
REPRESENTATION THEORY

BOWEN LIU

Abstract. It’s a lecture note I typed for “Representataion theory”
taught by Emanuel Scheidegger, in spring 2022. This note mainly fol-
lows the blackboard-writing of Prof. I also add some details and my
understandings in it.

In this course, we will cover the following aspects:
1. Representation of finite groups.
2. Symmetric functions.
3. Lie groups and Lie algebra.
4. Representations of complex semisimple Lie algebra.
5. Representations of compact Lie groups.

Attention: there may be a considerable number of mistakes in this
note, and that’s all my fault, since I still have too many problems to
work out.
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0. Introduction and overview

Group theory is the study of symmetrics of a mathmatics object. This is
the point of view of geometry: given a geometry object X, what is its group
of symmetries?

But representation theory reverse this question, given a group G, what
object X does it act on? Here we pay more attention on linear action, i.e.
X is a vector space.

We can compare with manifolds, since every abstract manifold can be
embedded into Rn, every abstract group can be embedded into Sn, according
to Cayley’s theorem as follows

Theorem 0.1. Any finite group of order n is isomorphic to a subgroup of
the symmetric group Sn.

In this course, we are interested in the following groups:
1. finite group, in particular symmetric group, Coxeters groups.
2. Lie groups over R and C.

And representation theory is a very useful tool, one of the most important
applications is the classification of finite simple groups, all kinds of finite
simple groups are listed as follows

1. cyclic groups Cp for prime p
2. alternating groups An, n ≥ 5
3. 16 simple groups of Lie type
4. 26 sporadic groups

Among those sporadic groups, the largest one is the monster M , with order
|M | ∼ 8 · 1053, but the number of irreducible representations is only 194.
As we will see, all irreducible representations of one group will reflect all
information about it, so it’s possible for us to learn the properties of monster
group, by using its irreducible representations.

It’s also worth mentioning that there is a crazy conjecture about monster
group, called Monstrous Monnlight conjecture, proven by Borcherds in 1992,
and he got his Fields medal in 1998.

Part 1. Representation of finite group
1. Basic Definitions and Irreduciblity

1.1. Basic Definitions.

Definition 1.1 (representation). Let G be a finite group, V is a finite-
dimensional vector space over k. A representation of G on V is a group
homomorphism ρ : G→ GL(V ).

Notation 1.2. We say V is a representation of G and often write gv instead
of ρ(g)v, we also say that G acts on V .

Remark 1.3. We give following remarks:
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1. ρ equips V with the G-module structure. Conversely, a G-module
structure on a vector space gives us a representation of G. They are
the same thing in different languages.

2. We will mostly work with k = C. More generally, V can be finite-
dimensional R-module for a communicative ring with 1.

3. Let B = (e1, . . . , en) be a basis of V , for φ ∈ Endk V , write φei =∑
ajiej , and let A = (aij) ∈ Mn(k). If ρ is a representation, the

ρB(g) is the matrix of ρ(g) with respect to B. Then g → ρB(g) is
a homomorphism from G to GL(n, k), called the matrix representa-
tion.

Definition 1.4 (morphism of representation). Let V,W be two represen-
tations of finite group G. A linear map φ : V → W is a morphism of
representation of G if the following diagram commutes for all g ∈ G.

V W

V W

φ

g g

φ

Definition 1.5 (quotient representation.). Let ρ : G→ GL(V ) be a repre-
sentation. A subrepresentation of V is a vector subspace W of V , such that
ρ(g)W ⊆ W,∀g ∈ G. For a subrepresentation W , the map ρ(g)(v +W ) :=
ρ(g)v+W defines a representation of G on V/W , called the quotient repre-
sentation.

Lemma 1.6. For a map of representation φ : V → W , the kernel of φ is a
subrepresentation of V , image and cokernel of φ are subrepresentations of
W .

Proof. Trivial. □

By some standard linear algebra methods, we can construct new repre-
sentations from old ones:

Lemma 1.7. Let ρ : G → GL(V ), σ : G → GL(W ) be two representations
of G, then

1. ρ⊕ σ : G→ GL(V ⊕W ), g(v ⊕ w) = gv ⊕ gw
2. ρ⊗ σ : G→ GL(V ⊗W ), g(v ⊗ w) = gv ⊗ gw
3. ρ⊗n : G→ GL(V ⊗n), g(v⊗n) = (gv)⊗n

4. ∧nρ : G→ GL(∧V n), g(v1 ∧ · · · ∧ vn) = gv1 ∧ · · · ∧ gvn
5. Symn ρ : G→ GL(Symn V ), g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn
6. ρ∨ : G→ GL(V ∨), ρ∨(g) = (ρ(g)t)−1

7. ρV,W : G→ Hom(V,W ), (ρ(g)φ)(v) = ρ(g)φ(ρ(g−1))

are representations of G.

Proof. Routines □
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Lemma 1.8. Let V,W be two representations of G. Then we have the
following isomorphism

HomG(V,W ) ∼= Hom(V,W )G = G-invariants of Hom(V,W )

Lemma 1.9. The following are isomorphisms of representations U, V,W of
G

1. Hom(V,W ) ∼= V ∨ ⊗W
2. V ⊗ (U ⊕W ) ∼= V ⊗ U ⊕ V ⊗W
3. ∧k(V ⊕W ) ∼=

⊕
a+b=k ∧aV ⊗ ∧bW

4. ∧k(V ∨) ∼= (∧kV )∨

5. ∧k(V ∨) ∼= ∧n−kV ⊗ detV ∨, where n = dimV, detV = ∧V m.

Definition 1.10 (group action). Let G be a group and X be a set. A group
action of G on X is a map σ : G→ Aut(X), such that

1. σ(g)x ∈ X, ∀x ∈ X
2. σ(gh)x = σ(g)σ(h)x, ∀x ∈ X
3. σ(e)x = x,∀x ∈ X

If we have such a group action, we can construct many useful representa-
tions

Example 1.11 (permutation representation). Let V be a finite-dimensional
over C with basis X, and G acts on X via σ, we define RX : G → GL(V )
as follows

RX(g)(
∑
x∈X

axex) =
∑
x∈X

axeσ(g)x

Here RX is called permutation representation.

And the following examples are based on above one.

Example 1.12 (regular representation). Choose X to be G considered as
a set, and G acts on G by left multiply, then R = RG is called regular
representation, in this case V is denoted by k[G], called group algebra.

Example 1.13 (alternating representation). Let V be the group algebra of
G, and consider the map ρ : G→ GL(V ) defined as follows

ρ(g)(
∑
x∈X

axex) =
∑
x∈X

sgn(σ(g))axeσ(g)x

is called the alternating representation.

Example 1.14 (coset representation). Let H be subgroup of G, and X =
{g1, . . . , gn} be a complete set of representatives of G/H, G acts on X by
g(giH) = ggiH. In this case, RX is called the coset representation of G with
respect to H.

Now we consider some concrete examples which we will use later.
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Example 1.15. Consider G = Sn and X = {1, 2, . . . , n}. Let V = CX, and
W = C(e1 + · · · + en) ⊂ V . Consider the permutation representation RX ,
then it’s easy to see that RX |W is trivial representation.

Example 1.16. Regular representation for X = {1, 2, 3}, we can write
down explictly as follows

R(1) =

 1 0 0
0 1 0
0 0 1

 , R((12)) =

 0 1 0
1 0 0
0 0 1

 , R((13)) =

 0 0 1
0 1 0
1 0 0


R((23)) =

 1 0 0
0 0 1
0 1 0

 , R((132)) =

 0 0 1
1 0 0
0 1 0

 , R((123)) =

 0 1 0
0 0 1
1 0 0


Example 1.17. A 2-dimension representation of S3 : the symmetry of tri-
angle, denoted by V

V (1) =

(
1 0
0 1

)
, V ((12)) =

(
0 1
1 0

)
, V ((13)) =

(
−1 −1
0 1

)
V ((23)) =

(
1 0
−1 −1

)
, V ((132)) =

(
−1 −1
1 0

)
, V ((123)) =

(
0 1
−1 −1

)
1.2. Irreduciblity.

Definition 1.18 (irreducible). A representation of V is called irreducible if
there is no subrepresentation W of V .

Definition 1.19 (indecomposable). A representation of V is called inde-
composable if it can not be written as a direct sum of two nonzero subrep-
resentation.

Remark 1.20. Clearly, from definition we have a irreducible representation
must be indecomposable. But when we consider complex representation, the
irreduciblility and indecomposablity coincides, and that’s Maschke’s theo-
rem.

Theorem 1.21 (Maschke’s theorem). Let V be a representation of a finite
group of C, W ⊆ V is a subrepresentation, then there is a complementary
invariant subrepresentation W ′ of G, such that V =W ⊕W ′.

Remark 1.22. Maschke theorem still holds when char k - |G|

Remark 1.23. Any continous representation of a compact group has this
property, but group (R,+) does not, consider a 7→

(
0 a
a 0

)
which fixes

the x-axis, but there is no complementary subspace.

Lemma 1.24 (Schur lemma). Let V,W be irreducible representations of
finite group G, and φ ∈ HomG(V,W ), then

1. either φ is isomorphism, or φ = 0
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2. If V =W , then φ = λI, λ ∈ C

Proposition 1.25. Let ρ : G → GL(V ) be representation of finite group,
then there is a unique decomposition

V =

N⊕
i=1

V ai
i

where Vi is distinct irreducible representations.

1.3. Representation of abelian groups and S3.

1.3.1. Representation of abelian groups. Let ρ : G → GL(V ) be any repre-
sentation, then map ρ(g) : V → V is in general not a morphism of represen-
tations, i.e. for h ∈ G,

ρ(g)(hv) 6= h(ρ(g)v)

In fact, we can prove ρ(g) ∈ EndG V if and only if g ∈ Z(G). So if G is
abelian, then any ρ(g) is a morphism of representations.

Now let V be an irreducible representation. By Schur lemma, every g ∈ G
acts on V by a scalar multiple of identity, so every subspace of V is invariant,
thus V must be one dimensional.

Proposition 1.26. Let G be a finite abelian group, then every irreducible
representation of G is 1-dimensional.

Remark 1.27. The converse statement also holds, see Corollary 2.21.

Definition 1.28 (dual group). LetG be a finite group, thenG∨ = HomG(G,C∗)
is called the dual group.

Corollary 1.29. Let G be a finite abelian group, then IrrG
1:1⇐⇒ G∨

Proof. By the Remark 1.27, if G is abelian, then G = Z(G), then ρ(g) ∈
EndG V = C∗, ∀g ∈ G and V ∈ Irr(G). □

1.3.2. Representation of S3. For S3, we have already seen the following rep-
resentations:

1. trivial representation U , with dimension 1.
2. alternating representation U ′, with dimension 1.
3. the regular representation R, with dimension 3.
4. the symmetric of the triangle V , with dimension 2.

And we also note that R has a 1-dimensional subrepresentation V ′ =
C(e1 + e2 + e3), in fact, it’s a trivial representation, hence it is isomorphic
to U .

Consider the complementary subspace of V ′ in R, denoted by V ′′ =
{(v1, v2, v2) ∈ V | v1+v2+v2 = 0}, we can choose a basis (ω, 1, ω2), (1, ω, ω2),
where ω3 = 1.
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Now, let W be an arbitrary representation of S3, consider Z/3Z = 〈σ〉 ⊂
S3, and decompose W into

W =
3⊕
i=1

V ⊕ai
i , Vi = Cvi, σvi = ωivi

Let τ ∈ S3 be a transposition, such that
S3 = 〈σ, τ〉/(τστ = σ2)

then
σ(τvi) = τ(σ2vi) = τ(ω2ivi) = ω2iτvi
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2. Character theory

In this section, G denotes a finite group.

Definition 2.1 (character). Let ρ : G → GL(V ) be a representation, χV :
G→ C, g 7→ χV (g) = tr(ρ(g)) is a character of ρ.

Remark 2.2. In fact, χV is a class function, i.e.
χV ∈ CG = {f : G→ C | f |K = constant, ∀K ∈ Conj(G)}

The dimension of CG = |Conj(G)|, and we have the following isomorphism
CG ∼= Z(C[G])

defined by
f 7→

∑
g∈G

f(g)g

Proposition 2.3. Let V,W be representations of G, then
1. χV⊕W = χV + χW
2. χV⊗W = χV χW
3. χV ∨ = χV
4. χSym2 V (g) =

1
2(χV (g)

2 + χV (g
2))

5. χ∧2V (g) =
1
2(χV (g)

2 − χV (g2))

Proof. Note that {λiλj | i ≤ j}, {λiλj | i < j} are the eigenvalues of g on
Sym2 V,∧2V respectively, then∑

i≤j
λiλj =

1

2
(
∑
i,j

λiλj +
∑
i

λ2i )

∑
i<j

λiλj =
1

2
(
∑
i,j

λiλj −
∑
i

λ2i )

□
Theorem 2.4 (The fixed point formula). Let X be a finie set with an
action by V , and V the permutation representation. Let Xg = {x ∈ X |
gx = x}, g ∈ G. Then χV (g) = |Xg|

Proof. Since Aut(X) ∼= S|X|, the matrix A representing ρ(g) is a permuta-
tion matrix: if gexi = exj for some xi, xj ∈ X, then

Aik =

{
1, k = j

0, otherwise

Then, if xi ∈ Xg, then gexi = egxi = exi , that is Aii = 1, so

tr(ρ(g)) =
∑

i:xi∈Xg

Aii =
∑

i:xi∈Xg

1 = |Xg|

□
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Definition 2.5 (character table). The character table of G is a table with
the conjugacy classes listed a cross, the irreducible representations listed on
the left.

Example 2.6. Character table for S3

1 (12) (123)
trivial U 1 1 1

alternating U ′ 1 −1 1
standard V 2 0 −1

permutation P 3 1 0

Use the property of character, if W = U⊕a ⊕ U ′⊕b ⊕ V ⊕c, then
χW = aχU + bχU ′ + cχV

Note that χU , χU ′ , χV is independent, so we can express character of any
representation of S3 in terms of χU , χU ′ , χV . For example, we can decompose

χV⊗V = (4, 0, 1) = (2, 0,−1) + (1, 1, 1) + (1,−1, 1)
Later we will see if two representations have the same character, then they
are isomorphic to each other, that is Corollary 2.12. Admitting this fact, we
have

V ⊗ V ∼= U ⊕ U ′ ⊕ V
So we can decompose any representation of S3 in the above method, if we
know what does its character look like.

Remark 2.7. Note that different groups can have identical character tables,
e.g., dihedral group

D4n = 〈a, b | a2 = b2n = (ab)2 = e〉
and quaternianic group

Q4n = 〈a, b | a2 = b2n, (ab)2 = e〉
have the same character table.

Remark 2.8. Nevertheless, characters can characterize the group G: order
of G, order of all its normal subgroups, whether G is simple or not.

Proposition 2.9. Let V be a representation of G. The map φ = 1
|G|
∑

g∈G g ∈
EndV as a projection from V to V G = {v ∈ V | gv = v, ∀g ∈ G}

Proof. Let w ∈W , v = φ(w) = 1
|G|
∑

g∈G gw, then for any h ∈ G, we have

hv =
1

|G|
∑
g∈G

hgw =
1

|G|
∑
g∈G

gw = v

So imφ ⊂ V G; Conversely, if v ∈ V G, then φ(v) = 1
|G|
∑

g∈G gv = v, this
implies V G ⊂ imφ. Moreover, φ ◦ φ = φ. □
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Definition 2.10. We let (α, β) = 1
|G|
∑

g∈G α(g)β(g) denote a Hermitian
inner product on CG.
Theorem 2.11 (First orthogonality relation). Let V,W ∈ Irr(G), then

(χV , χW ) =

{
1, V ∼=W

0, otherwise

Proof. If V,W are irreducible representations, then Schur’s lemma implies

dimHom(V,W )G = dimHomG(V,W ) =

{
1, V ∼=W

0, otherwise

However, χHom(V,W ) = χV ∨⊗W = χV ∨χW = χV χW . Let φ = 1
|G|
∑

g∈G g ∈
End(Hom(V,W )), then we have

dimHom(V,W )G =trHom(V,W )G φ =
1

|G|
∑
g∈G

trHom(V,W )(g)

=
1

|G|
∑
g∈G

χHom(V,W )(g)

=
1

|G|
∑
g∈G

χV (g)χW (g)

□
Corollary 2.12. Any representation of a finite group G is determined by
its character up to isomorphism, i.e. V ∼=W ⇐⇒ χV (g) = χW (g), ∀g ∈ G.
Corollary 2.13. If V =

⊕
i V

⊕ai
i , Vi are irreducible, distinct representings,

then
ai = (χVi , χV )

In particular, V is irreducible if and only if (χV , χV ) = 1.
Corollary 2.14. Every irreducible representation appears in the regular
representation R = C[G], and the multiplicity of it is equal to its dimension.
In particular, | Irr(G)| <∞.
Proof. Recall that (eg)g∈G is a basis for R, and geh = egh, ∀g, h ∈ G. For
the fixed point formula

χR(g) =

{
0, g 6= e

|G|, g = e

Then R is not irreducible unless G is trivial. Let Vi be any irreducible
representation of G, then

(χVi , χR) =
1

|G|
χVi(e)|G| = dimVi

So every irreducible representation appears in R and the multiplicity equals
to its dimension. □
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Remark 2.15. If R =
⊕

i V
⊕ai
i , ai = dimVi, then

|G| = dimR =
∑
i

(dimVi)
2

Sometimes it’s a good tool to determine what’s dimension of irreducible
representation we haven’t found.

Remark 2.16. If g 6= e, then 0 = χR(g) =
∑

i dimViχVi(g). If we know
all but one row of character table, we can calculate the remaining one using
this remark.

Example 2.17 (Character table of S4). We already have trivial repre-
sentation, alternating representation and standard representation. Since
24 = 1+1+9+

∑
i(dimVi)

2, so there exist two irreducible1 other represen-
tation Ṽ ,W , such that dim Ṽ = 3,dimW = 2.

But how to construct them? Consider Ṽ = U ′ ⊗ V, dim Ṽ = 3, then
χ
Ṽ
= χU ′χV = (3,−1, 0, 1,−1)

So we have
(χ

Ṽ
, χ

Ṽ
) = 1

So it is irreducible. And the remaining one can be calculated from Remark
2.16

1 (12) (123) (1234) (12)(34)
trivial U 1 1 1 1 1

alternating U ′ 1 −1 1 −1 1
standard V 3 1 0 −1 −1

Ṽ 3 −1 0 1 −1
W 2 0 −1 0 2

permutation P 4 2 1 0 0

Proposition 2.18. Let α : G→ C be any function. Set φα,V =
∑

g∈G α(g)g :
V → V for any representation V . Then φα,V ∈ EndG V for all V if and only
if α ∈ CG.

Proof. Condition for φα,V to be G-linear: For h ∈ G,

φα,V (hv) =
∑
g

α(g)g(hv) =
∑
g

α(h−1gh)hgh−1(hv)

= h(
∑
g

α(hgh−1)gv)

α is class function
= h(

∑
g

α(g)gv) = hφα,V (v)

1Why there is no other 1-dimensional representation? In fact, we will learn later that
the number of irreducible representations is equal to the number of the conjuagate classes.
Or you can directly show that there are only two possible one dimension representations.
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Conversely, consider φα,V (hv) = hφα,V (v) and take for V the regular repre-
sentation R. For x ∈ G,

φα,R(hex) = φα,R(ehx) =
∑
g

α(g)ehx =
∑
g

α(g)eghx

But we also have

h(φα,R(ex)) = h(
∑
g

α(g)gex) =
∑
g

α(g)hgex =
∑
g

α(g)ehgx =
∑
g

α(h−1gh)eghx

Thus α is a class function by comparing the coefficient of two side. □

Proposition 2.19. If V =
⊕

i V
⊗ai
i is the isotypical decomposition, of a

representation V . Then the projection πi : V → V ⊗ai
i is given by

πi =
dimVi
|G|

∑
g∈G

χVi(g)g

Proof. Let W be fixed irreducible representation, V be any representation.
Since χW ∈ CG, then

ψχW ,V =
1

|G|
∑
g∈G

χW (g)g ∈ EndG(V )

If V is irreducible, then Schur’s lemma implies ψχW ,V = λ id, where

λ =
1

dimV
trV φχW ,V =

1

dimV · |G|
∑
g∈G

χW (g)χV (g) =

{
1

dimV , V ∼=W

0, otherwise

If V is arbitrary, then dimWψχW ,V is a projection onto W a where a is
the number of times W appears in V .

So, if V =
⊕

i V
⊗ai
i is the isotypical decomposition, then

πi =
dimVi
|G|

∑
g∈G

χVi(g)g

is the projection onto V ⊕ai
i .

□

Proposition 2.20.
| Irr(G)| = |Conj(G)|

In other words, {χVi | Vi ∈ Irr(G)} forms an orthogonal basis for CG.

Proof. Suppose α ∈ CG, (α, χV ) = 0, ∀V ∈ Irr(G), we must show α = 0.
For any representation V , consider φα,V , Schur lemma implies φα,V =

λ idV , let n = dimV , this implies

λ =
1

n
tr(φα,V ) =

1

n

∑
g

α(g)χV (g) =
|G|
n

(α, χV ∨) = 0
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Thus φα,V = 0, that is,∑
g

α(g)g = 0, for any representation V of G.

In particular, for V = R, the set {ρ(g) ∈ EndR | g ∈ G} consists of linearly
independent elements, thus α(g) = 0,∀g ∈ G. □
Corollary 2.21. If G is a finite group, the following are equivalent
1. G is abelian.
2. Every irreducible representation of G has dimension 1.

Proof. We have already proved (1) to (2), for (2) to (1):

|G| =
|Conj(G)|∑

i=1

(dimVi)
2 = |Conj(G)|

So |K| = 1, ∀K ∈ Conj(G), that is, G is abelian. □
Proposition 2.22 (Second orthogonality relation).∑

i:Vi∈Irr(G)

χVi(g)χVi(h) =

{ |G|
|Kg | , Kg = Kh

0, otherwise

where Kg is the conjugacy class of g.

Proof. Let χV , χW be irreducible characters. First orthogonality relation
implies

δV,W = (χV , χW ) =
1

|G|
=
∑
g

χV (g)χW (g) =
1

|G|
=

∑
K∈Conj(G)

χV (K)χW (K)|K|

Then

U = (

√
|K|
|G|

χV (K))

is a unitary matrix. Orthogonality of the columns of U yields the claim □
Example 2.23 (Monstrous Monnlight Conjecture). Let G = M be the
monster group, i.e. the sporadic finite simple group with |M | ∼ 8 · 1053.
One can show that | Irr(G)| = |Conj(G)| = 194, a relatively small number.

To compare, | IrrS15| = 176, | IrrS16| = 231. Let Vi ∈ Irr(G) be ordered
by their dimension.

V V0 V1 V2 V3
dimV 1 196883 21296876 842609256

Complex analysis tells Eisenstein series

Gk(τ) =
∑

(m,n)∈Z2
(m,n)̸=(0,0)

1

(mτ + n)k
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converges for k ≥ 3 normally and defines a holomorphic function on H.
Gk(τ) admits a Fourier expansion

Gk(τ) =
∞∑
n=0

ak(n)q
n, q = e2πiτ

Consider
j(τ) =

172820G4(τ)
3

20G4(τ)3 + 49G6(τ)2

Then j(τ)− 744 = q−1 + 196884q + 21493690q2 + 864299970q3 + . . .
Mckay 1978 wrote a letter to Thompson

196884 = 196883 + 1

Thompson: the next term work similarly.
Suggestion: there exists V =

⊕∞
i=0 Vi infinitely-dimensional graded rep-

resentation of M such that
∞∑
n=0

χVnq
n−1 = j(q)− 744

Moreover,

Tq(τ) =

∞∑
n=0

χVn(g)q
n−1 = other well-known functions in complex analysis

Corway-Norten verified this in 1979 on a computer.
Borcherds proved this conjecture in 1992 by V the structure of a module

over a vertex operator algebra.

Definition 2.24 (external tensor product representation). Let G,H be fi-
nite groups, V a representation of G, W a representation of H. Then we
define the external tensor product representation V ⊠W of G×H by

(g, h)(v, w) = gv ⊗ hw, ∀g ∈ G,h ∈ H, v ∈ V,w ∈W.

and extension by linearity to V ⊗W . Similarly, we define a G ×H action
on Hom(V,W ) by

((g, h)φ)v = hφ(g−1v), g ∈ G,h ∈ H, v ∈ V, φ ∈ Hom(V,W ).

and extension by linearity.

Remark 2.25. We have
Hom(V,W ) ∼= V ∨ ⊠W

as G×H representations.

Proposition 2.26. We have the following well-defined bijection:
Irr(G)× Irr(H)→ Irr(G×H)

(V,W )→ V ⊠W
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Proof. If suffices to look at characters. By property of trace we have

χV ⊠W ((g, h)) = χV (g)χW (h)

Recall that

dimHomG(V,W ) =
1

|G|
∑
g∈G

χV (g)χW (g) = (χV , χW )G

Then

(χV1⊠W1 , χV2⊠W2) =
1

|G×H|
∑

g,h∈G×H
χV1(g)χW1(g)χV2(g)χW2(g)

=
1

|G|
∑
g

χV1(g)χV2(g)
1

|G|
∑
h∈H

χW1(g)χW2(g)

= (χV1 , χV2)G(χW1 , χW2)H

So V ⊠W ∈ Irr(G × H), if V ∈ Irr(G),W ∈ Irr(H). By calculating the
cardinality of both sides we get the desired result. □

3. Restriction and induced representation

3.1. restriction representation.

