧ ?β

Remark 8.1.1. It’s well-defined since β is a (q, p)-form, and thus ?β is a
(n− p, n− q)-form.

Lemma 8.1.1.

(1) ?1 = ωn/n!
(2) ?ω = ωn−1/(n− 1)!
(3) ?ψ = ?ψ
(4) ?? = (−1)p+q on C∞(X,Ωp,qX )
(5) (?ϕ, ?ψ) = (ϕ,ψ)

Proposition 8.1.1. d∗ = − ? d?
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Proof. For arbitrary α ∈ C∞(X,Ωp+qX,C) and β ∈ C∞(X,Ωp+q+1
X,C ), then

(dα, β) =

ˆ
X
dα ∧ ?β

=

ˆ
X
d(α ∧ ?β)− (−1)p+qα ∧ d ? β

= (−1)p+q+1

ˆ
X
α ∧ d ? β

(1)
= (−1)p+q+1(−1)2n−(p+q+1)+1

ˆ
X
α ∧ ? ? d ? β

= −(α, ?d ? β)

where (1) holds from (4) of Lemma 8.1.1. □

Proposition 8.1.2.
∂∗ = − ? ∂?

∂
∗
= − ? ∂?

Proof. Direct computation. □

Definition 8.1.3 (Lefschetz operator). Let (X,ω) be a compact Kähler
manifold. The Lefschetz operator is defined as

L : C∞(X,Ωp,qX )→ C∞(X,Ωp+1,q+1
X )

α 7→ ω ∧ α

Lemma 8.1.2. Λ := L∗ = (−1)p+q ? L? on (p, q)-forms.

Proof. For α ∈ C∞(X,Ωp,qX, ), β ∈ C∞(X,Ωp+1,q+1
X ), direct computation

shows

(Lα, β) =

ˆ
X
Lα ∧ ?β

=

ˆ
X
ω ∧ α ∧ ?β

(1)
=

ˆ
X
α ∧ ω ∧ ?β

(2)
=

ˆ
X
α ∧ (−1)p+q ? ?ω ∧ ?β

= (α, (−1)p+q ? L ? β)

where
(1) holds from ω is a 2-form.
(2) holds from (4) of Lemma 8.1.1.

□



68

8.1.1. Useful formulas of adjoint operators.

Proposition 8.1.3. Let (X,h) be a compact Kähler manifold. Then locally{
∂ = dzi ∧∇i
∂∗ = −hijιi ◦ ∇j = −hij∇j ◦ ιi

{
∂ = dzi ∧∇i
∂
∗
= −hijιj ◦ ∇i = −hij∇i ◦ ιj

Proof. Here we only give the proof of the case ∂ and ∂∗, the proof for the
other two cases are same. It suffices to check pointwisely, and at each point
we may also choose normal coordinate in Theorem 7.1.1. For (p, q)-form α,
locally written as α = αJKdzJ ∧ dzK . Then

∂α =
∂αJK
∂zi

dzi ∧ dzJ ∧ dzK

and

dzi ∧∇iα = dzi ∧∇i(αJKdzJ ∧ dzK)

= dzi ∧
∂αJK
∂zi

dzJ ∧ dzK + αJK∇i(dz
J ∧ dzK)

(1)
=
∂αJK
∂zi

dzi ∧ dzJ ∧ dzK

where (1) holds from our choice of normal coordinate. To see formula of ∂∗,
take arbitrary forms α, β with appropriate bidegrees, then

(∂α, β) = (dzi ∧∇iα, β)
(2)
= (∇iα, hpiιpβ)
(3)
= −(α, hpi∇i ◦ ιpβ)

where

(2) holds from Proposition 6.3.4.
(3) holds from Stokes’ theorem and the fact Chern connection is compatible
with metric.

This shows

∂∗ = −hij∇j ◦ ιi
(4)
= −hijιi ◦ ∇j

where (4) holds from ιi ◦ ∇j = ∇j ◦ ιi. □

Proposition 8.1.4. Let (X,ω) be a compact Kähler manifold. Then locally

Λ =
√
−1hijιi ◦ ιj = −

√
−1hijιj ◦ ιi
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Proof. For arbitrary forms α, β with appropriate bidegrees, direct computa-
tion shows

(ω ∧ α, β) = (
√
−1hijdz

i ∧ dzj ∧ α, β)
(1)
= (
√
−1hijdz

j ∧ α, hpiιpβ)
(2)
= (
√
−1hijα, h

pihjqιq ◦ ιpβ)
(3)
= (α,−

√
−1hjih

pihjqιq ◦ ιpβ)

= (α,−
√
−1hpiιi ◦ ιpβ)

where
(1) and (2) hold from Proposition 6.3.4.
(3) holds from hij is Hermitian, that is hij = hji.

This shows
Λ = −

√
−1hijιj ◦ ιi

(4)
=
√
−1hijιi ◦ ιj

where (4) holds from ιi ◦ ιj = −ιj ◦ ιi. □

8.2. Hodge theorem.

Definition 8.2.1 (Laplacian). Laplacian ∆• is an operator defined by ∆• :=
• •∗ + •∗ •, where • can be d, ∂ and ∂.

Definition 8.2.2 (harmonic). A form α is called ∆•-harmonic if ∆•α = 0,
where • can be d, ∂ and ∂.

Notation 8.2.1. Hk denotes the space of ∆d-harmonic k-forms, and Hp,q
denotes the space of ∆∂-harmonic forms of type (p, q).

Lemma 8.2.1. α is ∆•-harmonic if and only if •α = 0, •∗α = 0, where •
can be d, ∂ and ∂.

Proof. Direct computation shows
(α,∆dα) = (α, dd∗α) + (α, d∗dα)

= ‖d∗α‖2 + ‖dα‖2

This shows α is ∆d-harmonic if and only if dα = d∗α = 0, the other cases
are same. □

Theorem 8.2.1 (Hodge theorem). Let (X,h) be a compact Hermitian n-
manifold. Then
(1) Hp,q is finite dimensional.
(2) There is a decomposition C∞(X,Ωp,qX ) = Hp,q⊕∆∂(C

∞(X,Ωp,qX )), which
is orthogonal with respect to inner products in Definition 8.1.1.

Corollary 8.2.1. There is the following orthonormal decomposition

C∞(X,Ωp,qX ) = Hp,q ⊕ ∂(C∞(X,Ωp,q−1
X )⊕ ∂∗(C∞(X,Ωp,q+1

X ))
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Corollary 8.2.2.
ker ∂ = Hp,q ⊕ ∂∗(C∞(X,Ωp,q−1

X ))

ker ∂
∗
= Hp,q ⊕ ∂(C∞(X,Ωp,q+1

X ))

Corollary 8.2.3. The natural map Hp,q → Hp,q(X) is an isomorphism. In
particular, Hp,q(X) is finite dimensional.

In order to give the following isomorphism
? : Hp,q → Hn−q,n−p

Parallel to the real case10, it suffices to have
? ◦∆∂ = ∆∂ ◦ ?

But something bad happens since we only have ∂
∗
= − ? ∂?, and direct

computation only yields ∆∂ ◦? = ?◦∆∂ . So it fails generally since ∆∂ 6= ∆∂ .
There are two ways to deal with this gap. The first way is that we will see
later if X is compact Kähler manifold, then ∆∂ = ∆∂ , that is Theorem
9.1.1. Then

Corollary 8.2.4. If (X,ω) is a compact Kähler n-manifold, then ? : Hp,q →
Hn−q,n−p is an isomorphism.

Another way is to consider
? : C∞(X,Ωp,qX )→ C∞(X,Ωn−p,n−qX )

α 7→ ?α

then direct computation shows
? ◦∆∂ = ∆∂ ◦ ?

Corollary 8.2.5. If (X,h) is a compact Hermitian manifold, then ? : Hp,q →
Hn−p,n−q is an isomorphism.

Corollary 8.2.6. Hp,q(X) ∼= Hn−p,n−q(X).

Remark 8.2.1. This is a special case of Serre duality.

10See Hodge theory in [Liu23].
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9. Hodge decomposition

9.1. Kähler identities.
Definition 9.1.1 (commutor of differential operators). Let A,B be two
differential operators. The commutor of A,B is defined as

[A,B] := AB − (−1)degA degBBA

Lemma 9.1.1 (Jacobi identity). Let A,B,C be differential operators. Then
(−1)degA degC [A, [B,C]]+(−1)degB degA[B, [C,A]]+(−1)degC degB[C, [A,B]] = 0

Remark 9.1.1. In our case, the degree of d, d∗, ∂, ∂∗, ∂, ∂
∗ is one, and the

degree of L and Λ is zero11.
Proposition 9.1.1 (Kähler identities). If (X,ω) is a compact Kähler man-
ifold, then

[∂
∗
, L] =

√
−1∂

[∂∗, L] = −
√
−1 · ∂

[Λ, ∂] = −
√
−1∂∗

[Λ, ∂] =
√
−1 · ∂∗

Proof. By taking conjugates and adjoints, it suffices to prove the first iden-
tity, which is a first order identity of differential equation. But by Theorem
7.1.1, locally we have hij = δij + O(|ξ2|). Thus it suffices to check Kähler
identity for the case U ⊆ Cn equipped with standard Hermitian metric.

Suppose (p, q)-form α is locally given by α = αJKdzJ ∧ dzK , then by
Proposition 8.1.3 one has ∂∗α = −

∑
l ι ∂

∂zl

∂α
∂zl

. Thus

[∂
∗
, L]α = ∂

∗
(ω ∧ α)− ω ∧ ∂∗α

= −
∑
l

ι ∂

∂zl

∂

∂zl
(ω ∧ α) + ω ∧

∑
l

ι ∂

∂zl

∂α

∂zl

(1)
= −

∑
l

ι ∂

∂zl
(ω ∧ ∂α

∂zl
) + ω ∧

∑
l

ι ∂

∂zl

∂α

∂zl

= −{
∑
l

(ι ∂

∂zl
ω) ∧ ∂α

∂zl
+ ω ∧ ι ∂

∂zl

∂α

∂zl
}+

∑
l

ω ∧ ι ∂

∂zl

∂α

∂zl

= −
∑
l

(ι ∂

∂zl
ω) ∧ ∂α

∂zl

(2)
=
√
−1
∑
l

dzl ∧ ∂α

∂zl

=
√
−1∂α

11You can try to understand this thing in a following way: operators d, d∗, ∂, ∂∗, ∂, ∂
∗

take derivatives, but L and Λ are linear operators.
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where
(1) holds from ω is a closed (1, 1)-form.
(2) holds from Proposition 6.1.4, that is ω =

√
−1
∑n

i=1 dz
i ∧ dzi.

□

Theorem 9.1.1. Let (X,ω) be a compact Kähler manifold. Then

∆d = 2∆∂ = 2∆∂

Proof. Since

∆d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

By the fourth Kähler identity, one has
(1) The first term can be computed as

(∂ + ∂)(∂∗ + ∂
∗
) = (∂ + ∂)(∂∗ −

√
−1Λ∂ +

√
−1∂Λ)

= ∂∂∗ −
√
−1∂Λ∂ + ∂∂∗ −

√
−1 · ∂Λ∂ +

√
−1 · ∂∂Λ

(2) The second term can be computed as

(∂∗ + ∂
∗
)(∂ + ∂) = (∂∗ −

√
−1Λ∂ +

√
−1∂Λ)(∂ + ∂)

= ∂∗∂ +
√
−1∂Λ∂ + ∂∗∂ −

√
−1Λ∂∂ +

√
−1∂Λ∂

By the third Kähler identity, one has

∂∗ =
√
−1[Λ, ∂] =

√
−1Λ∂ −

√
−1∂Λ

then
∂∂∗ = ∂(

√
−1Λ∂ −

√
−1 · ∂Λ) =

√
−1 · ∂Λ∂

∂∗∂ = (
√
−1Λ∂ −

√
−1 · ∂Λ)∂ = −

√
−1 · ∂Λ∂ = −∂∂∗

Now we have
∆d = ∆∂ −

√
−1 · ∂Λ∂ −

√
−1Λ∂∂ +

√
−1∂∂Λ +

√
−1∂Λ∂

= ∆∂ +
√
−1(Λ∂∂ − ∂Λ∂) +

√
−1(∂Λ∂ − ∂∂Λ)

= ∆∂ +
√
−1[Λ, ∂]∂ +

√
−1∂[Λ, ∂]

= ∆∂ + ∂∗∂ + ∂∂∗

= 2∆∂

□

Corollary 9.1.1. On a compact Kähler manifold, ∆d-harmonic is equiva-
lent to ∆∂-harmonic, and is equivalent to ∆∂-harmonic.

Corollary 9.1.2. Let (X,ω) be a Kähler manifold and α be a (p, q)-form.
Then ∆dα is still a (p, q)-form.

Proof. It’s clear to see ∆∂α is still a (p, q)-form. □
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Exercise 9.1.1. Show that for compact Kähler manifold we have
[∆d, L] = 0

[L,Λ] = (k − n) id on C∞(X,ΩkX,C)

Proof. For the first equation, we have ∆d = 2∆∂ = 2(∂∂∗ + ∂∗∂). Thus
[∆d, L] = 2([∂∂∗, L] + [∂∗∂, L]) = 2(∂[∂∗, L] + [∂∗, L]∂)

The last equality holds by the fact that L commutes with ∂ since ω is ∂-
closed. Now we use the identity [∂∗, L] = −

√
−1 · ∂, which anticommutes

with ∂ to conclude.
For the second equation, without lose of generality it suffices to check on

U ⊆ Cn equipped with standard Hermitian metric since we are considering
operators of order zero. Suppose ϕ = ϕIJdz

IdzJ is a k-form with type (p, q).
A direct computation shows

LΛϕ =L

(
√
−1

n∑
i=1

ϕIJ ιi ◦ ιi(dz
I ∧ dzJ)

)

=L

(
√
−1

n∑
i=1

(−1)pϕIJ ιidzI ∧ ιidz
J

)

=(
√
−1)2

n∑
i,j=1

(−1)2p−1ϕIJdz
j ∧ ιidzI ∧ dzjιidz

J

ΛLϕ =Λ

√−1 n∑
j=1

(−1)pϕIJdzj ∧ dzI ∧ dzj ∧ dzJ


=(
√
−1)2

n∑
i,j=1

(−1)pϕIJ ιi ◦ ιi(dz
j ∧ dzI ∧ dzj ∧ dzJ)

=(
√
−1)2

n∑
i,j=1

(−1)2p+1ϕIJ ιi
(
dzj ∧ dzI ∧ ιi(dz

j ∧ dzJ)
)

=(
√
−1)2

n∑
i,j=1

(−1)2p+1ϕIJ ιi

dzj ∧ dzI ∧ (δj
i
dzJ − dzj ∧ ιidz

J︸ ︷︷ ︸
A

)


=(
√
−1)2

n∑
i,j=1

(−1)2p+1ϕIJ(δ
j
i dz

I ∧A− dzj ∧ ιidzI ∧A)

Then

LΛϕ− ΛLϕ = (
√
−1)2

n∑
j=1

ϕIJ

(
dzI ∧ dzJ − dzI ∧ dzj ∧ ιjdz

J − dzj ∧ ιjdzI ∧ dzJ
)

= (k − n)ϕ
□
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9.2. Hodge decomposition.

Theorem 9.2.1. Let (X,h) be a compact Kähler manifold, α =
∑

p+q=k α
p,q.

Then α is harmonic if and only if αp,q is harmonic, that is

Hk ⊗R C =
⊕
p+q=k

Hp,q

with Hp,q = Hq,p.

Proof. It follows from ∆d preserves bidegree. □

Theorem 9.2.2 (Hodge decomposition). Let (X,h) be a compact Kähler
manifold. Then

Hk(X,C) ∼=
⊕
p+q=k

Hp,q(X)

with Hp,q(X) = Hq,p(X).

Proof. It follows from there are natural isomorphisms Hk(X,C) ∼= Hk ⊗ C
and Hp,q(X) ∼= Hp,q. □

Corollary 9.2.1. Let (X,h) be a compact Kähler manifold. Then

bk =
∑
p+q=k

hp,q

with hp,q = hq,p, where bk = dimHk(X,C) and hp,q = dimHp,q(X).

Corollary 9.2.2. bk is even when k is odd.

Corollary 9.2.3. bk 6= 0 when k is even.

Proof. hk,k 6= 0 since 0 6= ωk ∈ Hk,k(X). □

There are many relations between hp,q, and we can draw a picture as
follows, called Hodge diamond since it has the same symmetry as a diamond.

h0,0 b0

h1,0 h0,1 b1

h2,0 h1,1 h0,2 b2

... ... . . . ...

Hodge

←
→ hn,0 · · · ↶

Serre
· · · h0,n bn

. . . ... ... ...

hn,n−2 hn−1,n−1 hn−2,n b2n−2

hn,n−1 hn−1,n b2n−1

hn,n b2n

←→
conjugation
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Example 9.2.1.

Hp,q(CPn) =

{
C 0 ≤ p = q ≤ n
0 otherwise

Proof. It’s known to all that the singular cohomology of CPn with complex
coefficient is

Hk(CPn,C) =

{
C k is even
0 k is odd

Thus it’s clear to compute Dolbeault cohomology of CPn using the symmetry
of Hodge diamond. □

9.3. Bott-Chern cohomology. In the proof Hodge decomposition, we
used the Kähler metric. A natural question is to consider (in)denpendence
of the Kähler metric. In this section we will show our decomposition is in-
dependent of the choice of Kähler metric, by using Bott-Chern cohomology.

Definition 9.3.1 (Bott-Chern cohomology). Let X be a complex manifold.
The Bott-Chern cohomology is defined as

Hp,q
BC(X) :=

Zp,qBC := {α ∈ C∞(X,Ωp,qX ) | dα = 0}
∂∂C∞(X,Ωp−1,q−1

X )

Remark 9.3.1. There is a natural map
Zp,qBC(X)→ Hp+q(X,C)

which descends to
Hp,q

BC(X)→ Hp+q(X,C)
since ∂∂β = d∂β. On the other hand, there is also a natural map

Zp,qBC(X)→ Hp,q(X)

which descends to
Hp,q

BC(X)→ Hp,q(X)

since ∂∂β = −∂∂β. So if we can prove there are isomorphisms between
Hp,q

BC(X) ∼= Hp,q(X)⊕
p+q=k

Hp,q
BC(X) ∼= Hk(X,C)

then Hodge decomposition is canonical, that is independent of choice of
Kähler metric since Bott-Chern cohomology is independent of the choice of
Kähler metric.

Lemma 9.3.1 (∂∂-lemma). Let (X,ω) be a compact Kähler manifold and
α be a d-closed (p, q)-form. If α is ∂-exact or ∂-exact, then there exists a
(p− 1, q − 1)-form such that

α = ∂∂β
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Proof. Suppose α is ∂-exact. Then α = ∂γ for some (p, q − 1)-form γ, and
Hodge’s theorem implies γ has decomposition

γ = a+ ∂b+ ∂∗c

where a is ∆∂-harmonic, and b, c are forms with appropriate degrees. Direct
computation shows

α = ∂γ = ∂a+ ∂∂b+ ∂∂∗c

= −∂∂b+ ∂∂∗c

= −∂∂b− ∂∗∂c
Now it suffices to show −∂∗∂c = 0. A trick here is to note that

0 = ∂α = −∂∂∗∂c =⇒ ∂∗∂c ∈ ker ∂ ∩ im ∂∗ = 0 =⇒ ∂∗∂c = 0

So we have
α = ∂∂(−b)

as desired. □
Corollary 9.3.1. Let (X,ω) be a compact Kähler manifold. Then
(1) Hp,q

BC(X)→ Hp,q(X) is an isomorphism.
(2)

⊕
p+q=kH

p,q
BC(X)→ Hk(X,C) is an isomorphism.

Proof. Here we only prove the first isomorphism. From Remark 9.3.1, there
is a canonical map Hp,q

BC(X) → Hp,q(X), and if we choose a Kähler metric,
we have Hp,q(X) ∼= Hp,q, we will show our canonical map is both surjective
and injective via this chosen metric.
(1) To see surjectivity: For element in Hp,q(X) we choose a ∆∂-harmonic

representative. Since ∆∂-harmonic is equivalent to ∆d-harmonic, so this
representative is also d-closed.

(2) To see injectivity: Suppose we have [α] ∈ Hp,q
BC(X) such that α is triv-

ial in Hp,q(X), that is ∂-exact. Then Lemma 9.3.1, that is ∂∂-lemma
implies it’s trivial in Bott-Chern cohomology.

□
Corollary 9.3.2. A Hermitian metric ω is Kähler if and only if it can be
written locally as

ω =
√
−1∂∂f

where f is a real-valued smooth function.

Proof. It’s clear if ω is locally written as
√
−1∂∂f , then it gives a Kähler

metric. Conversely, a Kähler metric ω is an element in H1,1(X), and we
have already shown that H1,1(X) = H1,1

BC(X), and Dolbeault lemma implies
Dolbeault cohomology vanishes on open subset which is sufficiently small,
this completes the proof. □
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10. Serre duality

10.1. Operators on bundle valued forms. Let(E, h) be a Hermitian
holomorphic vector bundle on Hermitian n-manifold (X, g), what we have
done can be generalized to bundle valued forms. More explicitly, for ϕ,ψ ∈
C∞(X,Ωp,qX ⊗ E), locally written as ϕ = ϕαeα, ψ = ψβeβ, then local inner
product is given by

〈ϕ,ψ〉 := hαβ〈ϕ
α, ψβ〉,

where 〈ϕα, ψβ〉 is induced by the Hermitian metric g.
(1) The inner product on C∞(X,Ωp,qX ⊗ E) is given by

(ϕ,ψ) :=

ˆ
X
〈ϕ,ψ〉ω

n

n!
,

where ϕ,ψ ∈ C∞(X,Ωp,qX ⊗ E).
(2) The Hodge star operator is the operator

?E : C∞(X,Ωp,qX ⊗ E)→ C∞(X,Ωn−q,n−pX ⊗ E)

such that
(ϕ,ψ) =

ˆ
X
ϕ ∧ ?Eψ,

where ϕ,ψ ∈ C∞(X,Ωp,qX ⊗ E).
Let ∇ be the Chern connection of (E, h). By definition one has ∇0,1 = ∂E ,
and if we set ∇1,0 = ∂E , then

Θh = ∇2

= ∂2E + ∂E∂E + ∂E∂E + ∂
2
E

= [∂E , ∂E ].

Exercise 10.1.1. Give formulas of ∂∗E and ∂
∗
E in terms of Hodge star ?E .

Proof. □

Exercise 10.1.2. Give formulas of Laplacians ∆∂E ,∆∂E
in terms of Hodge

star ?E .

Proof. □

Then there is also a Hodge decomposition given by

C∞(X,Ωp,qX ⊗ E) = Hp,q(X,E)⊕ im ∂E ⊕ im ∂
∗
E ,

and
Hp,q(X,E) ∼= Hp,q

Lefschetz operator is defined as follows
L : C∞(X,Ωp,q ⊗ E)→ C∞(X,Ωp+1,q+1 ⊗ E)

α 7→ ω ∧ α
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and Λ is the formal adjoint of L. If (X,ω) is also a Kähler n-manifold, then
there are also Kähler identities

[∂
∗
E , L] =

√
−1∂E

[∂∗E , L] = −
√
−1 · ∂E

[Λ, ∂E ] = −
√
−1∂∗E

[Λ, ∂E ] =
√
−1 · ∂∗E ,

and
[L,Λ] = (p+ q − n) id

holds on E-valued (p, q)-forms.

10.2. Serre duality.

Theorem 10.2.1 (Serre duality). Let X be a compact complex n-manifold
and E be a holomorphic vector bundle. Then there exists a non-degenerate
C-linear pairing

Hp,q(X,E)×Hn−p,n−q(X,E∗)→ C

([α], [β]) 7→
ˆ
X
α ∧ β

In particular, we have
Hp,q(X,E) = Hn−p,n−q(X,E∗)∗

Sketch of the proof. Let h be a Hermitian metric on E. Firstly prove that
∆∂

∗
E
◦ ?E = ?E ◦∆∂E

.

This give an isomorphism

?E : Hp,q(X,E)
∼=−→ Hn−p,n−q(X,E∗).

On the other hand, the Hodge theorem shows that
Hp,q(X,E) ∼= Hp,q(X,E).

For any α ∈ Hp,q(X,E) and β ∈ Hn−p,n−q(X,E∗), there exists some γ ∈
Hp,q(X,E) such that β = ?Eγ, and thusˆ

X
α ∧ β =

ˆ
X
α ∧ ?Eγ = 〈α, γ〉

is non-degenerate. □
Corollary 10.2.1. Let X be a compact complex n-manifold and E be a
holomorphic vector bundle. Then

Hp,q(X) = Hn−p,n−q(X)∗.

Proof. Consider E = OX in Serre duality, and then desired result holds from
the fact O∗

X = OX . □
Remark 10.2.1. This recovers Corollary 8.2.6.
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Corollary 10.2.2. Let X be a compact complex n-manifold and E be a
holomorphic vector bundle. Then

Hq(X,E) = Hn−q(X,KX ⊗ E∗)∗

Proof. Set p = 0 in Serre duality one has
H0,q(X,E) ∼= Hn,n−q(X,E∗)∗

which gives desired result. □
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11. Lefschetz decomposition

11.1. Lefschetz decomposition.

Proposition 11.1.1. Let (X,ω) be a Kähler n-manifold. Then Ln−k : C∞(X,ΩkX,R)→
C∞(X,Ω2n−k

X,R ) is an isomorphism for k ≤ n.

Proof. In fact, we will prove that Lr are injective for all 1 ≤ r ≤ n − k.
As a consequence, Ln−k is an isomorphism since ΩkX,R has the same rank as
Ω2n−k
X,R . In Exercise 9.1.1 we have shown that

[L,Λ]α = (k − n)α, ∀α ∈ C∞(X,ΩkX,R).

Then
[Lr,Λ] = LrΛ− ΛLr

= L(Lr−1Λ− ΛLr−1) + LΛLr−1 − ΛLLr−1

= L[Lr−1,Λ] + [L,Λ]Lr−1.

By induction it’s easy to show the following identity

[Lr,Λ]α = (r(k − n) + r(r − 1))Lr−1α, ∀α ∈ C∞(X,ΩkX,R).

For α ∈ C∞(X,ΩkX,R), if Lrα = 0, r ≤ n− k, then

LrΛα = [Lr,Λ]α

= (r(k − n) + r(r − 1))Lr−1α.

In other words, we have

(11.1) Lr−1(LΛα− (r(k − n) + r(r − 1))α) = 0.

Now let’s prove Lr is injective by induction on r: It’s clear L is injective,
and suppose Lr−1 is injective. Then by (11.1) one has

LΛα = (r(k − n) + r(r − 1))α.

If we denote β = Λα, and apply Lr to both side of above equation, then we
have

Lr+1β = (r(k − n) + r(r − 1))Lrα = 0,

where β ∈ C∞(X,Ωk−2
X,R). It’s clear β = 0 if β is a smooth function. Then

by induction on k, we have β = 0, and thus α = 0. □

Definition 11.1.1 (primitive form). Let (X,ω) be a Kähler n-manifold. A
k-form α is called primitive if Ln−k+1α = 0.

Exercise 11.1.1. A k-form α is primitive if and only if Λα = 0.

Proof. For an n-form α, α is primitive if and only if Lα = 0. On the other
hand, the Exercise 9.1.1 implies that

[L,Λ] = (k − n) id, on C∞(X,ΩkX,R).
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This shows if n = k, then L and Λ commutes. Thus we have α is primitive
if and only if Λα = 0, since

Λα = 0⇐⇒ LΛα = 0⇐⇒ ΛLα = 0⇐⇒ Lα = 0

and the first and last equality we use the fact that L is injective on ΩkX,R, k ≤
n and Λ is injective on Ωn+2

X,R . In general case, we have

[Lr,Λ]α = (r(k − n) + r(r − 1))Lr−1α

and in particular for r = n− k + 1 where k is the degree of α, we have
[Lr,Λ]α = 0

The argument can be repeated to conclude. □
Proposition 11.1.2. For any k-form α, there exists a unique decomposition

α =
∑
r

Lrαr,

where αr is primitive (k − 2r)-form.

Proof. Firstly let’s prove the uniqueness: If
∑

r L
rαr = 0 with primitive αr,

we need to show αr = 0. If not, then take the largest rm such that αrm 6= 0.
By the choice of αrm , Ln−k+rm kills everything in

∑
r L

rαr but Lrmarm .
Then

0 = Ln−k+rm(
∑
r

Lrαr) = Ln−k+rm(Lrmαrm) 6= 0,

which is a contradiction.
Now let’s prove the existence: Since Ln−k+2 : C∞(X,Ωk−2

X,R)→ C∞(X,Ω2n−k+2
X,R

is an isomorphism, then there exists β ∈ C∞(X,Ωk−2
X,R) such that

Ln−k+1α = Ln−k+2β.

Then α− Lβ is primitive a primitive k-form, that is
α = (α− Lβ) + Lβ.

By induction on k, we have primitive decomposition for β ∈ C∞(X,Ωk−2
X,R).

and this completes the proof. □
Remark 11.1.1. If we define H = [L,Λ], then (L,H,Λ) generates an sl2-
action on

⊕
k C

∞(X,ΩkX,R).

In fact, the Lefschetz operator also defines a map between cohomology
groups

L : Hk(X,R)→ Hk+2(X,R)
[α] 7→ [ω ∧ α].

Now let’s see it’s well-defined:
(1) If α is closed, then

d(ω ∧ α) = dω ∧ α+ ω ∧ dα = 0.
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(2) If α = dβ, then
ω ∧ dβ = dω ∧ β + ω ∧ dβ = d(ω ∧ β).

Theorem 11.1.1 (hard Lefschetz theorem12). Let (X,ω) be a compact
Kähler n-manifold. Then

Ln−k : Hk(X,R)→ H2n−k(X,R)
is an isomorphism for 1 ≤ k ≤ n.

Proof. In Exercise 9.1.1 we have shown [∆d, L] = 0, so the Lefschetz operator
induces a map between harmonic forms as follows

Ln−k : Hk → H2n−k.

By Proposition 11.1.1 Ln−k is injective and Hk,H2n−k have the same di-
mension, we obtain the desired result. □
Definition 11.1.2 (primitive form). Let (X,ω) be a compact Kähler n-
manifold. For [α] ∈ Hk(X,R), it’s called primitive, if Ln−k+1[α] = 0.

Notation 11.1.1. Hk(X,R)prim denotes the set of all primitive forms.

Corollary 11.1.1 (Lefschetz decomposition). There is the following decom-
position

Hk(X,R) =
⊕
r

LrHk−2r(X,R)prim.

Remark 11.1.2. If [ω] ∈ H2(X,Z), such as ω comes from a positive holomor-
phic line bundle, then we can state theorem and corollary for Hk(X,Q).

Moreover, we have the following isomorphism
Ln−k : Hp,q(X)→ Hn−q,n−p(X)

for k = p+ q ≤ n.

Corollary 11.1.2. Let (X,ω) be a compact Kähler n-manifold. Then for
2 ≤ k ≤ n, one has bk−2 ≤ bk and hp−1,q−1 ≤ hp,q with k = p+ q.

11.2. Hodge index.

11.2.1. Surface case.

Example 11.2.1. For open subset U ⊆ C2 equipped with canonical Kähler
form

ω =
√
−1
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
.

The volume form is given by

vol =
ω2

2!
= −

(
dz1 ∧ dz1 ∧ dz2 ∧ dz2

)
.

12Though proof of this theorem is quite easy using tools we have, but it’s quite hard
for Lefschetz, since during his time, there is no Hodge theorem. Here we use L to denote
Lefschetz operator, in order to honor Lefschetz.
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Suppose α is a (2, 0) form written as
α = adz1 ∧ dz2.

Now we’re going to compute ?α, which is also a (2, 0)-form. Suppose ?α =
bdz1 ∧ dz2. Then by definition, for an arbitrary (0, 2)-form β one has

〈β, α〉 vol = β ∧ ?α.
In particular, if we choose β = dz1 ∧ dz2, then

β ∧ ?α = −bdz1 ∧ dz1 ∧ dz2 ∧ dz2

{β, α} vol = {adz1 ∧ dz2, dz1 ∧ dz2} × −dz1 ∧ dz1 ∧ dz2 ∧ dz2

= −adz1 ∧ dz1 ∧ dz2 ∧ dz2.

This shows α = ?α. By the same computation one has α = ?α holds for a
(0, 2)-form α. On the other hand, it’s clear (2, 0)-form and (0, 2)-form are
automatically primitive.

Now we’re going to see if a (1, 1)-form α is primitive, what’s the relation
between α and ?α. For (1, 1)-form α, written as

α = a11dz
1 ∧ dz1 + a22dz

2 ∧ dz2 + a12dz1 ∧ dz2 + a21dz
2 ∧ dz1.

A direct computation shows that
?α = a22dz

1 ∧ dz1 + a11dz
2 ∧ dz2 − a12dz1 ∧ dz2 − a21dz2 ∧ dz1.

On the other hand,
Lα = ω ∧ α =

√
−1(a11 + a22)dz

1 ∧ dz1 ∧ dz2 ∧ dz2.

Then
Lα = 0⇐⇒ a11 + a22 = 0⇐⇒ ?α = −α.

Lemma 11.2.1. Let (X,ω) be a Kähler surface. If (p, q)-form α is primitive
2-form, then

?α = (−1)pα.

Proof. By taking normal coordinate, it suffices to consider U ⊆ C2, and
that’s exactly what we have done in Example 11.2.1. □

Let X be a compact Kähler surface. The Poincaré duality and Stokes
theorem imply that we have the following well-defined non-degenerate pair-
ing

Q : H2(X,R)×H2(X,R)→ R

([α], [β]) 7→
ˆ
X
α ∧ β

Then we obtain a Hermitian form by considering
H([α], [β]) = Q([α], [β]).

Lemma 11.2.2. The Lefschetz decomposition H2(X,R) = H2(X,R)prim⊕
R ·[ω] is orthonormal with respect to Q.
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Proof.

Q([ω], [α]) =

ˆ
X
ω ∧ α =

ˆ
X
Lα = 0

for α is primitive and harmonic. □

Theorem 11.2.1. H2(X,C)prim =
⊕

p+q=2H
p,q(X)prim is orthonormal with

respect to H, and (−1)pH is positive definite on Hp,q(X)prim.

Proof. It’s clear above decomposition is orthonormal, sinceˆ
X
α = 0

if α is not a (2, 2)-form. To see (−1)pH is positive definite on Hp,q(X)prim,
we take a harmonic representative α for any non-zero primitive cohomology
class in Hp,q(X)prim. Then

(−1)pH([α], [α]) = (−1)p
ˆ
X
α ∧ α

= (−1)p+q
ˆ
X
α ∧ ?α

= ‖α‖2 > 0.

This shows (−1)pH is positive definite on Hp,q(X)prim. □

Corollary 11.2.1 (Hodge index). The index of H defined on H2(X,C) ∩
H1,1(X) is (1, h1,1 − 1).

Proof. Note that there is the following decomposition

H2(X,C) ∩H1,1(X) = H1,1(X)prim ⊕ C[ω],

and we have already shown that H is negative definite on H1,1(X)prim. Then
the index for H on H2(X,C) ∩H1,1(X) is (1, h1,1 − 1). □

11.2.2. General case. In this section we will introduce a more general case:
Let (X,ω) be a compact Kähler n-manifold. Then by Lefschetz decomposi-
tion we have

Hk(X,R) =
⊕
r

LrHk−2r(X,R)prim, k ≤ n,

and by Hodge decomposition we have a more explicit decomposition

Hk(X,C)prim =
⊕
p+q=k

Hp,q(X)prim.

As we have seen in the case of surface, H will be positive definite or negative
definite in these (p, q) components. Now we introduce some symbols, in order
to get a neater result.
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Consider
Q : Hk(X,R)×Hk(X,R)→ R

([α], [β]) 7→ (−1)
k(k−1)

2

ˆ
X
ωn−k ∧ α ∧ β.

Then Q is a bilinear form, and it is symmetric when k is even and anti-
symmetric when k is odd.

Definition 11.2.1 (Weil operator). The Weil operator ∁ : Hk(X,C) →
Hk(X,C) is defined by ∁|Hp,q(X) 7→

√
−1p−q id.

Remark 11.2.1. The Weil operator ∁ maps Hk(X,R) to Hk(X,R) in fact:

∁|
Hp,q(X)

= ∁Hq,p(X) =
√
−1q−p id =

√
−1p−q id = ∁|Hp,q(X).

Now we define
H : Hk(X,C)×Hk(X,C)→ C

([α], [β]) 7→ Q(∁[α], [β]).
In other words, we have

H([α], [β]) = (−1)
k(k−1)

2

√
−1p−q

ˆ
X
ωn−k ∧ α ∧ β, α, β ∈ Hp,q(X).

Exercise 11.2.1. H is a Hermitian form on Hp,q(X).

Proof. For [α], [β] ∈ Hp,q(X), one has

H([α], [β]) = (−1)
k(k−1)

2 (−1)p−q
√
−1p−q

ˆ
X
ωn−k ∧ α ∧ β

= (−1)
k(k−1)

2 (−1)p−q
√
−1p−q(−1)(p+q)2

ˆ
X
ωn−k ∧ β ∧ α.

Note that
(p+ q)2 − p− q = 2pq + p(p− 1) + q(q − 1)

is always even, this completes the proof. □
Lemma 11.2.3. Let α be a primitive (p, q)-form with p+ q = k. Then

?α = (−1)
k(k+1)

2

√
−1p−q L

n−kα

(n− k)!
.

Theorem 11.2.2 (Hodge-Riemann bilinear relations).
(1) Hk(X,R) =

⊕
r L

rHk−2r(X,R)prim is orthonormal with respect to Q.
(2) Hk(X,C)prim =

⊕
p+q=kH

p,q(X)prim is orthonormal with respect to H.
(3) H is positive definite on Hp,q(X)prim.