Definition 3.1 (restriction representation). Let H < G be a subgroup, V
a representation of G, we define ResV = ResGH V : H → GL(V ) to be the
restriction of V onto H, ResGH V is a representation of H.

Remark 3.2. Restriction is transitive, i.e. for K < H < G, we have

ResHK ResGH = ResGK

Lemma 3.3. Let H < G, W ∈ Irr(H), then there exists V ∈ Irr(G) such
that

(ResGH χV , χW )H 6= 0

Proof. Consider the regular representation R, then

(ResGH χR, χW ) =
|G|
|H|

χW (e) 6= 0

But the left term also equals to
∑

i dimVi(Res
G
H χVi , χW )H , so there must

be at least one Vi, such that

(ResGH χVi , χW ) 6= 0

□

Lemma 3.4. Let H < G, V ∈ Irr(G), ResGH V =
⊕
W⊕ai
i ,Wi ∈ Irr(W ).

Then
∑
a2i ≤ [G : H] with equality if and only if χV (σ) = 0, ∀σ ∈ G/H.
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Proof. We have
1

|G|
∑
h∈H
|χV (h)|2 = (ResGH V,Res

G
H V ) =

∑
a2i

Since V is irreducible, we have

1 = (χV , χV )G =
1

|G|
∑
g∈G
|χV (g)|2

=
1

|G|
(
∑
h∈H
|χV (h)|2 +

∑
σ∈G/H

|χV (σ)|2)

=
|H|
|G|

∑
i

a2i +
1

|G|
∑

σ∈G/H

|χV (σ)|2

≥ |H|
|G|

∑
i

a2i

□

Proposition 3.5. Let V,W be representations of G. Then V ∼= W if and
only if ResGH V ∼= ResGHW , for all cyclic subgroup H of G.

Proof. One direction is obvious; Conversely, let g ∈ G,H = 〈g〉, then
χV (g) = χResGH V (g), the claim follows from V ∼=W ⇐⇒ χV (g) = χW (g),∀g ∈
G. □

3.2. Induced representation. Let H < G be a subgroup, ρ : G→ GL(V )
be a representation, W ⊂ V a H-invariant subspace. Then for any g ∈ G,
the subspace gW ⊂ V depends only on gH, since ghW = g(hW ) = gW .
Therefore, for σ ∈ G/H, we write σW for this subspace of V .

We say that V is induced by W if every element in V can be written
uniquely as a sum of elements in such translates of W , that is

V =
⊕

σ∈G/H

σW

In this case, we write V = IndW = IndGHW .

Remark 3.6. Alternative formulations: for any v ∈ V , there exists a unique
vσ ∈ σW , such that

v =
∑

σ∈G/H

vσ

or if {g1, . . . , gN}, |N | = |G/H| = [G : H] is a complete system of represen-
tatives of G/H, then

V =
N⊕
i=1

giW
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Remark 3.7. Clearly, if V is induced by W , then
dimV = [G : H] dimW

Example 3.8. Let R be the regular representation of G, and H is a sub-
group of G. Then

W =
⊕
h∈H

Ceh

is H-invariant. In fact, W ∼= RH and clearly RG = IndGH RH .

Example 3.9. Let H < G and V the coset representation of G, i.e. V has
basis (eσ)σ∈G/H and geσ = egσ. Then

W = CeeH
is H-invariant, and is the trivial representation of H, then

V = IndGHW

In particular, if H = {e}, then V is the permutation representation P of G,
and P = IndG{e}C.

Example 3.10. If Vi = IndGHWi, i = 1, 2, then
V1 ⊕ V2 = IndGH(W1 ⊕W2)

Example 3.11. If V = IndGHW , W ′ ⊂W is a H-invariant subspace, then

V ′ =
⊕

σ∈G/H

σW ′ ⊂ V

is G-invariant, and V ′ = IndGHW
′.

Proposition 3.12. Let H < G be a subgroup, ρ : G → GL(V ) is induced
by ψ : H → GL(W ), let ρ′ : G → GL(V ′) be any representation, ϕ ∈
HomH(W,V

′), then there exists a unique Φ ∈ HomG(V, V
′), such that

Φ|W = ϕ

Proof. For uniqueness: Let Φ ∈ HomG(V, V
′) with Φ|W = ϕ, and let w ∈

ρ(g)W, g ∈ G, then
Φ(w) = Φ(ρ(g)ρ(g−1)w) = ρ′(g)Φ(ρ(g)−1w) = ρ′(g)ϕ(ρ(g)−1w)

This determines Φ on ρ(g)W for all g ∈ G, hence on V .
For existence: we define

Φ(w) = ρ′(g)ϕ(ρ(g)−1w)

if w ∈ ρ(g)W , this is independent of the choice of g, since
ρ′(gh)ϕ(ρ(gh)−1w) = ρ′(g)ρ′(h)ϕ(ρ(h)−1ρ(g)−1w)

= ρ′(g)ϕ(ρ(h)ρ(h)−1ρ(g)−1w)

= ρ′(g)ϕ(ρ(g)−1w)

□
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Theorem 3.13. Let H < G be a subgroup, and ψ : H → GL(W ) be a
representation. Then there exists a representation ρ : G → GL(V ) induced
by W , which is unique up to isomorphism.

Proof. For existence: By Example 3.10 we may assume W ∈ Irr(H), W ′ is
isomorphic to a subrepresentation of RH , since any W ′ ∈ Irr(H) appears in
RH . By Example 3.8 we have

RG = IndGH RH

and by Example 3.11 with V = RG,W = RH , we get

V ′ = IndGHW
′

For uniqueness: Let V = IndGHW,V
′ = IndGHW , then Proposition 3.12

implies that there exists a unique Φ ∈ HomG(V, V
′) such that Φ|W = idW ,

and Φ ◦ ρ(g) = ρ′(g) ◦Φ, ∀g ∈ G. Then imΦ contains all ρ′(g)W , so imΦ =
V ′.

By dimV = [G : H] dimW = dimV ′, we conclude Φ is an isomorphism.
□

Lemma 3.14. Let V be a representation of G, and H < G be a subgroup.
Then

V ⊗ IndGHW = IndGH(Res
G
H V ⊗W )

Proof. Note that

V ⊗ IndGHW =
⊕

σ∈G/H

V ⊗ σW

=
⊕

σ∈G/H

σ(ResGH V )⊗ σW = IndGH(Res
G
H V ⊗W )

□

Corollary 3.15. We have

V ⊗ P = IndGH(Res
G
H V )

where P is permutation representation.

Proof. Take W as trivial representation, then this claim holds from Lemma
3.14. □

Lemma 3.16. Ind is transitive.
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Proof.
IndHK IndGH = IndHK

⊕
τ∈G/H

τV

=
⊕

σ∈H/K

⊕
τ∈G/H

στV

=
⊕

σ′∈G/K

σ′V

= IndGK V

□
Remark 3.17. These results can also be obtained by looking at characters
or using group algebra.

Theorem 3.18. Let H < G be a subgroup, and ρ : G → GL(V ), ψ : H →
GL(W ) be two representations, such that V = IndGHW . Then

χV (g) =
∑

σ∈G/H

χW (g−1
σ ggσ) =

1

|H|
∑
x∈G,

x−1gx∈H

χW (x−1gx)

where gσ is any representative of σ.

Proof. Let V =
⊕

σ∈G/H σW , ρ(g) permutes the σW among themselves, i.e.
if gσ ∈ σ is a representative, we write ggσ = gτh for some τ ∈ G/H, h ∈ H.

g(gσW ) = (gτh)W = gτ (hW ) = gτW

Then we can calculate
χV (g) = trV (ρ(g)) =

∑
σ∈G/H

trσW (ρ(g))

=
∑

σ∈G/H

χW (g−1
σ ggσ) =

∑
τ∈G/H

χW (h−1g−1
τ ggτh)

=
1

|H|
∑

τ∈G/H

∑
h∈H

χW (h−1g−1
τ ggτh) =

1

|H|
∑
x∈G,

x−1gx∈H

χW (x−1gx)

□
Theorem 3.19 (Frobenius reciprocity). Let H < G be a subgroup, W be a
representation of H, U be a representation of G. Assume that V = IndGHW ,
then

HomH(W,Res
G
H U) ∼= HomG(V,U)

i.e. for φ ∈ HomH(W,Res
G
H U) extends uniquely to φ̃ ∈ HomG(V,U)

Proof. We write V =
⊕

σ∈G/H σW , define ϕ̃ on σW by the compostion

σW
g−1
σ−→W

φ−→ U
gσ−→ U
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This is independent of the choice of gσ since
gσh(φ(h

−1g−1
σ (w))) = gσφ(hh

−1gσ(w))

by φ ∈ HomH(W,Res
G
H U) □

Corollary 3.20. Let H < G be a subgroup, W be a representation of H,
U be a representation of G. Then

(χW ,Res
G
H χU )H = (IndGH χW , χU )G

Proof. By linearity, we can assume W,U are irreducible representations.
This claim follows from the Frobenius reciprocity and Schur’s lemma

(χV , χU )G = dimHomG(V,U)

□

Example 3.21. Let G = S3,H = S2. In S2, the standard representation
V2 is isomorphic to the alternating representation U ′

2. We have seen that
U3, U

′
3, V3 are all irreducible representations of S3.

And we can write down their character tables as follows

1 (12)
trivial U2 1 1

alternating U ′
2 1 −1

,

1 (12) (123)
trivial U3 1 1 1

alternating U ′
3 1 −1 1

standard V3 2 0 −1
Note that

ResU3 = U2, ResU ′
3 = U ′

2, ResV3 = U2 ⊕ U ′
2

If we want to compute induced representation. Firstly note that we have
seen

P ⊗ U = Ind(ResU), U is any representation of G
For U = U3, we have P = U3 ⊕ V3 = IndU2. If we want to compute IndV2,
it’s a little bit complicated. By Frobenius reciprocity

HomS3(IndV2, U3) = HomS2(V2,ResU3 = U2)
Schur
= 0

HomS3(IndV2, U
′
3) = HomS2(V2,ResU

′
3 = U ′

2)
Schur
= C

HomS3(IndV2, V3) = HomS2(V2,ResV3 = U2 ⊕ U ′
2)

Schur
= C

So
IndV2 = U ′

3 ⊕ V3
Definition 3.22 (representation ring). Let G be a finite group, and Rk(G)
be the free abelian group generated by all isomorphism classes of represen-
tations of G over a field k, modulo the subsgroup generated by elements of
the form V +W − (V ⊕W ). R(G) is called the representation ring of G, or
the Grothendieck group of G, denoted by K0(G).
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Definition 3.23 (virtual representation). Elements of R(G) are called vir-
tual representations.

Remark 3.24. The ring structure on R(G) is the tensor product, defined
on the generators of R(G), and extended by linearity.

Remark 3.25. We have the following remarks:
1. A character defines a ring homomorphism from R(G) to CG
2. χ is injective is equivalent to a representation is determined by its char-

acter, the image of χ are called virtual characters.
3. χC : R(G)⊗Z C→ CG is an isomorphism.
4. The virtual characters form a lattice Λ ∼= Zc ⊂ CG. The actual characters

form a cone Λ0
∼= N0 ⊂ Λ.

5. By 3. we can define an inner product on R(G) by

(V,W ) = dimHomG(V,W )

Example 3.26. Let G = Cn, then R(Cn) = Z[x]/(xn − 1), where X corre-
spond to the representation of a primitive n-th root of unity.

Example 3.27. R(S3) ∼= Z[x, y]/(xy−y, x2−1, y2−x−y−1). We can iden-
tify x to the alternating representation U ′, y to the standard representation
V and 1 to the trivial representation.

Goal: Determine R(Sn) for all n and determine all irreducible represen-
tations of Sn for all n.

Part 2. Symmetric functions
4. Young tableau

Definition 4.1 (Composition of n). A composition of n is an ordered
sequence (α1, . . . , αr) such that αi ∈ Z>0 and

∑
αi = n; A weak com-

position of n is a (finite or infinite) ordered sequence (α1, . . . ) such that
αi ∈ Z>0,

∑
αi = n and |{i ∈ Z>0 | αi 6= 0}| <∞.

Definition 4.2 (Partition). A partition is any weak composition λ = (λ1, . . . )
such that λi ≥ λi+1 for all i. The nonzero λi are called parts. The number
of parts is the length of λ, denoted by l(λ). |λ| =

∑
λi is the weight of λ.

If |λ| = n, then we write λ ` n and say λ is a partition of n.

Notation 4.3. The set consists of all partition of n is denoted by Pn.

Notation 4.4 (Exponential notation). If j appears mj times in λ, we write
λ = (1m12m2 . . . )

Lemma 4.5. We have the following correspondence

Conj(Sn)←→ Pn
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Proof. Recall that w ∈ Sn factorizes uniquely as a product of disjoint cycles

w = (i1 . . . iα1) . . . (in−αr+1 . . . in)

of order α1, . . . , αr. The order in which the cycles are listed is irrelevent.
If α1 ≥ · · · ≥ αr, then α = (α1, . . . , αr) is a partion of n, called the cycle

type α(w) of w.
Let v, w ∈ Sn, if v(i) = j, then

w ◦ v ◦ w−1(w(i)) = w(j)

so v and w ◦ v ◦ w−1 have the same cycle type, i.e. α(v) = α(w ◦ v ◦ w−1).
So α(w) determines w ∈ Sn up to conjugacy. □

Theorem 4.6 ([Euler). p(n) = |Pn|, where
∞∑
n=0

p(n)xn =
∞∏
k=1

1

1− xk

Example 4.7.

n 0 1 2 3 4 5 6 7 8 9 10
p(n) 1 1 2 3 5 7 11 15 22 30 42

Definition 4.8 (Young subgroup). For λ = (λ1, . . . , λr) ∈ Pn. A Young
subgroup is a subgroup of Sn given as

Sλ = S{1,...,λ1} × S{λ1+1,...,λ2} × · · · × S{n−λr+1,...,λn}

Definition 4.9 (Young diagram). The Young diagram D(λ) of λ ∈ Pn is
D(λ) = {(i, j) ∈ Z2 | 1 ≤ i ≤ λj}. We draw a box for each point (i, j).

Example 4.10. D((6, 3, 3, 1)) =

Definition 4.11 (Conjugate of a partition). The conjugate of λ ∈ Pn is the
partition λ′ ∈ Pn whose Young diagram D(λ′) is the transpose of D(λ).

Example 4.12. D((6, 3, 3, 1))′ =

Lemma 4.13. Let λ be a partition, and m ≥ λ1, n ≥ λ′1. The m + n
numbers λi+n− i(1 ≤ i ≤ n), n− 1+ j−λ′j(1 ≤ j ≤ m) are a permutation
of {0, 1, 2, 3, . . . ,m+ n− 1}
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Proof. Clearly D(λ) ⊂ D(mn). Take a path corresponding to D(λ) from
the lower left corner to the upper right corner, number the segment of the
path by 0, 1, . . . ,m+ n− 1. The vertical segments are λi+n− 1, 1 ≤ i ≤ n.
The horizontal segments (by transpotion) are (m+ n− 1)− (λ′j +m− j) =
n− λ′j + j − 1, 1 ≤ j ≤ m. □

Remark 4.14. The lemma is equivalent to the identity

fλ,n(t) + tm+n−1fλ′,m(t
−1) =

1− tm+n

1− t
Definition 4.15 (Operations on partitions). Let λ, µ be partitions. There
are some operations:
1. λ+ µ by (λ+ µ)i = λi + µi;
2. λ ∪ µ is partition in which λi, µj are arranged decreasing in order;
3. λµ is defined by (λµ)i = λiµi;
4. λ × µ is the partition in which min{λi, µj} are arranged in decreasing

order.

Example 4.16. If we take λ = (3, 2, 1) and µ = (2, 2), compute as follows
to see what’s going on

λ+ µ = (5, 4, 1), λµ = (6, 4)

λ ∪ µ = (3, 2, 2, 2, 1), λ× µ = (2, 2, 2, 2, 1, 1)

Lemma 4.17. We have the following relation between above operations
(λ ∪ µ)′ = λ′ + µ′

(λ× µ)′ = λ′µ′

Proof. D(λ∪µ) is obtained from the rows of D(λ) and D(µ) and arranging
in order of decreasing length, so we have

(λ ∪ µ)′k = λ′k + µ′k

And
(λ× µ)′k = {(i, j) ∈ Z2 | λi ≥ k, µj ≥ k} = λ′kµ

′
k

□
Definition 4.18 (Containing ordering). Let λ, µ be two partitions, µ ≤ λ
with respect to containing ordering, denoted by µ ⊆ λ if and only if µi ≤
λi, ∀i ≥ 1.

Definition 4.19 (Orderings). Let λ, µ ∈ Pn, then
1. Reverse lexicographic ordering Ln: (λ, µ) ∈ Ln if and only if for λ = µ or

the first non-vanishing difference λi − µi is positive.
2. reverse lexicographic ordering L′

n: (λ, µ) ∈ L′
n if and only if λ = µ or the

first non-vanishing difference λ∗i − µ∗i is negative, where λ∗i = λn+1−i.
3. Natural/Dominance ordering Nn: (λ, µ) ∈ Nn if and only if λ1+· · ·+λi ≥
µ1 + · · ·+ µi for all i ≥ 1. We write λ ≥ µ instead of (λ, µ) ∈ Nn.
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Remark 4.20. Containing ordering and Nn are only partial orderings, but
Ln and L′

n are total orderings.
Definition 4.21 (Cover & Hasse diagram). If (A,≤) is a poset, b, c ∈ A, we
say that b is covered by c, written b ≺ c , if b < c and there is no d ∈ A such
that b < d < c; The Hasse diagram of A consists of vertices corresponding
to element a ∈ A, and an arrow from the vertex b to vertex c if b ≺ c.
Example 4.22. If we consider dominance ordering on P62

(6)

(5, 1)

(4, 2)

(32) (4, 12)

(3, 2, 1)

(3, 13) (23)

(22, 12)

(2, 14)

(16)

Lemma 4.23. Let λ, µ ∈ Pn. Then λ ≥ µ implies (λ, µ) ∈ Ln ∩ L′
n

Proof. Suppose that λ ≥ µ. Then either λ1 > µ1, in which case (λ, µ) ∈ Ln,
or else λ1 = µ1. In that case either λ2 > µ2, in which case again (λ, µ) ∈ Ln,
or else λ2 = µ2. Continuing in this way, we see that (λ, µ) ∈ Ln.

Also, for each i ≥ 1, we have
λi+1 + λi+2 + . . . = n− (λ1 + . . .+ λi)

⩽ n− (µ1 + . . .+ µi)

= µi+1 + µi+2 + . . .

Hence the same reasoning as before shows that (λ, µ) ∈ L′
n. □

Lemma 4.24. Let λ, µ ∈ Pn, then λ ≥ µ is equivalent to µ′ ≥ λ′.
Proof. It suffices to show one direction. Suppose λ′ 6≥ µ′, then for some
i ≥ 1, we have

(∗)

{
λ′1 + · · ·+ λ′j ≤ µ′1 + · · ·+ µ′j , 1 ≤ j ≤ i− 1

λ′1 + · · ·+ λ′i > µ′1 + · · ·+ µ′i

2Here I really want to draw a Hasse diagram in the form of Young diagram, but there
is no enough space for me to draw down all my ideas (smile).
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which implies
λ′i > µ′i

Let l = λ′i and m = µ′i. From (∗) it follows that
λ′i+1 + λ′i+2 + · · · < µ′i+1 + µ′i+2 + . . .

and denote this equation by (∗∗).
Now λ′i+1 + λ′i+2 + . . . is equal to the number of nodes in the diagram of

λ which lie to the right of the i-th column, and therefore

λ′i+1 + λ′i+2 + · · · =
l∑

j=1

(λj − i)

Likewise

µ′i+1 + µ′i+2 + . . . =

m∑
j=1

(µj − i)

Hence from (∗∗) we have
m∑
j=1

(µj − i) >
l∑

j=1

(λj − i) ⩾
m∑
j=1

(λj − i)

which implies
µ1 + . . .+ µm > λ1 + . . .+ λm

a contradiction. □
Definition 4.25 (Young tableau). A Young tableau is a map T (λ) : D(λ)→
N, defined by (i, j) 7→ T (λ)i,j = k. λ is called the shape of T (λ).

Definition 4.26 (semistandard). For a Young tableau T . If Ti,j ≤ Ti,j+1

and Ti,j < Ti+1,j for all (i, j) ∈ D(λ), then T (λ) is called semistandard.

Definition 4.27 (weight). For a Young tableau T . Let αk = |{(i, j) ∈
D(λ) | T (λ)i,j = k}|, then α = (α1, . . . ) is called the weight of T (λ).

Definition 4.28 (standard). For a Young tableau T , it’s called standard,
if its weight α = (1, 1, . . . , 1).

Example 4.29. Consider the following two Young tableau
1 2 2 3 3 5
2 3 5 5
4 4 7 7
5 7

, 1 3 7 12 8 15
2 5 10 14
4 8 11 16
6 9

They are both Young tableau with shape (6, 4, 4, 2), but the first one has
type (1, 3, 3, 2, 4, 0, 3), while the second one is standard.

Definition 4.30 (Kostka number). Let λ ∈ Pn, α be a weak composition
of n. Then Kostka number Kλα is the number of semistandard tableau T (λ)
of weight α.
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Lemma 4.31. For λ, µ ∈ Pn, then Kλµ = 0 unless λ ≥ µ.

Proof. Let T (λ) be a semistandard Young tableau of weight µ. For all r ≥ 1,
there are µ1+ · · ·+µr symbols ≤ r in T (λ). Columns are strictly increasing,
then these µ1 + · · ·+ µr symbols must lie in the first r rows. So

µ1 + · · ·+ µr ≤ λ1 + · · ·+ λr, ∀r ≥ 1

That is, µ ≤ λ. □

Sn acts on Zn by permuting coordinates, the fundamental domain for this
action is

Pn = {b ∈ Zn | bn ≥ · · · ≥ b1}
i.e. for a ∈ Zn, Sna ∩ Pn = {a+} for some a+ ∈ Zn. In fact, a+ is obtained
from a by rearranging a1, . . . , an in decreasing order.

For a, b ∈ Zn, we define
a ≥ b⇐⇒ a1 + · · ·+ ai ≥ b1 + · · ·+ bi, ∀i ≥ 1

Lemma 4.32. Let a ∈ Zn, then
a ∈ Pn ⇐⇒ a ≥ wa, ∀w ∈ Sn

Proof. Suppose a ∈ Pn. If wa = b, then (b1, . . . , bn) is a permutation of
(a1, . . . , an), so a1 + · · ·+ ai ≥ b1 + · · ·+ bi,∀i ≥ 1.

Conversely, if a ≥ wa for all w ∈ Sn. Then
(a1, . . . , an) ≥ (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

then we get
a1 + · · ·+ ai ≥ a1 + · · ·+ ai−1 + ai+1 =⇒ ai ≥ ai+1

If we do this several times, we will see a ∈ Pn. □

Let δ = (n− 1, n− 2, . . . , 1, 0) ∈ Pn, then we have

Lemma 4.33. Let a ∈ Pn. Then for each w ∈ Sn, we have (a+δ−wδ)+ ≥ a.

Proof. Since δ ∈ Pn, then we have δ ≥ wδ, hence
a+ δ − wδ ≥ a

Let b = (a+ δ − wδ)+. Then again by Lemma 4.28 we have
b ≥ a+ δ − wδ

Hence b ≥ a. □

For each pair of integers i, j such that 1 ≤ i < j ≤ n define Rij : Zn → Zn
by

Rij(a) = (a1, . . . , ai + 1, . . . , aj − 1, . . . , an)

Any product R =
∏
i<j R

rij
ij is called a raising operator. The order of the

terms in the product is immaterial, since they commute with each other.
The following lemma explains why it is called raising:
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Lemma 4.34. Let a ∈ Zn and let R be a raising operator. Then
Ra ≥ a

Proof. For we may assume that R = Rij , in which case the result is obvious.
□

However, the converse of the lemma still holds

Lemma 4.35. Let a, b ∈ Zn be such that a ≤ b and a1 + · · · + an =
b1 + · · ·+ bn. Then there exists a raising operator R such that b = Ra.

Proof. We omit it here, since we won’t use this result later. Readers may
refer to [2] for more details. □

5. The ring of symmetric functions

The symmetric group Sn acts on the ring Z[x1, . . . , xn] of polynomials in
n variables x1, . . . , xn with integer coefficients by permuting the variables,
that is

(wp)(x1, . . . , xn) = p(xw(1), . . . , xw(n)), w ∈ Sn, p ∈ Z[x1, . . . , xn]

Definition 5.1 (Symmetric polynomial). p ∈ Z[x1, . . . , xn] is called sym-
metric if it is invariant under the action of Sn.

The symmetric polynomials form a subring
Λn = Z[x1, . . . , xn]Sn ⊂ Z[x1, . . . , xn]

Note that Λn is a graded ring, i.e. Λn =
⊕

k≥0 Λ
k
n, where Λkn = {p ∈ Λn |

deg p = k} ∪ {0}
There is a natural way to get a symmetric function with variables x1, . . . , xn:

Given a monomial and use Sn to act on it, finally we do a summation. To
be explict, let’s make the notation.

Notation 5.2. Let α = (α1, . . . , αn) ∈ Nn. We set xα = xα1
1 . . . xαn

n .

Definition 5.3. Let λ be any partition of length ≤ n. We define the
polynomial

mλ(x1, . . . , xn) =
∑
α

xα

where α runs over all distinct permutation of λ = (λ1, . . . , λn).

Example 5.4. Let n = 3 and λ = (2, 1, 0) to see what’s going on
m(2,1) = x21x2 + x21x3 + x1x

2
2 + x1x

2
3 + x2x

2
3 + x22x3

since we have all permutations of (2, 1, 0) are listed as follows
(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1)

Remark 5.5. The (mλ)l(λ)≤n form a Z-basis of Λn. And (mλ)|λ|=k,l(λ)≤n
form a a Z-basis of Λkn.
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Definition 5.6 (Inverse system). Let (I,≤) be a directed set. Let (Ai)i∈I
be a family of groups, rings, modules, indexed by I, and (fij)i,j∈I be a family
of morphisms with fij : Ai → Aj , such that
1. fii = idAi ;
2. fij = fij ◦ fjk for all i, j, k ∈ I
The pair (Ai, fij)i,j∈I is called an inverse system over I.

Definition 5.7 (Inverse limit). Let (Ai, fij)i,j∈I be an inverse system. Let
xi ∈ Ai, xj ∈ Aj . We define

xi ∼ xj ⇐⇒ there exists k ∈ I with i ≤ k, j ≤ k and fki(xi) = fkj(xj)

We define the inverse limit of this inverse system by

lim←−
i∈I

Ai =
∏

Ai/ ∼

We can apply inverse limit to rings of symmetric functions. Let k be
fixed, m ≥ n, and consider

Z[x1, . . . , xm]→ Z[x1, . . . , xn]

which sends each of xn+1, . . . , xm to zero and the other xi to themselves.
On restriction to Λm this gives a homomorphism as follows

ρm,n : Λm → Λn

whose effect on the basis (mλ) is easily described as follows

mλ(x1, . . . , xm) 7→

{
mλ(x1, . . . , xn), l(λ) ≤ n
0, otherwise

ρm,n is a surjective ring homomorphism.
On restriction to Λkm we have homomorphisms

ρkm,n : Λkm → Λkn

for all k > 0 and m ≥ n, which are always surjective, and are bijective3 for
m ≥ n ≥ k. So we have (Λkn, ρ

k
m,n) is an inverse system over N. We define

Λk = lim←−
n

Λkn

Let us clearify the elements in Λk, as what we defined, an element of Λk
is a sequence f = (fn)n≥0, where fn = fn(x1, . . . , xn) is a homogenous sym-
metric polynomial of degree k in x1, . . . , xn, and fm(x1, . . . , xn, 0, . . . , 0) =
fn(x1, . . . , xn) whenever m ≥ n. Since ρkm,n is an isomorphism for m ≥ n ≥
k, it follows that the projection

ρkn : Λk → Λkn

3Why?
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which sends f to fn is an isomorphism for all n ≥ k, and hence that Λk

has a Z-basis consisting of the monomial symmetric functions mλ (for all
partitions λ of k) defined by

ρkn(mλ) = mλ(x1, . . . , xn)

for all n ≥ k. Hence Λk is a free Z-module of rank p(k), the number of
partitions of k.

Example 5.8. The above discussion may be a little abstract, let’s compute
a concrete example to show what’s going on

If we let m = 3, n = 2, and let λ = (1, 1), then

m(1,1)(x1, x2, x3) = x1x2 + x1x3 + x2x1 + x2x3 + x3x1 + x3x2

So
ρ3,2(m(1,1)(x1, x2, x3)) = m(1,1)(x1, x2) = x1x2 + x2x1

and in this case, l(λ) = 2 = n. If we let λ = (1, 1, 1), then

ρ3,2(m(1,1,1)) = ρ3,2(x1x2x3) = 0

is quite natural.
Furthermore, if we let k = n = 2,m = 3, then obviously Λ2

3 is spanned by

m(2,0)(x1, x2, x3) = x21 + x22 + x33

m(1,1)(x1, x2, x3) = x1x2 + x1x3 + x2x1 + x2x3 + x3x1 + x3x2

and Λ2
2 is spanned by

m(2,0)(x1, x2) = x21 + x22

m(1,1)(x1, x2) = x1x2 + x2x1

So ρ23,2 is clearly an isomorphism. Hope this example can help you to get a
better understanding.

Definition 5.9 (The ring of symmetric functions). We define

Λ =
⊕
k≥0

Λk

Λ is the free Z-module generated by the mλ for all partitions λ, and is called
the ring of symmetric functions. The mλ are called monomial symmetric
functions.

Remark 5.10. We have the following remarks
1. For any communicative ring R in place of Z, we can define a ring ΛR

satisfying ΛR ∼= Λ⊗Z R.
2. We have surjective ring homomorphisms ρn =

⊕
k≥0 ρ

k
n : Λ→ Λn, n ≥ 0.

ρn is an isomorphism in degrees k ≤ n.
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5.1. Elementary symmetric function. As we can see above, mλ for any
λ form a basis of the ring of symmetric functions. Now we will give several
different basis of it, some of them are quite important to the representation
theory of Sn.

First of them is elementary symmetric function

Definition 5.11 (Elementary symmetric function). Let e0 = 1 and er =∑
i1<···<ir xi1 . . . xir = m(1r) for some r ≥ 1.
For each partition λ = (λ1, λ2, . . . ) define eλ = eλ1eλ2 . . . . Then eλ is

called elementary symmetric functions.

Remark 5.12. The generating function for the er is

E(t) =

∞∑
r=0

ert
r =

∏
i≥1

(1 + xit)

Remark 5.13. If the number of variables is finite, say n, then

ρn(er) = 0 =⇒
n∑
r=0

ert
r =

n∏
i=1

(1 + xit) ∈ Λn[t]

Lemma 5.14. Let λ be a partition, λ′ its conjugate. Then

eλ′ = mλ +
∑
µ<λ

aλµmµ, aλµ ∈ Z≥0

Proof. When we multiply out the product eλ′ = eλ′1eλ′2 . . . , we will obtain a
sum of monomials, each of which is of the form

(xi1xi2 . . . )(xj1xj2 . . . ) · · · = xα

where i1 < i2 < · · · < iλ′1 , j1 < j2 < · · · < jλ′2 , and so on.
Put the numbers i1, . . . , iλ′1 into the first column of D(λ) and similarly for

the remaining numbers. The symbols ≤ r occur in the top r rows of D(λ).
Hence we have

α1 + · · ·+ αr ≤ λ1 + · · ·+ λr

for each r ≥ 1, i.e. we have α ≤ λ. If follows Lemma 4.28 that

eλ′ =
∑
µ≤λ

aλµmµ

with aλµ ≥ 0 for each µ ≤ λ, and the argument above also shows that the
monomial xλ occurs exactly once, so that aλλ = 1. □
Proposition 5.15. We have

Λ ∼= Z[e1, e2, . . . ]

and er are algebraically independent over Z.

Proof. By above lemma, the er form a Z-basis since the mλ do so. Then
every f ∈ Λ uniquely expressible as a polynomial in er, r ≥ 0. □
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5.2. Complete symmetric function.
Definition 5.16 (complete symmetric function). Let h0 = 1, and hr =∑

µ⊢rmµ, r ≥ 1. For each partition λ = (λ1, λ2, . . . , ), we define hλ =
hλ1hλ2 . . . , called the complete symmetric functions.
Remark 5.17. Note that e1 = h1. And it will be convenient to define
hr, er = 0 to be zero for r < 0.
Lemma 5.18. The generating function of the hr is

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)−1

Furthermore, we have
H(t)E(−t) = 1

Proof. To see the first, use the fact
1

1− xit
=
∑
k

xki t
k

and multiply these geometric series together.
Use the fact that the generating function of er is

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit)

together with what we have proven to see the second. □
Remark 5.19. H(t)E(−t) = 1 is equivalent to

n∑
r=0

(−1)rerhn−r = 0

for all n ≥ 1.
Since er are algebraically independent, we may define a homomorphism

of graded rings as follows
Definition 5.20.

ω : Λ→ Λ

er 7→ hr

Lemma 5.21. ω is a involution.
Proof. The relations

n∑
r=0

(−1)rerhn−r = 0, ∀n ≥ 1

are symmetric with respect to interchanging er and hr. □
Proposition 5.22. We have

Λ ∼= Z[h1, h2, . . . ]
and hr are algebraically independent over Z.
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Proof. Follows from that ω2 = Id, that is ω is an automorphism of Λ. □
Remark 5.23. If the number of variables is finite, say n, then ω|Λ = id |Λn ,
and Λn ∼= Z[h1, . . . , hn] with hr are algebraically independent over Z, but
hr+1, . . . are nonzero polynomials in h1, . . . , hn.

Remark 5.24. We could define fλ = ω(mλ) and would obtain another basis
of Λ, but these play no role later on.

Remark 5.18 lead to a determinant identity which we shall make use of
later. Let N be a positive integer and consider the matrices of N + 1 rows
and columns

H = (hi−j)0≤i,j≤N , E = ((−1)i−jei−j)0≤i,j≤N
Then E,H are lower unitriangular, so we have detE = detH = 1. Moreover,
Remark 5.18 shows that

N∑
r=0

(−1)rerhn−r = 0

which implies that
EH = Id

It follows that each minor of H is equal to the complementary cofactor of
ET , the transpose of E.

Now let λ, µ be partitions of length ≤ p such that λ′, µ′ have length
≤ p. p + q = N + 1. And consider the minor of H with row indices
λi + p− i(1 ≤ i ≤ p) and columns indices µi + p− i(1 ≤ i ≤ p. By Lemma
4.13 the complementary cofactor of ET has row indices p−1+j−λ′j(1 ≤ j ≤ q
and column indices p− 1 + j − µ′j(1 ≤ j ≤ p). Hence we have

det(hλ1−µj−i+j)1<i,j<p = (−1)|λ|+|µ| det((−1)λ
′
i−µ′j−i+jeλ′i−µ′j−i+j)1<i,j<q

The minus signs cancel out, and we have proven the following results:

Lemma 5.25. Let λ, µ be partitions of length ≤ p such that λ′, µ′ have
length ≤ p. p+ q = N + 1. Then

det(hλi−µj−i+j)0≤i,j≤p = det(eλ′i−µ′i−i+j)0≤i,j≤q

In particular, if µ = ∅, then det(hλi−i+j) = det(eλ′j−i+j).

5.3. Power sums.

Definition 5.26 (power sum). Let pr =
∑

i x
r
i = m(r), r ≥ 1, pr is call the

r-th power sum. For a partition λ = (λ1, λ2, . . . ), we define pλ = pλ1pλ2 . . .

Lemma 5.27. The generating function of pr is

P (t) =
∑
r≥1

prt
r−1 =

H(t)

H ′(t)

Furthermore, we have the following properties
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1. P (−t) = E′(t)
E(t)

2. nhn =
∑n

r=1 prhn−r
3. nen =

∑n
r=1(−1)r−1pren−r

Proof. We compute as follows
P (t) =

∑
i≥1

∑
r≥1

xri t
r−1

=
∑
i≥1

xi
1− xit

=
∑
i≥1

d

dt
log(

1

1− xit
)

=
d

dt
log
∏
i≥1

(1− xit)−1

=
d

dt
logH(t)

=
H ′(t)

H(t)

Similarly we have P (−t) = d
dt logE(t).

From above we have

nhn =

n∑
r=1

prhn−r

nen =
n∑
r=1

(−1)r−1pren−r

for n ≥ 1. □
Remark 5.28. The second and third equations enable us to express the h′s
and the e′s in terms of the p′s, and vice versa. In fact, the third equations
are due to Isaac Newton, and are known as Newton’s formulas. And from
the second formula, it is clear that hn ∈ Q[p1, . . . , pn] and pn ∈ Z[h1, . . . , hn],
and hence

Q[p1, . . . , pn] = Q[h1, . . . , hn]

Since the hr are algebraically independent over Z, and hence also over Q, it
follows that:
Proposition 5.29. ΛQ = Λ⊗ZQ ∼= Q[p1, p2, . . . ] and the pr are algebraically
independent over Q. The pr form a Q-basis for ΛQ.
Definition 5.30. Let λ = (1m12m2 . . . ) be a partition in exponential nota-
tion. We define

ελ = (−1)m2+m4+... = (−1)|λ|−l(λ)

zλ =
∏
j≥1

jmjmj !
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Remark 5.31. Let w ∈ Sn with cycle type α(w) = (1m12m2 . . . ), then

εα(w) =

{
1, w is even
−1, w is odd

so we have Sn → {±1} defined by w 7→ εα(w) is the usual sign homomor-
phism.

Lemma 5.32. ω(pλ) = ελpλ

Proof. Since we have

ω(E(t)) = H(t), ω(H(t)) = E(t)

then we have

ω(P (t)) = ω(
H ′(t)

H(t)
) =

E′(t)

E(t)
= P (−t)

then
ω(pn) = (−1)n−1pn, ∀n ≥ 1

then
ω(pλ) = (−1)

∑
λi−

∑
1pλ = ελpλ

□

Lemma 5.33. We have

H(t) =
∑
λ

1

zλ
pλt

|λ|, hn =
∑
λ⊢n

1

zλ
pλ

E(t) =
∑
λ

ελ
zλ
pλt

|λ|, en =
∑
λ⊢n

ελ
zλ
pλ

Proof. It suffices to prove the identity in the first row, since the one in the
second row then follows by applying the involution ω and using the fact that
pk is an eigenvector of ω with respect to ελ.

We compute as follows,

H(z) = exp
∑
r≥1

prt
r/r

=
∏
r≥1

exp(prt
r/r)

=
∏
r≥1

∞∑
mr=0

(prt
r)mr/rmrmr!

=
∑
λ

z−1
λ pλt

|λ|

The first step follows from Lemma 5.26. □
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6. Schur functions

Lemma 6.1. Let An = {f ∈ Z[x1, . . . , xn] | w(f) = sgn(w)f, ∀w ∈ Sn},
then An is a free module of rank 1 over Λn.

Proof. Let f ∈ An, then xi − xj , i 6= j divides f , since f |xi=xj = 0, so we
have

∏
i<j(xi − xj) divides f . Then

f =
∏
i<j

(xi − xj)g, g ∈ Λn

So An is generated by
∏
i<j(xi−xj) over Λn, i.e. An =

∏
i<j(xi−xj)Λn □

Let xα = xα1
1 . . . xαn

n be a monomial, and consider the polynomial aα
obtained by antisymmetrizing xα, that is

aα =
∑
w∈Sn

sgn(w)w(xα)

Clearly aα is skew-symmetric, i.e. aα ∈ An. In particular, therefore aα
vanishes unless α1, . . . , αn are all distinct. Hence we may as well assume
that α1 > · · · > αn ≥ 0. And we may write α = λ + δ, where λ is a
partition4 with length ≤ n and δ = (n− 1, n− 2, . . . , 1, 0). Then

aα = aλ+δ =
∑
w∈Sn

sgn(w)w(xλ+δ)

which can be written as a determinant.

Lemma 6.2. Let λ be a partition l(λ) ≤ n, then
1. aλ+δ = det(x

λj+n−j
i )1≤i,j≤n. In particular, aδ = det(xn−ji )1≤i,j≤n =∏

(xi − xj) is the Vandermonde determinant.
2. aλ+δ is divisible by aδ.

Proof. 1. follows from the Leibniz formula for the determinant detA =∑
w∈Sn

sgn(w)
∏r
i=1 ai,w(i).

2. follows from Lemma 6.1. □

Definition 6.3. Let λ be a partition, l(λ) ≤ n, and δ = (n−1, n−2, . . . , 0) ∈
Zn≥0. We define the Schur polynomial

sλ =
aλ+δ
aδ
∈ Λn

Notice that the definition of sλ makes sense for any integer vector λ ∈ Zn
such that λ+ δ has no negative parts. If λi+n− i are not all distinct, then
sλ = 0. If they are all distinct, then we have λ + δ = w(µ + δ) for some
w ∈ Sn and some partition µ, and sλ = sgn(w)sµ.

4λ is indeed a partition. Take an example, α1+1−n ≥ α2+2−n holds, since α1 > α2

is equivalent to α1 ≥ α2 + 1
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The polynomial aλ+δ where λ runs through all partitions of length ≤ n,
form a basis of An. Multiplication by aδ is an isomorphism of Λn onto An,
since An is the free Λn-module generated by aδ.

So we have proven

Lemma 6.4. The Schur polynomial sλ, where λ is a partition with l(λ) ≤ n,
form a Z-basis of Λn.

Proposition 6.5. The sλ for all partitions λ form a Z-basis of Λ, called
Schur functions. The sλ for all partitions λ with |λ| = k form a Z-basis of
Λk.

Proof. From the definition it follows that

aλ+δ+(kn) =

n∏
i=1

xki aλ+δ, sλ+(kn) = sλ

□

Proposition 6.6.
sλ = det(hλi−i+j)1≤i,j≤n, n ≤ l(λ)
sλ = det(eλ′i−i+j)1≤i,j≤m, m ≤ l(λ′)

Proof. □

Corollary 6.7. We have the following properties
1. ω(sλ) = sλ′
2. s(n) = hn, s(1n) = en

7. Orthogonality

Let x = (x1, x2, x3, . . . ), y = (y1, y2, y3, . . . ) be finite or infinite sequences
of variables. We denote the symmetric functions of the x′s by sλ(x), pλ(x),
etc. and the symmetric functions of the y′s by sλ(y), pλ(y), etc.

Proposition 7.1. We give three series expansions for the product∏
i,j

(1− xiyj)−1 =
∑
λ

1

zλ
pλ(x)pλ(y)

=
∑
λ

hλ(x)mλ(y)

=
∑
λ

sλ(x)sλ(y)

Proof. For the first one, Since we have

H(t) =
∏
i

(1− xit)−1 =
∑
λ

z−1
k pλt

|λ|
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Choose as variables xiyj , then∏
i,j

(1− xiyjt)−1 = H(t) =
∑
λ

1

zλ
pλ(x1y1, . . . , xiyj , . . . , xnyn)t

|λ|

=
∑
λ

1

zλ
pλ(x)pλ(y)t

|λ|

and set t = 1 to get desired result.
For the second one,∏

i,j

(1− xiyjt)−1 =
∏
j

H(yj)

=
∏
j

∞∑
r=0

hr(x)y
r
j

=
∑
α

hα(x)y
α

=
∑
λ

hλ(x)mλ(y)

where α runs through all sequences (α1, α2, . . . ) of non-negative integers
such that

∑
αi <∞, and λ runs through all partitions.

For the third one is sometimes called Cauchy formula, we compute as

aδ(x)aδ(y)

n∏
i,j=1

(1− xiyj)−1 = aδ(x)
∑
w∈Sn

sgn(w)w(yδ)
∑
λ

hλ(x)mλ(y)

= aδ(x)
∑
w∈Sn

∑
λ

sgn(w)ywδhλ(x)
∑

α is the
permutation of λ

yα

= aδ(x)
∑

w∈Sn,α∈Nn

sgn(w)hα(x)y
α+wδ

=
∑

w∈Sn,β∈Nn

(aδ(x) sgn(w)hβ−wδ(x))y
β

=
∑
β∈Nn

aβ(x)y
β (αβ = 0 if β 6= w(λ+ δ), w ∈ Sn)

=
∑
w∈Sn

∑
λ

w(aλ+δ(x))y
w(λ+δ)

=
∑
λ

aλ+δ(x)
∑
w∈Sn

sgn(w)w(yλ+δ)

=
∑
λ

aλ+δ(x)aλ+δ(y)

This proves in the case of n variables xi and n variables yi, now let n→∞
as usual to complete the proof. □
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Definition 7.2. We define a Z-valued bilinear form 〈·, ·〉 : Λ × Λ → Z by
requiring

〈hλ,mµ〉 = δλµ

for all partitions λ, µ, where δλµ is the Kronecker delta.

Lemma 7.3. For each n ≥ 0, let (uλ), (vλ) be Q-bases of ΛnQ, indexed by
the partition λ of n. Then the following condition are equivalent:
1. 〈µλ, vµ〉 = δλµ for all λ, µ.
2.
∑

λ uλ(x)vλ(y) =
∏
i,j(1− xiyj)−1.

Proof. Let
uλ =

∑
ρ

aλρhρ, vµ =
∑
σ

bµσmσ

then
〈uλ, vµ〉 =

∑
ρ

aλρbµρ

so the first statement is equivalent to∑
ρ

aλρbµρ = δλµ

And note that the second statement is equivalent to∑
λ

uλ(x)vλ(y) =
∑
ρ

hρ(x)mρ(y)

so it is also equivalent to ∑
λ

aλρbλσ = δρσ

This completes the proof. □
So together with Proposition 7.1 with Lemma 7.3, it follows that

〈pλ, pµ〉 = δλµzλ

so that the pλ form an orthogonal basis of ΛQ. Likewise we have
〈sλ, sµ〉 = δλµ

so that sλ form an orthonormal basis of Λ, and the sλ such that |λ| = n
form an orthonormal basis of Λn.

Any other orthonormal basis of Λn must therefore be obtained from the
basis (sλ) by transformation by an orthonormal integer matrix. The only
such matrices are signed permutation matrices, therefore the orthonormal
relation sλ satisfied characterizes the sλ up to order and sign.

Lemma 7.4. ω : Λ→ Λ is an isometry for 〈·, ·〉.

Proof. Since we have ω(pλ) = ελpλ, hence we
〈ω(pλ, ω(pµ)〉 = ελεµ〈pλ, pµ〉 = ελεµzλδλµ = 〈pλ, pµ〉

since (ελ)
2 = 1. This completes the proof. □
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7.1. Transition matrices. Let λ, µ be partitions, we define
{λ}j = {µ ⊂ λ | |µ| = |λ| − j, 0 ≤ λ′i − µ′i ≤ 1, ∀i}
{λ}j = {µ ⊂ λ | |µ| = |λ|+ j, λ′i ≤ µ′i ≤ λ′i + 1,∀i}

Definition 7.5 (flag). A flage µ• is a sequence of partitions
µn ⊂ µn−1 ⊂ · · · ⊂ µ0 = λ

such that µi ∈ {µi−1}ai for some ai ≥ 0, and all 1 ≤ i ≤ n. The sequence
a = (a1, . . . , an) is called the weight of µ0.

Definition 7.6 (complete). A flag is called complete if n = |λ|.

Example 7.7. Consider λ = (6, 4, 4, 2), we can get a flag as follows by
removing boxes.
1 2 2 3 3 5
2 3 5 5
4 4 7 7
5 7

1 2 2 3 3 5
2 3 5 5
4 4
5

1 2 2 3 3 5
2 3 5 5
4 4
5

1 2 2 3 3
2 3
4 4

1 2 2 3 3
2 3

1 2 2
2

1 ∅

where we have
µ0 = (6, 4, 4, 2) ⊃ µ1 = (6, 4, 2, 1) ⊃ µ2 = (6, 4, 2, 1) ⊃ µ3 = (5, 2, 2) ⊃
µ4 = (5, 2) ⊃ µ5 = (3, 1) ⊃ µ6 = (1) ⊃ µ7 = ∅

and
a1 = 3, a2 = 0, a3 = 4, a4 = 2, a5 = 3, a6 = 3, a7 = 1

that is a = (3, 0, 4, 2, 3, 3, 1)

Lemma 7.8.
{semistandard Young tableau T (λ} ←→ {flag µ• such that µ0 = λ}

Proof. Let n = |λ|. Given µ• with µ0 = λ, define T (λ) by filling all the ai
boxes of µi − µi+1 with n − i, 1 ≤ i ≤ n. Then ui ∈ {µi−1}ai implies all
columns are strictly increasing and ai ≥ 0 implies all rows are increasing.

Given a semistandard Young tableau T (λ) of weight a = (a1, . . . , an),
remove ai boxes whoses entry is n− i+1 to obtain µi and set µ0 = λ. Rows
of T (λ) are increasing implies |µi| − |µi−1| = ai−1 ≥ 0 and columns of T (λ)
are strictly increasing implies at most one box in each column is removed,
that is 0 ≤ µ′i−1 − µ′i ≤ 1. □

Recall that we have
s(n) = hn, s(1n) = en

Proposition 7.9. [Pier’s formula] We have
1. sλej =

∑
µ∈{λ}j sµ

2. sλhj =
∑

µ′∈{λ′}j sµ
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Proof. Let λ = (λ1, . . . , λn) with n sufficiently large by allowing some λi to
be zero.

sλeiaδ = aλ+δei ∈ Ar
implies

aλ+δ =
∑
µ

Bλµaµ+δ

Let li = λi + n − i, then the only way to obtain a monomial xm1
1 . . . xmn

n

with m1 > m2 > · · · > mn in aλ+δei is possibly by xl11 . . . xlnn xj1 . . . xjn . This
monomial has strictly decreasing exponents if and only if the following is
satisfied: Set

µk =

{
λk, k /∈ {j1, . . . , ji}
λk + 1, k ∈ {j1, . . . , ji}

Then µ1 ≥ · · · ≥ µn, i.e. µ ∈ {λ}i. The coefficient of such a monomial is
Bλµ = 1, so we have

aλ+δei =
∑

µ∈{λ}i

aµ+δ

And the second equation follows from the first since ω(en) = hn, ω(sλ) =
sλ′ . □

Use the following, we can express sλ with xn = 1 in terms of sµ in n− 1
variables.