Proof. For (1). For r < s, note that
ωn−k ∧ Lrγ ∧ Lsδ = (Ln−k+r+sγ) ∧ δ = 0

since Ln−k+2r+1γ = 0 and r < s.
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For (2). If α is a (p, q)-form, and β is (p′, q′)-form, and (p, q) 6= (p′, q′),
then ωn−k ∧ α ∧ β is not a (n, n)-form.

For (3). To see H is positive definite on Hp,q(X)prim, we take a harmonic
representative α for any non-zero primitive cohomology class in Hp,q(X)prim.
Then

H([α], [α]) = (−1)
k(k−1)

2

√
−1p−q

ˆ
X
ωn−k ∧ α ∧ α

By Lemma 11.2.3 one has

?α = (−1)
k(k+1)

2

√
−1q−p L

n−kα

(n− k)!

= (−1)
k(k−1)

2

√
−1p−q L

n−kα

(n− k)!
.

Then
H([α], [α]) = (n− k)!

ˆ
X
α ∧ ?α = (n− k)!‖α‖2 > 0.

□
Corollary 11.2.2 (Hodge index theorem). Let X be a compact Kähler
n-manifold with n is even13. Then

´
X α ∧ β on Hn(X,R) is of signature∑

p,q

(−1)php,q

where summation runs over all p, q.

Proof. Note that the signature of
´
X α ∧ β on Hn(X,R) is the same as the

signature of
´
X α ∧ β on Hn(X,C). We write

Hn(X,C) =
⊕

p+q+2r=n
r,p,q∈Z≥0

LrHp,q(X)prim

Then Hodge-Riemann bilinear theorem implies that
´
X α∧β is (−1)p-definite

on LrHp,q(X)prim, where we used the fact n is even. Then we have the
signature is ∑

p+q+2r=n

(−1)php,qprim.

But hp,qprim = hp,q − hp−1,q−1, so∑
p+q+2r=n

(−1)p(hp,q − hp−1,q−1).

Note that p + q = n counted once and p + q < n counted twice, so rewrite
it as ∑

p+q even
(−1)php,q,

13In this case
´
X
α ∧ β is symmetric on Hn(X,R).
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since hp,q = hn−p,n−q. And this is also equivalent to sum all p, q, since∑
p+q odd

(−1)php,q = 0

This completes the proof. □
Example 11.2.2. For surface, we have

H2(X,C) = H2,0(X)⊕H1,1(X)prim ⊕ C[ω]⊕H0,2(X)

Then this corollary implies
h0,0 + h2,0 − h1,1 + h0,2 + h2,2 = h2,0 + h0,2 + (1− (h1,1 − 1)),

which recovers what we have done in the case of surface.
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Part 4. Positivity and vanishing theorems
12. Positivity

12.1. Positivity of line bundle. Let (L, h) be a Hermitian holomorphic
line bundle over a complex manifold X. Then

√
−1
2π Θh gives a real (1, 1)-form,

so it corresponds to a Hermitian form on TX.

Definition 12.1.1 (positive line bundle). Let L be a holomorphic line bun-
dle over X. L is called positive if it admits a Hermitian metric h such that
the Hermitian form corresponding to

√
−1
2π Θh is positive definite.

Remark 12.1.1. The Kodaira embedding theorem implies positive line bundle
is exactly ample divisor in algebraic geometry.

Remark 12.1.2 (local form). Locally, one has
√
−1
2π

Θh = −
√
−1
2π

∂∂ log h =

√
−1
2π

∂2ϕ

∂zi∂zj
dzi ∧ dzj

where ϕ = − log h. Thus L is positive if and only if the Hermitian matrix
( ∂2φ
∂zi∂zj

) is positive definite everywhere.

Proposition 12.1.1. If X admits a positive holomorphic line bundle, then
X is Kähler.

Proof. The first Chern class of (L, h) gives its Kähler form. □

Proposition 12.1.2. L is positive if and only if L⊗m is positive for some
m ∈ N≥0.

Proof. For a line bundle L locally we have the Hermitian metric correspond-
ing to its curvature looking like

(
∂2ϕ

∂zi∂zj
)

and for L⊗m,m ∈ N≥0 we have

(m · ∂2ϕ

∂zi∂zj
)

It’s clear L is positive if and only if L⊗m is. □

Exercise 12.1.1. Let X be a compact complex manifold and L be a positive
line bundle. For any holomorphic line bundle L′, there exists N0 ∈ N such
that L′ ⊗ L⊗N positive for N ≥ N0.

Proof. The proof is quite similar to above exercise, we need to check locally,
but compactness is neccessary here. Over an open subset U1, locally we
have the Hermitian metric corresponding to L′ ⊗ Lm looking like

(
∂2ϕL′

∂zi∂zj
+m · ∂

2ϕL
∂zi∂zj

)
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So we can choose suffices large N1 such that M ⊗ L⊗N1 is positive on U .
Since X is compact, we can take a finite open covering {Ui} of X and choose
the largest Ni to be N we desired. □
12.2. Positivity of vector bundles. Let (E, h) be a Hermitian holomor-
phic vector bundle of rank r over a complex n-manifold X with Chern con-
nection ∇. In local frame, its Chern curvature is given by

Θh = Θβ

ijα
dzi ∧ dzj ⊗ eα ⊗ eβ

Definition 12.2.1 (positivity).
(1) (E, h) is said to be Griffiths positive, if for any non-zero (ui) ∈ Cn and

(vα) ∈ Cr
Θijαβu

iujvαvβ > 0

(2) (E, h) is said to be Nakano positive, if for any non-zero matrix (uiα)

Θijαβu
iαujβ > 0

(3) (E, h) is said to be dual Nakano positive, if for any non-zero matrix
(uiα)

Θijαβu
iβujα > 0

Remark 12.2.1. The semi-positivity and negativity can be defined in the
same way.

Proposition 12.2.1.
(1) If (E, h) is Nakano positive or dual Nakano positive, then (E, h) is

Griffiths positive.
(2) (E, h) is Nakano positive if and only if (E∗, h∗) is dual Nakano negative.

Proof. For (1). If (E, h) is Nakano positive, then for non-zero (ui) ∈ Cn and
(vα) ∈ Cr, consider matrix (uiα) defined by uiα := uivα, then

Θijαβu
iujvαvβ = Θijαβu

iαujβ > 0

The same argument holds for the case (E, h) is dual Nakano positive. (2)
follows from the relation between curvature form of (E, h) and (E∗, h∗), see
Section 4.3 of [Liu23]. □
Proposition 12.2.2. Let

0→ S → E → Q→ 0

be an exact sequence of holomorphic vector bundles.
(1) If (E, h) is Griffiths or dual Nakano positive, then so is (Q,hQ).
(2) If (E, h) is Griffiths or Nakano negative, then so is (S, hS).

Proposition 12.2.3. If Hermitian holomorphic vector bundle (E, h) is Grif-
fiths positive, then (E⊗detE, h⊗deth) is Nakano positive and dual Nakano
positive.
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13. Vanishing theorems

13.1. Kodaira vanishing theorem.
Theorem 13.1.1 (Bochner-Kodaira-Nakano identity). Let (X,ω) be a com-
pact Kähler manifold and (E, h) a Hermitian holomorphic vector bundle.
Then

∆∂E
= [
√
−1Θh,Λ] + ∆∂E

Proof. Direct computation shows
∆∂E

= [∂E , ∂
∗
E ]

= −
√
−1[∂E , [Λ, ∂E ]]

= −
√
−1[Λ, [∂E , ∂E ]]−

√
−1[∂E , [∂E ,Λ]]

= −
√
−1[Λ,Θh]−

√
−1[∂E ,

√
−1∂∗E ]

= [
√
−1Θh,Λ] + ∆∂E

□
Corollary 13.1.1 (Bochner-Kodaira-Nakano inequality). Let (X,ω) be a
compact Kähler manifold and (E, h) a Hermitian holomorphic vector bundle.
Then for α ∈ C∞(X,Ωp,qX ⊗ E), one has

([
√
−1Θh,Λ]α, α) ≤ (∆∂E

α, α)

In particular, if α is ∆∂E
-harmonic, then ([

√
−1Θh,Λ]α, α) ≤ 0.

Proof. Direct computation shows
(∆∂E

α, α)− ([
√
−1Θh,Λ]α, α) = (∆∂Eα, α)

= ‖∂Eα‖2 + ‖∂∗Eα‖2 ≥ 0

□
Corollary 13.1.2. Let X be a complex manifold. If Hermitian holomorphic
vector bundle(E, h) is Griffiths positive, then (detE, deth) is a positive
holomorphic line bundle. In particular, X is Kähler.
Theorem 13.1.2 (Kodaira-Akizuki-Nakano vanishing). Let X be a com-
pact n-manifold, (L, h) a positive Hermitian holomorphic line bundle. Then

Hp,q(X,L) = 0

for p+ q > n.
Proof. Let X be endowed with the Kähler metric ω given by Chern curvature
of L. Then there is an isomorphism Hp,q(X,L) ∼= Hp,q(X,L). For α ∈
Hp,q(X,L), by Corollary 13.1.1 one has

[
√
−1Θh,Λ]α ≤ 0.

On the other hand,
([
√
−1Θh,Λ]α, α) = 2π(p+ q − n)‖α‖2 ≥ 0.
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Thus if p+ q > n, one has α = 0. This completes the proof. □

Corollary 13.1.3 (Kodaira vanishing). Let X be a compact n-manifold
and (L, h) be a positive holomorphic line bundle over X. Then

Hq(X,KX ⊗ L) = 0

for q > 0.

Proof. Just note that
Hq(X,KX ⊗ L) = Hn,q(X,L)

□

Corollary 13.1.4. Let (X,ω) be a compact Kähler n-manifold. If (L, h) is
a semi-positive line bundle and rkΘh ≥ k, then

Hp,q(X,L) = 0

for p+ q ≥ 2n− k + 1.

Exercise 13.1.1. Compute all Hq(CPn,OCPn(k)) for all k, q.

Definition 13.1.1 (Fano). A Fano manifold is a compact Kähler manifold
with positive anti-canonical bundle K∗

X = detTX.

Proposition 13.1.1. Let X be a Fano manifold, then
Hq(X,OX) = 0

for all q > 0.

Proof. Note that OX = KX ⊗K∗
X . □

Theorem 13.1.3 (Serre vanishing). LetX be a compact complex n-manifold
and (L, h) be a positive holomorphic line bundle over X. For any holomor-
phic vector bundle E on X, there exists a constant m0 such that for all
m ≥ m0

Hq(X,E ⊗ L⊗m) = 0

for q > 0.

Proof. If X is endowed with Kähler metric ω given by Chern curvature of
L and E is endowed with a Hermitian metric h, then Hp,q(X,E ⊗ L⊗m) ∼=
Hp,q(X,E ⊗ L⊗m). For α ∈ Hp,q(X,E ⊗ L⊗m), one has

([
√
−1Θh,Λ]α, α) + 2πm(p+ q − n)‖α‖2 (1)

= ([
√
−1ΘE⊗L⊗m ,Λ]α, α)

(2)

≤ 0

where
(1) holds from ΘE⊗L⊗m = ΘE ⊗ id+m(id⊗ΘL).
(2) holds from Corollary 13.1.1, that is Bochner-Kodaira-Nakano inequal-
ity.
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On the other hand, Cauchy inequality implies that
([
√
−1Θh,Λ]α, α) ≥ −C‖α‖2

where constant C is the norm of [
√
−1Θh,Λ]. So if we have 2πm(p + q −

n) − C > 0, the argument in proof of Kodaira vanishing theorem implies
α = 0. Consider p = n, q > 0,m0 ≥ C

2π , then for all m ≥ m0 and q > 0, one
has

Hn,q(X,E ⊗ L⊗m) = 0

that is to say Hq(X,KX ⊗ E ⊗ L⊗m) = 0. So in order to show Hq(X,E ⊗
L⊗m) = 0, it suffices to consider K∗

X ⊗ E at beginning, and then we will
obtain

Hq(X,KX ⊗K∗
X ⊗ E ⊗ L⊗m) = Hq(X,E ⊗ L⊗m) = 0

This completes the proof. □

13.2. Nakano vanishing.

Theorem 13.2.1 (Nakano vanishing). Let X be a compact complex man-
ifold and (E, h) a Hermitian holomorphic vector bundle over X.
(1) If (E, h) is Nakano positive, then

Hn,q(X,E) = 0

for q ≥ 1.
(2) If (E, h) is dual Nakano positive, then

Hp,n(X,E) = 0

for p ≥ 1.

Proof. Here we only give the proof of the first one, the second can be derived
from the same argument. Suppose { ∂

∂z1
, . . . , ∂

∂zn } is a holomorphic local
frame which is orthonormal at point p ∈ X, and ϕ ∈ Hn,q(X,E) which is
locally written as ϕ = ϕα

I
dz1 ∧ · · · ∧ dzn ∧ dzI ⊗ eα where |I| = q. Direct

computation shows
〈
√
−1[Θh,Λ]ϕ,ϕ〉 = 〈

√
−1ΘhΛϕ,ϕ〉

(1)
= −〈Θγ

klα
dzk ∧ dzl

∑
m

ιmιmϕ
α
I
dz1 ∧ dzn ∧ dzI ⊗ eγ , ϕβJdz

1 ∧ · · · ∧ dzn ∧ dzJ ⊗ eβ〉

= −Θklαβϕ
α
I
ϕβ
J
〈dzk ∧ dzl ∧

∑
m

ιmιmdz
1 ∧ · · · ∧ dzn ∧ dzI , dz1 ∧ · · · ∧ dzn ∧ dzJ〉

=
∑
k

Θklαβϕ
α
I
ϕβ
J
〈dzl ∧ ιkdz

I , dzJ〉

=
∑
I,J

{
Θklαβ(

∑
k∈I

ϕα
I
)(
∑
l∈J

ϕβ
J
)

}
(2)

≥ 0
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where
(1) holds from Proposition 8.1.4 since by Corollary 13.1.2 one has X is
Kähler.
(2) holds from (E, h) is Nakano positive.

But by Corollary 13.1.1, that is Bochner-Kodaira-Nakano inequality, one
has 〈

√
−1[Θh,Λ]ϕ,ϕ〉 ≤ 0. This shows ϕ = 0 as before. □

Corollary 13.2.1. Let X be a compact complex n-manifold with n ≥ 2.
Then there doesn’t exist metric h such that (TX, h) is Nakano positive.

Proof. Suppose (TX, h) is Nakano positive, then
H1,1(X) = H0,1(X,T ∗X)

(1)
= Hn,n−1(X,TX)

(2)
= 0

where
(1) holds from Serre duality.
(2) holds from Nakano vanishing theorem.

However, by Proposition 12.2.1 and Corollary 13.1.2 one has X is a Käher
manifold, which leads to a contradiction since H1,1(X) 6= 0 for a Kähler
manifold. □
Corollary 13.2.2. Let X be a compact complex n-manifold with n ≥ 2.
Then there doesn’t exist metric h such that (T ∗X,h) is dual Nakano positive.

Proof. Note that
Hn−1,n(X,T ∗X) = H1,0(X,TX) = H0(X,End(TX)) 6= 0

□
Example 13.2.1. If n ≥ 2, (CPn, ωFS) is dual Nakano positive and Nakano
semi-positive, but not Nakano positive.

Proof. By Theorem 7.4.1 one has the curvature of Fubini-Study metric is
Θijkl = hijhkl + hilhkj

For p ∈ X, if we consider normal coordinate at p, then for any non-zero
matrix (uij), a direct computation shows

Θijklu
ilujk = hijhklu

ilujk + hilhkju
ilujk

=
∑
i,j

|uij |2 + uiiujj

=
∑
i ̸=j
|uij |2 + 1

2

∑
i,j

|uii + ujj |2

> 0
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which implies (CPn, ωFS) is dual Nakano positive.
Θijklu

ikujl = hijhklu
ikujl + hilhkju

ikujl

=
∑
i,j

|uij |2 + uijuji

=
1

2

∑
i,j

|uij + uji|2

≥ 0

which implies (CPn, ωFS) is Nakano semi-positive, and it’s not Nakano pos-
itive by Corollary 13.2.1. □
13.3. Griffiths vanishing.
Theorem 13.3.1 (Griffiths vanishing). If (E, h) is Griffiths positive, then
(1) Hn,n(X,E) = 0.
(2) Hp,q(X,E) = 0 for p+ q ≥ n+ rkE.
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14. Kodaira embedding and Chow theorem

14.1. Blow-up. In this section we will introduce a technical tool we need
in the proof of Kodaira embedding, which is blow-up at a point.

Definition 14.1.1 (blow-up). U × CPn−1 ⊃ Ũ := {((x1, . . . , xn), (y1 : · · · :
yn)) | xiyj = xjyi}

Remark 14.1.1. The most vivid way to understand blow-up is to consider
the fibres of projection Ũ → U : If x 6= 0, then the fibre of x is just a point
since the ratio of yi is uniquely determined. But for x = 0, there is no
restriction for yi, so you get the whole projective space CPn−1. Thus as
you can imagine, there is nothing happening except the origin, sounds like
a boom. For example, the following figure shows the case of n = 2

Lemma 14.1.1. Ũ ⊆ U × CPn−1 is a submanifold of dimension n.

Since blow-up is a local operation, so it can be done on a complex man-
ifold. If X is a complex manifold with dimension n with x ∈ X, and {Ui}
is an open covering such that x ∈ U1 and x 6∈ Ui, i 6= 1, then we can show
that Ũ1 ∪ (

⋃
i ̸=1 Ui) glue together a new complex manifold with dimension

n. This is called blow-up of X at point x, and it’s denoted by X̃. Similarly
there is a natural projection π : X̃ → X and π−1(x) is biholomorphic to
CPn−1, which is called exceptional divisor and denote it by E.

Exercise 14.1.1. IfX is compact Kähler manifold, then X̃ is also a compact
Kähler manifold.

Exercise 14.1.2. The idea sheaf of exceptional divisor IE ∼= OX̃(E)∗

Proposition 14.1.1. The canonical bundle K
X̃

of the blow-up X̃ is iso-
morphic to π∗KX ⊗OX̃(E)⊗n−1.



96

Corollary 14.1.1. For the exceptional divisor E = CPn ⊆ X̃ → X one has
O(E)|E ∼= OCPn−1(−1).

Proof. The adjunction formula implies
KE
∼= (K

X̃
⊗O

X̃
(E))|E

Then by Proposition 14.1.1 and KE = OCPn−1(−n) one has
OCPn−1(−n) ∼= (π∗KX ⊗OX̃(E)⊗n)|E

Note that E is a fibre of π, so π∗KX |E is trivial. Thus
OCPn−1(−n) ∼= OX̃(E)⊗n|E

On the other hand, the only possible line bundles on CPn−1 take the form
OCPn−1(k), k ∈ Z. Thus O

X̃
(E)|E ∼= OCPn−1(−1). □

The main reason we need blow-up here is that the sections after blow-up
is the “same” as the one before.

Proposition 14.1.2. For a holomorphic line bundle L, one has
H0(X,L⊗m) = H0(X̃, π∗L⊗m)

holds for arbitrary m ∈ Z≥0.

Proof. If X is one-dimensional, then π : X̃ → X is an isomorphism and thus
H0(X,L⊗m) = H0(X̃, π∗L⊗m).