Lemma 7.10. sλ(x1, . . . , xn−1, 1) =
∑|λ|

j=0

∑
µ∈{λ}j sµ(x1, . . . , xn−1)

Proof. By Cauchy formula∑
λ

sλ(x1, . . . , xn−1, 1)sλ(y1, . . . , yn) =
n−1∏
i=1

n∏
j=1

(1− xiyj)−1
n∏
j=1

(1− yj)−1

=
∑
µ

sµ(x1, . . . , xn−1)sµ(y1, . . . , yn)

∞∑
j=0

hj(y1, . . . , yn)

=
∑
µ

sµ(x1, . . . , xn−1)

∞∑
j=0

∑
λ′∈{µ′}j

sλ(y1, . . . , yn)

Comparing the coefficients of sλ(y1, . . . , yn), we have

sλ(x1, . . . , xn−1, 1) =

∞∑
j=0

∑
µ,λ′∈{µ′}j

sµ(x1, . . . , xn−1)

=

|λ|∑
j=0

∑
µ′∈{λ}j

sµ(x1, . . . , xn−1)

since λ′ ∈ {µ′}j implies j ≤ |λ| = n. □
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Lemma 7.11. We can write
sλ(x1, . . . , xn) =

∑
µ•=(∅⊂µ⊂λ)

a=|λ|−|µ|

xansµ(x1, . . . , xn−1)

Proof. sλ(x1, . . . , xn) is homogenous of degree |λ|, then

sλ(x1, . . . , xn) = x|λ|n sλ(
x1
xn
, . . . ,

xn−1

xn
, 1)

= x|λ|n

|λ|∑
j=0

∑
µ∈{λ}j

sµ(
x1
xn
, . . . ,

xn−1

xn
)

=

|λ|∑
j=0

∑
µ∈{λ}j

x|λ|−|µ|
n sµ(x1, . . . , xn−1)

□
Theorem 7.12. We have

sλ(x1, . . . , xn) =
∑

T is semistandard
Young tableau of sharp λ

xT

where

xT =

n∏
i=1

x
an−i+1

i

and a is the weight of T (λ).

Proof.

sλ(x1, . . . , xn) =
∑

xa1n x
a2
n−1 . . . x

ai
n−i+1sµ(x1, . . . , xn−i)

where the sumation runs over µ• = (µi ⊂ µi−1 ⊂ · · · ⊂ µ0 = λ) such that
|µi| − |µi−1| = ai and 0 ≤ µ′i − µ′i−1 ≤ 1. Then we have

sλ(x1, . . . , xn) =
∑

µ· is a flag of λ

n∏
i=1

x
an−1+i

i

=
∑

xT

where T runs over all semistandard Young tableau as desired. □
Remark 7.13. In combinatorics this statement is taken as a definition, and
all the properties of sλ are derived from this. In particular, sλ ∈ Λkn where
k = |λ|.

Corollary 7.14. sλ =
∑

µ≤λKλµmλ, where Kλµ is Kostka number.

Example 7.15. Let n = 3 and λ = (3, 3, 1) to compute sλ(x1, x2, x3) use
above property. All we need to do is to find out all semistandard Young
tableaus, and compute the weight of flags which correspond to them.
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List as follows
1 1 1
2 2 2
3

(3, 3, 1) ⊃1 (3, 3) ⊃3 (3) ⊃3 ∅

1 1 1
2 2 3
3

(3, 3, 1) ⊃2 (3, 2) ⊃2 (3) ⊃3 ∅

1 1 1
2 3 3
3

(3, 3, 1) ⊃3 (3, 1) ⊃1 (3) ⊃3 ∅

1 1 2
2 2 3
3

(3, 3, 1) ⊃2 (3, 2) ⊃3 (2) ⊃2 ∅

1 1 2
2 3 3
3

(3, 3, 1) ⊃3 (3, 1) ⊃2 (2) ⊃2 ∅

1 2 2
2 3 3
3

(3, 3, 1) ⊃3 (3, 1) ⊃3 (1) ⊃1 ∅

so we have
s(3,3,1) =x1x

3
2x

3
3 + x21x

2
2x

3
3 + x31x2x

3
3 + x21x

3
2x3 + x31x

2
2x

2
3 + x31x

3
2x3

Now we have already know the relations between bases (sλ) and (mλ),
We also want to know

sλ =
∑

Fλµpµ

Definition 7.16. We arrange partition with respect to the reverse lexico-
graphic order Ln, i.e. (n) is first and (1n) is last. A matrix (Mλµ) indexed
by λ, µ ∈ Pn is said to be strictly upper triangle, if Mλµ = 0 unless
λ ≥ µ; And strictly upper unitriangular if also Mλλ = 1 for all λ ∈ Pn;
Similarly for strictly lower unitriangular.

We set Un be the set of all strictly upper unitriangular matrices and U ′
n

be the set of all strictly lower unitriangular matrices.

Lemma 7.17. Un, U ′
n are groups with respect to matrix multiplication.

Proof. Let M,N ∈ Un, then we have

(MN)λµ =
∑
ν

MλνNνµ = 0

unless there exists ν such that λ ≥ ν ≥ µ, i.e. unless λ ≥ µ. For the same
reason we have

(MN)λλ =MλλNλλ = 1
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i.e. MN ∈ Un.
Consider

∑
µMλνxµ = yλ, If ν ≤ λ, these equations involve xµ for µ ≤ ν,

hence µ ≤ λ. The same is true for the equivalent set of equations∑
µ

(M−1)λµyµ = xµ

implies (M−1)λµ = 0 unless µ ≤ λ. □
Lemma 7.18. Let

J =

{
1, µ = λ′

0, otherwise
Then M ∈ Un is equivalent to JMJ ∈ U ′

n

Proof. If let N = JMJ , then we have Nλµ = Mµ′λ′ . Then by Lemma 4.23,
we have λ ≥ µ is equivalent to µ′ ≥ λ′. This completes the proof. □
Definition 7.19. Let (uλ), (vλ) be Q bases for Λ. We denote by M(u, v)
the matrix (Mλµ) of coefficients in the equations

uλ =
∑
µ

Mλµvµ

and M(u, v) is called the transition matrix from (vλ) to (uλ).
Lemma 7.20. Let (uλ), (vλ), (wλ) be Q bases of Λ, and let (u′λ), (v′λ) be the
dual bases of (uλ), (vλ) with respect to 〈·, ·〉. Then

M(u, v)M(v, w) =M(v, w)

M(v, u) =M(u, v)−1

M(v′, u′) =M(v, u)T =M(u, v)∗

M(wv,wu) =M(u, v)

where T means transpose and ∗ means transpose of inverse.
Proposition 7.21. The matrix (Kλµ) is in Un.
Proof. By Lemma 4.27, we have Kλµ = 0 unless λ ≥ µ. In particular, we
have Kλλ = 1. □
Remark 7.22. In fact, all transition matrices between bases eλ, hλ,mλ, sλ
can be expressed in terms of J and K

Definition 7.23. Let L denote the transition matrix M(p,m), i.e.

pλ =
∑
µ

Lλµmµ

Definition 7.24. Let λ be partition, l(λ) = r. Let f : [1, r] ⊂ Z → Z≥0.
We define f(λ) to be the vector whose i-th component is

f(λ)i =
∑
f(j)=i

λj , i ≥ 1
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Proposition 7.25. Lλµ = |{f : Z→ Z≥0 | f(λ) = µ}|

Proof. Note that
pλ = pλ1pλ2 . . .

=
∑

f :[1,l(λ)]→Z≥0

xλ1f(1)x
λ2
f(2) . . .

=
∑
f

xf(λ)

=
∑
µ

∑
f(λ)=µ

∑
w∈Sn

xw(µ)

and
∑

w∈Sn
xw(µ) is just mµ. □

Definition 7.26. Let λ, µ be partitions, λ is a refinement of µ if λ =⋃
i≥1 λ

(i) such that λ(i) is a partition of µj . We write λ ≤R µ.

Lemma 7.27. We have
1. λ ≤R µ is equivalent to µ = f(λ) for some f : [1, l(λ)]→ N.
2. ≤R is a partial order on Pn.
3. λ ≤R µ implies λ ≤ µ.

Proof. See problem set. □

Corollary 7.28. We have
1. L = (Lλµ) ∈ U ′

n

2. M(p, s) =M(p,m)M(s,m)−1 = LK−1

8. Representation of Sn

Now finally we come back to our topic, representation theory, and use
what we have learnt about symmetric functions to see what’s the irreducible
representation ring of Sn.

Recall we have a bilinear form on C(G,C), defined by

(f, g)G =
1

|G|
∑
x∈G

f(x)g(x−1)

We extend it to function f : G→ A, and A is any communicative C-algebra.
We also extend restriction ResGH and induction IndGH from f : G → C to
f : G → A. Then Frobenius reciprocity still holds, i.e. For H ≤ G, and
χ : G→ A,ψ : H → A are functions. If χ is a class function, then

(IndGH ψ, χ)G = (ψ,ResGH χ)H

Lemma 8.1. Let m,n ∈ N. We embed Sm × Sn into Sm+n by making Sm
and Sn act on complementary subsets of {1, . . . ,m+ n}. Then:
1. All such subgroups are conjugate to each other
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2. If v ∈ Sn has cycle type α(v), w ∈ Sn has cycle type α(w), then v × w ∈
Sn+m is well-defined up to conjugate in Sm+n with cycle type α(v×w) =
α(v) ∪ α(w).

3. Let ψ : Sn → Λ, w 7→ pα(w). Then in the setting of 2., ψ(v × w) =
ψ(v)ψ(w).

Proof. Clear. □
Definition 8.2. Let Rn denote the Z-module generated by V ∈ Irr(Sn)
modulo the relations V +W − V ⊕W . Set R =

⊕
n≥0R

n, where S0 = {e}
and R0 = Z.

For V ∈ Rm,W ∈ Rn, let V ⊠W be the corresponding representation of
Sm × Sn. Set

V •W = Ind
Sm+n

Sm×Sn
(V ⊠W )

For V =
⊕

n≥0 Vn,W =
⊕

n≥0Wn, where Vn,Wn ∈ Rn, we set

(V,W ) =
∑
n≥0

(Vn,Wn)Sn

with
(Vn,Wn)Sn = dimHomSn(Vn,Wn)

Proposition 8.3. For R, we have
1. (R, •) is a communicative graded ring.
2. (·, ·) : R×R→ Z is a well-defined scalar product on R.
Proof. Omit. □
Definition 8.4 (Frobenius characteristic). The Frobenius characteristic is
the map

ch : R→ ΛC = Λ⊗ C
V 7→ ch(V )

where chn(V ) = (χV , ψ)Sn =
1

n!

∑
w∈Sn

χV (w)ψ(w
−1) for V ∈ Rn.

Lemma 8.5. Let V ∈ Rn. Then
chn(V ) =

∑
|λ|=n

z−1
λ χV (Kλ)pλ

where χV (Kλ) = χV (w) for w ∈ Kλ ∈ Conj(Sn).
Proof. Firstly, we have

chn(V ) =
1

n!

∑
w∈Sn

χV (w)pα(w)

since ψ(w−1) = pα(w−1) = pα(w). Note that χV (w) = χV (w
′) if α(w) =

α(w′) ∈ Conj(Sn) and |Kλ| = n!z−1
λ , then

chn(V ) =
1

n!

∑
λ∈Conj(Sn)

|Kλ|χV (Kλ)pλ =
∑
|λ|=n

z−1
λ χV (Kλ)pλ
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as desired. □
Proposition 8.6. ch is an isometry, i.e. for V,W ∈ Rn, we have

〈chn(V ), chn(W )〉 = (V,W )

Proof. Note that

〈chn(V ), chn(W )〉 =
∑
λ,µ

z−1
λ z−1

µ χV (Kλ)χW (Kµ)〈pλ, pµ〉

=
∑
λ

z−1
λ χV (Kλ)χW (Kλ)

=
1

n!

∑
λ

|Kλ|χV (Kλ)χW (Kλ)

= (χV , χW )Sn

= (V,W )Rn

□
Proposition 8.7. ch is an isometric ring isomorphism R ∼= ΛC.

Proof. It suffices to show ring isomorphism:
For V ∈ Rm,W ∈ Rn, we have

ch(V •W ) = ch(Ind
Sm+n

Sm×Sn
(V ⊠W ))

= (χ
Ind

Sm+n
Sm×Sn

(V ⊠W )
, ψ)Sm+n

= (Ind
Sm+n

Sm×Sn
(χV ⊠W ), ψ)Sm+n

= (χV ⊠W ,Res
Sm+n

Sm×Sn
ψ)Sm×Sn

= (χV , ψ)Sm(χW , ψ)Sn

= ch(V ) ch(W )

i.e. ch is a homomorphism.
Let η = χUn , where Un is trivial representation of Sn. Then

ch(Un) =
∑
λ

z−1
λ pλ = hλ

If λ ` n, let ηλ = ηλ1ηλ2 , which implies ηλ is a character of Sn, and
Hλ = IndSn

Sλ1
×···×Sλn

(Uλ1 ⊠ · · ·⊠ Uλn)

so we have ch(Hλ) = hλ.
Recall that

sλ = det(hλi−i+j)i,j

For each λ ` n. Let V λ ∈ Rn be the isomorphism class of a representation
such that

χλ = χV λ = det(ηλi−i+j)i,j

Then ch(V λ) = sλ.
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By the following computation

(χλ, χµ) = 〈ch(V λ), ch(V µ)〉 = 〈sλ, sµ〉 = δλµ

So ±χλ is an irreducible character of Sn. Since we have |Conj(Sn)| = pn =
| Irr(Sn)|, then χλ are all characters of Sn, so (V λ)λ⊢n forms a basis of Rn,
so we have ch |Rn is an isomorphism. This completes the proof. □

Theorem 8.8. [Frobenius] The irreducible characters of Sn are χλ, λ ` n.
Moreover, the dimension of V λ is Kλ(1n), the number of standard Young
tableau of shape λ.

Proof. It remains to show that χλ and not −χλ is an irreducible character.
Need to show χλ(e) > 0, where e ∈ K(1n) ∈ Conj(Sn).

sλ = ch(V λ) =
∑
ν

z−1
ν χλ(Kν)pν

then

〈sλ, pµ〉 =
∑
ν

z−1
ν χλ(Kν)〈pν , pµ〉 = χλ(Kµ)

since 〈pν , pµ〉 = zµδµν .
Then

dim(V λ) = χλ(e) = χλ(K(1n)) = 〈sλ, p(1n)〉 = Kλ(1n)

□

Corollary 8.9. The transition matrix M(p, s) is the character table of Sn.

Proof. Note that, from above proof we have

χλ(Kµ) = 〈sλ, pµ〉

□

Example 8.10. Recall that we have computed s(3,3,1)(x1, x2, x3) in Example
7.15. Use the same method, we can see

s(13) = x1x2x3

s(2,1) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + 2x1x2x3

s(3) = x31 + x32 + x33 + x21x2 + · · ·+ x2x
2
3 + x1x2x3
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and we have

p(13) = p31 = (
3∑
i=1

xi)
3

= x31 + x32 + x33 + 3(x1)

= s(3) + 2s(2,1) + s(13)

p(2,1) = p2p1 = (

3∑
i=1

x2i )(

3∑
i=1

xi)

= x31 + x32 + x23 + x21x2 + · · ·+ x2x
2
3

= s(3) + s(13)

p(3) = (

3∑
i=1

x3i ) = x31 + x32 + x33

= s(3) − s(2,1) + s(13)

Hence we have

1 = (13) (12) = (2, 1) (123) = (3)

U = V (3) 1 1 1

U ′ = V (13) 1 −1 1

V = V (2,1) 2 0 −1

Definition 8.11. Let U ′
n denote the sign representation of Sn. We define
Ω : R→ R

V 7→ V ⊗ U ′
n, V ∈ Rn

Lemma 8.12. Ω2 = id.

Proof. Clearly we have
χU ′

n⊗U ′
n
(g) = χU ′

n
(g)χU ′

n
(g) = 1, ∀g ∈ Sn

□
Proposition 8.13. ch ◦Ω = ω ◦ ch

Proof. Need to use the fact χU ′
n
(Kµ) = εµ = (−1)|µ|−l(µ) and ω(Pλ = ελpλ.

Let V λ be the representation such that χV λ = χλ = sλ, |λ| = n.
ch(Ω(V λ)) = ch(V λ ⊗ U ′

n)

=
∑
µ

z−1
µ χλ(Kµ)χU ′

n
(Kµ)pµ

=
∑
µ

z−1
µ χλ(Kµ)ω(pµ)

= ω(ch(V λ))
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□

Definition 8.14 (hook length). Let λ be a partition, D(λ) is its Young
diagram. The hook length of λ at x = (i, j) ∈ D(λ) is defined to be h(x) =
h(i, j) = λi − i+ λ′j − j + 1. The hook length of λ is defined to be

h(λ) =
∏

x∈D(λ)

h(x)

Corollary 8.15. [hook length formula]

dimV λ =
n!

h(λ)

Proof. Compute directly

dimV λ = Kλ(1n) = 〈sλ, p(1n)〉
= 〈sλ, (p1)n〉
= 〈sλ, (e1)n〉

=
n!

h(λ)

□

Definition 8.16. Let λ be a partition of n and length r. Let T be a Young
tableau of shape λ with range in [1, n] ⊂ Z. We define an action of Sn on T
by

(wT )i,j = w(Ti,j), w ∈ Sn

Definition 8.17 (row and column stabilizer). We define the row stabilizer

RT (λ) = {w ∈ Sn | w preserves each row of T} ⊂ Sn
and the column stabilizer

CT (λ) = {w ∈ Sn | w preserves each column of T} ⊂ Sn
Remark 8.18. For these stabilizers, we have following remarks.
1. Note that

RwT (λ) = wRT (λ)w
−1

CwT (λ) = wCT (λ)w
−1

so we always write Rλ = RT (λ) and Cλ = CT (λ).
2.

Rλ ∼= Sλ1 × · · · × Sλr
Cλ ∼= Sλ1 × · · · × Sλc

are Young subgroups.
3. Rλ ∩ Cλ′ = {e}.
4. Let v ∈ Cλ, u ∈ Rλ, u′ = vuv−1 ∈ RvT (λ). Then vuT (λ) = u′vTλ.
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Remark 8.19. Let A be a ring, x, y ∈ A, we have Ax,Ay,Axy are A-
modules, and Axy ⊂ Ay is a submodule. Indeed, let φ : A → Ay, defined
by a 7→ ay, is a module homomorphism. So we have Axy = φ(Ax). Then
the first isomorphism theorem implies

Axy = Ax/ kerφ

we will use this fact into what we have.
Definition 8.20. Let A = C[Sn] be group algebra. Consider

aλ =
∑
w∈Rλ

ew ∈ A

bλ =
∑
w∈Cλ

sgn(w)ew ∈ A

we define cλ = aλbλ ∈ A, and call it Young symmetrizer.
Remark 8.21. aλ, bλ, cλ depend implictly on the tableau T (λ). For exam-
ple, we have

awT (λ) =
∑

w′∈RwT (λ)

ew′ =
∑

w′∈wRT (λ)w
−1

ew′

=
∑

w′∈RT (λ)

ew−1ew′ew

= w−1(
∑

w′∈RT (λ)

ew′)w

= w−1aT (λ)w

Remark 8.22. If w ∈ Sn could be written as
w = u1v1 = u2v2, u1, u2 ∈ Rλ, v1, v2 ∈ Cλ

then u−1
2 u1 = v2v

−1
1 ∈ Rλ ∩ Cλ = {e}, so we have u1 = u2, v1 = v2.

So it suffices to take the sum in cλ over w ∈ Sn which are of the form
w = uv, u ∈ Rλ, v ∈ Cλ. In particular,

cλ = eid + · · · 6= 0

Lemma 8.23. Let Un be the trivial representation of Sn, and U ′
n be the sign

representation of Sn. Let λ be a partition of n, Sλ ⊂ Sn be the corresponding
Young subgroup. Set

Uλ = Uλ1 ⊠ · · ·⊠ Uλr , Hλ = IndSn
Sλ
Uλ

U ′
λ′ = Uλ′1 ⊠ · · ·⊠ U ′

λ′c
, Eλ′ = IndSn

S′
λ
U ′
λ′

Let ηλ = χHλ
and ελ′ = χEλ′ , χ

λ is the irreducible character corresponding
to V λ. Then
1.

Hλ
∼= C[Sn]aλ

Eλ′ ∼= C[Sn]bλ
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2.

ηλ = χλ +
∑
µ>λ

Kλµχ
µ

ελ′ = χλ +
∑
µ<λ

Kλµχ
µ

Proof. See problem set. □

Finally, we can construct V λ explictly here.

Theorem 8.24. Let V̂ λ = C[Sn]cλ, where λ is a partition of n. Then V̂ λ

is an irreducible representations of Sn with character χ
V̂ λ = χλ. Every

irreducible representation is of this form.

Proof. Let A = C[Sn]. By the Remark 8.19 on algebra, Acλ = Aaλbλ is
a submodule of Aaλ ∼= Hλ and is quotient of Abλ ∼= Eλ′ . Lemma 8.23
implies that Hλ and Eλ′ have a unique common irreducible component,
the irreducible representations V λ of Sn, with character χλ. Thus we have
V̂ λ ∼= V λ. □

Remark 8.25. cλ = cT (λ) depends on the choice of T (λ), since cwT (λ) =

wcT (λ)w
−1, ∀w ∈ Sn, so we have

V̂ T (λ) ∼= V̂ wT (λ)

Corollary 8.26. [Young’s rule]

IndSn
Sλ
Uλ = V λ ⊕

⊕
µ⊃λ

(V µ)⊕Kλµ

IndSn
Sλ′

Uλ′ = V λ ⊕
⊕
µ<λ

(V µ)⊕Kλµ

Remark 8.27. If λ = (1n), then IndSn

{e} U(1n) = C[Sn] = R, where R is
regular representation. But we have

R =
⊕
λ

(V λ)⊕ dimV λ

This shows again: dimV λ = Kλ(1n).

Remark 8.28. Let λ be a partition of n, µ be a partition of m, then

V λ • V µ = Ind
Sm+n

Sm×Sn
V λ ⊠ V µ

=
⊕
γ

Nν
λµV

ν

where V ν is an irreducible representation of Sm+n, and the sum runs over
all partitions ν of m+ n. Nν

λµ can be determined combinatorially using the
Littlewood-Richardson rule.
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Example 8.29. Let G = S3. There are three partitions of 3, that is,
(3), (2, 1), (13).

For λ = (3), that is, the Young tableau is just one row, so every element
of S3 lie in row stabilizer, so we have

V (3) = C
∑
w∈S3

ew = U, trivial representation.

For λ = (13), the Young tableau is just one column, so every element lie in
column stabilizer, so we have

V (13) = C
∑
w∈S3

sgn(w)ew = U ′, alternating representation.

For λ = (2, 1), things are a little complicated. Since we have R(2,1)
∼= S2×S1.

We can take Young tableau as follows for an example

1 2
3

then we have
a(2,1) = eid + e(12)

b(2,1) = eid − e(13)
c(2,1) = (eid + e(12))(eid − e(13))

= eid + e(12) − e(13) − e(123)
so

V (2,1) = C[Sn]c(2,1)
By simply computation, we have

v1 =c(2,1) = e(12)c(1,2)

v2 =e(13)c(2,1) = e(13) + e(123) − eid − e(23)
e(23)c(2,1) = e(23) + e(123) − e(132) − e(13) = −v1 − v2

So we have
V (2,1) = Cc(2,1) ⊕ Ce(13)c(2,1)

that is standard representation.

Proposition 8.30. Let λ be a partition of n, U ′
n be the alternating repre-

sentation of Sn. Then V λ′ ∼= V λ ⊗ U ′
n.

Proof.
(ch ◦Ω)(V λ) = ch(V λ ⊗ U ′

n)

(ω ◦ ch)(V λ) = ω(sλ) = sλ′ = ch(V λ′)

□

Proposition 8.31. For any λ, cλcλ = dλcλ, where dλ = h(λ).
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Proof. Let A = C[Sn], φλ : A→ A, defined by v 7→ vcλ, then

φλ(V
λ) = V λcλ = Ac2λ ⊂ Acλ = V λ

Since V λ is irreducible, then Schur’s lemma tells us that
φλ|V λ = αλ idV λ

then
c2λ = φλ(cλ) = αλcλ

then
φ2
λ(v) = vc2λ = αλvcλ = αλφλ(v)

implies that eigenvalues of φλ are zero and αλ and the multiplicity of αλ is
dimV λ. So

trφλ = α dimV λ = αλ
n!

h(λ)

□

Lemma 8.32. Let E be a finite dimensional vector space over C, Sn acts
on E⊗n by permuting the factors. View aλ, bλ as a representation of C[Sn]

C[Sn]→ End(E⊗n)

Then
1. im(aλ) =

⊗r
i=1 Sym

λi E ⊂ E⊗n

2. im(bλ) =
⊗c

i=1

∧λ′i E ⊂ E⊗n

Proof. Clear. □

Remark 8.33. In particular, we have

c(n) = a(n) =
∑
w∈Sn

ew

c(1n) = b(1n) =
∑
w∈Sn

sgn(w)ew

then
im c(n) = SymnE ⊂ E⊗n

im c(1n) =

n∧
E ⊂ E⊗n

Part 3. Representation theory of Lie groups and Lie algebras
9. Lie groups

9.1. Basic definitions about Lie groups.

Definition 9.1 (Lie group). A Lie group is a group G that is also a smooth
manifold in which the multiplication µ : G×G→ G and inversion ι : G→ G
are differentiable maps.
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Definition 9.2 (morphism of Lie groups). A morphism of Lie groups is a
map f : G→ H between Lie groupsG,H that is also a group homomorphism
and differentiable.
Definition 9.3 ((closed) Lie subgroup). A (closed) Lie subgroup H ⊂ G is
a subset H of G that is a subgroup and a closed submanifold.
Definition 9.4 (immersed Lie group). An immersed Lie group is the image
of a Lie group H under an injective morphism to G.
Definition 9.5 (complex Lie group). A complex Lie group is a group G
that is also a complex manifold in which multiplication and inversion are
holomorphic maps.
Definition 9.6 (morphism of complex Lie groups). A morphism of complex
Lie groups is a map f : G → H between complex Lie groups G,H that is
also a group homomorphism and a holomorphic map.
Example 9.7. (Rn,+) is a Lie group.
Example 9.8 (general linear group). GL(n,R) is an open subset of Mat(n,R) ∼=
Rn2 . The manifold structure is induced from Rn2 , so multiplication is differ-
entiable. And Cramer’s rule implies the inversion is differentiable. In fact,
GL(n,R) is an algebraic group. Consider

U = {(Aij , t) ∈ Rn
2+1 | det(Aij)t− 1 = 0, a polynomial in Aij and t}

Let
ϕ : GL(n,R)→ U

(aij) 7→ (aij ,det(aij)
−1)

This is a bijection, making GL(n,R) as a zero set of a polynomial in n2 + 1
variables. Furthermore, you can show that this polynomial is irreducible.
Example 9.9 (special linear group). Consider
SL(n,R) = {A ∈ GL(n,R) | detA = 1} = ker(det : GL(n,R)→ GL(1,R))

is also a Lie group.
Our goal is to study the representation theory of a Lie group G. We will

reduce this problem in several steps
1. Reduce to G is connected.
2. Reduce to G is simply connected.
3. Reduce to the tangent space of G, that is, its Lie algebra. In this case,

representation theory of G equals to the one of its Lie algebra.
4. Reduce to complex semisimple Lie algebra.
5. Reduce to SU(2).