Now let’s consider the case dimCX ≥ 2. Given an element s ∈ H0(X,L⊗m),
we can get an element in H0(X̃, π∗L⊗m) by composing projection π. Con-
versely, for s̃ ∈ H0(X̃, π∗L⊗m), it can be restricted to X̃\E = X\{x}, and
then extended to a global section of L⊗m by Hartogs theorem. □
14.2. Kodaira embedding.

Theorem 14.2.1 (Kodaira embedding). Let X be a compact complex man-
ifold. The following statements are equivalent:
(1) There exists a holomorphic embedding ϕ : X ↪→ CPN .
(2) There exists an integral Kähler form ω onX, that is, [ω] ∈ im{H2(X,Z)→

H2(X,R)}
(3) There exists a positive holomorphic line bundle on X.

Remark 14.2.1. (1) clealy implies (2), and (2) implies (3) is Lefschetz (1, 1)-
theorem, so the heart of the proof is (3) to (1).

Sketch. Use holomorphic global sections H0(X,L⊗m) for sufficiently large
m to construct ϕ : X ↪→ CPN . We need to show the following three things:
(1) For sufficiently large m, L⊗m is globally generated, which means for all

x ∈ X, there exists a global section s ∈ H0(X,L⊗m) such that s(x) 6= 0.
Then for all x ∈ X, Hx = {s ∈ H0(X,L⊗m) | s(x) = 0} is a hyper-
surface. Thus we get a holomorphic map ϕ : X → CP(H0(X,L⊗m)∗),
defined by x 7→ Hx. Indeed since any hypersurface in H0(X,L⊗m) is a
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line in H0(X,L⊗m)∗, that is an element in CP(H0(X,L⊗m)∗). And you
will find ϕ is holomorphic since we’re using holomorphic sections.

(2) For more sufficiently large14 m, L⊗m separetes points, that is for all
x, y ∈ X, there exists s ∈ H0(X,L⊗m) such that s(x) 6= 0, s(y) = 0.
Thus in this case our ϕ is injective.

(3) For more more sufficiently large m, L⊗m separetes tangent vectors, that
is, for all x ∈ X,u ∈ TX,x there exists s ∈ H0(X,L⊗m) such that
s(x) = 0 and ds(u) 6= 0. Thus in this case our ϕ is an immersion,
together with X is compact we have ϕ is an embedding.

Remark 14.2.2. We can also describe ϕ more explicitly. Locally around x0,
choose a basis s0, . . . , sN of H0(X,L⊗m) such that s0(x0) 6= 0. Then there
exists a neighborhood U of x0 such that s0(x) 6= for all x ∈ U . Then

s1
s0
, . . . ,

sN
s0
∈ H0(U,OU )

So we can define
ϕ|U : U → CPN

x 7→ (1,
x1
x0

(x), . . . ,
sN
s0

(x))

And you can check it’s same as what we have defined without choosing a
basis.

Here we only give a sketch proof of the first statement, the proofs for
second and third are similar, but more complicated.

We want to detect the value of a section at a point is zero or not. Sheaves
give us a good way to describe such thing. For x ∈ X, consider ideal sheaf
of x

Ix = {s ∈ OX | s(x) = 0} ⊆ OX
Then sections we are searching for is H0(X, Ix ⊗ L⊗m). For computation,
we have exact sequence of sheaf

0→ Ix ⊗ L⊗m → L⊗m → L⊗m|x → 0

And using Čech cohomology we can derive a long exact sequence
0→ H0(X, Ix ⊗ L⊗m)→ H0(X,L⊗)→ C→ Ȟ1(X, Ix ⊗ L⊗m)→ . . .

Our goal is to show H0(X, Ix ⊗ L⊗m) 6= 0. If Ȟ1(X, Ix ⊗ L⊗m) = 0 for
sufficiently large m, then we can get desired result.

For Čech cohomology we know a little, but we know quite a lot for Dol-
beault cohomology. So an ideal is to turn idea sheaf into a line bundle and
use Dolbeault cohomology to compute.

Similarly, we have
H0(X, Ix ⊗ L⊗m) = H0(X̃, IE ⊗ π∗L⊗m) = H0(X̃,O

X̃
(E)∗ ⊗ π∗L⊗m)

And that’s why blow-up works since Ix ⊗ L⊗m is just a sheaf, and it’s a
little difficult for us to compute the cohomology of sheaf, but after blow-up,

14Larger than m is step one.
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we make it to a line bundle O
X̃
(E)∗ ⊗ π∗L⊗m, and Dolbeault cohomology

comes into its place.
Consider the following short exact sequence of sheaves on X̃:

0→ IE ⊗ π∗L⊗m → π∗L⊗m → π∗L⊗m|E → 0

So we get a long exact sequence
0→ H0(X̃, IE⊗π∗L⊗m)→ H0(X̃, π∗L⊗m)→ C→ Ȟ1(X̃, IE⊗π∗L⊗m)→ . . .

But
Ȟ1(X̃, IE ⊗ π∗L⊗m) = H1

Dol(H̃, IE ⊗ π∗L⊗m)

Claim H1
Dol(H̃, IE ⊗π∗L⊗m) = 0, when m is sufficiently large. Indeed, note

that
IE ⊗ π∗L⊗m ∼= K

X̃
⊗ {O

X̃
(E)∗⊗n ⊗ π∗(K∗

X ⊗ L⊗m)}
So by Kodaira vanishing, it suffices to show the following line bundle is
positive when m is sufficiently large:

O
X̃
(E)∗⊗n ⊗ π∗(K∗

X ⊗ L⊗m)

In fact, K∗
X ⊗ L⊗m will be positive on X when m is sufficiently large. But

when we pull it back something bad may happen since π∗(K∗
X ⊗ L⊗m) is

positive except along E. However, O
X̃
(E)∗⊗n|E = OCPn−1(n), so two parts

work together to give a positive line bundle. To be more explicit, take
any Hermitian metric on O

X̃
(E)∗⊗n extending (Fubini-Study)⊗n, then its

positive on E, but may not be positive otherwise. However we can choose
m sufficiently large to offset its negative impact.

This completes the proof of first part of Kodaira embedding, for second
and third, arguments are similar, but we need more blow-ups and things
become complicated. □
Corollary 14.2.1. Let (X,ω) be a compact Kähler manifold such that
H2,0(X) = H0,2(X) = 0. Then X is a projective manifold.

Proof. Hodge decomposition implies that H2,0(X) = H0,2(X) = 0, and thus
H2(X,Q)⊗Q C = H2(X,C) = H1,1(X). Let [α1], . . . , [αn] ∈ H2(X,Q) be a
basis such that αi is harmonic and of type (1, 1). Since the Kähler form ω
is real, harmonic15 and of type (1, 1). Then

ω =
∑
i

λiαi, λi ∈ R

For µi ∈ Q sufficiently close to λi, one still has
∑

i µiαi is positive. Thus∑
i µiαi gives a Kähler form. TakeN sufficiently large such that [N

∑
i µiαi] ∈

im(H2(X,Z) → H2(X,R)). Applying Kodaira embedding to complete the
proof. □
Corollary 14.2.2. Fano manifold is projective.

Proof. Since for Fano manifold, all H0,p(X) = 0, q > 0. □
15It’s harmonic since [∆d, L] = 0.



99

14.3. Chow’s theorem. Since we already embed a compact complex man-
ifold into projective space, there is no reason for us to avoid Chow’s theorem.
A wonderful theorem lies in the intersection of algebraic and analytic.

Theorem 14.3.1 (Chow). Every closed complex submanifold X ⊆ CPn is
algebraic, that is, defined by polynomial equations.

Remark 14.3.1. Finally, for holomorphic line on compact complex manifolds:
positive is equivalent to ample.

Although Chow’s theorem can be derived from GAGA proved by Serre,
in an elegant way using sheaf theory, here we give a sketch of a classical
proof of Chow’s theorem.

We need to show every closed complex submanifold X of CPn is alge-
braic, our ideal is to construct an analytic hypersurface in a Grassmannian
manifold Gr(r, n) with Plücker embedding ϕ : Gr(r, n) ↪→ CP(

∧r Cn), and
use some facts about it:
(1) Pic(Gr(r, n)) = Z ·ϕ∗OCP(1)
(2) Every closed analytic hypersurface of Gr(r, n) is algebraic.

If the analytic hypersurface W we construct in Grassmannian manifold
can determine X algebraically, that is W is algebraic implies X is, then we
complete the proof.

The philosophy here is to convert a submanifold with arbitrary codimen-
sion in CPn to a an hypersurface, the cost we pay is that we need to consider
Grassmannian manifold rather than CPn. But it do works!

Let’s be more explicit:

Definition 14.3.1 (analytic subset). A closed analytic subset in CPn is a
closed subset, locally defined by some holomorphic equations.

Remark 14.3.2. We can replace closed complex submanifold by closed an-
alytic subset in Chow’s theorem since we can not avoid singularity, and it
doesn’t matter in fact.

However, although we allow singularities, singularities won’t be too much:
Let X ⊆ CPn be an irreducible closed analytic subset of dimension r. Then
there exists closed analytic subset Xsing ⊆ X such that X\Xsing is smooth
and dense. Furthermore, X\Xsing is a submanifold of CPn of dimension r.

Now fix X, an irreducible closed analytic subset of dimension r in CPn.
Let V ∈ Gr(n−r, n+1), then CP(V ) ⊆ CPn with dimension n−r−1. So as
you can imagine, an object with dimension r and an object with dimension
n− r − 1 may fail to intersect with each other.

Let
W = {V ∈ Gr(n− r, n+ 1) | CP(V ) ∩X 6= ∅}

Claim:
(1) W is a closed analytic hypersurface of Gr(n− r, n+ 1).
(2) W determines X algebraically.
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Here we give a sketch of proof of Claims:
For (1). Consider the following diagram

CP(E) CPn ⊃ X

Gr(n− r, n+ 1)

p

q

where E → Gr(n−r, n+1) is tautological bundle of Grassmannian manifold.
Then we can write16

W = p(q−1(X))

Since q is holomorphic and X is closed and analytic, then q−1(X) is also
closed and analytic. But the difficulty is p(q−1(X)) is also closed and ana-
lytic, and this holds from the following fact.

Theorem 14.3.2. p is holomorphic and proper17.

Now we show that W is a hypersurface, and that’s just a computation
for dimension: We already know the dimension of Gr(n − r, n + 1) is (n −
r)(n + 1 − (n − r)) = (n − r)(r + 1), so we need to show the dimension of
W is (n− r)(r + 1)− 1.

First, let’s consider the fibre of q: it consists of subspaces V ⊆ Cn+1 of
dimension n− r containing a given line l, and that’s another Grassmannian
manifold Gr(n − r − 1, n), if we consider V 7→ V/l, and its dimension is
(n− r − 1)(r + 1). So the dimension of q−1(X) is r + (n− r − 1)(r + 1) =
(n− r)(r + 1)− 1 = dimGr(n− r, n+ 1)− 1.

So we may desire the property of p is not too bad so that we will obtain
dim p(q−1(X)) = dim q−1(X) as we desired. It suffices to show that there
exists a dense open subset U ⊆ q−1(X), such that p|U has finite fibres. In
fact, we will show it’s one to one correspondence.

Consider fibre of pX : q−1(X)→ Gr(n− r, n+ 1) over given V ∈ Gr(n−
r, n+1), and that’s CP(V )∩X. So we may desire almost every V such that
this intersection is just a point. It suffices to show that the complement of

{(V, x) ∈ q−1(X) | CP(V ) ∩X has only one smooth point x}
is closed analytic of dimension less than dim q−1(X). There are three cases:
(1) CP(V )∩X contains x ∈ Xsing, singular locus ofX. But dimC q

−1(Xsing) <
dimC q

−1(X).
(2) CP(V ) ∩X has at least two points.
(3) CP(V ) ∩X not transverse intersection at x.
Then W = p(q−1(X)) ⊆ Gr(n− r, n+ 1) is a closed analytic hypersurface.

For (2). Consider qW : p−1(W )→ CPn. Claim
X = {x ∈ CPn | q−1

W (x) = q−1(x)}

16Why?
17Proper means: For any Y ⊆ CP(E) closed and analytic, then p(Y ) is closed and

analytic.
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And there are some equivalent descriptions:
q−1
W (x) = q−1(x)⇐⇒ p−1(W ) ∩ q−1(x) = q−1(x)

⇐⇒ q−1(x) ⊆ p−1(W )

Clearly, if x ∈ X, then q−1(x) ∈ p−1(W ) since W = p(q−1(X)). For the
other direction: we can translate it as: If y 6∈ X, then we need to find
V ∈ Gr(n− r, n+ 1) containing l = 〈y〉, but CP(V ) ∩X = ∅.

To see this: Use projection from y, that is CPn
πy−→ CPn−1. Since y 6∈ X,

then πy|X is well-defined and has finite fibres. Note that CP(V ) ∩ X 6= ∅
if and only if CP(V/〈y〉) ∩ πy(X) = ∅. From computation before, we know
it’s a condition for hypersurface. So it’s easy to choose V we desire.

Conclusion (from analytic to algebraic): p and q is algebraic, and W is
algebraic, so we obtain p−1(W ) is also algebraic. So qW is also algebraic.
Thus X is algebraic.
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15. More Bochner techniques

15.1. Obstruction to holomorphic vector fields. In Riemannian geom-
etry, there is the following theorem which shows there are obstructions of
Killing vector fields or harmonic 1-forms.
Theorem 15.1.1. Let (M, g) be a compact Riemannian manifold.
(1) If Ric(g) < 0, then there is no non-trivial Killing vector field.
(2) If Ric(g) > 0, then b1(M) = 0.

In the realm of complex geometry, analogous obstructions exist, drawing
a parallel between Killing fields and holomorphic vector fields. However,
it is important to note that not every Killing vector field is a holomorphic
vector field.
Theorem 15.1.2. On a compact Kähler manifold, a Killing vector field X
is holomorphic if and only if
(1) divX = 0.
(2) ∇∗X = 0.
Lemma 15.1.1. Let (M, g) be a compact Riemannian manifold. A vector
field X is Killing if and only if divX = 0 and ∇∗∇X = (Ric(X))♯.
Lemma 15.1.2. Let (M,ω) be a compact Kähler manifold. A vector field
X is holomorphic if and only if ∇∗∇X = (Ric(X))♯.
Theorem 15.1.3. Let (M,ω) be a compact Kähler manifold with Ric(ω) <
0. Then there is no non-trivial holomorphic vector field.
Proof. Let X be a non-trivial holomorphic vector field locally given by X =
Xi ∂

∂zi
and ω =

√
−1hijdzi∧dzj . If we define u = |X|2, a direct computation

shows √
−1∂∂u =

√
−1
(
∂{∇0,1X,X}+ {X,∇1,0X}

)
(1)
=
√
−1∂{X,∇1,0X}

=
√
−1
(
{∇1,0X,∇1,0X}+ {X,∇0,1∇1,0X

)
(2)
=
√
−1 ({∇X,∇X}+ {X,ΘhX})

where (1) and (2) holds from X is a holomorphic vector field. Note that
trω
√
−1{∇X,∇X} = trω(

√
−1∇iXj∇kX lhjldz

i ∧ dzk)

= ∇iXj∇kX lhjlh
ik

= |∇X|2

trω
√
−1{X,ΘhX} = − trω{

√
−1ΘhX,X}

= − trω(
√
−1Θβ

ijα
XαX

γ
hβγdz

i ∧ dzj)

= −hijΘijαγX
αX

γ

= −Ric(X,X)
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This shows
trω
√
−1∂∂u = |∇X|2 − Ric(X,X) > 0

If u obtains its maximum at some point p ∈M , then trω
√
−1∂∂u(p) ≤ 0, a

contradiction. □
Corollary 15.1.1. Let (M,ω) be a compact Kähler manifold. If Ric(ω) ≤ 0,
then the following statements are equivalent:
(1) X is parallel.
(2) X is Killing.
(3) X is holomorphic.

Proof. As shown in Theorem 15.1.3, if Ric(ω) ≤ 0, for a non-trivial holo-
morphic vector field X one has

trω
√
−1∂∂u = |∇X|2 − Ric(X,X) ≥ 0

Then by the same argument one has ∇X = 0, that is every holomorphic
vector field is parallel, and it’s clear every parallel vector field is Killing. □
Corollary 15.1.2. Let (M,ω) be a compact complex manifold with nega-
tive holomorphic sectional curvature. Then there is no non-trivial holomor-
phic vector field.

Proof. Let X be a non-trivial holomorphic vector field locally given by X =
Xi ∂

∂zi
and u = |X|2. The same argument shows

√
−1∂∂u(X,X) = |∇XX|2 −ΘijklX

iX
j
XkX

l

Then maximum principle completes the proof. □

15.2. Obstruction to holomorphic 1-form.

Theorem 15.2.1. Let (M,ω) be a compact Kähler manifold. If Ric(ω) > 0.
Then there is no non-trivial holomorphic 1-form.

Corollary 15.2.1. Let (M,ω) be compact Kähler manifold and Ric(ω) ≥ 0.
Then any holomorphic 1-form is parallel.

15.3. Rigidity of complex projective space. The rigidity of complex
projective space is a fascinating subject in complex geometry. It involves
determining whether a geometric object satisfies certain conditions to be
CPn or not, and it has produced numerous interesting results. Yau demon-
strated that any Kähler manifold, which is homeomorphic to CPn, is also
biholomorphic to CPn. He also resolved a conjecture put forth by Frankel in
1961, which stated that a compact Kähler manifold with positive bisectional
curvature must be biholomorphic to CPn. Additionally, there exists an even
stronger result.

Theorem 15.3.1 ([FLW17]). Let (X,ω) be a compact Kähler manifold
with positive orthogonal bisectional curvature. Then X is biholomorphic to
CPn.
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In this section we try to use Bochner technique to show the following
easier result.

Proposition 15.3.1. Let (X,ω) be a compact Kähler manifold with posi-
tive orthogonal bisectional curvature. Then H1,1(X) = C.
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16. Schwarz lemmas

In this section, we will present the powerful formulas called Schwarz cal-
culation, which extend the Bochner techniques discussed earlier.

16.1. Schwarz lemmas for holomorphic bisectional curvature.

Lemma 16.1.1. Let f : (M, g) → (N,h) be a holomorphic map between
Hermitian manifolds and ∇ be the induced connection on T ∗X ⊗ f∗(TN)
by Chern connections. Then in the local holomorphic coordinates {zi} and
{wα} on M and N respectively, one has

∂∂u = {∇df,∇df}+
(
(Θg)ijklg

kqgplhαβf
α
p f

β
q − (Θh)αβγδ(f

α
i f

β
j )(g

pqfγp f
δ
q )
)
dzi∧dzj

and

trω
√
−1∂∂u = |∇df |2+(gij(Θg)ijkl)g

kqgplhαβf
α
p f

β
q −(Θh)αβγδ(g

ijfαi f
β
j )(g

pqfγp f
δ
q )

where u = trg(f
∗ωh) = |∇f |2, f = fαi dz

i ⊗ eα and eα = f∗( ∂
∂wα ). Further-

more, one has

trω
√
−1∂∂ log u ≥ 1

u

(
(gij(Θg)ijkl)g

kqgplhαβf
α
p f

β
q − (Θh)αβγδ(g

ijfαi f
β
j )(g

pqfγp f
δ
q )
)

holds outside the set of critical points of f .

Corollary 16.1.1. Let g, h be two Hermitian metrics on a complex manifold
M . Then

trg
√
−1∂∂ log trg ωh ≥

1

trg ωh

(
(gij(Θg)ijkl)g

kqgplhpq − (Θh)ijpqg
ijgpq

)
and

trh
√
−1∂∂ log trg ωh ≥

1

trg ωh

(
(hij(Θg)ijkl)g

kqgplhpq − (hij(Θh)ijpq)g
pq
)

Corollary 16.1.2. Let f : (M, g)→ (N,h) be a holomorphic map between
Hermitian manifolds. Suppose
(1) the second Chern-Ricci curvature Ric(2)(ωg) ≥ aωg for some a;
(2) the holomorphic bisectional curvature (N,h) is bounded from above by

b, that is
Θh(w,w, v, v) ≤ b|w|2|v|2

Then
trg
√
−1∂∂u ≥ au− bu2

where u = trg(f
∗ωh) = |∇f |2. Furthermore, outside the set of critical points

of f , one has
trg
√
−1∂∂ log u ≥ a− bu
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Proof. Note that Ric(2)(ωg) ≥ aωg implies (Θg)ijklg
kl ≥ agij . Thus

(gij(Θg)ijkl)g
kqgplhαβf

α
p f

β
q = gij(Θg)ijkl)

gklgkl
n

gkqgplhαβf
α
p f

β
q

≥
agijgij
n

gklg
kqgplhαβf

α
p f

β
q

= agplfαp f
β
l

= au

On the other hand, by using normal coordinate on M it’s easy to see

(Θh)αβγδ(g
ijfαi f

β
j )(g

pqfγp f
δ
q ) ≤ b(fαi f

β
j g

ijhαβ)(f
γ
p f

δ
q g

pqhγδ) = bu2

Then by Lemma 16.1.1 this completes the proof. □

Lemma 16.1.2 ([Yau75]). Let (M, g) be a complete Riemannian manifold
with Ricci curvature bounded from below and f ∈ C2(M,R) be bounded
from above. Then there exists {pk} ⊆M such that
(1) limk |∇f(pk)| = 0.
(2) lim supk∆f(pk) ≤ 0.
(3) limk f(pk) = sup f .

Theorem 16.1.1 ([Yau78a]). Let (M,ωg) be a complete Kähler manifold
with Ric(ωg) ≥ aωg and (N,ωh) be a Hermitian manifold with holomorphic
bisectional curvature ≤ b < 0. If f : M → N is a non-constant holomorphic
map, then a < 0 and

f∗ωh ≤
a

b
ωg

Proof. Let ∆g denotes the operator trg
√
−1∂∂. By Corollary 16.1.2 one has

∆gu ≥ au− bu2

where u = trg(f
∗ωh). It suffices to show supM u ≤ a/b. Now let’s consider

the following two cases:
(1) If supM u <∞, then by Lemma 16.1.2 there exists a sequence {pk} such

that lim sup∆u(pk) ≤ 0, and limu(pk) = supM u ans so

∆gu(pk) ≥ au(pk)− bu2(pk)

By taking limsup, we deduce that

0 ≥ a sup
M

u− b(sup
M

u)2

Since supM u > 0 and b < 0, one has a < 0 and supM u ≤ a/b.
(2) If supM u =∞, consider

v =
1√
u+ c
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for some constant c > 0. Direct computation shows

∆gv = −1

2
v3∆gu+

3

v
|∇v|2

∆gu =
2

v3
(
3

v
|∇v|2 −∆gv) ≥ au− bu2

that is
6|∇v|2 − 2v∆gv ≥ auv4 − bu2v4

By Lemma 16.1.2 again there exists a sequence {pk} such that limk(−v)(pk) =
supM (−v) = 0 and ∇v(pk) = 0 and

lim sup
k

∆gv(pk) ≤ 0

Then
0 ≥ lim sup(6|∇v|2 − 2v∆gv)(pk) ≥ lim sup(auv4 − buv4)(pk) = −b
which is a contradiction to b > 0.

In a word, only the first case will happen, and this completes the proof. □
Corollary 16.1.3. Let f : (D, ω) → (D, ω) be a holomorphic map between
unit disk with Poincaré metric. Then

f∗(ω) ≤ ω

Proof. It’s clear since unit disk with Poincaré metric has constant holomor-
phic bisectional curvature −1 and Ric(ω) = −ω. □
Corollary 16.1.4. Let f : (M, g)→ (N,h) be a holomorphic map between
two Hermitian manifolds. If
(1) (M, g) is complete Kähler with Ric(g) ≥ 0.
(2) (N,h) has negative holomorphic bisectional curvature.
Then f is constant.

Proof. Suppose the holomorphic bisectional curvature ofN is bounded above
by b < 0. If there exists a non-constant holomorphic map from (M, g) to
(N,h), then it contradicts to Ric(ωg) ≥ 0 since by Theorem 16.1.1 one has
if Ric(ωg) ≥ aωg, then a < 0. □
Corollary 16.1.5. Let f : (M, g)→ (N,h) be a holomorphic map between
two Hermitian manifolds such that M is compact with Ric(2)(ωg) ≥ 0 and N
has non-positive holomorphic bisectional curvature. If one of the following
statements holds, then f is a constant.
(1) Ric(2)(ωg) > 0 at some point.
(2) N has negative holomorphic bisectional curvature at some point.

Proof. Let ωG be a Gauduchon metric of M and u = trg(f
∗ωh). By Lemma

16.1.1 the integration ˆ
M

trω
√
−1∂∂u · ωnG = 0
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implies ∇df = 0 and

(gij(Θg)ijkl)g
kqgplhαβf

α
p f

β
q = (Θh)αβγδ(g

ijfαi f
β
j )(g

pqfγp f
δ
q ) = 0

Hence |df | is a constant, and it’s clear from the second equation that (1) or
(2) implies df = 0, that is f is a constant. □

16.2. Schwarz lemmas for holomorphic sectional curvature.

Lemma 16.2.1. There is the following identity
ˆ
CPn−1

ξiξ
j
ξkξ

l

|ξ|4
ωn−1
FS =

δijδkl + δilδkj
n(n+ 1)

where [ξ1 : · · · : ξn] are homogenous coordinates on CPn−1 and ωFS is the
Fubini-Study metric.

Theorem 16.2.1. Let (M, g) be a Hermitian n-manifold, (N,h) be a Kähler
n-manifold and f : (M, g) → (N,h) be a non-constant holomorphic map.
Suppose that
(1) Ric(2)(g) ≥ −λωg + µf∗ωh for continuous functions λ, µ with µ ≥ 0.
(2) holomorphic sectional curvature of h is bounded from above by a con-

tinuous functions −κ ≤ 0.
Then

trg
√
−1∂∂u ≥ −λu+

(
(r + 1)f∗κ

2r
+
µ

n

)
u2

where r is maximal rank of df and u = trg(f
∗ωh). Furthermore, outside the

critical points of f one has

trg
√
−1∂∂ log u ≥ −λ+

(
(r + 1)f∗κ

2r
+
µ

n

)
u

Proof. Let ∆g denote the operator = trg
√
−1∂∂. Then as computation in

Lemma 16.1.1 one has

∆gu = |∇df |2 + (gij(Θg)ijkl)g
kqgplhαβf

α
p f

β
q︸ ︷︷ ︸

I

− (Θh)αβγδ(g
ijfαi f

β
j )(g

pqfγp f
δ
q )︸ ︷︷ ︸

II

For part I, one has

I ≥ gij(Θh)ijkl
gklgkl
n

gkqgplhαβf
α
p f

β
q

= (−λgkl + µgijgklhγδf
γ
i f

δ
j )g

kqgplhαβf
α
p f

β
q

= (−λgkl + µhγδf
γ
k f

δ
l )g

kqgplhαβf
α
p f

β
q

= −λµ+
µ

n
µ2
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For part II, by taking normal coordinate at p ∈ M and f(p) ∈ N we may
assume fαi = λiδ

α
i with λ1 ≥ λ2 ≥ · · · ≥ λr(p) > λr(p)+1 = 0, where r(p) is

rank of df(p). Then trg(f
∗ωh) =

∑n
i=1 λ

2
i . Hence

II = (Θh)αβγδ(g
ijfαi f

β
j )(g

pqfγp f
δ
q )

=

n∑
i,k=1

(Θh)αβγδf
α
i f

β
i f

γ
k f

δ
k

(a)
=

n∑
i,j,k,l=1

(Θh)αβγδf
α
i f

β
j f

γ
k f

δ
l

(
δijδkl + δilδkj

2

)
(b)
=
n(n+ 1)

2
(Θh)αβγδf

α
i f

β
j f

γ
k f

δ
l

ˆ
CPn−1

ξiξ
j
ξkξ

l

|ξ|4
ωn−1
FS

=
n(n+ 1)

2

ˆ
CPn−1

(Θh)αβγδ
(fαi ξ

i)(fβj ξ
j)(fγk ξ

γ)(f δl ξ
l)

|ξ|4
ωn−1
FS

(c)

≤ −κ(f(p))n(n+ 1)

2

ˆ
CPn−1

(|fαi ξi|2)2

|ξ|4
ωn−1
FS

where
(a) holds from (N,h) is Kähler.
(b) holds from Lemma 16.2.1.
(c) holds from holomorphic sectional curvature of h is bounded from above
by −κ.

Since fαi = λiδ
α
i , one hasˆ

CPn−1

(|fαi ξi|2)2

|ξ|4
ωn−1
FS =

1

n(n+ 1)

∑
i,j,α,β

λiλjλkλlδ
α
i δ

α
j δ

β
k δ

β
l (δijδkl + δilδkj)

=
1

n(n+ 1)

(
(
∑
α

λ2α)
2 +

∑
α

λ4α

)
(d)

≥ 1

n(n+ 1)
· r + 1

r
(
∑
α

λ2α)
2

where (d) holds since r is the maximal numbers of non-zero elements of λα.
Hence one has

II ≤ −(r + 1)f∗κ

2r
(
∑
α

λ2α)
2 = −(r + 1)f∗κ

2r
u2

This completes the proof. □

Corollary 16.2.1. Let (M,ω) be a complete Kähler manifold with Ricci
curvature bounded from below by a positive constant. Then M is compact,
and there is no non-trivial holomorphic map from M into a Kähler manifold
with non-positive holomorphic sectional curvature.
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Corollary 16.2.2. Let (N,h) be a Hermitian manifold with non-positive
holomorphic sectional curvature. Then any holomorphic map from CPn to
N is constant. In particular, N contains no rational curves.

Corollary 16.2.3. Let (N,h) be a Hermitian manifold with negative holo-
morphic sectional curvature. Then any holomorphic map from torus T2 to
N is constant.
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Part 5. Topics
17. Calabi-Yau theorem

17.1. Introduction. The investigation into the existence of Kähler-Einstein
metrics is a compelling and extensive topic that traces back to 1954. In
which year Calabi proposed the famous Calabi conjecture, which was finally
solved by Yau in 1976. Firstly, Calabi proved the uniqueness of the solution
and laid out the program of proving the existence by the method of conti-
nuity and also pointed out the openness and the need of a priori estimates
in [Cal57]. The very easy a priori zeroth oreder estimate for the case of
negative first Chern class was firstly given by Aubin in [Aub78], but he did
not apply his a priori estimate to the continuity method. Instead he used
the method of variation which is rather difficult to comprehend.

Yau made the important contribution of using Morser’s method of inte-
gration by parts and iteration by Sobolev inequality to get a priori zeroth
oreder estimate.

Theorem 17.1 ([MR054],[Yau78b]). Let (X,ωg) be a compact Kähler man-
ifold. If Ω is a real (1, 1)-form which represents 2πc1(X), then there exists
a unique metric ω ∈ [ωg] such that Ric(ω) = Ω.

This remarkable result establishes several related results which are of
fundamental importance in the study of complex manifolds.

Corollary 17.1.1. Let (X,ωg) be a compact Kähler manifold with c1(X) =
0. Then there exists a unique Ricci flat metric.

Corollary 17.1.2. Let (X,ωg) be a compact Kähler manifold with c1(X) >
0. Then M is simply-connected.

Corollary 17.1.3 ([Yau77]). Every complex surface which is homotopic
equivalent to CP2 is biholomorphic to CP2

17.2. The Monge-Amperé equation and priori estimates.

17.2.1. The reformulation of Calabi conjecture in Monge-Amperé equation.
The Calabi conjecture can be reduced to a problem of fully non-linear partial
differential equations. By Lemma 9.3.1, that is ∂∂-lemma, one has

ω = ωg +
√
−1∂∂ϕ

where ϕ is the smooth function we desire. Again by ∂∂-lemma one also has

Ric(ωg) = Ω +
√
−1∂∂F

where F is a smooth function which is unique up to a constant. If we
consider the normalization ˆ

X
eFωng =

ˆ
X
ωng
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then F is unique. Suppose Ric(ω) = Ω. Then

Ric(ωg)− Ric(ω) =
√
−1∂∂F

that is
√
−1∂∂ log ω

n

ωng
=
√
−1∂∂F

which is equivalent to the following equation

ωn = eF+Cωng

and by nomalization of F one has C = 0. Thus in order to solve Calabi con-
jecture, it suffices to solve the following complex Monge-Amperé equation:

(17.1)
{
(ωg +

√
−1∂∂ϕ)n = eFωng´

X e
Fωng = 1

Theorem 17.2.1 ([Cal57]). The solution of (17.1) is unique.

Proof. Suppose ϕ1, ϕ2 are two solutions. Then

0 = ωn1 − ωn2 = (ω1 − ω2)(ω
n−1
1 + · · ·+ ωn−1

2 )

=
√
−1∂∂(ϕ1 − ϕ2)(ω

n−1
1 + · · ·+ ωn−1

2 )

If we define ψ = ϕ1 − ϕ2, then

−
ˆ
X
ψ
√
−1∂∂ψ ∧ (ωn−1

1 + · · ·+ ωn−1
2 )

(1)
=

ˆ
X
∂ψ ∧ ∂ψ ∧ (ωn+1

1 + · · ·+ ωn−1
2 )

(2)

≥ 1

n
|∂ψ|2ωn1

where
(1) holds from integration by parts and ω1, ω2 are Kähler forms.
(2) holds from (2) of Proposition 6.3.3 and positivity of ω1, ω2.

This shows ∂ψ = 0, and thus ψ is a constant, which completes the proof. □

To solve the existence of solution of (17.1), Yau used the continuity
method. Consider a sequence of equations as follows

(17.2) det(gij + ϕij) =
etF´

X e
tFωng

det(gij)

It’s clear (17.2) is solvable at t = 0, and thus consider the following set is
non-empty

I = {t ∈ [0, 1] | equation (17.2) is solvable}
The openness of I can be relatively easily demonstrated through the appli-
cation of the inverse function theorem. However, the true challenge lies in
establishing its closedness. To accomplish this, a series of rigorous a priori
estimates are essential.
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17.2.2. C0-estimate.

Theorem 17.2.2 (C0-estimate). Suppose ϕ is a solution of (17.1). Then
there exists constant C depending on X,ωg, F such that

supϕ− inf ϕ ≤ C

Proof. Without lose of generality we may assume supϕ = −1. Then Green
formula says

ϕ(x) =
1

V

ˆ
ϕ(y)ωng −

1

V

ˆ
G(x, y)∆ϕ(y)ωng

and ω − ωg =
√
−1∂∂ϕ implies

trg
√
−1∂∂ϕ = trg ω − n ≥ n

Assume G ≥ 0, if ϕ(p) = −1, then

−1 = ϕ(p)

=
1

V

ˆ
ϕ(y)ωng −

1

V

ˆ
G(p, y)∆ϕ(y)ωng

≤ 1

V

ˆ
ϕ(y)ωng +

1

V

ˆ
nG(p, y)ωng

this shows

‖ϕ‖L1 = −
ˆ
ϕωng ≤ C1

For L2-estimate, note that
ˆ
ϕ(eF − 1)ωng =

ˆ
ϕ(ωn − ω)

=

ˆ
ϕ(
√
−1∂∂ϕ)(ωn−1 + · · ·+ ωn−1

g )

≤ − 1

n

ˆ
|∂ϕ|2ωng

that is ˆ
|∂ϕ|2ωng ≤ n sup |eF − 1|

ˆ
|ϕ|ωng ≤ C2

that is ‖∇ϕ‖2L2 ≤ C3, and by Poincaré inequality one has

‖ϕ− ϕ‖L2 ≤ C4‖∇ϕ‖L2

that is ‖ϕ‖L2 ≤ C5.
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For p ≥ 2, set ψ = −ϕ, one hasˆ
ψp−1(eF − 1)ωng = −

ˆ
ψp−1

√
−1∂∂ψ ∧ (ωn−1 + · · ·+ ωn−1

g )

=

ˆ
(p− 1)ψp−2

√
−1∂ψ ∧ ∂ψ ∧ (ωn−1 + · · ·+ ωn−1

g )

≥
ˆ
(p− 1)ψp−2

√
−1∂ψ ∧ ∂ψ ∧ ωn−1

g

=
4(p− 1)

p2

ˆ √
−1∂ψ

p
2 ∧ ∂ψ

p
2 ∧ ωn−1

g

=
4(p− 1)

np2

ˆ
|∂ψ

p
2 |2ωng

This gives ˆ
|∂ψ

p
2 |ωng ≤ C6p

ˆ
|ϕ|p−1ωng

that is
‖∇ψ‖2L2 ≤ C6p‖ψ‖p−1

Lp−1

The Sobolev inequality shows for all f ∈W 1,q(X,ωg), one has

‖f‖
L

2nq
2n−q

≤ C7‖f‖W 1,q

Set f = ψ
p
2 and q = 2, one has

(

ˆ
ψ

np
n−1ωng )

n−1
n = ‖ψ‖p

L
np
n−1

= ‖ψ‖2
L

2n
n−1

≤ C8(

ˆ
|∇ψ

p
2 |2ωng +

ˆ
ψωng )

≤ C9(p‖ψ‖p−1
Lp−1 + ‖ψ‖pLp)

≤ C10p‖ψ‖pLp

This gives

‖ψ‖
L

np
n−1
≤ C

1
p

10p
1
p ‖ψ‖Lp

Set pk = ( n
n−1)

kp, then

‖ψ‖Lpk+1 ≤ (C10Pk)
1
pk ‖ψ‖Lpk ≤

k∏
j=0

(C10pj)
1
pj ‖ψ‖Lp

This gives
‖ψ‖L∞ ≤ C‖ψ‖Lp

□
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17.2.3. C2-estimate.