9.2. Review of geometry. This section is a mixture of a review of con-
cepts and notations of differential geometry and motivational arguments for
reduction process. We omit the proofs of theorem we mentioned in this sec-
tion, you can find them in almost every standard textbook for differential
manifold and algebraic topology.
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9.2.1. Differentiable manifold.

Definition 9.10 (smooth&diffeomorphism). LetM,N be differentiable man-
ifolds, a map f :M → N is called smooth or differentiable, if it is continous
and for all p ∈ M , there exists a chart (φ,U) for p and a chart (ψ, V ) of
f(p) such that ψ ◦ f ◦ φ−1 is smooth; f is called a diffeomorphism if it is
bijective and f, f−1 are smooth.

Remark 9.11. If we replace differentiable by complex and smooth by holo-
morphic, we define a holomorphic map f :M → N between complex mani-
folds; f is called biholomorphic if it is bijective and f, f−1 is holomorphic.

Since a manifold is a topological space satisfying additional properties
such as Hausdorff and separation axiom, the notions of topological space
apply to manifolds.

Definition 9.12 (connectness). A topological space is disconnected, if X =
X1
∐
X2 with X1, X2 6= ∅, otherwise it is connected. The maximal con-

nected subsets of X are called connected components of X.

Remark 9.13. For connectness, we have the following remarks
1. X is connected if and only if the only subsets of X that are both open

and closed are X and ∅.
2. A manifold is connected if and only if it is path connected.
3. The connected components of a manifold are still manifolds.

Proposition 9.14. Let X,Y be topological spaces. If f : X → Y is conti-
nous and X is connected, then f(X) is connected.

Definition 9.15 (compactness). A topological space X is called compact
if each of its open covering admits a finite subcover.

Remark 9.16. If X is a subset of Rn, then the Heine-Borel theorem says
that X is compact if and only if X is closed and bounded.

Example 9.17. GL(n,R) is an open submanifold of Rn2 and a closed sub-
manifold of Rn2+1, and one chart gives an atlas. GL(n,R) has two connected
components.

GL(n,R) = {A ∈ GL(n,R) | detA > 0}
∐
{A ∈ GL(n,R) | detA < 0}

Similarly we can define GL(n,C). However, it is connected, and GL(n,C) ⊂
GL(2n,R). To be more explict, if A = A1 + iA2, then

A 7→
(
A1 A2

−A2 A1

)
∈ GL(2n,R)

Example 9.18. SL(n,R) = {A ∈ GL(n,R) | detA = 1} is a manifold with
dimension n2 − 1. Take n = 2 for an example, then

G = SL(2,R) = {
(
a b
c d

)
| ad− bc = 1}
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that is, G is the zero locus of p(a, b, c, d) = ad − bc − 1, and dp 6= 0 on the
locus p = 0. The implict function theorem implies we can solve one variable
in terms of other three. Near the identity5, we have

d =
1

a
(1 + bc), a =

1

d
(1 + bc)

So we have ψ1 :

(
a b
c d

)
→ (a, b, c) is a local homomorphism, since we

have its inverse
(a, b, c) 7→

(
a b
c 1

a(1 + bc)

)
Similarly we can define a local homomorphism ψ2 :

(
a b
c d

)
→ (b, c, d).

Furthermore,

(a, b, c)
ψ1−→
(
a b
c 1

a(1 + bc)

)
ψ−1
2−→→ (b, c,

1

a
(1 + bc))

is smooth, so these two charts are compatible. Arguing in this way for any
matrix in G, we get a differentiable atlas.

Using such atlas, we can check the multiplication and inversion are smooth.
Take inversion for an example. If we use ψi to denote

(
ai bi
ci di

)
7→

(ai, bi, ci), i = 1, 2. Then

ψ2 ◦ ι ◦ ψ−1 : (a1, b1, c1) 7→ (
1

a1
(1 + b1c1),−b1,−c1)

is smooth.

Example 9.19. Let {e1, . . . , en} be a basis of Rn, Vi = R〈e1, . . . , er〉 and
consider the flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Rn.

Bn = {A ∈ GL(n,R) | A preserves V•}
= {A ∈ GL(n,R) | A is upper triangular}

And we can define
Nn = {A ∈ GL(n,R) | A preserves V•, A|Vi+1/Vi = id}

= {A ∈ GL(n,R) | A is upper triangular, and Aii = 1}

Example 9.20. Let V be a real vector space with dimension n. Q ∈ (V ∨)⊗2

is symmetric, positive definite.
SO(n,R) = {A ∈ GL(n,R) | Q(Av,Aw) = Q(v, w), v, w ∈ V }

If we choose Q is skew-symmetric, non-degenerate and n is even, then
Sp(n,R) = {A ∈ GL(n,R) | Q(Av,Aw) = Q(v, w), v, w ∈ V }

Example 9.21. Rn/Zn = (S1)n is a Lie group.
5That is, a ̸= 0, d ̸= 0.
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Example 9.22. Any finite group is a Lie group of dimension 0, with respect
to discrete topology.

Remark 9.23. A closed subgroup of GL(n,C) or GL(n,R) is often called a
closed linear group or linear Lie group or matrix Lie group. Most examples
are matrix Lie groups as they are defined by polynomial equations. An
example of a subgroup of GL(n,C) which is not closed is GL(n,Q). Another
example is irrational line on the torus. Take a ∈ R\Q, and consider

G = {
(
eit 0
0 eait

)
| t ∈ R}

Then G is a subgroup of GL(2,C), but not closed.

Our first reduction process allow us to consider only connected Lie groups,
and it mainly rely on the following proposition.

Proposition 9.24. Let G be a real or complex Lie group, use Go to denote
the connected component of the identity. Then Go is a normal subgroups of
G and is a Lie group itself. The quotient group G/Go is discrete.

9.2.2. Homotopy theory.

Definition 9.25 (path). Let M be a manifold, p, q ∈M . A path from p to
q in M is a continous map γ : I = [0, 1]→M such that γ(0) = p, γ(1) = q.

Notation 9.26. Let P(p, q) be the set of all such paths.

Definition 9.27 (loop). A loop is an element of P(p, p).

Definition 9.28 (fixed-point homotopy). Let γ, γ̃ ∈ P(p, q), a fixed-endpoint
homotopy from γ to γ̃ is a continous map H : I × I →M such that

H(t, 0) = γ(t), H(0, s) = p

H(t, 1) = γ̃(t), H(1, s) = q

for all t, s ∈ I. If such a homotopy exists, γ and γ̃ are fixed-endpoint
homotopic, written γ ' γ̃.

Definition 9.29 (null homotopy). A loop γ is called null homotopy, if it is
homotopic to the constant loop.

Lemma 9.30. Fixed-endpoint homotopy is an equivalence relation on P(p, q).

Definition 9.31 (concatenation). Let γ, γ̃ ∈ P(p, q), p, q ∈M , and define

γ ∗ γ̃ =

{
γ(2t), 0 ≤ t ≤ 1

2

γ̃(2t− 1), 1
2 ≤ t ≤ 1

γ ∗ γ̃ is called the concatenation of γ and γ̃.

Definition 9.32 (reverse path). The reverse path γ−1 is defined by γ−1(t) :=
γ(1− t).
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Proposition 9.33 (fundamental group). Let p ∈M and π1(M,p) is the ho-
motopy classes of P(p, p). Then it is a group with respect to concatenation,
called fundamental group.

Proof. Standard conclusion in homotopy theory. □
Proposition 9.34. Let M be connected, then π1(M,p) are all isomorphic
to each other for all p ∈M .

Proof. For any two points p, q, consider γ ∈ P(p, q) and the map
[γ̃]→ [γ ∗ γ̃ ∗ γ−1]

□
Notation 9.35. So if M is connected, the base point of fundamental group
doesn’t matter, so we can write π1(M) in this case.

Definition 9.36 (simply connected). Let M be connected, if π1(M) is triv-
ial, then M is called simply connected.

Example 9.37. Rn is simply connected, since any γ ∈ P(0, 0) is homotopic
to constant loop e0 under H(s, t) = sγ(t).

Example 9.38. S1 is not simply connected, we will see later π1(S1) = Z.

Proposition 9.39. Let M,N be connected manifolds. Then
π1(M ×N) ∼= π1(M)× π1(N)

Proposition 9.40. Let ϕ :M → N be a continous map. Then there exists
a group homomorphism

ϕ# : π1(M,p)→ π1(N,ϕ(p))

[γ] 7→ [ϕ ◦ γ]

Proposition 9.41. Let M be a manifold, p, q ∈M,γ ∈ P(p, q). Then there
exists a piecewise smooth path γ̃ ∈ P(p, q) homotopic to γ.

Definition 9.42 (covering map). Let M,N be manifolds. A smooth, sur-
jective map π : M → N is a covering map, if for all p ∈ N , there exists
a neighborhood U(p) such that U(p) is evenly covered, i.e. π maps each
connected components of π−1(U(p)) diffeomorphically onto U(p), such a
component is called a sheet.

Example 9.43. π : R → S1, defined by t 7→ eit is a covering map. But its
restriction to any interval [a, b] is not.

Example 9.44. A map from S1 to S1 defined by z 7→ zn is a covering map
for n ∈ Z>0.

Lemma 9.45 (multiplicity). Let π : M → N be a covering map, N is
connected. Then |π−1(p)| ∈ N ∪ {∞} is constant for all p ∈ M . This
number is called the multiplicity of π.
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Example 9.46. The multiplicity of map z 7→ zn is n, and the multiplicity
of t 7→ eit is ∞.
Definition 9.47 (lift). Let π : M → N,ϕ : P → N be smooth maps of
manifolds. A lift of ϕ through π is a smooth map ϕ̃ : P → M such that
π ◦ ϕ̃ = ϕ.

P M

N

ϕ

ϕ̃

π

Lemma 9.48 (path lifting property). Let π : M → N be a covering map,
γ : I → N be a smooth curve. Then there exists a lift γ̃ : I → M of γ
through π.
Corollary 9.49. Let π : M → N be a covering map, γ1, γ2 be fixed-
endpoint homotopic paths in N . For the lifts γ̃1, γ̃2 of γ1, γ2 through π such
that γ̃1(0) = γ̃2(0), we have γ̃1, γ̃2 are still fixed-endpoint homotopic.
Corollary 9.50. π# : π1(M)→ π1(N) is injective.
Proof. It suffices to show, if two loops γ1, γ2 are homotopic in π(N), then
their lifts in M must be homotopic. That’s what Proposition 9.51 says. □
Proposition 9.51. Let π : M → N be a covering map, ϕ : P → N be a
smooth map. Let p0 ∈ P, q0 ∈M such that π(q0) = ϕ(p0). Then
1. If P is connected, then there exists at most one lift ϕ̃ of ϕ through π,

such that ϕ̃(p0) = q0.
2. If P is simply connected, such a lift exists.

Manifold properties attributed to a covering refer to the covering manifold
M . For example, a simply connected covering π : M → N is one for which
M is simply connected.
Theorem 9.52 (uniqueness of universal covering). Any connected manifold
has a simply connected covering. Any two simply connected covering are
diffeomorphic.
Definition 9.53 (universal covering). Let M be a connected manifold. Any
simply connected covering is called universal covering of M , denoted by M̃ .
Corollary 9.54. Let N be connected, H be a subgroup of π1(N). Then
there is a connected covering π :M → N such that π#(π1(M)) = π1(N).
Corollary 9.55. Every covering π :M → N of a simply connected manifold
is trivial.
Example 9.56. R→ S1 is the universal covering of S1.
Example 9.57. We will see later, SU(2)→ SO(3) is a two to one covering.
Furthermore, SU(2) is simply connected, thus this covering is also a universal
covering.
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Theorem 9.58. Let G be a connected real or complex Lie group. Then
its universal covering G̃ has a unique structure of Lie group such that the
covering map π is a morphism of Lie groups. In this case, kerπ ∼= π1(G) as
a group and kerπ is discrete subgroup of Z(G̃).

This is reduction process two.

Remark 9.59. If M is a connected manifold and M̃ is its universal covering,
then there exists an isomorphism of groups

{f ∈ Aut(M̃ | π ◦ f = π} ∼= π1(M)

f 7→ [π ◦ γ]

where γ ∈ P(p̃, f(p̃)), p̃ ∈ M̃ . In fact, this group is the group of Deck
transformations.

Example 9.60. The covering map ϕ : R → S1, t 7→ eit is the universal
covering map of S1, we have kerϕ = 2πZ. Any continous f : R → R such
that ϕ ◦ f = ϕ must satisfy f(t) = t+ 2πn(t), since

eif(t) = eit

What’s more, n(t) is a constant function, since f is continous. Then
π1(S

1) ∼= {f ∈ Aut(R,+) | ϕ ◦ f = ϕ}
= {fn ∈ Aut(R,+) | fn(t) = t+ 2πn, n ∈ Z}

So we have a clear isomorphism kerϕ ∼= π1(S1).

10. Lie algebra

Now let G be connected and simply connected, we want to reduce the
case to its Lie algebra. Firstly, recall some basic definitions about tangent
space of smooth manifolds.

10.1. Tangent space.

Definition 10.1 (curves which are tangential at a point). Let M be a
manifold, p ∈ M , and (ψ, V ) is a chart at p. Two smooth curves γi : I →
M, i = 1, 2 with γi(0) = p are called tangential at with respect to ψ, if

(ψ ◦ γ1)′(0) = (ψ ◦ γ2)′(0)

Remark 10.2. Clearly, this definition is independent of the choice of ψ.
Furthermore, tangential at a point gives an equivalence relation for curves
starting at this point. Use this equivalent relation, we can define what is a
tangent space.

Definition 10.3 (tangent space). Let M be a manifold, p ∈ M . The
tangent space of M at p is defined by

TpM := {γ | γ : I →M,γ(0) = p}/ ∼
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where ∼ is the tangential equivalence relation, we use [γ]p to denote a rep-
resentative element.

Definition 10.4 (tangent map). Let M,N be manifolds, f : M → N be a
smooth map. We call Tpf : TpM → TpN, [γ]p 7→ [f ◦ γ]f(p) the tangent map
of f at p.

Proposition 10.5 (chain rule). Let M,N,P be manifolds, f :M → N, g :
N → P be smooth maps, take p ∈M , then

Tp(g ◦ f) = Tf(p)g ◦ Tpf

Moreover, since Tp(idM ) = idTpM , then for any diffeomorphism f :M → N ,
Tpf is bijective and (Tpf)

−1 = Tf(p)f
−1.

Lemma 10.6. Let U ⊂ Rn be open, p ∈ U . Then ι : TpU → Rn, [γ]p 7→
γ′(0) is bijective, so that TpU can be identified with Rn. Furthermore, for
any smooth map f : U → V , V ⊂ Rn is an open subset, ι ◦ Tpf = Df(p) ◦ ι,
where Df(p) is the Jacobi matrix of f at point p.

Proof. It’s almost trivial that TpU ∼= Rn. Since U is already an open subset
in Rn, then it is a chart of itself. If two curves γ1, γ2 such that γ′1(0) = γ′2(0),
then clearly they are same element in TpU since it’s exactly the equivalent
relation we killed. For any v = (v1, . . . , vn) ∈ Rn, clearly γ(t) = p+ tv is the
curve such that γ(0) = p, γ′(0) = v.

Now let’s see what is Tpf . For [γ]p ∈ TpU , we take an representative
element γ(t) = p+ tv. Then by definition

ι ◦ Tpf([γ]p) = ι([f ◦ γ]f(p))
= (f ◦ γ)′(0)
= Df(p)γ′(0)

= Df(p)v

= Df(p) ◦ ι([γ]p)
□

Remark 10.7. In other words, we can draw the following communicative
diagram:

TpU TpV

Rn Rn

Tpf

ι ι

Df(p)

With above isomorphism ι, we always regard v ∈ Rn and [γ]p ∈ TpU where
γ(t) = p+ tv the same thing.

Proposition 10.8. Let M be a manifold, p ∈ M , (ψ, V ) is a chart at
p. Then the vector space structure of TpM is induced by the bijection
Tpψ : TpM → Tψ(p)ψ(V ) ∼= Rn.
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Remark 10.9. Any chart ψ allows us to choose a particular basis for TpM .
Let (ψ, V ) be a chart of M centered at p, that is ψ = (x1, . . . , xn) : V → Rn
is a diffeomorphism such that ψ(p) = (0, . . . , 0). Let (e1, . . . , en) be the
standard basis of Rn. Then

∂

∂xi

∣∣∣∣
p

: = (Tpψ)
−1(ei)

= (Tpψ)
−1([γ]0), γ(t) = tei

= [ψ−1 ◦ γ]p

Then { ∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
} is a basis of TpM .

Remark 10.10 (directional derivative). Note that for any v = [γ]p ∈ TpM
and f ∈ C∞(M). Then we define the directional derivative ∂v : C∞(M)→
R by

∂v(f) := Tpf(v) = Tpf([γ]p) = [f ◦ γ]f(p) = (f ◦ γ)′(0)

Furthermore, ∂v satisfies the Leibniz rule. Indeed,

∂v(fg) = (fg ◦ γ)′(0)
= (f ◦ γ)′(0)g(p) + f(p)(g ◦ γ)′(0)
= ∂v(f)g + f∂v(g)

Furthermore, it’s crucial to note that ∂v(f) only depends on the local prop-
erty of f at p.

Now let’s describe tangent vector in another point of view, that’s regard
a tangent vector as a derivation on germs of differential functions. First we
define an equivalent relation ∼ on the algebra of smooth functions C∞(M)
to describe the local property at p.

For any f, g ∈ C∞(M), we say f ∼ g if there exists a neighborhood U of
p such that f agrees with g on U . Then

Definition 10.11 (germ). The germ at p is the equivalent class C∞(M)/ ∼,
where ∼ is the equivalent relation we mentioned above.

Definition 10.12 (derivation on germs). Let M be a manifold. A map
∂ : C∞(M) → R is called a derivation at p if for all f, g ∈ C∞(M)/ ∼,
where f ∼ g means there exists a neighborhood U of p such that f agrees
with g in U , we have
1. ∂(f + αg) = ∂f + α∂g, ∀α ∈ R
2. ∂(fg) = ∂fg + f∂g

Notation 10.13. We denote the set of all derivation at p onM by Derp(C
∞(M),R).

Remark 10.14. So as we have seen in Remark 10.10, ∂v is a derivation on
germ C∞(M)/ ∼. Here comes the definition of derivations.
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Theorem 10.15. The map
Φ : TpM → Derp(C

∞(M),R)
v 7→ ∂v

is a linear isomorphism.

10.2. First and second principles of Lie group. Now let’s focus on the
case of Lie groups. Lie group is a very special manifold with quite nice
symmetry. Here is a very important diffeomorphism on Lie groups.

Definition 10.16 (left/right translation). Let G be a Lie group, g ∈ G.
The left translation by g is defined as Lg : G → G,h 7→ gh. Analogously,
the right translation by g is Rg : G→ G,h 7→ hg.

Lemma 10.17. Let G be a Lie group, g ∈ G. Then Lg is an automorphism
of Lie group. Furthermore,

L : G→ Aut(G)

g 7→ Lg

is a group homomorphism.

Proof. We have Lg(h) = µ(g, h), so Lg = µ(g,−) is differentiable. And
(Lg)

−1 = Lg−1 . So Lg is a diffeomorphism. Furthermore,
Lg ◦ Lh = Lgh, Le = idG

So L is a group homomorphism. □
Lemma 10.18. Let G be a connected Lie group. Let U ⊂ G be any
neighborhood of the identity e. Then U generates G.

Proof. We may assume U = U−1, otherwise we replace U by U ∩ U−1. Let
Uk = {g1 . . . gk | gi ∈ U}, S =

⋃
k>0 U

k. We claim that S 6= ∅, S is both
open and closed, then S = G by the connectness of G.

Note that U2 =
⋃
g∈U LgU , and Lg is a diffeomorphism. So we have U2

is open, since U is. By induction we have Uk is open. Thus S is open. Also
note that

G =
⋃
g∈G

gS =
⋃
g∈S

gS ∪
⋃

g∈G\S

gS

But
⋃
g∈S gS = S, so G\S is open. Thus S is closed. □

What information can you see from above lemma? This statement implies
that any morphism of Lie groups ρ : G→ H will be determined by what it
does on any open set containing the identity. In other word, ρ is determined
by its germ at e ∈ G. In fact, here is the first principle of Lie groups, we
will prove it later.

Theorem 10.19 (First principle of Lie groups). Let G,H be Lie groups,
G is connected. A group homomorphism ρ : G→ H is uniquely determined
by its differential Teρ : TeG→ TeH at the identity.
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From above theorem we get an inclusion of sets

Homgp(G,H) ⊂ Homvect(TeG,TeH)

But we want an intrinsic criterion which can tell us when a linear map
TeG→ TeH comes from a group homomorphism ρ.

We look closer at Homgp(G,H). If ρ : G→ H is a group homomorphism,
then

ρ(Lg1g2) = Lρ(g1)ρ(g2)

In other words, the following diagram commutes
G H

G H

ρ

Lg Lρ(g)

ρ

But Lg has no fixed point, hence tangent spaces at different points are
mapped to each other.

If we choose Ψg = Rg−1 ◦ Lg, things will be better. Then ρ : G→ H is a
group homomorphism if the following diagram commutes

G H

G H

ρ

Ψg Ψρ(g)

ρ

Take differential of Ψg at e, we have

Ad(g) : TeΨg : TeG→ TeG, ∀g ∈ G

We get a map Ad : G→ GL(TeG), called the adjoint representation of G on
TeG.

Then for a group homomorphism ρ, we have that its differential Teρ must
satisfy the following communicative diagram

TeG TeH

TeG TeH

Teρ

Ad(g) Ad(ρ(g))

Teρ

This is equivalent to

Teρ(Ad(g)X) = Ad(ρ(g))(Teρ(X)), ∀X ∈ TeG

However, this is still not intrinsic, since this condition still depends on the
map ρ(g). Let’s take differential of Ad. Note that for any ϕ ∈ GL(TeG), we
have

TϕGL(TeG) ∼= End(TeG)

Then we have
ad := TeAd : TeG→ End(TeG)

X 7→ (Y 7→ adX Y )
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In other words, we have a bilinear map which we call it a Lie bracket

[ , ] : TeG× TeG→ TeG

(X,Y ) 7→ adX Y

As desired, the map ad involves only the tangent space TeG and have noth-
ing with ρ itself. This gives us our final characterization as the following
communicative diagram

TeG TeH

TeG TeH

Teρ

adX adX ◦Teρ
Teρ

Equivalently, we have

Teρ(adX Y ) = adTeρ(X)(Teρ(Y )), ∀X,Y ∈ TeG

In other words,

Teρ([X,Y ]) = [Teρ(X), Teρ(Y )], ∀X,Y ∈ TeG

So we have seen that, if ρ is arised as the differential of some group homo-
morphism, it must preserves the Lie bracket. However, it’s all requirement
it need to satisfy. This is the second principle of Lie groups.

Theorem 10.20 (Second principle of Lie group). Let G,H be Lie groups,
G is connected and simply connected. A linear map f : TeG → TeH is the
differential of group homomorphism from G to H if and only if

[f(X), f(Y )] = f([X,Y ]), ∀X,Y ∈ TeG

Let’s compute a concrete example to get a feeling of Ad and ad.

Example 10.21. Let G = GL(n,R). Since G is an open set in Rn2 , thus
its tangent space at identity g can be viewed as Mat(n,R). Then for any
g ∈ G, let’s compute Ad(g) as follows: Take X ∈ g

Ad(g)(X) = (Ψg)∗(X)

=
d

dt

∣∣∣∣
t=0

getXg−1

= gXg−1
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Now let’s take X,Y ∈ g, then
[X,Y ] = adX(Y )

= (Ad)∗(X)(Y )

=
d

dt

∣∣∣∣
t=0

(Ad(etX)(Y ))

=
d

dt

∣∣∣∣
t=0

(etXY e−tX)

= (XetXY e−tX − etXY Xe−tX)
∣∣
t=0

= XY − Y X
In this case, we can see clearly Lie bracket has the following properties{

[Y,X] = −[X,Y ]

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

And that’s what we use in the general definition.
10.3. Lie algebra.
Definition 10.22 (Lie algebra). A Lie algebra g is a vector space with a
skew-symmetric bilinear map [ , ] : g× g→ g satisfying the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0, ∀X,Y, Z ∈ g

Notation 10.23. If a, g are subsets of a Lie algebra g, then we write
[a, b] := {[X,Y ] | X ∈ a, Y ∈ b}

Definition 10.24 (morphism of Lie algebras). Let g, h be two Lie algebras,
then ρ : g→ h is called a morphism of Lie algebras if

ρ([X,Y ]) = [ρ(X), ρ(Y )], ∀X,Y ∈ g

Thus, in a summary we have:
1. The tangent space of a Lie group G is naturally endowed with a Lie

algebra structure;
2. If G and H are Lie groups with G is connected and simply connected,

then morphisms between Lie groups are in one to one correspondence
with morphisms of their Lie algebras, by associating to ρ : G → H its
differential Teρ : g→ h.
Recall that a representation of Lie group G is a morphism ρ : G→ GL(V ).