Theorem 17.2.3. Suppose ωh is a solution of (17.1). Then there exists a
constant c depending on X,ωg, F such that

c−1ωg ≤ ωh ≤ cωg
Proof. It suffices to prove trg ωh ≤ c since linear algebra yields the following
inequality

trh ωg ≤
1

n− 1
(trg ωh)

n−1
ωng
ωnh

By Corollary 16.1.1, that is Schwarz computation, one has

∆h log trg ωh ≥
1

trg ωh

(
hij(Θg)ijklg

kqgplhpq − hij(Θh)ijpqg
pq
)

where ∆h = trh
√
−1∂∂. Since (X, g) is a given Käher manifold, one has its

curvature is bounded from below by −B as follows
(Θg)ijkl ≥ −B(gijgkl + gilgkj)

Then
hij(Θg)ijklg

kqgplhpq ≥ −B(gijgkl + gilgkj)g
kqgplhijhpq

= −B(1 +
1

n
)δpi δ

q
jh

ijhpq

= −(n+ 1)B

On the other hand, one has

hij(Θh)ijpqg
pq =

(
gij(Θg)ijpq − Fpq

)
gpq = s− Fpqgpq

where Ric(ωg) = Ω+
√
−1∂∂F and s is the scalar curvature of (X, g). Then

by trh ωg trg ωh ≥ n2 one has

∆h log trg ωh ≥ −
1

n2
((n+ 1)B + c0) trh ωg

≥ −2B trh ωg −
c0
n2

trg ωh

where c0 = (s− Fpqgpq). Note that

∆hϕ = hjkϕjk = hjk(hjk − gjk) = n− trh ωg

Then there exists an appropriate λ such that
∆h(log trg ωh + λϕ) ≥ trh ωg − C1

If log trg ωh + λϕ obtain its maximum at p ∈ X, then trh ωg(p) ≤ C1, and
again by trick of linear algebra one has

trg ωh(p) ≤ C2

for some constant C2. Since p is the point such that log trg ωh + λϕ obtains
its maximum, then by C0-estimate there exists some constant C such that

trg ωh ≤ C
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This completes the proof. □

17.2.4. C3-estimate. Let (Γg)kij and (Γh)
k
ij denote the Christoffel symbols of

g and h respectively, and set
Skij = (Γh)

k
ij − (Γg)

k
ij

Suppose we have the following C2-estimate
c−1ωg ≤ ωh ≤ cωg

Lemma 17.2.1. There exists a constant C depending on X,ωg, F, c such
that

∆h|S|2h ≥ −C|S|2h − C

Lemma 17.2.2. There exists a constant C depending on X,ωg, F, c such
that

|S| < C

17.3. Proof of Calabi-Yau theorem.

Theorem 17.3.1. Let (X,ωg) be a compact Kähler manifold. Then for any
k ≥ 3 and F ∈ Ck(X,R), the complex Monge-Amperé equation

ωnh = eFωng

ωh = ωg +
√
−1∂∂ϕ´

X e
Fωng =

´
X ω

n
g

has a solution ϕ ∈ Ck+1,α(X).

17.4. Aubin-Yau theorem.

17.4.1. Uniqueness of Kähler-Einstein metric when c1(X) < 0.

Lemma 17.4.1. Let X be a compact complex manifold. Then there exists
at most one Kähler metric ω such that Ric(ω) = −ω.

Proof. Suppose that there are two Kähler metrics ω1 and ω2 such that
Ric(ω1) = −ω1

Ric(ω2) = −ω2

By ∂∂-lemma, there exists ϕ ∈ C∞(X,R) such that ω1 = ω2 +
√
−1∂∂ϕ, so

one has
√
−1∂∂ϕ =

√
−1∂∂ log ω

n
1

ωn2
In other words, there exists a constant c such that

ωn1 = eφ+cωn2

Suppose ϕ attains its maximum at point p, that is,
√
−1∂∂ϕ(p) ≤ 0. Then

ω1 = ω2 +
√
−1∂∂ϕ ≤ ω2
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which implies eφ(p)+c ≤ 1. This shows ϕ+ c ≤ ϕ(p) + c ≤ 0. Similarly, if ϕ
attains its minimum at q, then eφ(q)+c ≥ 1 and ϕ+ c ≥ ϕ(q) + c ≥ 0. Hence
ϕ+ c ≡ 0, and thus ω1 = ω2. □

17.4.2. The reformulation of Aubin-Yau theorem in Monge-Amperé equation.

Theorem 17.4.1 (Aubin-Yau). Let X be a complex manifold with c1(X) <
0. Then there exists a unique Kähler metric ω ∈ 2πc1(X) such that Ric(ω) =
−ω.

Proof. Let ωg be any Kähler metric in [−2πc1(X)]. Then by ∂∂-lemma there
exists a smooth function F such that

Ric(ωg) = −ωg +
√
−1∂∂F

since [Ric(ωg)] = 2πc1(X). Let ω be another Kähler metric such that [ω] =

[ωg]. Again by ∂∂-lemma there exists a smooth function ϕ such that

ω = ωg +
√
−1∂∂ϕ

Then Ric(ω) = −ω is equivalent to
√
−1∂∂ log ω

n

ωng
=
√
−1∂∂(F + ϕ)

or in other words, there exists a constant C such that
ωn = eF+φ+Cωng

By rescaling F we may assume C = 0, so Aubin-Yau is equivalent to solve
the following complex Monge-Amperé equation:

(17.3)
{
(ωg +

√
−1∂∂ϕ)n = eF+φωng´

X e
F+φωng = 1

□

17.4.3. C0-estimate.

Theorem 17.4.2 (C0-estimate). Suppose ϕ is a solution of (17.3). Then
sup
X
|ϕ| ≤ sup

X
|F |

Proof. As argument in Lemma 17.4.1, at maximum point p of ϕ, one has
ϕ+ F (p) ≤ ϕ(p) + F (p) ≤ 0, so

sup
X
ϕ ≤ −F (p) ≤ sup

X
|F |

Similarly, at minimum point q of ϕ, ϕ+ F (q) ≥ ϕ(q) + F (q) ≥ 0 and
inf
X
ϕ ≥ −F (q) ≥ − sup

X
|F |

Hence supX |ϕ| ≤ supX |F |. □
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17.4.4. C2-estimate.

Theorem 17.4.3 (C2-estimate). There exists a uniform constant C de-
pending on X,ωg, F such that

C−1ωg ≤ ω ≤ Cωg
Proof. The same as Theorem 17.2.3. □
17.4.5. C3-estimate. Given the C0-estimate and C2-estimate, the C3-estimate
is very similar to that in the proof of Calabi-Yau theorem. Here we formu-
late a general setup. Let (Γg)kij and (Γh)

k
ij denote the Christoffel symbols of

g and h respectively, and set
Skij = (Γh)

k
ij − (Γg)

k
ij

Suppose we have the following C2-estimate
c−1ωg ≤ ωh ≤ cωg

Theorem 17.4.4 (C3-estimate).
17.4.6. Proof of Aubin-Yau theorem.
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18. Deformations of complex structure

18.1. The Maurer-Cartan equation. Recall that a complex structure on
a smooth manifold M is encoded by an integrable almost complex structure
J , and two complex manifolds (M,J) and (M ′, J ′) are isomorphic if there
exists a diffeomorphism F : M →M ′ such that dF ◦ J = J ′ ◦ dF . Thus the
set of all complex structures on a fixed smooth manifold M is the quotient
of the set
Ac(M) := {J | J is an integrable almost complex structure on M}

of all complex structures by the action of the diffeomorphism group. Firstly
let’s consider the set

Aac(M) := {J | J is an almost complex structure on M}

For arbitrary almost complex structure J ∈ Aac(M), it’s uniquely de-
termined by a decomposition of the complexified tangent bundle TCM =
T 1,0M ⊕ T 0,1M with J is

√
−1 id on T 1,0M and −

√
−1 id on T 0,1M . In

fact, giving T 0,1M ⊆ TCM is enough, since we can set T 1,0M = T 0,1M . If
J(t) is a continuous family of almost complex structure with J(0) = J , there
is a continuous family of such decompositions TCM = T 1,0

t M ⊕ T 0,1
t M , or

equivalently, of subspaces T 0,1
t M ⊆ TCM .

Thus for small t the deformations J(t) of J gives a map
φ(t) : T 0,1M → T 1,0M

with v+φ(t)v ∈ T 1,0
t M . Conversely, if φ(t) : T 0,1M → T 1,0M is given, then

one defines for small t
T 1,0
t M := (id+φ(t))(T 0,1M)

Here the condition t to be “small” has to be imposed in order to ensure
that with this definition T 1,0

t M ⊆ TCM → T 1,0M is an isomorphism. Thus
deformations of almost complex structure is encoded by such a map φ(t).
Now for convenience we assume J is an integrable almost complex, and thus
we denote (M,J) byX. In particular, there is ∂ operator on the holomorphic
tangent bundle TX, which can be applied to φ(t) ∈ C∞(X,Ω0,1

X ⊗ T 1,0X).
The following proposition shows that the integrability condition for de-

formation of the almost complex structure can be rephrased in terms of
φ(t).

Proposition 18.1.1. The integrability condition is equivalent to the Maurer-
Cartan equation

∂φ(t) + [φ(t), φ(t)] = 0

Proof. It suffices to compute locally so we write φ(t) with respect to local
coordinate {z1, . . . , zn} as follows

φ(t) = φji (t)dz
i ⊗ ∂

∂zj
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The integrability condition implies [T 0,1
t X,T 0,1

t X] ⊆ T 0,1
t X, so in particular

one has [
∂

∂zi
+ φ(t)(

∂

∂zi
),

∂

∂zj
+ φ(t)(

∂

∂zj
)

]
∈ T 0,1

t X

A direct computation yields([
∂

∂zi
, φlk(t)

∂

∂zl

]
+

[
φji (t)

∂

∂zj
,
∂

∂zk

]
+

[
φji (t)

∂

∂zj
, φlk(t)

∂

∂zl

])
∈ T 0,1

t X

Note that [
∂

∂zi
, φlk(t)

∂

∂zl

]
=
∂φlk(t)

∂zi
∂

∂zl[
φji (t)

∂

∂zj
,
∂

∂zk

]
= −

∂φji (t)

∂zk
∂

∂zj

This shows[
∂

∂zi
, φlk(t)

∂

∂zl

]
+

[
φji (t)

∂

∂zj
,
∂

∂zk

]
=

(
∂φjk(t)

∂zi
−
∂φji (t)

∂zk

)
∂

∂zj
= ∂φ(t)(

∂

∂zi
,
∂

∂zk
)

On the other hand, note that

[φ(t), φ(t)] = dzi ∧ dzk
[
φji (t)

∂

∂zj
, φlk(t)

∂

∂zl

]
Thus [

φji (t)
∂

∂zj
, φlk(t)

∂

∂zl

]
= [φ(t), φ(t)](

∂

∂zi
,
∂

∂zk
)

So integrability condition implies

∂(t) + [φ(t), φ(t)](
∂

∂zi
,
∂

∂zk
) ∈ T 0,1

t X

This shows ∂(t) + [φ(t), φ(t)] is a section of Ω0,2
X ⊗ (T 1,0X ∩ T 0,1

t X), but for
sufficiently small t one has T 1,0X ∩ T 0,1

t X = 0. This shows

∂(t) + [φ(t), φ(t)] = 0

Conversely, if the Maurer-Cartan equation holds, then the integrability con-
dition holds for a local frame of T 0,1

t X, and thus for all sections of T 0,1
t X. □

Now let’s consider the power series expansion of a given deformation φ(t)
as follows

φ(t) = φ0 + φ1t+ φ2t
2 + . . .

The Maurer-Cartan equation gives

∂

( ∞∑
i=1

φit
i

)
+

∞∑
i,j=1

[φi, φj ]t
i+j = 0
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This yields a recursive system of equations
0 = ∂φ1

0 = ∂φ2 + [φ1, φ1]

...

0 = ∂φk +
∑

0<i<k

[φi, φk−i]

In particular, the first-order deformation of the complex structure is deter-
mined by a ∂-closed (0, 1)-form φ1 with valued in TX. Thus it determines
an element [φ1] ∈ H1(X,TX).

Definition 18.1.1 (Kodaira-Spencer class). The Kodaira-Spencer class of
a one-parameter deformation J(t) of a complex structure J is the induced
cohomology class [φ1] ∈ H1(X,TX).

Proposition 18.1.2. Let X be a complex manifold. There is a natural bi-
jection between all first-order deformations ofX and elements ofH1(X,TX).

Corollary 18.1.1. A first-order deformations v ∈ H1(X,TX) cannot be
integrated if [v, v] ∈ H2(X,TX) does not vanish.
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19. Hermitian-Yang-Mills metric

Definition 19.1 (Hermitian-Yang-Mills metric). Let (X,ω) be a compact
Kähler manifold and (E, h) be a holomorphic vector bundle over X with
Chern curvature Θh. The metric h is called an Hermitian-Yang-Mills metric
if

trω Θh = λI

for some constant λ ∈ R, where I is the identity operator in EndE.

Remark 19.1 (local form). Suppose the Chern curvature Θh is locally given
by (Θh)

α
βij

, where
(Θh)

α
β = ∂(hαγ∂hβγ).

Then the Hermitian-Yang-Mills equation is

gij(Θh)
α
βij

= λδαβ ,

where ω =
√
−1gijdzi ∧ dzj .

The final goal of this section is to introduce the following two celebreated
theorems of existence of Hermitian-Yang-Mills metrics.

Theorem 19.1 ([UY86]). Let (X,ω) be a compact Kähler manifold and E
be an ω-stable holomorphic vector bundle over X. Then E admits a unique
Hermitian-Yang-Mills metric.

Theorem 19.2 ([Sim88]). Let (X,ω) be a compact Kähler manifold and
(E, θ) be an ω-stable Higgs bundle overX. Then (E, θ) admits an Hermitian-
Yang-Mills metric.

Along the way, we’re going to talk the following topics
(1) ω-stabilities of holomorphic vector bundle.
(2)
(3) Higgs bundles.
(4)

19.1. Stable bundle. In this section, X always denotes a complex mani-
fold.

Definition 19.1.1 (degree). Let π : E → X be a holomorphic vector bundle.
The degree of E is defined as

deg(E) :=

ˆ
X
c1(E).

Definition 19.1.2 (slope). Let π : E → X be a holomorphic vector bundle.
The slope of E is defined as

µ(E) :=
deg(E)

rk(E)
.
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Remark 19.1.1. Note that the slope of a holomorphic vector bundle is inde-
pendent of the holomorphic structure, since both the degree and rank are
topological invariants.

Definition 19.1.3 (slope stability). Let π : E → X be a holomorphic vector
bundle.
(1) E is said to be stable if for every non-trivial holomorphic subbundle F ,

µ(F ) < µ(E);
(2) E is said to be semi-stable if for every non-trivial holomorphic subbundle

F , µ(F ) ≤ µ(E);
(3) E is said to be unstable if it’s not semi-stable.

Remark 19.1.2.
(a) It’s clear that all holomorphic line bundles are stable, since they don’t

have non-trivial subbundles;
(b) A semi-stable vector bundle with coprime rank and degree is actually

stable, since
(c) The slope stability is not topological invariant, since here we only con-

sider holomorphic subbundles, which depends on the holomorphic struc-
ture.

Proposition 19.1.1. Let π : E → X be a holomorphic vector bundle.
(1) It’s stable if and only if for every non-trivial holomorphic subbundle F ,

µ(E/F ) > µ(E);
(2) It’s semi-stable if and only if for every non-trivial holomorphic subbundle

F , µ(E/F ) ≥ µ(E).

Proof. Denote r, r′, r′′ the ranks of E,F,E/F respectively, and d, d′, d′′ their
degrees respectively. From exact sequence

0→ E → E → E/F → 0

one has r = r′ + r′′ and d = d′ + d′′, thus
d′

r′
<
d′ + d′′

r′ + r′′
⇐⇒ d′

r′
<
d′′

r′′
⇐⇒ d′ + d′′

r′ + r′′
<
d′′

r′′

and likewise with the case semi-stable. □
A philosophy is that semi-stable bundles don’t admit too many subbun-

dles, since any subbundle they may have is of slope no greater than their
own. This turns out to have many interesting consequences we’re going to
show, for example, the category of semi-stable bundles is abelian.

Lemma 19.1.1. If ϕ : E → E′ is a non-zero homomorphism of holomorphic
vector bundles over X, then

µ(E/ kerϕ) ≤ µ(imϕ)

Proposition 19.1.2. Let E,E′ be two semi-stable bundles such that µ(E) >
µ(E′). Then any homomorphism ϕ : E → E′ is zero.
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Proof. If ϕ is non-zero, since E is semi-stable, then

µ(imϕ)
(1)

≥ µ(E/ kerϕ)
(2)

≥ µ(E) > µ(E′)

where
(1) holds from Lemma 19.1.1;
(2) holds from Proposition 19.1.1.

which contradicts to the semi-stablity of E′. □
Proposition 19.1.3. Let ϕ : E → E′ be a non-zero homomorphism of semi-
stable holomorphic of slope µ. Then kerϕ and imϕ are semi-stable bundles
of slope µ, and the natural map E/ kerϕ→ imϕ is an isomorphism.
Corollary 19.1.1. The category of semi-stable bundles of slope µ is abelian,
and the simple object18 in this category is the stable bundles of slope µ.
Proof. By Proposition 19.1.3 one has the category of semi-stable bundles of
slope µ is abelian. A stable bundle E is simple in this category, since it
admits no non-trivial subbundles with slope µ; Conversely, if a semi-stable
bundle E is simple, then any non-trivial subbundle F satisfies µ(F ) ≤ µ(E)
since E is semi-stable and µ(F ) 6= µ(E) since E is simple, this shows E is
stable. □
Proposition 19.1.4. Let E,E′ be two stable holomorphic vector bundles
over X with same slopes and ϕ : E → E′ be a non-zero homomorphism.
Then ϕ is an isomorphism.
Proof. Since ϕ : E → E′ is a non-zero homomorphism between stable bun-
dles with same slopes, then by Proposition 19.1.3 one has kerϕ is either 0
or has slope µ(E), but E is actually stable, then kerϕ must be 0, and since
ϕ is strict, this shows ϕ is injective. Likewise, imϕ 6= 0 and has slope µ(E′),
then it must be E′ since E′ is stable. Then again by ϕ is strict, imϕ = E′

impiles ϕ is surjective. Therefore ϕ is an isomorphism. □
Proposition 19.1.5. If E is a stable bundle over X, then EndE = C. In
particular, AutE = C∗.
Proof. Let ϕ be a non-zero endomorphism of E, by Proposition 19.1.4 one
has ϕ is an automorphism, so EndE is a field, which contains C as its
subfield of scalar endomorphisms. For any ϕ ∈ EndE, by Cayley-Hamilton
theorem one has ϕ is algebraic over C, and since C is algebraic closed, this
shows EndE ∼= C. □
Corollary 19.1.2. A stable bundle is indecomposable, that is it’s not iso-
morphic to a direct sum of non-trivial subbundles.
Proof. The automorphism group of E = E1 ⊕ E2 contains C∗×C∗, so by
Proposition 19.1.5 it can’t be stable. □

18Recall a simple object in an abelian category is an object with no non-trivial sub-
object.
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Theorem 19.1.1 (Jordan-Hölder filteration). Any semi-stable bundle of
slope µ over X admits a filteration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E

by holomorphic subbundles such that for each 1 ≤ i ≤ k, one has
(1) Ei/Ei−1 is stable;
(2) µ(Ei/Ei−1) = µ(E).

Proposition 19.1.6 (Seshadri). Any two Jordan-Hölder filterations
S : 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E

and
S′ : 0 = E′

0 ⊂ E′
1 ⊂ · · · ⊂ E′

l = E

of a semi-stable bundle E have same length, and the associated graded
objects

gr(S) : 0 = E1/E0 ⊕ · · · ⊕ Ek/Ek−1

and
gr(S′) : 0 = E′

1/E
′
0 ⊕ · · · ⊕ E′

k/E
′
k−1

satisfy Ei/Ei−1
∼= E′

i/E
′
i−1 for all 1 ≤ i ≤ k.

Definition 19.1.4 (poly-stable bundle). A holomorphic vector bundle E
over X is called poly-stable if it is isomorphic to a direct sum E1⊕ · · · ⊕Ek
of stable bundles of the same slope.

Example 19.1.1. A stable bundle is poly-stable.

Example 19.1.2. The graded object associated to any Jordan-Hölder filter-
ation of a semi-stable bundle E is a poly-stable, and by Proposition 19.1.6,
it’s unique up to isomorphism, this isomorphic class is denoted by gr(E).
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Part 6. Appendix
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20. Sheaf and Cohomology

20.1. Sheaves. Along this section, X denotes a topological space.

20.1.1. Definitions and Examples.
Definition 20.1.1 (sheaf). A presheaf of abelian group F on X consisting
of the following data:
(1) For any open subset U of X, F (U) is an abelian group.
(2) If U ⊆ V are two open subsets of X, then there is a group homomor-

phism rUV : F (U)→ F (V ). Moreover, above data satisfy
I F (∅) = 0.
II rUU = id.
III If W ⊆ U ⊆ V are open subsets of X, then rUW = rVW ◦ rUV .

Moreover, F is called a sheaf if it satisfies the following extra conditions
IV Let {Vi}i∈I be an open covering of open subset U ⊆ X and s ∈

F (U). If s|Vi := rUVi(s) = 0 for all i ∈ I, then s = 0.
V Let {Vi}i∈I be an open covering of open subset U ⊆ X and si ∈

F (Vi). If si|Vi∩Vj = sj |Vi∩Vj for all i, j ∈ I, then there exists s ∈
F (U) such that s|Vi = si for all i ∈ I.

Example 20.1.1 (constant presheaf). For an abelian group G, the constant
presheaf assign each open subset U the group G itself, but in general it’s
not a sheaf.
Definition 20.1.2 (morphism of presheaves). A morphism ϕ : F → G
between presheaves consisting of the following data:
(1) For any open subset U ofX, there is a group homomorphism ϕ(U) : F (U)→

G (U).
(2) If U ⊆ V are two open subsets of X, then the following diagram com-

mutes
F (U) G (U)

F (V ) G (V )

rUV

φ(U)

rUV

φ(V )

Notation 20.1.1. For convenience, for s ∈ F (U), we often write ϕ(s)
instead of ϕ(U)(s).
Remark 20.1.1. The morphisms between sheaves are defined as morphisms
of presheaves.
Definition 20.1.3 (isomorphism). A morphism of presheaves ϕ : F → G
is called an isomorphism if it has two-sided inverse, that is, there exists a
morphism of presheaves ψ : G → F such that ψϕ = idF and ϕψ = idG .
Remark 20.1.2. A morphism of presheaves ϕ : F → G is an isomorphism if
and only if for every open subset U ⊆ X, ϕ(U)→ G (U) is an isomorphism
of abelian groups.
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20.1.2. Stalks.

Definition 20.1.4 (stalks). For a presheaf F and p ∈ X, the stalk at p is
defined as

Fp = lim−→
p∈U

F (U)

Remark 20.1.3 (alternative definition). In order to avoid language of direct
limit, we give a more useful but equivalent description of stalk: For p ∈ U∩V ,
sU ∈ F (U) and sV ∈ F (V ) are equivalent if there exists p ∈ W ⊆ U ∩ V
such that sU |W = sV |W . An element sp ∈ Fp, which is called a germ, is an
equivalence class [sU ].

Notation 20.1.2.
(1) For s ∈ F (U) and p ∈ U , s|p denotes the equivalent class it gives.
(2) For sp ∈ Fp, s ∈ F (U) denotes the section such that s|p = sp.

Definition 20.1.5 (morphisms on stalks). Given a morphism of sheaves
ϕ : F → G , it induces a morphism of abelian groups ϕp : Fp → Gp as
follows:

ϕp : Fp → Gp

sp 7→ ϕ(s)|p.

Remark 20.1.4. It’s neccessary to check the ϕp is well-defined since there are
different choices s such that s|p = sp.

Proposition 20.1.1. Let ϕ : F → G be a morphism between sheaves.
Then ϕ is an isomorphism if and only if the induced map ϕp : Fp → Gp is
an isomorphism for every p ∈ X.

Proof. It’s clear if ϕ is an isomorphism between sheaves, then it induces an
isomorphism between stalks. Conversely, it suffices to show ϕ(U) : F (U)→
G (U) is an isomorphism for every open subset U ⊆ X.
(1) Injectivity: For s, s′ ∈ F (U) such that ϕ(s) = ϕ(s′), by passing to stalks

one has ϕp(s|p) = ϕp(s
′|p) for every p ∈ U , and thus s|p = s′|p since ϕp

is an isomorphism. By definition of stalks there exists an open subset
Vp ⊆ U containing p such that s agrees with s′ on Vp. Then it gives an
open covering {Vp} of U , and by axiom (IV) one has s = s′ on U .

(2) Surjectivity: For t ∈ G (U), by passing to stalks there exists sp ∈ Fp such
that ϕp(sp) = t|p for every p ∈ U since ϕp is surjective. By definition of
stalks there exists an open subset Vp ⊆ U containing p and s ∈ F (Vp)
such that ϕ(s) = t on Vp. This gives a collection of sections defined
on an open covering {Vp} of U , and by injectivity we proved above one
has these sections agree with each other on the intersections. Then by
axiom (V) there exists a section s ∈ F (U) such that ϕ(s) = t.

□
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20.1.3. Sheafification. In Example 20.1.1, we come across a presheaf that
is not a sheaf. To obtain a sheaf from a presheaf, we require a process
known as sheafification. One approach to defining sheafification is through
its universal property.

Definition 20.1.6 (sheafification). Given a presheaf F there is a sheaf F+

and a morphism θ : F → F+ with the property that for any sheaf G and
any morphism ϕ : F → G there is a unique morphism ϕ : F+ → G such
that the following diagram commutes:

F G

F+

θ

φ

φ

The universal property shows that if the sheafification exists, then it’s
unique up to a unique isomorphism. One way to give an explicit construction
of sheafification is to glue stalks together in a suitable way. Let F+(U) be
a set of functions

f : U →
∐
p∈U

Fp

such that f(p) ∈ Fp and for every p ∈ U there is an open subset Vp ⊆ U
containing p and t ∈ F (Vp) such that t|q = f(q) for all q ∈ Vp.

Proposition 20.1.2. F+ is the sheafication of F .

Proof. Firstly let’s show F+ is a sheaf: It’s clear F+ is a presheaf, so it
suffices to check conditions (IV) and (V) in the definition. Let U ⊆ X be
an open subset and {Vi} be an open covering of U .
(1) If s ∈ F+(U) such that s|Vi = 0 for all i, then s must be zero: It suffices

to show s(p) = 0 for all p ∈ U . For any p ∈ U , then there exists an open
subset Vi contains p, hence s(p) = s|Vi(p) = 0.

(2) Suppose there exists a collection of sections {si ∈ F+(Vi)}i∈I such that
si|Vi∩Vj = sj |Vi∩Vj

holds for all i, j ∈ I. Now we construct s ∈ F+(U) as follows: For p ∈ U
and Vi containing p, we define s(p) = si(p). This is well-defined since si
agree on the intersections, so it remains to show s ∈ F+(U). It’s clear
s(p) ∈ Fp. For p ∈ U , there exists Vi containing p, and thus there exists
Wi ⊆ Vi containing p and t ∈ F (Wi) such that t|q = si(q) = s(q) for all
q ∈ Vp.

There is a canonical morphism θ : F → F+ as follows: For open subset
U ⊆ X, and s ∈ F (U), θ(s) is defined by

θ(s) : U →
∐
p∈U

Fp

p 7→ s|p.
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Note that if F is a sheaf, the canonical morphism θ : F → F+ is an iso-
morphism.
(1) Injectivity: If s ∈ F (U) such that s|p = 0 for all p ∈ U , then there

exists an open covering {Vi}i∈I of U such that s|Vi = 0, by axiom (IV)
of sheaf one has s = 0.

(2) Surjectivity: For f ∈ F+(U) and p ∈ U , there exists p ∈ Vp ⊆ U and
t ∈ F (Vp) such that f(p) = t|p by construction of F+. Then glue these
sections together to get our desired s such that θ(s) = f .

Finally let’s show F+ statisfies the universal property of sheafification.
A morphism of presheaves ϕ : F → G induces a map on stalks

ϕp : Fp → Gp.

For f ∈ F+(U), the composite of f with the map∐
p∈U

ϕp :
∐
p∈U

Fp →
∐
p∈U

Gp

gives a map ϕ̃(f) : U →
∐
p∈U Gp, and in fact ϕ̃(f) ∈ G+(U): For p ∈ U ,

ϕ̃(f)(p) ∈ Gp since f(p) ∈ Fp and ϕp : Fp → Gp. If for all q ∈ Vp we have
t|q = f(q), then

ϕ̃(f)(q) = ϕq(f(q)) = ϕq(t|q) = ϕ(t)|q.
Since G is a sheaf, the canonical morphism θ′ : G → G+ is an isomorphism,
so we can define ϕ : = θ′−1 ◦ ϕ̃. Now let’s show ϕ = ϕ ◦ θ = θ′−1 ◦ ϕ̃ ◦ θ. It’s
easy to show they coincide on each stalk since ϕp = θ′−1

p ◦ ϕ̃p ◦ θp, and thus
ϕ = ϕ ◦ θ by Proposition 20.1.1. Furthermore, uniqueness follows from the
fact that ϕp is uniquely determined by ϕp. □

Remark 20.1.5. From the construction, one can see the stalk of F+ at p is
exactly Fp.

Remark 20.1.6. The sheafification can be described in a more fancy language:
Since we have sheaf of abelian groups on X as a category, denote it by AbX ,
and presheaf is a full subcategory of AbX , there is a natural inclusion functor
ι from category of sheaf to category of presheaf. The sheafification is the
adjoint functor of ι.

Example 20.1.2 (constant sheaf). For an abelian group G, the associated
constant sheaf G is the sheafication of the constant presheaf. By the con-
struction of sheafification, G can be explicitly expressed as

G(U) = {locally constant function f : U → G}

20.1.4. Exact sequence of sheaf. Given a morphism ϕ : F → G between
sheaves of abelian groups, there are the following presheaves

U 7→ kerϕ(U)

U 7→ imϕ(U)

U 7→ cokerϕ(U),



131

since ϕ(U) : F (U)→ G (U) is a group homomorphism.

Proposition 20.1.3. Kernel of a morphism between sheaves is a sheaf.

Proof. Let {Vi}i∈I be an open covering of U .
(1) For s ∈ kerϕ(U), if s|Vi = 0, then s = 0 since s is also in F (U).
(2) If there exists si ∈ kerϕ(Vi) such that si|Vi∩Vj = sj |Vi∩Vj , then they glue

together to get s ∈ F (U). Note that
ϕ(U)(s)|Vi = ϕ(Vi)(s|Vi) = ϕ(Vi)(si) = 0

Then s ∈ kerϕ(U).
□

But the image of morphism may not be a sheaf. Although we can prove
the first requirement in the same way, the proof for the second requirement
fails: If there exists si ∈ imϕ(Vi), and we can glue them together to get a
s ∈ G (U), but s may not be the image of some t ∈ F (U). The cokernel fails
to be a sheaf for the same reason.

Definition 20.1.7 (image and cokernel). Let ϕ : F → G be a morphism
between sheaves of abelian groups. Then the image and cokernel of ϕ is
defined to be the sheafification of the following presheaves

U 7→ imϕ(U)

U 7→ cokerϕ(U)

respectively.

Definition 20.1.8 (exact). For a sequence of sheaves:

· · · → F i−1 φ
i−1

−→ F i φi

−→ F i+1 → . . .

It’s called exact at F i, if kerϕi = imϕi−1. If a sequence is exact at every-
where, then it’s an exact sequence of sheaves.

Definition 20.1.9 (short exact sequence). An exact sequence of sheaves is
called a short exact sequence if it looks like

0→ F
φ−→ G

ψ−→H → 0

Proposition 20.1.4. Let ϕ : F → G be a morphism between sheaves of
abelian groups. Then for any p ∈ X, one has

(kerϕ)p = kerϕp

(imϕ)p = imϕp.

Proof. For (1). It’s clear (kerϕ)p ⊆ kerϕp. Conversely, if sp ∈ kerϕp, then
ϕp(sp) = 0 ∈ Gp. In other words, there exists an open subset U containing
p and s ∈ F (U) such that s|p = sp and ϕ(s)|p = 0, which implies there is
another open subset V containing p such that ϕ(s)|V = 0. Hence ϕ(s|V ) = 0,
that is, s|V ∈ kerϕ(V ). Thus sp = (s|V )|p ∈ (kerϕ)p.
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For (2). It’s clear (imϕ)p ⊆ imϕp since the sheafication doesn’t change
stalk. Conversely, if sp ∈ imϕp, then there exists tp ∈ Fp such that ϕp(tp) =
sp. Suppose t ∈ F (U) is a section of some open subset U containing p such
that t|p = tp. Then ϕ(t)|p = ϕp(tp) = sp. In other words, sp is in the stalk
of the image presheaf at p, but the sheafication doesn’t change stalk, so we
have sp ∈ (imϕ)p. □
Corollary 20.1.1. The sequence of sheaves

· · · → F i−1 φ
i−1

−→ F i φi

−→ F i+1 → . . .

is exact if and only if the sequence of abelian groups are exact

· · · → F i−1
p

φi−1
p−→ F i

p

φi
p−→ F i+1

p → . . .

for all p ∈ X.

Corollary 20.1.2. The the sequence of sheaves
0→ F → G

is exact if and only if for any open subset U , the following sequence of abelian
groups is exact

0→ F (U)→ G (U).

Method one. For any open subset U ⊆ X, one has
ϕ(U) : F (U)→ G (U)

is injective, since by definition we have for any open subset U ⊆ X, kerϕ(U) =
0, that is injectivity. □
Method two. Or from another point of view, for each p ∈ U , we have

ϕp : Fp → Gp

is injective. That is kerϕp = 0. So we obtain (kerϕ(U))p = 0 for all p ∈ U .
But for a section s ∈ F (U) if we have s|p = 0, then we must have s = 0,
and thus kerϕ(U) = 0. □
Example 20.1.3 (exponential sequence). Let X be a complex manifold and
OX be its holomorphic function sheaf. Then

0→ 2π
√
−1Z→ OX

exp−→ O∗
X → 0

is an exact sequence of sheaves, called exponential sequence.

Proof. The difficulty is to show exponential map is surjective on stalks at
p ∈ X. That is we need to construct logarithms of functions g ∈ O∗

X(U) for
U , a neighborhood of p. We may choose U is simply-connected, then define

log g(q) = log g(p) +

ˆ
γq

dg

g

for q ∈ U , where γq is a path from p to q in U , and the definition of log g(q)
is independent of the choice of γq since U is simply-connected. □
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Remark 20.1.7. In fact, U is simply-connected is crucial for constructing
logarithm. If we consider X = C and U = C \{0}, then

exp: OX(U)→ O∗
X(U)

cannot be surjective.

20.2. Derived functor formulation of Sheaf Cohomology. The cate-
gory AbX : sheaves of abelian groups on X. In this section we will introduce
sheaf cohomology by considering it as a derived functor.

Given an exact sequence of sheaf as follows

0→ F ′ ϕ−→ F
ψ−→ F ′′.

By taking its section over open subset U , we obtain a sequence of abelian
groups

0→ F ′(U)
ϕ(U)−→ F (U)

ψ(U)−→ F ′′(U).

Above sequence is not only exact at F ′(U), but also is exact at F (U). In
other words, the functor given by taking section over open subset is a left
exact functor.
(1) Firstly let’s show kerψ(U) ⊇ imφ(U). For s ∈ F ′(U), if we want to

show ψ ◦ φ(s) = 0, it suffices to show (ψ ◦ φ(s))|p = 0 for all p ∈ U since
F ′′ is a sheaf. For any p ∈ U , by considering stalk at p we obtain an
exact sequence of abelian groups

0→ F ′
p

ϕp−→ Fp
ψp−→ F ′′

p .

Then we obtain ψp ◦ φp(s|p) = 0, which implies (ψ ◦ φ(s))|p = 0.
(2) Conversely, Given s ∈ kerψ(U), we have s|p ∈ kerψp for any p ∈ U . By

exactness of stalks, there exists tp ∈ F ′
p such that φp(tp) = s|p. Thus

there exists an open subset Vi containing p and ti ∈ F ′(Vi) such that
φ(ti) = s|Vi . Now it suffices to show these ti can be glued together to
obtain t ∈ F (U), and since F is a sheaf, it suffices to check these ti agree
on intersections Vi∩Vj . Note that φ(ti−tj |Vi∩Vi) = s|Vi∩Vj−s|Vi∩Vj = 0,
then these ti agree on intersections since φ is injective.

Remark 20.2.1. From above argument, we can see that

0→ F ′ ϕ−→ F
ψ−→ F ′′

is exact if and only if for any open subset U ⊆ X

0→ F ′(U)
ϕ(U)−→ F (U)

ψ(U)−→ F ′′(U)

is exact.

In homological algebra, we always consider the derived functor of a left
or right-exact functor. In particular, the functor of taking global section is
a left exact functor, and its right derived functor defines the cohomology of
a sheaf. Before we come into the definition of derived functor, firstly let’s
define the injective resolution of a sheaf.
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Definition 20.2.1 (injective). A sheaf I is injective if Hom(−, I) is an
exact functor.

Definition 20.2.2 (injective resolution). Let F be a sheaf. An injective
resolution of F is an exact sequence

0→ F → I0 → I1 → I2 → . . .

where Ii are injective for all i.

Theorem 20.2.1. Every sheaf admits an injective resolution.

Theorem 20.2.2. Let F → I• and G → G• are two resolutions and
φ : F → G be a morphism of sheaves. Then there exists a morphism
φ̃ : I• → G• which lifts φ, which is unique up to homotopy.

Definition 20.2.3 (sheaf cohomology). Let F be a sheaf of abelian groups.
Then

Hp(X,F ) := Hp(I•(X)).

Remark 20.2.2. The Theorem 20.2.2 shows that the definition of sheaf co-
homology is independent of the choice of injective resolution.

Example 20.2.1. By definition, the 0-th cohomology is exact the global
section

H0(X,F ) := ker
{
I0(X)→ I1(X)

}
.

Thus H0(X,F ) = F (X), the global sections of sheaf.

Example 20.2.2. If F is a injective sheaf, then H i(X,F ) = 0 for all i > 0,
since the sheaf cohomology of injective sheaf can be computed by using the
following special injective resolution

0→ F
id−→ F → 0→ 0→ . . .