So for a connected and simply connected Lie group G, its representation is
in one to one correspondence to Lie algebra morphism

ρ : g→ gl(V ) := End(V )

Here comes the definition of representation of Lie algebras.
Definition 10.25 (representation of Lie algebras). A representation of a
Lie algebra g on a finite-dimensional vector space V is a morphism of Lie
algebras ρ : g→ gl(V ) := End(V ).
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Example 10.26 (abelian Lie algebra). Let V be a vector space, define
[v, w] = 0, ∀v, w ∈ V . Then (V, [ , ]) is an abelian Lie algebra.

Example 10.27. Let A be an associative algebra, define [X,Y ] = XY −
Y X, ∀X,Y ∈ A. Then (A, [ , ]) is a Lie algebra.

Example 10.28. sl(n,R) = {X ∈ gl(n,R) | tr(X) = 0} is a Lie subalgebra
of gl(n,R).

Example 10.29. so(n,R) = {X ∈ gl(n,R) | X +XT = 0} is a Lie subalge-
bra of gl(n,R).

Example 10.30. Let J =

(
0 In
− In 0

)
. Then sp(n,R) = {X ∈ gl(2n,R) |

JX +XTJ = 0} is a Lie subalgebra of gl(n,R).

Example 10.31. Similarly, we have sl(n,C), so(n,C), sp(n,C).

Example 10.32. u(n) = {X ∈ gl(n,C) | X + X
T

= 0}, su(n) = u(n) ∩
sl(n,C).

Exercise 10.33. Verify that the defining conditions are preserved under
[X,Y ] and under X 7→ gXg−1,∀g ∈ G.

10.4. Exponential map.

10.4.1. Vector field.

Definition 10.34 (vector field - first definition). Let M be a smooth man-
ifold. A vector field v on M is a functions that assigns to each p ∈ M a
tangent vector vp ∈ TpM .

Remark 10.35. We have already know that for any tangent vector vp at p,
we can give a real number vp(f), called the directional derivative at p. So
if v is a vector field on M and f ∈ C∞(M), then v(f) denotes the function
p 7→ v(f)(p) := vp(f).

Definition 10.36 (smooth vector field). A vector field v is called smooth,
if v(f) is smooth for all f ∈ C∞(M).

Notation 10.37. We use X(M) to denote the set of all smooth vector fields
on M .

Since we already know the fact that vp(f) satisfies the Leibniz rule, so
it follows that v(f) also satisfies the Leibniz rule. Here comes the second
definition

Definition 10.38 (vector field - second definition). A vector field on M is
a linear map

D : C∞(M)→ C∞(M)

such that
D(fg) = D(f)g + fD(g), ∀f, g ∈ C∞(M)
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Remark 10.39. Theorem 10.15 implies that the two definitions for vector
field is the same. So we can see a vector field as a derivation on the algebra
C∞(M) of smooth functions. Use such point of view, we can easily define
the Lie bracket of two vector fields.

Proposition 10.40 (Lie bracket of vector field). Let v, w be two vector
fields, then the commutator

[v, w] : vw − wv : C∞(M)→ C∞(M)

is again a vector field.

Proof. It suffices to check the commutator is a derivation. For any f, g ∈
C∞(M), compute directly as follows

[v, w](fg) =v(w(fg))− w(v(fg))
=v(w(f)g + fw(g))− w(v(f)g + fv(g))

=vw(f)g + w(f)v(g) + v(f)w(g) + fvw(g)

− wv(f)g − v(f)w(g)− w(f)v(g)− fwv(g)
=(vw(f)− vw(f))g + f(vw(g)− wv(g))
=[v, w](f)g + f [v, w](g)

This completes the proof. □

Theorem 10.41. (X(M), [ , ]) is a Lie algebra.

Proof. It suffices to check Jacobi identity, we omit it. □

Remark 10.42. Let f : M → N be a differentiable map between smooth
manifolds. Recall that we can pushforward a tangent vector in TpM for any
p ∈ M . However, we can not pushforward a vector field in general. For
example, if f is not surjective, then values for q ∈ N\f(M) is undetermined
and if f is not injective, then there may be several distinct vectors in Tf(p)N .

Definition 10.43 (f -related). Let M,N be smooth manifold. f : M → N
be a smooth map. For v ∈ X(M), if there exists w ∈ X(N) such that
(Tpf)(vp) = wf(p),∀p ∈M . Then v, w are called f -related.

Notation 10.44. If two vector fields v, w are f -related, we write as v ∼f w

Lemma 10.45. Let M,N be smooth manifolds, f : M → N be a smooth
map. For v ∈ X(M), w ∈ X(N). Then

v ∼f w ⇐⇒ v(ϕ ◦ f) = w(ϕ) ◦ f, ∀ϕ ∈ C∞(N)

Proposition 10.46 (pushforward of vector fields). Let M,N be smooth
manifolds, f : M → N be a diffeomorphism. Then for all v ∈ X(M) there
exists a unique w ∈ X(N) such that v ∼f w. This vector field is called the
push-forward of v, and denoted by f∗v.
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Corollary 10.47. Let M,N be smooth manifolds, f :M → N be a diffeo-
morphism and v ∈ X(M). Then

f∗v(ϕ) = v(ϕ ◦ f), ∀ϕ ∈ C∞(M)

Lemma 10.48. Let M,N be smooth manifolds. f : M → N be smooth
map. For v1, v2 ∈ X(M) and w1, w2 ∈ X(N) such that vi ∼f wi, i = 1, 2.
Then

[v1, v2] ∼f [w1, w2]

Corollary 10.49. Let M,N be smooth manifolds, f be a diffeomorphism
and v1, v2 ∈ X(M). Then

f∗[v1, v2] = [f∗v1, f∗v2]

Recall that left translation Lg : G → G is a diffeomorphism, and the
tangent map at identity TeLg : TeG → TgG is an isomorphism of vector
spaces.

Definition 10.50 (left-invariant vector field). Let G be a Lie group, and
v is a vector field on G. v is called left-invariant if (Lg)∗v = v, ∀g ∈ G. In
other words,

ThLg(vh) = vLg(h) = vgh, ∀g, h ∈ G

Lemma 10.51. For left-invariant vector field, we have
1. Any left-invariant vector field is smooth.
2. XL(G) is a Lie subalgebra of X(G).

Proof. Let v ∈ XL(G), we need to show that for all ϕ ∈ C∞(G), v(ϕ) ∈
C∞(M). Let γ : I → G be a smooth curve such that γ(0) = e, γ′(0) = ve ∈
TeG. Then

v(ϕ)(g) = vg(ϕ)

= TeLg(ve)(ϕ)

= ve(ϕ ◦ Lg)
= γ′(0)(ϕ ◦ Lg)

=
d

dt

∣∣∣∣
t=0

(ϕ ◦ Lg ◦ γ)(t)

If we define
ψ : I ×G→ R

(t, g) 7→ ϕ(gγ(t))

then from above computation we can see

v(ϕ)(g) =
∂ψ

∂t
(0, g)

Since ψ is a composition of smooth maps, hence it’s smooth, so is v(ϕ)(g).
For the second. Clearly (Lg)∗(αv+βw) = α(Lg)∗v+β(Lg)∗w = αv+βw.

And the corollary says that
(Lg)∗([v, w]) = [(Lg)∗v, (Lg)∗w] = [v, w]
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That is [v, w] ∈ XL(G). Thus XL(G) is a Lie subalgebra. □

Lemma 10.52. Let G be a Lie group, X ∈ TeG. Define a vector field vX
by g 7→ vX,g := TeLgX ∈ TgG. Then vX ∈ XL(G).

Proof. Clearly
ThLg(vX,h) = ThLg(TeLhX)

= Te((Lg ◦ Lh)X)

= Te(LghX)

= vX,gh, ∀g, h ∈ G
□

Theorem 10.53. Let G be a Lie group. Let ε : XL(G) → TeG defined by
v 7→ ve. Then the map TeG→ XL(G), X 7→ vX is a linear isomorphism with
inverse ε.

Proof. Linearity. For any g ∈ G we have vαX+βY,g = TeLg(αX + βY ) =
αTeLgX + βTeLgY = αvX,g + βvY,g; If vX,g = TeLgX = 0, since Lg is a
diffeomorphism, then TeLg is an isomorphism so we must have X = 0, this
is injectivity; And by Lemma 10.52, it’s surjective.

Finally let’s check the inverse of X 7→ vX is ε. Let X ∈ TeG. Then

ε(vX) = vX,e = TeLeX = idTeGX = X

And conversely let v ∈ XL(G), then

vg = TeLgve = vε(v),g

as desired. □

This theorem induces a Lie algebra structure on TeG, since XL(G) is a
Lie algebra.

Definition 10.54 (Lie algebra). Let G be a Lie group. The Lie algebra
g = Lie(G) of G is defined as g = XL(G) ∼= TeG. For X,Y ∈ TeG, we define
Lie bracket as

[X,Y ] = ε([vX , vY ])

Proposition 10.55. The composition of the natural maps

Lie(GL(n,R))→ TIn GL(n,R)→ gl(n,R)

gives a Lie algebra isomorphism

Lie(GL(n,R)) ∼= gl(n,R)

Proof. The Theorem 10.53 gives a vector space isomorphism Lie(GL(n,R)) ∼=
TIn GL(n,R). Since GL(n,R) ⊂ gl(n,R) = Rn2 as an open subset, then

TIn GL(n,R)
∼=−→ gl(n,R)
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as vector spaces. More explictly, for A ∈ GL(n,R), we use Aij , i, j =

1, 2, . . . , n as global coordinates on GL(n,R) ⊂ gl(n,R). So we can make
the following identification

TIn GL(n,R) 3
n∑

i,j=1

Xi
j

∂

∂Aij

∣∣∣∣∣∣
In

←→ (Xi
j) ∈ gl(n,R)

Let g = Lie(GL(n,R)), X ∈ gl(n,R), A ∈ GL(n,R). Then the left-
invariant vector field which corresponds to A is

vX,A = TInLAX

= TInLA(
n∑

i,j=1

Xi
j

∂

∂Aij

∣∣∣∣∣∣
In

)

=
n∑

i,j,k=1

AijX
j
k

∂

∂Aki

∣∣∣∣∣∣
A

where LA is the restriction of X 7→ AX to GL(n,R). Now let’s compute the
Lie bracket for X,Y ∈ gl(n,R) as follows:

[vX , vY ] =
n∑

i,j,k=1

n∑
p,q,r=1

[AijX
j
k

∂

∂Aki
, ApqY

q
r

∂

∂Arp
]

=

n∑
i,j,k=1

n∑
p,q,r=1

(AijX
j
k

∂

∂Aki
(ApqY

q
r )

∂

∂Arp
−ApqY q

r

∂

∂Arp
(AijX

j
k)
∂

∂ki
)

=
n∑

i,j,k,r=1

Aij(X
j
kY

k
r − Y

j
kX

k
r )

∂

∂Air

Thus we have

[vX , vY ]|In = [A,B]ir
∂

∂Ari

∣∣∣∣
In

= v[A,B]|In

Since a left-invariant vector field is determined by its value at identity, then

[vX , vY ] = v[X,Y ]

□

We have already defined how to push push-forward a vector field using
diffeomorphism. Recall Remark 10.42, what’s the obstruction if we want
to use a morphism which is not injective or surjective? But left-invariant
vector field is totally determined by its value at identity, so above bad things
won’t happen.

Thus for any morphism of Lie groups, we can use it to push-forward
left-invariant vector fields, or elements in Lie algebras.
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Definition 10.56. Let G,H be Lie groups with Lie algebras g, h, ρ : G→ H
a morphism of Lie groups. For X ∈ g, we define

ρ∗(X) = Teρ(vX,e) ∈ h

Theorem 10.57. Let G,H be Lie groups with Lie algebras g, h, ρ : G→ H
a morphism of Lie groups. Then
1. ρ∗X ∼ρ X for all X ∈ g.
2. ρ∗ : g→ h is a morphism of Lie algebras.

Proof. Let X ∈ g and Y = ρ∗X ∈ h, that is

vY,e = Teρ(vX,e)

Since ρ is a group homomorphism, that is ρ(gh) = ρ(g)ρ(h),∀g, h ∈ G.
Then

ρ(Lgh) = Lρ(g)ρ(h) =⇒ ρ ◦ Lg = Lρ(g) ◦ ρ

So we have
Tρ ◦ TLg = TLρ(g) ◦ Tρ

Then
(Tgρ)vX,g = Tgρ(TeLgvX,e)

= TeLρ(g)(Teρ(vX,e))

= TeLρ(g)(vY,e)

= vY,ρ(g)

Thus vX ∼ρ vY . For the second. From above we have

[vX1 , vX2 ] ∼ρ [vY1 , vY2 ]

where Yi = ρ∗Xi, i = 1, 2. In particular, we have

Teρ([vX1 , vX2 ]e) = [vY1 , vY2 ]e

But ρ∗([vX1 , vX2 ]) is the unique left-invariant vector field such that

ρ∗([vX1 , vX2 ]e) = Teρ([vX1 , vX2 ]e)

So
ρ∗([X1, X2]) = [ρ∗X1, ρ∗X2] = [Y1, Y2]

□

Corollary 10.58. Let V be a finite dimensional vector space over R, G is
a Lie group and ρ : G→ GL(V ) is a representation. Then

ρ∗ : g→ Lie(GL(V ))

is a representation of Lie algebras.

Corollary 10.59. Let G be an abelian group, then g is also abelian.
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Proof. If G is abelian, then inversion ι : G → G, g 7→ g−1 is a morphism.
Indeed, clearly ι is smooth and it’s a group homomorphism since

ι(gh) = (gh)−1 = h−1g−1 = g−1h−1 = ι(g)ι(h)

Then ι∗ : g → g is a morphism of Lie algebras. Let’s compute ι∗ explictly.
For X ∈ g,

ι∗(X) = Teι(X)

=
d

dt

∣∣∣∣
t=0

ι(γ(t)), γ(0) = e, γ′(0) = X

=
d

dt

∣∣∣∣
t=0

γ(t)−1

So we need to compute the derivative of γ(t)−1 at t = 0. Note that
γ(t)γ(t)−1 = e

So take derivative and take t = 0 we have
dγ(t)

dt

∣∣∣∣
t=0

γ(0)−1 + γ(0)
dγ(t)−1

dt

∣∣∣∣
t=0

= 0 =⇒ X +
d

dt

∣∣∣∣
t=0

γ(t)−1 = 0

Then we have
d

dt

∣∣∣∣
t=0

γ(t)−1 = −X

In other words, ι∗ = − idg. So
−[X,Y ] = ι∗[X,Y ] = [ι∗X, ι∗Y ] = [−X,−Y ] = [X,Y ] ∀X,Y ∈ g

Thus [X,Y ] = 0,∀X,Y ∈ g. □

Proposition 10.60. We have the following properties:
1. (idG)∗ : g→ g is the identity.
2. If ρ : G → H,σ : H → K are morphisms of Lie groups. Then (σ ◦ ρ)∗ =
σ∗ ◦ ρ∗.

3. If G ∼= H, then g ∼= h.

Proof. The first and second hold since
Te idG = idTeG

Te(σ ◦ ρ) = Teσ ◦ Teρ

Then the third holds from above, since
ρ∗ ◦ (ρ−1)∗ = (ρ ◦ ρ−1)∗ = id = (ρ−1)∗ ◦ ρ∗

□

Proposition 10.61. Let H ≤ G be a Lie subgroup, i : H → G the inclusion
map. Then there exists a Lie subalgebra h ⊂ g, canonically isomorphic to
Lie(H), given by

h = i∗ Lie(H)
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Proof. Since i : H → G is a morphism of Lie groups, then i∗ is a morphism
of Lie algebras. Thus i∗ Lie(H) is a Lie subalgebra of Lie(G). □
10.4.2. One parameter subgroups.
Definition 10.62 (integral curve). Let M be a smooth manifold. A curve
γ : I → M is called an integral curve of a vector field v ∈ X(M) if γ′(t) =
vγ(t), ∀t ∈ I.

Remark 10.63. In local coordinates (x1, . . . , xn) of U ⊂M , this condition
yields a system of first order ordinary differential equations

d(xi ◦ γ)
dt

= F i(x1 ◦ γ, . . . , xn ◦ γ)

where F i is the coordinate expression of vxi. The fundamental theorem for
existence and uniqueness of solutions of such systems yields the existence
and uniqueness of integral curves. That’s following proposition.
Proposition 10.64. Let M be a smooth manifold, v ∈ X(M). For any
p ∈M , there exists an open interval I around 0 and a unique integral curve
γ : I →M of v such that γ(0) = p.
Definition 10.65 (maximal integral curve). Let M be a smooth manifold.
An integral curve γ : I →M is called maximal if it can not be extended to
any larger open interval.
Definition 10.66 (complete). Let M be a smooth manifold, v ∈ X(M) is
called complete if each of its maximal integral curves is defined on R.
Lemma 10.67. Let M be a smooth manifold, v ∈ X(M). γ : I →M is an
integral curve of v, then for any b ∈ R, γ̃ : Ĩ → M, t 7→ γ(b + t) is also an
integral curve of v, where Ĩ = {t ∈ R | t+ b ∈ I}

Proof. Clear. □
Lemma 10.68. Let M,N be manifolds, f : M → N a smooth map and
v ∈ X(M), w ∈ X(N). Then v ∼f w is equivalent to for all integral curve γ
of v the curve f ◦ γ is the integral curve of w.
Corollary 10.69. Let G,H be two Lie groups, ρ : G → H a morphism of
Lie groups, then for any v ∈ XL(G), we have

γρ∗v = ρ ◦ γv
Proof. By the properties of ρ∗, we know that ρ∗v ∼ρ v, so ρ◦γv is an integral
curve of ρ∗v. But both γρ∗v and ρ ◦ γv are integral curves of ρ∗v, and by
uniqueness of integral curves, they must coincide. □
Definition 10.70 (one parameter subgroup). A one parameter subgroup
in a Lie group G is a morphism of Lie groups γ : (R,+)→ G.
Lemma 10.71. Let G be a Lie group, v ∈ XL(G) and γ : I → M is an
integral curve of v. Then I can be extended to R.
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Proof. v ∈ XL(G) is equivalent to v ∼Lg v for all g ∈ G. Let γ be the unique
integral curve for v such that γ(0) = e, defined on (−ε, ε). Then γg := Lgγ
is an integral curve for v such that γg(0) = g. Indeed,

γ′g(t) = Tγ(t)Lg(γ
′(t)) = Tγ(t)Lg(vγ(t)) = vLgγ(t) = vγg(t)

In particular, for t0 ∈ (−ε, ε), the curve t 7→ γ(t0)γ(t) is an integral curve
for v starting at γ(t0). By uniqueness, this curve coincides with γ(t0+ t) for
all t ∈ (−ε, ε) ∩ (−ε− t0, ε− t0). Define

γ̃(t) =

{
γ(t), t ∈ (−ε, ε)
γ(t0)γ(t), t ∈ (−ε− t0, ε− t0)

Repeat above operations to get our desired extension. □
Remark 10.72. In other words, above lemma says that every left-invariant
vector field on a Lie group is complete.
Theorem 10.73. Let G be a Lie group. Then there is a one to one corre-
spondence
{one parameter subgroups of G} ⇐⇒ {maximal integral curves γ of v, v ∈ XL(G), γ(0) = e}

Proof. Let γ : R → G be a one parameter subgroup. View d
dt as a left

invariant vector field on R, let v = γ∗(
d
dt) ∈ XL(G). It suffices to show γ is a

integral curve of v. In other words, we need to check γ′(t0) = vγ(t0). Indeed,

γ′(t0) = Tt0γ(
d

dt

∣∣∣∣
t=t0

) = vγ(t0)

On the other direction, let v ∈ XL(G), and γ is the corresponding maximal
integral curves such that γ(0) = e. By Lemma 10.63, we know that γ is
defined on R. Now it’s suffices to show γ(s+ t) = γ(s)γ(t), ∀s, t ∈ R.

Note that v is left-invariant, so Lg will maps integral curves of v to integral
curves of v. Then

t 7→ Lγ(s)(γ(t))

is an integral curve for v starting at γ(s). And Lemma 10.60 tells us that
t 7→ γ(s + t) is also an integral curve for v starting at γ(s). Thus by the
uniqueness of integral curves we have γ(s)γ(t) = γ(s + t). This completes
the proof. □
Definition 10.74 (exponential map). Let G be a Lie group with Lie algebra
g. The exponential map for G is the map exp : g→ G, sending X to γvX (1),
where γvX (t) is the one parameter subgroup determined by vX ∈ XL(G), i.e.
γ′vX (0) = X.

The following proposition shows the power of exponential map, that’s
we can use exponential map to characterize the one parameter subgroup
generated by some X ∈ g.
Proposition 10.75. Let G be a Lie group. For any X ∈ g, γ(t) = exp(tX)
is the one parameter subgroup for G generated by X.
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Proof. Let γ be the one parameter subgroup generated by X, that is, the
integral curve γ = γvX with γ(0) = e. We need to show γ(t) = exp(tX) for
all t ∈ R.

Let s ∈ R be fixed. Consider γ̃(t) = γ(st) we have γ̃′(t) = sγ′(st) =
svX,γ(st) = svX,γ̃(t). Thus γ̃ is an integral curve for svX starting at γ̃(0) =
γ(0) = e. By definition of exponential map, we have

γ(s) = γ̃(1) = exp(sX), ∀s ∈ R

as desired. □

Corollary 10.76. Let G be Lie group with Lie algebra g, X ∈ g and
vX ∈ XL(G), ϕ ∈ C∞(G). Then

(vXϕ)(exp(tX)) =
d

dt
(ϕ(exp(tX)))

Proof. Let γ(t) = exp(tX) be integral curve for vX with γ(0) = e, that is,
γ′(t) = vX,γ(t) = vX,exp(tX). Thus

(vXϕ)(exp(tX)) = vX,exp(tX)ϕ = γ′(t)ϕ =
d

dt
(ϕ ◦ γ)(t) = d

dt
ϕ(exp(tX))

□

Definition 10.77 (flow). Let M be a smooth manifold, v ∈ X(M) complete.
Then Φ : M × R → M , given by Φ(p, t) = γp(t), where γp is the maximal
integral curve for v with γp(0) = p, is called the flow of v.

Remark 10.78. For p fixed, t 7→ Φ(p, t) is just the integral curve γp. For t
fixed, p 7→ Φ(p, t) defines a map Φt :M →M which lets every point p ∈M
flow along the vector field for the time t.

Lemma 10.79. Let Φ be the flow of a complete vector field v ∈ X(M). For
t ∈ R, let Φt :M →M be the corresponding map. Then
1. Φ0 = idM ;
2. Φs ◦ Φt = Φs+t;
3. For t ∈ R, Φt is a diffeomorphism with (Φt)

−1 = Φt−1 .

Proof. Clear. □

Theorem 10.80. Let G be a Lie group with Lie algebra g. Then
1. exp : g→ G is smooth;
2. ∀X ∈ g, s, t ∈ R, exp((s+ t)X) = exp(sX) exp(tX);
3. ∀X ∈ g, (exp(X))−1 = exp(−X);
4. ∀X ∈ g, n ∈ Z, (expX)n = exp(nX);
5. T0 exp : T0g→ TeG is the identity map under the canonical identifications
T0g ∼= g and TeG ∼= g;

6. exp is a local diffeomorphism;
7. Let H be a Lie group, h ∈ h, ρ : G→ H a morphism of Lie groups. Then

the following diagram commutes
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g h

G H

ρ∗

exp exp

ρ

8. The flow of v ∈ XL(G) is given by Φt(X) = Rexp(tX).

Proof. For smoothness, take X ∈ g and let ΦX be the flow of vX . We need
to show ΦX(e, 1) depends smoothly on X, since by definition we have

ΦX(e, 1) = γvX (1) = exp(X), γvX (0) = e, γ′vX (0) = X

Define a vector field Ξ on G× g by

Ξ(g,X) = (vX,g, 0) ∈ TgG⊕ TXg ∼= T(g,X)(G× g)

Let xi be global coordinates on g, with respect to a basis Xi of g, ωi a local
coordinates on G, ϕ ∈ C∞(G× g). Then locally we can write

Ξ(ϕ) =
∑

xivXi(ϕ)

where vXi differentiates ϕ only in the wi directions. Ξ is smooth if and only
if Ξ(ϕ) is smooth for all ϕ. Thus Ξ is smooth. The flow of Ξ is given by

Θt((g, X)) = (Φt(t, g), X)

hence Θ is smooth. But expX = πG(Θ1(e,X)), where πG : G × g → G is
the projection. So exp is smooth.

(2) and (3) follow from the Proposition 10.68 that γ(t) = exp(tX) is the
one-parameter subgroup generated by X. (4) follows from (2) by induction
on n > 0 and from (3) for n < 0.

Now let’s see (5). Let X ∈ g, γ : R→ g, t 7→ tX. Then

T0 expX = T0 exp(γ
′(0))

= (exp ◦γ)′(0)

=
d

dt

∣∣∣∣
t=0

exp(tX)

= X

So we have T exp : g→ g is the identity map. Immediately we have (6) from
(5) and inverse function theorem.

For (7). It suffices to show exp(tρ∗X) = ρ(exp(tX)),∀t ∈ R and take
t = 1 to get desired result. By Proposition 10.68, exp(tρ∗X) is the one
parameter subgroup generated by ρ∗X. Let γ(t) = ρ(exp(tX)). It suffices
to show γ is a morphism of Lie groups satisfying

γ′(0) = ρ∗X
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Note that γ is the compostion of the morphisms of Lie groups ρ and t 7→
exp(tX). We have

γ′(0) =
d

dt

∣∣∣∣
t=0

ρ(exp tX)

= T0ρ(
d

dt

∣∣∣∣
t=0

exp tX)

= T0ρ(X)

= ρ∗X

For (8). Any g ∈ G, t 7→ Lg exp(tX) is an integral curve for vX starting
at g. Hence, it equals to ΦX,t(g), where Φ(X) is the flow of X. Then

Rexp(tX)(g) = g exp(tX)

= Lg exp(tX)

= ΦX,t(g)

□
Corollary 10.81 (First principle). Let G,H be Lie groups, with Lie alge-
bras g, h. If G is connected, ρ : G→ H is a morphism of Lie groups. Then
ρ is determined by ρ∗.

Proof. By (5) of Theorem 10.73, T0 exp = idg. So im exp contains a neigh-
borhood Ue of e ∈ G. Since G is connected, Ue generates all of G. Then the
claim follows from (7) of Theorem 10.73. □

Let’s compute explictly in the case of linear Lie group to see what does
exponential map look like. In fact, it’s just the exponential function we met
in analysis.

Example 10.82. G = GL(n,R). For any X ∈ gl(n,R), we define

exp(X) :=

∞∑
k=0

1

k!
Xk

This is an infinitely summation, we need to consider the convergence. In
fact, we can show that this series do converges if we give a suitable norm
and exp(X) ∈ GL(n,R)

Consider the norm ‖X‖ = (
∑

i,j(X
i
j)

2)
1
2 , the Cauchy inequality implies

that ‖XY ‖ ≤ ‖X‖‖Y ‖. So by induction, we have ‖Xk‖ ≤ ‖X‖k. Hence the
series converges uniformly on any bounded subset of gl(n,R), by comparison
to
∑ 1

k!x
k = ex.

To X ∈ gl(n,R) corresponding to vX =
∑

i,j X
i
j
∂
∂Ai

j
. The one parameter

subgroup generated by X is an integral curve γ of vX satisfying γ′(t) =
vX,γ(t), γ(0) = In. In other words, if we use matrix notation, we have the
following first order ODEs

γ′(t) = γ(t)X
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We claim that γ(t) = exp(tX) is a solution to this equation. Indeed,

γ′(t) = (

∞∑
k=0

1

k!
(tX)k)′

=
∑
k=1

k

k!
tk−1Xk

= (
∞∑
k=1

1

(k − 1)!
tk−1Xk−1)X

= γ(t)X

Termwise differentiation is justified since the differentiated series also con-
verges uniformly on bounded subsets. By the smoothnes of solutions to
ODEs, γ is smooth.

For invertibility, let σ(t) = γ(t)γ(−t). Consider
σ′(t) = γ′(t)γ(−t)− γ(t)γ′(−t)

= γ(t)Xγ(−t)− γ(t)Xγ(−t)
= 0

So σ(t) is constant, that is σ(t) = σ(0) = In. So we have γ(−t) = γ−1(t) as
desired.

Proposition 10.83. Let G be a Lie group with Lie algebra g, X ∈ g, ϕ ∈
C∞(G). Then

(vnXϕ)(g exp tX) =
dn

dtn
(ϕ(g exp tX))

for all g ∈ G. If ‖ · ‖ denotes a norm on g and X is restricted to a bounded
subset in g. Then

ϕ(expX) =
n∑
k=0

1

k!
(vkXϕ)(e) +Rn

with |Rn(X)| ≤ C‖X‖n+1.

Proof. The first statement for g = e follows from applying vX(ϕ)(exp tX) =
d
dt(ϕ(exp tX)) iteratively. Replace ϕ(h) by ϕg(h) = (ϕ ◦ Lg)(h) and use left
invariance of vX yields the statement for general g ∈ G.

For the half part, expand t 7→ exp(tX) in a Taylor series about t = 0 and
evaluate at t = 1.

ϕ(expX) =

n∑
k=0

1

k!
(
d

dt
)kϕ(exp tX)

∣∣∣∣∣
t=0

+
1

n!

∫ 1

0
(1− s)n( d

ds
)n+1ϕ(exp sX)ds

=

n∑
k=0

1

k!
(vkXϕ)(e) +

1

n!

∫ 1

0
(1− s)n(vn+1

X ϕ)(exp sX)ds︸ ︷︷ ︸
Rn
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Now it suffices to estimate the remainder term Rn. Write X =
∑
λjXj in

some basis and expand vn+1
X . Since X lies in a compact set, then exp sX

also lies in a compact set. So∫ 1

0
(1− s)n(vn+1

X ϕ)(exp sX)ds = ‖λ‖n+1

∫ 1

0
(1− s)n . . .

Thus Rn(X) ≤ C‖X‖n+1 as desired. □

Corollary 10.84. Let G be a Lie group with Lie algebra g, X ∈ g, ϕ ∈
C∞(G). Then

(vXϕ)(g) =
d

dt

∣∣∣∣
t=0

ϕ(g exp tX)

Lemma 10.85. Let G be a Lie group with Lie algebra g. For X,Y ∈ g, t ∈
R. We have
1. exp(tX) exp(tY ) = exp(t(X + Y ) + t2

2 [X,Y ] +O(t3));
2. exp(tX) exp(tY ) exp(tX)−1 = exp(tY + t2[X,Y ] +O(t3));
3. limn→∞(exp( tnX) exp( tnY ))n = exp(t(X + Y )).

Proof. Since exp is a diffeomorphism on some neighborhood of 0 ∈ g, so
there is ε > 0 such that

Z : (−ε, ε)→ g

t 7→ exp−1(exp tX exp tY )

is smooth, Z(0) = 0 and exp(Z(t)) = exp tX exp tY . Expand Z(t) as follows

Z(t) = tZ1 + t2Z2 +O(t3), Z1, Z2 ∈ g

Let ϕ ∈ C∞(G). Then by the Proposition 10.83, we can expand ϕ(exp(Z(t)))
as follows

ϕ(exp(Z(t))) =

2∑
k=0

1

k!
(tvZ1 + t2vZ2 +O(t3))kϕ(e) +O(t3)

= ϕ(e) + t(vZ1ϕ)(e) + t2(
1

2
v2Z1

ϕ+ vZ2ϕ)(e) +O(t3)

We can do the same thing for ϕ(exp tX exp sY ) for s, t ∈ R

ϕ(exp tX exp sY ) =

2∑
k=0

1

k!
skvkY ϕ(exp tX) +Ot(s

3)

=
2∑

k=0

2∑
k=0

1

k!

1

l!
sktlvlXv

k
Y ϕ(e) +Ot(s

3) +O(t3)

Set t = s, then

ϕ(exp tX exp tY ) = ϕ(e)+t(vX+vY )ϕ(e)+t
2(
1

2
v2X+vXvY +

1

2
v2Y )ϕ(e)+O(t3)
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Replace ϕ by ϕ ◦ Lg and use the left-invariance of vX , vY , vZ1 , vZ2 , then we
have ϕ(expZ(t)) = ϕ(exp tX exp tY ). By comparing coefficient, we have{

vZ1 = vX + vY
1
2v

2
Z1

+ vZ2 = 1
2v

2
X + vXvY + 1

2v
2
Y

which implies {
Z1 = X + Y

Z2 =
1
2 [X,Y ]

For second,

exp(tX) exp(tY ) exp(tX)−1 = exp(t(X + Y ) +
t2

2
[X,Y ] +O(t3)) exp(−tX)

= exp(t(X + Y −X) +
t2

2
[X + Y,−X] +

t2

2
[X,Y ] +O(t3))

= exp(tY + t2[X,Y ] +O(t3))

For third,

(exp(
t

n
X) exp(

t

n
Y ))n = exp(t(X + Y ) +

t2

n
[X,Y ] +O(

t3

n2
))

Fix t and let n→∞ to get desired result. □
Definition 10.86 (adjoint representation). Let G be a Lie group with Lie
algebra g. For g ∈ G, let cg = Lg ◦ Rg−1 ∈ Aut(G). We define the adjoint
representation of G on g by

Ad : G→ GL(g)

g 7→ Ad(g) := Tecg

Proposition 10.87. Let G be a Lie group with Lie algebra g. Then
1. Ad is a morphism of Lie groups;
2. The differential of Ad is ad
3. Ad(expX) = exp(adX), ∀X ∈ g.

Proof. By (7) of Theorem 10.80, we have exp ◦Tecg = cg ◦ exp, that is
exp(Ad(g)X) = g exp(X)g−1, ∀X ∈ g

And (6) of Theorem 10.80 says that exp is a diffeomorphism in a local
neighborhood of 0 ∈ g, hence it has a smooth inverse. Thus g 7→ Ad(g)X
is a smooth map from a neighborhood of e ∈ G into GL(g). Obviously,
Ad(g1g2) = Ad g1 ◦Ad g2, since

Tecg1g2 = Te(cg1 ◦ cg2) = Tecg1 ◦ Tecg2
Thus g 7→ Ad(g) is smooth everywhere.

For second, let’s take X,Y ∈ g and compute directly as follows
exp(Ad(exp tX)tY ) = exp tX exp tY (exp tX)−1

= exp(tY + t2[X,Y ]) +O(t3))
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Thus

Ad(exp tX)tY = tY+t2[X,Y ]+O(t3) =⇒ Ad(exp tX)Y = Y+t[X,Y ]+O(t2)

So for any X,Y ∈ g, we have

TeAd(X)(Y ) =
d

dt

∣∣∣∣
t=0

Ad(exp tX)Y

=
d

dt

∣∣∣∣
t=0

(Y + t[X,Y ] +O(t2))

= [X,Y ]

= adX Y

as desired.
The third holds also from (7) of Theorem 10.80. □

Definition 10.88. Let V be a finite dimensional vector space, A ∈ EndV ,
we define

f(A) =
1− exp(−A)

A
=

∫ 1

0
exp(−sA)ds =

∞∑
k=0

1

(k + 1)!
(−A)k

We also define g to be the convergent power series expansions of z log z
z−1 in

the disk |z − 1| < r, that is

g(1 + u) =
(1 + u) log(1 + u)

u
= 1 +

u

2
− u2

6
+ . . .

We define g(A) by this series for A such that ‖A− id ‖ < 1.

Remark 10.89. exp(logA) = A for ‖A − id ‖ < 1 and log(expA) = A for
‖A‖ < 2. Thus

f(A)g(expA) = id, for ‖A‖ < 2

Theorem 10.90. Let G be a Lie group with Lie algebra g, X ∈ g. Then
linear map TX exp : g→ TexpXG is

TX exp = TeRexpX ◦ f(− adX)

= TeLexpX ◦ f(adX)

where f(A) = 1− exp(−A)
A

=
∫ 1
0 exp(−sA)ds.

Proof. For the first equality: From differential geometry we have the follow-
ing fact: Let vε ∈ X(M) be a smooth vector field on a manifold M depending
smoothly on a parameter ε, and Φεt is its flow. Then the map ε 7→ Φεt is
smooth and

∂

∂ε
Φεt (p) =

∫ t

0
TΦε

t (p)
(Φεt−s)

∂vε

∂ε
(Φεt (p))ds ∈ TΦε

t (p)
(M)
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We apply this to vX+εY ∈ XL(G), X, Y ∈ TeG. Let Φε denote the flow of
vX+εY . By (8) of Theorem 10.80, we have Φεt = Rexp(t(X+εY )). So

∂

∂ε
Φεt (e) =

∂

∂ε
Rexp(X+εY )(e)

=
∂

∂ε
exp(X + εY )

=

∫ 1

0
Texp s(X+εY )(Rexp(1−s)(X+εY ))

∂

∂ε
vX+εY (Rexp s(X+εY )(e))ds

Now we prove the second equality:

(TeRexpX)
−1 ◦ TeLexpX ◦

∫ 1

0
exp(−s adX)ds = TexpXR(expX)−1 ◦ TeLexpX ◦

∫ 1

0
exp(−s adX)ds

= Te(ΨexpX) ◦
∫ 1

0
exp(−s adX)ds

= Ad(expX) ◦
∫ 1

0
exp(−s adX)ds

= exp(adX) ◦
∫ 1

0
exp(−s adX)ds

=

∫ 1

0
exp((1− s) adX)ds

=

∫ 1

0
exp(u adX)du

= f(adX)

This completes the proof. □

Now it’s time to show the second principle, Recall that the second prin-
ciple says: Let G,H be Lie groups, G is connected and simply connected.
A linear map TeG→ TeH is the differential of a morphism of Lie groups if
and only if it preserves the Lie bracket.

So given a morphism of Lie algebras ψ : g → h, we want to recover a
ρ : G→ H such that Teρ = ψ. The tool we use is the exponential map.

Let Ue ⊂ G be a neighborhood of e ∈ G such that log(g) = exp−1(g)
exists for some g ∈ G.

We define
ρ(g) = exp(ψ(log(g))), ∀g ∈ Ue ⊂ G

If we define in such a way, then we have

ρ(exp(X)) = exp(ψ(X)), ∀X ∈ U0 ⊂ g

We also need to show ρ is a group homomorphism. Suppose g = exp(X), h =
exp(Y ) for X,Y ∈ V ⊂ U0 ⊂ g such that exp(X), exp(Y ), exp(X) exp(Y )
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are all in Ue ⊂ G.
ρ(gh) = ρ(exp(X) exp(Y ))

= ρ(expZ)

= exp(ψ(Z))

where Z = log(exp(X) exp(Y )). We have seen last time

exp(tX) exp(tY ) = exp(t(X + Y ) +
t2

2
[X,Y ] +O(t3))

Assume that Z = X + Y + F ([X,Y ]), i.e. F depends on X,Y only through
[X,Y ]. Since ψ is a morphism of Lie algebras, then

ψ(Z) = ψ(log(expX expY ))

= ψ(X + Y + F ([X,Y ]))

= ψ(X) + ψ(Y ) + F ([ψ(X), ψ(Y )])

= log(exp(ψ(X)) exp(ψ(Y )))

Applying exp we have
ρ(gh) = exp(ψ(Z))

= exp(log(exp(ψ(X)) exp(ψ(Y ))))

= exp(ψ(X)) exp(ψ(Y ))

= ρ(g)ρ(h)

So what is left is to show F do have the property we need. In fact, it’s called
Baker-Campbell-Hausdorff formula. And all the questions can be answered
by looking at the differential of exp.

Lemma 10.91. Let G be a Lie group with Lie algebra g. Then exp : g→ G
is a local diffeomorphism near X ∈ g if and only if adX : g → g has no
eigenvalues of the form 2πik, where k ∈ Z\{0}.

Theorem 10.92. Let g be a finite-dimensional Lie group over R. Let S be
the set of all singular points of exp, and V = g\S. V is an open neighborhood
of 0 in g, and

f(adX) =
1− exp(− adX)

adX
is invertible for X ∈ V . Thus X 7→ f(adX)

−1 is an analytic map V → End g.
Let t 7→ Z(t) be a solution to the ODE{

d
dtZ(t) = f(adZ(t))

−1(X)

Z(0) = Y

Let W = {(X,Y ) ∈ g× V | Z(t) is defined for all t ∈ [0, 1]}. Set µ(X,Y ) =
Z(1) for (X,Y ) ∈ W . Then W is an open neighborhood of (0, 0) ∈ g × V
and µ :W → g is analytic. If g = Lie(G) for a Lie group G with exponential
map exp, then

exp(X) exp(Y ) = exp(µ(X,Y )), (X,Y ) ∈W
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Proof. Integral curves of smooth vector fields are solutions to an ODE, hence
depends smoothly on initial values and on parameters. The map (X,Z) 7→

adZ
1−exp(− adZ

(X) is a smooth map g×V → g. So W is open and µ is smooth.

d

dt
exp(Z(t)) = TZ(t) exp(

dZ(t)

dt
)

= TeLexpZ(t) ◦
1− exp(− adZ(t))

adZ(t)
(
dZ(t)

dt
)

= TeLexpZ(t)(X)

= vX,exp(Z(t))

Thus t 7→ exp(Z(t)) is an integral curve for the left-invariant vector field vX
starting at exp(Z(0)) = exp(Y ). By (8) of Theorem 10.80, we have

exp(Z(t)) = Rexp tX expY = exp tX expY

for t for which Z(t) is defined. Thus exp(Z(1)) = expX expY . □
Remark 10.93. Let V, V0 be neighborhoods of 0 in g, U a neighborhood of
e in G such that exp |V : V → U is a diffeomorphism and for all X,Y, Z ∈ V0
such that

(X,−Y ) ∈W, (µ(X,−Y ), Z) ∈W,µ(µ(X,−Y ), Z) ∈ U
Their existence follows from the invertibility of TX exp. For each g ∈ G we
write Ug0 = Lg exp(V0), ψ

g(W ) = log(g−1h), h ∈ Ug0 . Then
{ψg : Ug0 → V0 | g ∈ G}

from an atlas for G such that the group operations induced by µ are smooth.
Corollary 10.94 (Baker-Campbell-Hausdorff formula). Let G be a Lie
group with Lie algebra g, V a connected open neighborhood of 0 in g, U
an open neighborhood of e in G such that exp |V is an isomorphism. Let
log : U → V such that

log(expX) = X, ∀X ∈ V ⊂ g

exp(log h) = h, ∀h ∈ U ⊂ G

Let V ′ ⊂ V be connected such that ‖ adX ‖ ≤ 1
2 log 2 for all X ∈ V ′. Then

for all X,Y ∈ V ′

log(expX expY ) = Y +

∫ 1

0
g(exp(t adX) exp(adY ))dt

Proof. Recall

g(A) =
(1 +A) log(1 +A)

A
= 1 +

A

2
− A2

6
+ . . .

Define t → Z(t) by exp(Z(t)) = exp tX expY . We have Z(0) = Y, Z ′(0) =
X. We want to prove

d

dt
Z(t) = g(exp(t adX) exp(adY ))(X)
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We know from the proof of the theorem that
d

dt
Z(t) = f(adZ(t))

−1(X)

We have:
exp(adZ(t)) = Ad(exp(Z(t)))

= Ad(exp tX expY )

= Ad(exp tX)Ad(expY )

= exp(adtX) exp(adY )

= exp(t adX) exp(adY )

From Remark 10.89, choose A = adZ(t) and ‖X‖ < 1
2 log 2 for all X ∈ V ′,

we have
f−1(adZ(t))

−1 = g(exp(adZ(t))) = g(exp t adX exp adY )

□
Remark 10.95. Working with Taylor series expansion for Z(t) one finds

Z(1) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + . . .

Theorem 10.96. Let G be a Lie group with Lie algebra g, for any Lie
subalgebra h of g, there exists a unique immersed connected Lie group H of
G such that Lie(H) = h. As a subset of G, H is equal to the subgroup of G
generated by exp(h).
Remark 10.97. This subgroup is not necessarily a closed subgroup of G.
Let G = GL(2,C), g = gl(2,C), a ∈ Q, consider

h = {
(
it 0
0 ita

)
| t ∈ R}

Then
H = exp(h) = {

(
eit 0
0 eita

)
| t ∈ R}

We have dimH = 1, but

H = exp(h) = {
(
eiθ 0
0 eiφ

)
| θ, φ ∈ R}

We have dimH = 2.
Example 10.98. Let g be a finite-dimensional Lie algebra and ad a mor-
phism of Lie algebras. Then ad g is a Lie subalgebra of gl(g). Let Ad g
be the unique connected subgroup of GL(g) generated by exp(adX), X ∈ g
with Lie(Ad g) = ad g.
Definition 10.99 (adjoint group). Ad g is called the adjoint group of g.

Let G be a Lie group with Lie algebra g. Since exp(adX) = AdexpX ,
then Ad(g) is also the image of Ad : G → GL(g) if G is connected. In this
situation, Ad g is called the adjoint form of G.
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Definition 10.100 (isogony). Let G,H be Lie groups. A morphism of Lie
groups ρ : G→ H is called isogony if ρ is a covering map.

Remark 10.101. Among all the Lie groups that are isogenous to each
other, there are two distinguished ones:
1. G̃ : The universal covering of G which is simply connected;
2. If ρ : G → H is an isogony, then Z(G) is discrete if and only if Z(H)

is discrete. In that case, we have G/Z(G) ∼= H/Z(H). In particular, if
Z(G̃) is discrete, then G̃/Z(G̃) coincides with Ad g, the adjoint form of
G.

Isogenous Lie groups with discrete center have isomorphic Lie algebras.

Proposition 10.102 (Second principle). Let G,H be Lie groups with G
connected and simply connected, and g, h are their Lie algebras. A linear
map ψ : g→ h is the differential of a morphism of Lie groups ρ : G→ H if
and only if ψ is a morphism of Lie algebras.

Proof. Consider the product G×H, its Lie algebra is g⊕ h. Let κ ⊂ g⊕ h
be the graph of ψ. Then ψ is a morphism of Lie algebras if and only if κ is
a Lie subalgebra of g⊕ h. Indeed,

[X + ψ(X), Y + ψ(Y )] = [X,Y ] + [ψ(X), ψ(Y )] = ψ([X,Y ])

By the theorem on Lie subalgebra and Lie subgroups, we know there exists
a immersed Lie subgroup K ⊂ G ×H such that TeK ∼= κ. Let π : K → G
be the projection onto the first factor. Teπ : TeK → TeG is an isomorphism.
So π : K → G is an isogony. But G is simply connected, then π is an
isomorphism. Let ρ : K ∼= G → H be the projection to the second factor,
then Teρ = ψ. □

Example 10.103. Let G = SU(2),H = SO(3,R). Let ρ : G → H be the
covering homomorphism.

Remark 10.104 (Ado’s theorem). Every finite dimensional Lie algebra
over R has a finite-dimensional faithful representation. In other words, it’s
a subalgebra of gl(V ) for some finite dimensional vector space V .

Remark 10.105 (Lie’s third theorem). Every finite dimensional Lie algebra
over R is the Lie algebra of a connected Lie subgroup of GL(n,C) for some
n.

We end this section by the tensor product of representations of Lie alge-
bras. Recall that for two representations of Lie groups ρ1 : G→ GL(V ), ρ2 :
G→ GL(W ). We have

(ρ1 ⊗ ρ2)(g) := ρ1(g)⊗ ρ2(g)
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Take [γ]e ∈ TeG with γ′(0) = X. We know that X acts on v ∈ V by

X(v) =
d

dt

∣∣∣∣
t=0

(ρ(γ(t))v)

= Tγ(t)ρ ◦
d

dt

∣∣∣∣
t=0

ρ(γ(t))

So we can define how does X acts on v ⊗ w for v ∈ V,w ∈W .

X(v ⊗ w) = d

dt

∣∣∣∣
t=0

(ρ1(γ(t))⊗ ρ2(γ(t)))(v ⊗ w)

=
d

dt

∣∣∣∣
t=0

ρ1(γ(t))(v)⊗ ρ2(γ(t))(w) + ρ1(γ(t))(v)⊗
d

dt

∣∣∣∣
t=0

ρ2(γ(t))(w)

= X(v)⊗ idW (w) + idV (v)⊗X(w)

That’s why we define tensor product of representations of Lie algebras as
follows:
Definition 10.106 (tensor product of representations of Lie algebras). Let
ρ1 : g → gl(V ), ρ2 : g → gl(W ) be representation of a Lie algebra g. Then
we define

ρ1 ⊗ ρ2 : g→ gl(V ⊗W )

X 7→ (v ⊗ w 7→ X(v)⊗ idW (w) + idV (v)⊗X(w))

11. Rough classification of Lie algebras

11.1. Solvable and nilpotent Lie algebras.
Definition 11.1 (lower center series). Let g be a Lie algebras, we define
the lower center series gi by

g0 = g, g1 = [g0, g], . . . , gj+1 = [gj , g]

Definition 11.2 (derived series). Let g be a Lie algebras, we define the
derived series gi by

g0 = g, g1 = [g0, g0], . . . , gj+1 = [gj , gj ]

Definition 11.3 (nilpotent). g is called nilpotent, if gk = 0 for some k ≥ 0.
Definition 11.4 (solvable). g is called solvable, if gk = 0 for some k ≥ 0.
Definition 11.5 (semisimple). g is semisimple, if g has no nonzero solvable
ideals.
Definition 11.6 (simple). g is simple, if dim g > 1 and g has no nonzero
ideals.
Lemma 11.7. Each gi and each gi is an ideal in g. Moreover gi ⊂ gi for all
i.
Lemma 11.8. The following are equivalent:
1. g is solvable;
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2. g has a sequence of Lie subalgebras g = h0 ⊃ h1 ⊃ · · · ⊃ hk = − such
that hi+1 is an ideal in hi and hi/hi+1 is abelian;

Lemma 11.9. The following are equivalent:
1. g is nilpotent;
2. g has a sequence of ideals g = h0 ⊃ h1 ⊃ · · · ⊃ hk = − such that

hi/hi+1 ∈ Z(g/hi+1);
3. adX1 ◦ · · · ◦ adXk

Y = 0 for some k ∈ N and all X1, X2, . . . , Xk, Y ∈ g.
Proposition 11.10. Any subalgebra or quotient algebra of a solvable(nilpotent)
Lie algebra is solvable(nilpotent).