Theorem 20.2.3 (zig-zag). If

0→ F → G →H → 0

is a short sequence of sheaves, then there is an induced long exact sequence
of abelian groups

0→ H0(X,F )→ H0(X,G )→ H0(X,H )→ H1(X,F )→ H1(X,G )→ . . .

Definition 20.2.4 (direct image). Let f : X → Y be continuous map be-
tween topological spaces and F be a sheaf of abelian groups on X. The
direct image of F , denoted by f∗F , is a sheaf on Y defined by

f∗F (U) := F (f−1(U)).

Proposition 20.2.1. f∗ : AbX → AbY is a left exact functor.
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Proof. Given an exact sequence of sheaves on X

0→ F ′ → F → F ′′.

Then we need to show

0→ f∗F
′ → f∗F → f∗F

′′

is also an exact sequence of sheaves on Y . By Remark 20.2.1 it suffices to
show that for any open subset V ⊆ Y , we have the following exact sequence

0→ f∗F
′(V )→ f∗F (V )→ f∗F

′′(V ),

and that’s exactly

0→ F ′(f−1(V ))→ F (f−1(V ))→ F ′′(f−1(V )).

Since f is continuous, then f−1(V ) is an open subset in X, and thus above
sequence of abelian is exact since 0→ F ′ → F → F ′′ is exact. □

20.3. Acyclic resolution. In practice it may be difficult for us to choose
an injective resolution, so we usual other resolutions to compute sheaf co-
homology.

Definition 20.3.1 (acyclic sheaf). A sheaf F is acyclic if H i(X,F ) = 0
for all i > 0.

Example 20.3.1. Injective sheaf is acyclic.

Definition 20.3.2 (acyclic resolution). Let F be a sheaf. An acyclic reso-
lution of F is an exact sequence

0→ F → A0 → A1 → A2 → . . .

where Ai is acyclic for all i.

Proposition 20.3.1. The cohomology of sheaf F can be computed using
acyclic resolution.

In fact, it’s a quite homological techniques, called dimension shifting, so
we will state this technique in language of homological algebra. Let’s see a
baby version of it.

Example 20.3.2. Let F be a left exact functor and 0→ A→M1 → B → 0
be an exact sequence with M1 is F-acyclic. Then Ri+1F(A) ∼= RiF(B) for
i > 0, and R1F(A) is the cokernel of F(M1)→ F(B).

Proof. By considering the long exact sequence induced by 0→ A→M1 →
B → 0, one has

RiF(M1)→ RiF(B)→ Ri+1F(A)→ Ri+1F(M1)

(1) If i > 0, then RiF(M1) = Ri+1F(M1) = 0 since M1 is F-acyclic, and
thus Ri+1F(A) ∼= RiF(B) for i > 0.
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(2) If i = 0, then
0→ F(M1)→ F(B)→ R1F(A)→ 0

implies R1F(A) = coker{F(M1)→ F(B)}.
□

Now let’s prove dimension shifting in a general setting.

Lemma 20.3.1 (dimension shifting). If
0→ A→M1 →M2 → · · · →Mm → B → 0

is exact with M i is F-acyclic, then Ri+mF(A) ∼= RiF(B) for i > 0, and
RmF(A) is the cokernel of F(Mm)→ F(B).

Proof. Prove it by induction on m. For m = 1, we already see it in Example
20.3.2. Assume it holds for m < k, then for m = k, let’s split 0 → A →
M1 →M2 → · · · →Mk dk−→ B → 0 into two exact sequences

0→ A→M1 →M2 → · · · →Mk−1 → ker dk → 0

0→ ker dk →Mk dk−→ B → 0.

Then by induction hypothesis, for i > 0 we have
Ri+k−1F(A) ∼= RiF(ker dk)

Ri+1F(ker dk) ∼= RiF(B).

Combine these two isomorphisms together we obtain Ri+kF(A) ∼= RiF(B)
for i > 0, as desired. For i = 0, it suffices to let i = 1 in Ri+k−1F(A) ∼=
RiF(ker dk), then we obtain

RkF(A) = R1F(ker dk) = coker{F(Mk)→ F(B)}.
This completes the proof. □
Corollary 20.3.1. If 0→ A→M• is a F-acyclic resolution, thenRiF(A) =
H i(F(M•)).

Proof. Truncate the resolution as
0→ A→M0 →M1 → . . .M i−1 → B → 0

0→ B →M i →M i+1 → . . .

Since we already have RiF(A) = coker{F(M i−1) → F(B)}, and F is left
exact, one has

F(B) = ker{F(M i)→ F(M i+1)}.
Thus we obtain
RiF(A) = coker{F(M i−1)→ ker{F(M i)→ F(M i+1)}} = H i(F(M•)).

□

20.4. Examples about acyclic sheaf.
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20.4.1. Flabby sheaf. First kind of acyclic sheaf is flabby19 sheaf.

Definition 20.4.1 (flabby). A sheaf F is flabby if for all open U ⊆ V , the
restriction map F (V )→ F (U) is surjective.

Now let’s see some examples about flabby sheaves.

Example 20.4.1. A constant sheaf on an irreducible topological space is
flabby.

Proof. Note that the constant presheaf on a irreducible topological space is
a sheaf in fact, and it’s easy to see this constant presheaf is flabby. □

In particular, we have

Example 20.4.2. Let X be an algebraic variety. Then constant sheaf ZX
is flabby.

Example 20.4.3. If F is a flabby sheaf on X, and f : X → Y is a contin-
uous map, then f∗F is a flabby sheaf on Y .

Proof. For V ⊆W in Y , it suffices to show f∗F (W )→ f∗F (V ) is surjective,
and that’s

F (f−1W )→ F (f−1V )

it’s surjective since F is flabby. □
Example 20.4.4. An injective sheaf is flabby.

Proof. Let I be an injective sheaf and V ⊆ U be open subsets. Now we
define sheaf ZU on X by

ZU :=

{
Z(W ) W ⊆ U
0 otherwise

where Z is constant sheaf valued in Z, and similarly we define sheaf ZV . By
construction one has ZU (W ) = ZV (W ) unless W ⊆ U and W 6⊆ V . Thus
we obtain an exact sequence

0→ ZV → ZU .
Applying the functor Hom(−, I), which is exact, we obtain an exact sequence

Hom(ZU , I)→ Hom(ZV , I)→ 0.

Now let’s explain why we need such a weird sheaf ZU . In fact, we will prove
Hom(ZU , I) = I(U). Indeed since ϕ : ZU → I is a sheaf morphism. Then if
W 6⊆ U , then ϕ(U) must be zero. If W = U , then the group of sections of
ZU (U) over any connected component is simply Z and hence ϕ(U) on this
connected component is determined by the image of 1 ∈ Z. Thus ϕ(U) can
be thought of an element of I(U). Now on any proper open subset of U , ϕ
is determined by restriction maps. Hence Hom(ZU , I) = I(U), as desired.

19Some authors also call this flasque.
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The same argument shows Hom(ZU , I) = I(V ), and thus we obtain an exact
sequence

I(U)→ I(V )→ 0,

which shows I is flabby. □
Our goal is to prove a flabby sheaf is acyclic, but we still need some

property of flabby sheaves.

Proposition 20.4.1. If 0 → F ′ ϕ−→ F
ψ−→ F ′′ → 0 is an exact sequence

of sheaves, and F ′ is flabby, then for any open subset U , the sequence

0→ F ′(U)
ϕ(U)−→ F (U)

ψ(U)−→ F ′′(U)→ 0

is exact.

Proof. It suffices to show F (U)→ F ′′(U)→ 0 is exact. Here we only gives
a sketch of the proof. Since we have exact sequence on stalks for each p ∈ U
as follows

0→ F ′
p

ϕp−→ Fp
ψp−→ F ′′

p → 0

Then for each s ∈ F ′′(U), there exists tp ∈ Fp such that ψp(tp) = s|p,
so there exists open subset Vp ⊆ U containing p and t ∈ F (Vp) such that
ψ(t) = s|Vp . If we can glue these t together then we get a section in F (U)
and is mapped to s, which completes the proof. However, they may not equal
on the intersection. But things are not too bad, consider another point q
and t′ ∈ F (Vq) such that ψ(t′) = s|Vq , (t′ − t)|Vp∩Vq ∈ kerψ(Vp ∩ Vq) =
imφ(Vp ∩ Vq). So there exists t′′ ∈ F ′(Vp ∩ Vq) such that

φ(t′′) = (t′ − t)|Vp∩Vq
Now since F ′ is flabby, then there exists t′′′ ∈ F (Vp) such that t′′′|Vp∩Vq = t′′.
And consider t+φ(t′′′) ∈ F (Vp), which will coincide with t′ on Vp∩Vq. After
above corrections, we can glue t after correction together. □
Proposition 20.4.2. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves, and if F ′ and F are flabby, then F ′′ is flabby.

Proof. Take V ⊆ U and consider the following diagram

0 F ′(U) F (U) F ′′(U) 0

0 F ′(V ) F (V ) F ′′(V ) 0

Then the desired result follows from five lemma. □
Proposition 20.4.3. A flabby sheaf is acyclic.

Proof. Let F be a flabby sheaf. Since there are enough injective objects in
the category of sheaf of abelian groups, there is an exact sequence

0→ F → I → Q → 0
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with I is injective. By Example 20.4.4 we have I is flabby, and thus by
Proposition 20.4.2 we have Q is flabby. Consider the long exact sequence
induced from above short exact sequence

F (X)→ I(X)→ Q(X)→ H1(X,F )→ H1(X, I)→ . . .

Note thatH1(X, I) = 0 since I is injective, and thus acyclic. ThenH1(X,F ) =
coker{I(X) → Q(X)}. But Proposition 20.4.1 shows that I(X) → Q(X)
is surjective since F is flabby, so H1(X,F ) = 0.

Now let’s prove Hk(X,F ) = 0 for k > 0 by induction on k, and above
argument shows it’s true for k = 1. Assume this holds for k < n, and
consider

· · · → Hn−1(X,Q)→ Hn(X,F )→ Hn(X, I)→ Hn(X,Q)→ . . .

By induction hypothesis, we can reduce above sequence to
· · · → 0→ Hn(X,F )→ 0→ Hn(X,Q)→ . . .

which implies Hn(X,F ) = 0. This completes the proof. □

20.4.2. Soft sheaf. The second kind of acyclic sheaves is called soft sheaves,
which is quit similar to flabby.

Definition 20.4.2 (soft). A sheaf F over X is soft if for any closed subset
S ⊆ X the restriction map F (X)→ F (S) is surjective.

Remark 20.4.1. For closed subset S, the section over it is defined by
F (S) := lim−→

S⊆U
F (U)

Parallel to Proposition 20.4.1 and Proposition 20.4.2, soft sheaf has the
following properties:

Proposition 20.4.4. If 0 → F ′ ϕ−→ F
ψ−→ F ′′ → 0 is an exact sequence

of sheaves, and F ′ is soft, then the following sequence

0→ F ′(X)
ϕ(X)−→ F (X)

ψ(X)−→ F ′′(X)→ 0

is exact.

Proposition 20.4.5. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves, and if F ′ and F are soft, then F ′′ is soft.

Proposition 20.4.6. A soft sheaf is acyclic.

So you may wonder, what’s the difference between flabby and soft since
the definitions are quite similar, and both of them are acyclic. Clearly by
definition of sections over a closed subset, we know that every flabby sheaf
is soft, but converse fails

Example 20.4.5. The sheaf of smooth functions on a smooth manifold is
soft but not flabby.
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Lemma 20.4.1. If M is a sheaf of modules over a soft sheaf of rings R,
then M is a soft sheaf.

Proof. Let s ∈ M (K) for some closed subset K ⊆ X. Then s extends to
some open neighborhood U of K. Let ρ ∈ R(K ∪ (X\U)) be defined by

ρ =

{
1, on K

0, on X\U

Since R is soft, then ρ extends to a section over X, then ρ ◦ s is the desired
extension of s. □

20.4.3. Fine sheaf. Another important kind of acyclic sheaves, which be-
haves like sheaf of differential forms ΩkX is called fine sheaf. Recall what is
a partition of unity: Let U = {Ui}i∈I be a locally finite open covering of
topological space X. A partition of unity subordinate to U is a collection of
continuous functions fi : Ui → [0, 1] for each i ∈ I such that its support lies
in Ui, and for any x ∈ X ∑

i∈I
fi(x) = 1.

Definition 20.4.3 (fine sheaf). A fine sheaf F on X is a sheaf of A -
modules, where A is a sheaf of rings such that for every locally finite open
covering {Ui}i∈I of X, there is a partition of unity∑

i∈I
ρi = 1

where ρi ∈ A (X) and supp(ρi) ⊆ Ui.

Remark 20.4.2. For a sheaf F on X and a section s ∈ F (X), its support is
defined as

supp(s) := {x ∈ X : s|x 6= 0}.

Proposition 20.4.7. A fine sheaf is acyclic.

Proof. Let F be a sheaf of A -modules and a fine sheaf. And choose a
injective resolution

0→ F
d−→ I0 d−→ I0 d−→ I1 d−→ . . .

such that Ii are injective sheaves of A -modules. Let s ∈ Ip(X) such that
ds = 0. Then by exactness of injective resolution we have X is covered by
open subsets Ui such that for each i there is an element ti ∈ Ip−1(Ui) such
that dti = s|Ui . By passing to a refinement we may assume that the cover
{Ui} is locally finite. Let {ρi} be a partition of unity subordinate to {Ui}.
Then we have t =

∑
ρiti ∈ I p−1(X) such that dt = s. This completes the

proof. □
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Example 20.4.6. Let M be a smooth manifold and π : E →M be a vector
bundle. Then the sheaf of smooth sections of E is a C∞(M)-module sheaf,
which is a fine sheaf. In particular, the sheaf of tangent bundle, sheaf of
differential forms ΩM and k-forms ΩkM are fine sheaves.

Remark 20.4.3. As a consequence, it’s meaningless to compute cohomology
of sheaf of differential k-forms, or any other vector bundle over a smooth
manifold. But in complex version, something interesting happens: Let
(X,OX) be a complex manifold and π : E → X be a holomorphic vector
bundle. Then the sheaf of holomorphic sections of E is not a fine sheaf
since there is no partition of unity may not be holomorphic, so the cohomol-
ogy of holomorphic vector bundle is not trivial, and that’s what Dolbeault
cohomology computes.

For fine sheaf and soft sheaf, we have

Lemma 20.4.2. Fine sheaf is soft.

Proof. Let F be a fine sheaf, S ⊆ X closed and s ∈ F (S). Let {Ui} be an
open covering of S and si ∈ F (Ui) such that

si|S∩Ui = s|S∩Ui .

Let U0 = X − S, and s0 = 0. Then {Ui}
∐
{U0} is an open covering of X.

Without lose of generality, we assume this open covering is locally finite and
choose a partition of unity {ρi} subordinate to it. Then

s :=
∑
i

ρi(si)

is a section in F (X) which extends s. □
Remark 20.4.4. Until now, we have shown that soft, fine and flabby sheaves
are acyclic. Lemma 20.4.2 shows fine sheaf is soft, and by definition a flabby
sheaf is soft. The Example 20.4.5 shows that soft sheaf may not be flabby,
and constant sheaf on an irreducible space is flabby but not fine. In a
summary, we have the following relations:

Acyclic

Soft

Fine

Flabby
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20.5. Proof of de Rham theorem using sheaf cohomology. As we
already know, for constant sheaf R over a smooth manifold M , we have the
following fine resolution

0→ R i−→ Ω0
M

d−→ Ω1
M

d−→ Ω2
M

d−→ . . .

And de Rham cohomology computes the sheaf cohomology of R. de Rham
theorem implies that de Rham cohomology equals to the singular cohomol-
ogy with real coefficient. So if we can give constant sheaf another resolution
using singular cochains, we may derive the de Rham cohomology.

We state this in a general setting: Let X be a topological manifold, and
a constant sheaf G over X, where G is an abelian group. Let Sp(U,G) be
the group of singular cochains in U with coefficients in G, and let δ denote
the coboundary operator.

Let S p(G) be the sheaf over X generated by the presheaf U 7→ Sp(U,G),
with induced differential mapping S p(G)

δ−→ S p+1(G).
Similar to Poincaré lemma, we have for a unit ball U in Euclidean space,

we have the following sequence

· · · → Sp−1(U,G)
δ−→ Sp(U,G)

δ−→ Sp+1(U,G)→ . . .

is exact. So we have the following resolution of the constant sheaf G

0→ G→ S 0(G)
δ−→ S 1(G)

δ−→ S 2(G)→ . . .

Remark 20.5.1. If M is a smooth manifold, then we can consider smooth
chains, that is f : ∆p → U , where f is a smooth function. The corresponding
results above still hold, and we have a resolution by smooth cochains with
coefficients in G:

0→ G→ S •
∞(G)

So if we choose G = R, then it suffices to show 0 → R → S •
∞(R) is an

acyclic resolution, then we obtain de Rham theorem.
First, note that S p

∞ is a S 0
∞-module, given by cup product on open

subsets. Then by Lemma 20.4.1 and the fact S 0
∞ is soft we know that it’s

a soft resolution. This completes the proof.

20.6. Hypercohomology. In homological algebra, the hypercohomology is
a generalization of cohomology functor which takes as input not objects in
abelian category but instead chain complexes of objects.

One of the motivations for hypercohomology is to generalize the zig-zag
lemma, that is, the short exact sequence of sheaves induces a long exact
sequence of cohomology groups. It turns out hypercohomology gives tech-
niques for constructing a similar cohomological associated long exact se-
quence from an arbitrary long exact sequence

0→ F1 → F2 → · · · → Fk → 0

Now let’s give the definition of hypercohomology: Let F • : · · · → F i−1 →
F i → F i+1 → · · · be a complex of sheaves of abelian groups, which is
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bounded from below, that is, Fn = 0 for n � 0. Then F • admits an
injective resolution F • → I•. In other words,

. . . F i−1 F i F i+1 . . .

. . . Ii−1 Ii Ii+1 . . .

such that
(1) All Ii are injective sheaves.
(2) The induced homomorphism H i(F •)→ H i(I•) is an isomorphism.
The hypercohomology of F • is defined by

H i(X,F •) := H i(Γ(X, I•))

Definition 20.6.1. For a sheaf F , F •[n] is a sheaf of complex defined by

(F •[n])i =

{
F i = n

0 otherwise.

Example 20.6.1. Let F be a sheaf and 0 → F → I0 → I1 → . . . be an
injective resolution of F . Then

0 F 0 0 . . .

0 I0 I1 I2 . . .

is an injective resolution of F •[0]. Indeed, Ii are injective for all i ≥ 0, and

H i(I•) =

{
F , n = 0

0, otherwise
= H i(F •[0])

So by definition of hypercohomology, we haveH i(X,F •[0]) = H i(Γ(X, I•)) =
H i(X,F •). In general, one has

H i(X,F •[n]) ∼= H i+n(X,F ).

Theorem 20.6.1 (zig-zag). Let 0→ F • → G • →H • → 0 be a short exact
sequence of complexes of sheaves which are bounded from below. Then there
is an induced long exact sequence
· · · → H i−1(X,H •)→ H i(X,F •)→ H i(X,G •)→ H i(X,H •)→ H i+1(X,F •)→ . . .
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21. Hodge theorem
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