Proof. If h is a subalgebra of g, then by induction hk ⊂ gk. Hence g is
solvable implies h is solvable; If π : g → h is a surjective morphism of Lie
algebra, then

π(gk) = π([gk−1, gk−1]) = [π(gk−1), π(gk−1)] = [hk−1, hk−1] = hk

Hence g is solvable implies h is solvable. For the nilpotent, the argument is
analogous. □
Proposition 11.11. If a is a solvable ideal in g and if g/a is solvable, then
g is solvable.
Proof. Let π : g → g/a be the projection morphism. Suppose (g/a)k = 0,
since g/a is solvable. By induction, π(g)j = (g/a)j for all j, so we have
π(g)k = 0. In other words, gk ⊂ a. Together with the fact that a is solvable,
we obtain the desired result. □
Remark 11.12. The analogous statement for nilpotent Lie algebra is false.
Let n(n,R) be the Lie algebra of strictly upper triangular matrices. n(n,R) ⊂
b(n,R) is a nilpotent subalgebra. The quotient b(n,R)/n(n,R) is the diago-
nal matrices, and it’s nilpotent since it’s abelian, but b(n,R) is not nilpotent.
Proposition 11.13. Let g is a finite-dimensional Lie algebra. There is a
unique solvable ideal of g containing all solvable ideals.
Proof. Since g is finite-dimensional, it suffices to show that the sum of two
solvable ideals is solvable. Let a, b be solvable ideals, h = a + b is an ideal
and

h/a ∼= b/a ∩ b

But since b is solvable, then b/a∩ b are solvable, so h/a is solvable, but a is
solvable, so h is solvable. □
Definition 11.14 (radical). The unique maximal solvable ideal of a finite-
dimensional Lie algebra g is called the radical of g, denoted by rad(g).
Proposition 11.15. Some properties about simple and semisimple:
1. g is simple then [g, g] = g;
2. g is simple implies g is semisimple;
3. g is semisimple implies Z(g) = 0.
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Proof. (1) Let g be simple, then [g, g] is an ideal, hence either 0 or g. since
g is not abelian, then it is g.

(2) rad(g) is an ideal, hence either 0 or g. If rad(g) = g. then g is solvable
and [g, g] ( g, a contradiction. So rad(g) = 0, which means g is semisimple.

(3) Since Z(g) is an abelian ideal, g is semisimple implies that Z(g) is
zero. □
Proposition 11.16. Let g be a finite-dimensional Lie algebra. Then g/ rad(g)
is semisimple.
Proof. Let π : g → g/ rad(g) be the projection. Let h ⊂ g/ rad(g) be a
solvable ideal, we need to show h is trivial.

Consider a = π−1(h) ⊂ g, so we have π(a) is solvable. Note that
kerπ|a ⊂ rad(g), since kerπ = rad(g). So we have kerπ|a is solvable, since
any subalgebra of a solvable algebra is solvable. Together with h is solv-
able and Proposition 11.11, we have a is solvable, then a ⊂ rad(g), that is
h = 0. □
Remark 11.17. This proposition means that any finite-dimensional Lie
algebra g fits into a short exact sequence

0→ rad(g)︸ ︷︷ ︸
solvable

→ g→ g/ rad(g)︸ ︷︷ ︸
semisimple

→ 0

In fact, one can show that this sequence always splits. The Levi decom-
position of g. Let g be a Lie algebra with radical r. Then there exists a
semisimple Lie subalgebra s such that

g = r+ s

Proposition 11.18. g is a finite-dimensional Lie algebra, g is semisimple
if and only if g has no abelian ideals.
Proof. If g is semisimple, then rad(g) = 0. Suppose a 6= 0 is an abelian ideal
of g, then a is a solvable ideal, thus a ⊂ rad(g) = 0.

For the other direction, if g is not semisimple, so r = rad(g) is non-zero.
Let k be the smallest integer such that rk = 0 and rk−1 6= 0, so rk−1 is an
abelian ideal. □
Definition 11.19 (invariant subspace). Let g be a Lie algebra, V a finite-
dimensional vector space, ρ : g → gl(V ) a representation. A subspace
W ⊂ V such that ρ(g)W ⊂W is called invariant.
Definition 11.20 (irreducible). A representation V of g is called irreducible
if the only invariant subspace are 0 and V , also called simple representation.
Definition 11.21 (complete reducible). A representation V of g is called
complete reducible if every invariant subspace of V has a complementary
invariant subspace, also called semisimple.
Proposition 11.22. g is a finite-dimensional Lie algebra, g is nilpotent if
and only if ad g is nilpotent.
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11.2. Engel and Lie’s theorem.

Theorem 11.23 (Engel’s theorem). Let V 6= 0 be a finite-dimensional
vector space, g a Lie algebra of nilpotent endomorphisms of V . Then there
exists 0 6= v ∈ V such that Xv = 0 for all X ∈ g.

Proof. Induction on dimension of g: If dim g = 1, then X ∈ g is nilpotent
implies X = 0; Suppose the claim holds for dimensions < dim g and dim g >
1.

We construct a nilpotent ideal h ⊂ g of codimension 1 as follows: Let h
be a proper Lie subalgebra of maximal dimension in g. We need to show h
is an ideal and codimg h = 1. Since ad h leaves h invariant, then we have a
representation

ρ : h→ gl(g/h)

X 7→ (Y + h 7→ [X,Y ] + h)

We show ρ(X) is nilpotent for all X ∈ h as follows: Let Y ∈ g, then
ad2mX Y = ad2m−1

X (XY − Y X)

= ad2m−2
X (X2Y − 2XYX + Y X2)

=
2m∑
j=0

cjX
jY X2m−j

But Xm = 0 for some m ∈ N, so we will have ad2mX = 0, that is adX is
nilpotent, so adX is nilpotent on g/h.

We know that the dimension of h is strictly less than the dimension of g
so the induction hypothesis implies that there exists Y + h 6= h in g/h such
that

ρ(X)(Y + h) = h, ∀X ∈ h

In other words, [X,Y ] ∈ h, ∀X ∈ h. Let s = h+ CY , s is a subalgebra of g
properly containing h so s = g by maximality of h. Thus the codimension
of h is 1. Moreover, h is an ideal.

Let W = {v ∈ V | Xv = 0, ∀X ∈ h}, induction hypothesis implies W 6= 0,
let v ∈W,X ∈ h, Y ∈ g, then

XY v = [X,Y ]v + Y Xv = 0

Therefore we see that Y (W ) ⊆ W . By assumption, Y is nilpotent, so 0 is
its only eigenvalue. Y has an eigenvector w ∈ W such that Y w = 0. But
hw = 0, so g(w) = 0, since g = h+ CY . This completes the proof. □
Corollary 11.24. Let g be a nilpotent Lie algebra, V 6= 0 be a finite-
dimensional vector space, ρ : g → gl(V ) a representation. Then there
exists a sequence of subspaces V = V0 ⊃ V1 ⊃ · · · ⊃ Vm = 0 such that
ρ(X)Vi ⊂ Vi+1,∀X ∈ g. Hence V has a basis in terms of which the matrix
representation of each X ∈ g is strictly upper triangular.

Proof. Standard. □
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Corollary 11.25. g is a Lie algebra, if adX ∈ gl(g) is nilpotent for all
X ∈ g, then g is nilpotent.

Proof. Engel’s theorem implies that ad g is nilpotent, by Proposition 11.22,
we have g is nilpotent. □
Lemma 11.26. Let h be an ideal in a Lie algebra g, ρ : g → gl(V ) a
representation, λ : h→ C a linear function on h. Set

W = {v ∈ V | X(v) = λ(X)v, ∀X ∈ h}
Then YW ⊂W , for all Y ∈ g.

Proof. Let 0 6= w ∈ W,X ∈ h, Y ∈ g, then [X,Y ] ∈ h, since h is an ideal.
Use X to act on Y w, we have

XY w = [X,Y ]w + Y Xw

= λ([X,Y ])w + λ(X)Y w

So Y w ∈W if and only if λ([X,Y ]) = 0 for all X ∈ h.
Let U = 〈Y nw, n ∈ N〉C, clearly Y U ⊂ U . We show that XU ⊂ U for all

X ∈ h. Indeed, we first show
XY nw ≡ λ(X)Y nw (mod 〈w, Y w, . . . , Y n−1w〉C)

This is true for n = 0 since w ∈W . Assume it’s true for n. Then
XY n+1 = XY Y nw

= [X,Y ]Y nw + Y XY w

≡ λ([X,Y ])Y nw + Y XY nw (mod 〈w, Y w, . . . , Y n−1w〉C)
≡ λ([X,Y ])Y nw + λ(X)Y n+1w (mod 〈w, Y w, . . . , Y n−1w, Y w, . . . , Y nw〉C)
≡ λ(X)Y n+1w (mod 〈w, Y w, . . . , Y nw〉C)

This completes the induction, so we have XU ⊂ U . In fact, if we use
{w, Y w, . . . , Y nw} as a basis for U , we have the matrix representation for
ρ(X) as a upper triangular matrix, with all of diagonal elements are λ(X).
So trace of X is dimUλ(X), then

λ([X,Y ]) dimU = tr([X,Y ]) = 0

So λ([X,Y ]) = 0. □
Theorem 11.27 (Lie’s theorem). Let g be a solvable Lie algebra, 0 6= V a
finite-dimensional vector space, ρ : g→ gl(V ) a representation. Then there
exists a simultaneous eigenvector 0 6= v ∈ V for all ρ(X), X ∈ g.

Proof. Induction on dim g. If dim g = 1, then ρ(X) consists of multiples of
a single X ∈ g. If dim g > 1, construct an ideal h ⊂ g of codimension 1 as
follows: Since g is solvable, then g1 6= g, then a = g/g1 is a non-zero abelian
Lie algebra. Choose a subspace h ⊂ g with codimension 1, and [g, g] ⊆ h.
Then

[h, g] ⊂ [g, g] = h
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Thus h is an ideal and solvable. By induction, we can assume that there
exists v0 ∈ V such that Xv0 = λ(X)v0 for all X ∈ h for a linear function
λ : h→ C.

Let W = {v ∈ V | Xv = λ(X)v, ∀X ∈ h} 6= 0. Fix Y ∈ g\h with
g = h+CY . Now it suffices to show any w ∈W is an eigenvector of Y . By
Lemma 11.26, we have YW ⊂W for all Y ∈ g. So v0 ∈ V is an eigenvector
for all Y ∈ g. This completes the proof. □
Corollary 11.28. Let g be a solvable Lie algebra, 0 6= V a finite-dimensional
vector space, ρ : g → gl(V ) a representation. Then there exists a sequence
of subspaces

V = V0 ⊃ V1 ⊃ · · · ⊃ Vm = 0

such that each Vi is an invariant subspace and dimVi/Vi+1 = 1. Hence V
has a basis in terms of which the matrix representation of each X ∈ g is
upper triangular.

Corollary 11.29. Any irreducible representation ρ of a solvable Lie algebra
g is of dimension 1. Moreover, ρ([g, g]) = 0.

Proof. By Lie’s theorem, there exists 0 6= v ∈ V such that for all X ∈
g, ρ(X)v = Cv, i.e. Cv is an invariant subspace. So we know that any
irreducible representation of a solvable Lie algebra is 1-dimensinal. For any
X,Y ∈ g and v ∈ V ,

ρ([X,Y ])v = ρ(X)ρ(Y )v − ρ(Y )ρ(X)v

= λ(X)λ(Y )v − λ(Y )λ(X)v

= 0

This completes the proof. □
Proposition 11.30. Let g be a complex Lie algebra, gss = g/ rad(g). Every
irreducible representation of g is of the form V = V0 ⊗ L where V0 is an
irreducible representations of gss and dimL = 1.

Proof. We apply Lie’s theorem to rad(g), that is, there exists a linear func-
tion λ : g→ C such that

W = {v ∈ V | Xv = λ(X)v, ∀X ∈ rad(g)} 6= 0

By Lemma 11.26, we have YW ⊂ W,∀Y ∈ g. But V is irreducible, so we
have W = V . Thus tr(X) = dimV λ(X), ∀X ∈ rad(g). So we have

λ|rad(g)∩[g,g] = 0

since tr([g, g]) = 0. Let λ̃ : g→ C be a linear function such that{
λ̃|rad(g) = λ

λ̃|[g,g] = 0

Thus λ̃ determines a representation g → gl(L) with dimL = 1. In other
words, Y (z) = λ̃(Y )z, ∀Y ∈ g.
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X ∈ rad(g) acts on L∨ = Hom(L,C) by
(Xf)(z) = −f(Xz) = −λ(X)f(z), f ∈ Hom(L,C)

The action of g on V ⊗ L∨ is then
Y (v ⊗ f) = Y v ⊗ f + v ⊗ Y f, v ∈ V, f ∈ L∨

So
X(v ⊗ f) = λ(X)v ⊗ f − λ(X)v ⊗ f = 0, ∀X ∈ rad(g)

Thus V ⊗L∨ is a trivial representation on rad(g), it comes from a represen-
tation of g/ rad(g). □
Theorem 11.31. Let V be a representation of a semisimple Lie algebra g,
W ⊂ V an invariant subspace. Then there exists a complementary invariant
subspace W ′.
Proof. Fulton-Harris, Appendix C. □
11.3. Jordan–Chevalley decomposition. Recall from linear algebra: Let
V be a vector space over an algebraically closed field, X ∈ End(V ). Then X
has a Jordan normal form. From the Jordan normal form, we can directly
see that there is a decomposition of X = Xs+Xn, such that Xs is diagonal-
izable, and Xn is nilpotent. But is this decomposition unique? or it has any
other properties? That’s what Jordan-Chevalley decomposition tells us.
Proposition 11.32 (Jordan–Chevalley decomposition). Let V be a finite-
dimensional vector space, X ∈ End(V ), then
1. There exists unique Xs, Xn ∈ End(V ) such that X = Xs+Xv, where Xs

is semisimple, Xn is nilpotent and [Xs, Xn] = 0;
2. There exists p, q ∈ C[T ], p(0) = q(0) = 0 such that Xs = p(X), Xn =
q(X). In particular, Xs, Xn commute with any endomorphisms commut-
ing with X;

3. If A ⊂ B ⊂ V are subspaces, X(B) ⊆ A, then Xs(B) ⊆ A,Xn(B) ⊆ A.
Definition 11.33 (Jordan–Chevalley decomposition). Given a finite-dimensional
vector space V and X ∈ End(V ). The decomposition X = Xs+Xn is called
the Jordan–Chevalley decomposition of X.
Remark 11.34. Let g be an arbitrary Lie algebra, X ∈ g, how can we
define the Jordan–Chevalley decomposition of X? Choose ρ : g → gl(V )
a representation and consider the Jordan–Chevalley decomposition of ρ(X)
may be a good way.

But ρ(X)s, ρ(X)n sometimes do not lie in ρ(g). For example, let g = C,
and consider the following representations

ρ1 : t 7→ (t)

ρ2 : t 7→
(

0 t
0 0

)
ρ3 : t 7→

(
t t
0 0

)
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For the former two representations, we have{
ρ1(X)s = ρ1(X)

ρ1(X)n = 0

{
ρ2(X)s = 0

ρ2(X)n = ρ2(X)

But for the third representation, ρ3(X)s, ρ3(X)n 6∈ ρ(g).

Theorem 11.35. Let g be a semisimple Lie algebra. For any X ∈ g, there
exists Xs, Xn ∈ g such that for all representation ρ : g→ gl(V ), we have

ρ(X)s = ρ(Xs)

ρ(X)n = ρ(Xn)

Proof. Fulton-Harris, Appendix C. □

12. Examples of Lie algebras in small dimensions

12.1. Dimension one. Firstly, let’s consider the complex Lie algebra: Any
complex Lie algebra of dimension 1 is abelian, that is C with [X,X] =
0, ∀X ∈ C. The simply connected Lie group G with Lie(G) = C is (C,+).

All the other connected Lie groups with Lie(G) = C are of the form C/Λ
for a discrete subgroup Λ. Now the rank of Λ matters.

If rank of Λ is 1, then C/Λ ∼ R× R/Λ ∼ R× S1 ∼ C∗.
If rank of Λ is 2, then C/Λ is a complex torus of dimension 1. We

have other equivalent descriptions, such as a Riemann surface with genus 1,
elliptic curves over C or more explictly

{(x, y) ∈ C2 | y3 = 4x3 + ax+ b, a, b ∈ C, 4a3 − 27b2 6= 0} ∪ {∞}

In course of Riemann surface, you will learn that Λ = 1 · Z + τZ, τ ∈
H = {z ∈ C | im z > 0}. And C/Λτ ∼= C/Λτ ′ if and only if there exists

A

(
a b
c d

)
∈ SL(2,Z) such that τ ′ = aτ + b

cτ + d
. So the set of isomorphism

classes is H/SL(2,Z). Or in a more fancy word, the moduli space of complex
tori is H/ SL(2,Z).

Over real numbers, (R, [ , ] = 0) is the only Lie algebra of dimension 1,
and (R,+) is the corresponding simply connected Lie group. (R/Z,+) ∼= S1

is the only other connected real Lie groups.

12.2. Dimension two. g = C2. Now the abelian cases come out, since [ , ]
is not always trivial.

12.2.1. Abelian case. Assume g is abelian. If G is simply connected, then
G = C2. If G is connected, then C2/Λ, where Λ ⊂ C2 is a discrete subgroup
of rank 1, 2, 3, 4.

If rank of Λ is 1, then Λ = Ze1 ⊂ Ce1 + Ce2, so G ∼= C∗ × C.
If rank of Λ is 2, there are two possiblities: either Λ lies in a one-

dimensional complex subspace of C2 or not. If it does not, then basis of
Λ will also be a basis of C2, thus in this case we have G = C∗ ×C∗. If Λ do
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lies in a complex subspace of dimension 1. Then Λ = (Z+ Zτ)e1, τ ∈ C\R.
So G = C/Λ× C ∼= E × E, where E is a elliptic curve.

If rank of Λ is 3. If any rank 2 sublattice Λ′ ⊂ Λ lies a complex subspace
of dimension 1, then

Λ = (Z+ τZ)e1 + Ze2
In this case we have G = E × C∗. If no such sublattice exists, then

Λ = Ze1 ⊕ Ze2 ⊕ Z(αe1 + βe2), β ∈ C\R

Consider
C2 C2/Ce1 = C

G = C2/Ze1 ⊕ Ze2 ⊕ Z(αe1 + βe2) C/(Z⊕ Zβ)

So G is a bundle over E = C/Z + Zβ, with fiber C∗. Exchanging e1 and
e2 yields a non isomorphic elliptic curves E′ as the basis. As algebraic
varieties, the two bundles are not isomorphic, but the corresponding groups
are isomorphic as complex Lie groups.

If rank of Λ is 4, we only know how to describe thoes complex tori of
dimension 2 that can be embedded into complex projective space. These
complex tori are known as abelian varieties. However, the set of thoes only
forms a dense subset in the set of complex tori.

12.2.2. Real cases. Over R, there are only three cases, that is
G = R× R
G = R× S1

G = S1 × S1

12.2.3. Non abelian cases. Assume g is non abelian. View [ , ] :
∧2 g → g,

linear, and [ , ] 6= 0, then dim im[ , ] = 1. Choose a basis {X,Y } for g such
that im([ , ]) = CX, then

[X,Y ] = αX,α 6= 0

If we replace Y by 1
αY , then we have [X,Y ] = X. This determines g

uniquely. There exists unique non abelian Lie algebra with dimension 2
over R or C.

In order to find out the Lie groups with such Lie algebra. Recall ad : g→
gl(g) is faithful if g is semisimple. In this case{

adX X = 0

adX Y = X

{
adY X = −X
adY Y = 0

that is
adX =

(
0 1
0 0

)
, adY =

(
−1 0
0 0

)



98 BOWEN LIU

So we have
ad g =

(
∗ ∗
0 0

)
⊂ gl(2,C)

Consider

G0 = exp(ad g) = {
(
et s
0 1

)
| s, t ∈ C} ⊂ GL(2,C)

∼= C× C∗, as complex manifold
To take its universal cover, we write a general number of G0 as(

et s
0 1

)
And the product of two such matrices is given by(

et s
0 1

)
·
(
et

′
s′

0 1

)
=

(
et+t

′
s+ ets′

0 1

)
So we can realize the universal cover G of G0 as G = (C2, ∗) with (t, s) ∗
(t′, s′) = (t+ t′, s+ ets′). The center is

Z(G) = {(2πin, 0) | n ∈ Z} ∼= Z

So that the connected Lie group with Lie algebra g forms a partially order
tower

G→ · · · → Gn = G/nZ→ · · · → G0 = G/Z(G)

12.2.4. Real cases. In the real cases,

exp(ad g) = {
(
et s
0 1

)
| s, t ∈ R} ∼= R× R>0

is already simply connected, so is the unique connected Lie group with this
Lie algebra.

12.3. Dimension three. Consider [ , ] :
∧2 g → g, linear. Recall from

linear algebra if dimV = 3, then
∧2 V is isomorphic to the dual space of V .

Thus
∧2 g is isomorphic the set of all linear functions from g to C.

We need to consider the rank of mapping [ , ], which is equal to dim g1,
the only possiblities are 0, 1, 2, 3.

If dim g1 = 0, thus g is abelian, and the discussion for abelian g of dimen-
sion 2 generalizes.

12.3.1. Rank one. If dim g1 = 1, let X ∈ g such that g1 is generated by X,
extend this to a basis of {Y, Z,X} of g. So there exists α, β, γ ∈ C, and not
all 0, such that

[X,Y ] = αX

[X,Z] = βX

[Y, Z] = γX
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If α 6= 0, replace Y by 1
αY and Z by αZ − βY + γX, so we have
[X,Y ] = X

[X,Z] = α[X,Z]− β[X,Y ] = 0

[Y, Z] =
1

α
α[Y, Z] +

1

α
γ[X,Y ]

= γX − 1

α
γαX = 0

If β 6= 0, exchang Y and Z, yields the same Lie bracket as for α 6= 0. So if
either α or β is not 0, we have

g = (CZ, 0)︸ ︷︷ ︸
abelian

⊕ (CX ⊕ CY, [ , ])︸ ︷︷ ︸
unique nonabelian Lie algebra of dimension 2

In this case, g is just the product of one-dimensional abelian Lie algebra with
the non-abelian two-dimensional Lie algebra in the preceding discussion, so
we may ignore this case.

If we assume both α and β is 0, replace Z by γZ we have
[X,Y ] = 0, [X,Z] = 0, [Y, Z] = X

To find Lie groups with Lie algebra g, we need a faithful representation
of g, but here adjoint representation ad : g → gl(g) is not faithful, since
X = ker ad.

So if we want to find a faithful representation ρ : g → gl(V ) such that
ρ([Y, Z]) = ρ(X). A good way is to find a pair of endomorphisms Y and Z
on some vector space that do not commute, but that do commute with their
commutator X = [Y, Z]. After directly computing we have

[X,Y ] = [[Y, Z], Y ] = 2Y ZY − ZY 2 − Y 2Z = 0

[X,Z] = [[Y, Z], Z] = Y Z2 − 2ZY Z + Z2Y = 0

So the easiest way is to choose Y, Z such that Y 2Z, Y ZY,Z2Y, . . . in above
equations are zero. Let

ρ(X) =

 0 0 1
0 0 0
0 0 0

 , ρ(Y ) =

 0 1 0
0 0 0
0 0 0

 , ρ(Z) =

 0 0 0
0 0 1
0 0 0


So we have a faithful representation, that is g = n(3,C). Thus

G = exp(n(3,C)) = {

 1 a b
0 1 c
0 0 1

 | a, b, c ∈ C}

which is simply connected, and called Heisenberg group.

Z(G) ∼= {

 1 0 b
0 1 0
0 0 1

 | b ∈ C} ∼= C
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The same analysis holds for R, G is the group of unipotent real 3×3 matrices,
simply connected. Only one other connected Lie group is H = G/Z.
H is a Lie group which is not a linear or matrix Lie group, i.e. it is not

isomorphic to a subgroup of GL(n,R), equivalently it does not admit any
faithful finite dimensional representation.

Indeed, assume that there exists vector space V , dimV <∞ such that ρ :
H → GL(V ) is irreducible. Note that Z(H) = Z(G)/H = R/Z ∼= S1. Thus
ρ(S1) must be diagonalizable. Let ρ∗ : n(3,R) → gl(V ). Then ρ∗(X) must
be diagonalizable. Let v ∈ V be an eigenvector for ρ∗(X) with eigenvalue λ.

XY v = [X,Y ]v + Y Xv

= λY v

Similarly XZv = λZv. So Y v, Zv are eigenvectors of ρ∗(X) with eigenvalue
λ. Y, Z generates g, V irreducible. So

ρ∗(X)v = λ idV

But tr ρ∗(X) = tr ρ∗([Y, Z]) = 0. So λ = 0, that is, ρ∗ is not faithful.
However, H do has an important infinitely-dimensional representation.

Let V1 = C∞(R,C), V2 = {s 7→ e−πs
2
P (s) | P ∈ R[x]} ⊂ V1 and ~ ∈ R≥0.

Let
ρ(Y )f = −i~sf

ρ(Z)f =
df

ds
ρ(X)f = i~

Let L = 2X + i~Y , so

L(e−πs
2
P (s)) = −2i~πse−πs2P (s) + 2π~se−πs

2
P (s)−πs

2

e P ′(s)

= e−πs
2
P ′(s)

= e−πs
2
Q(S), degQ = degP − 1

Let U 6= 0 be an invariant subspace of V2, f = e−πs
2
P (s) ∈ U,P 6=

0,degP = n. So Lnf = e−πs
2 ∈ U , since U is invariant.

Consider the exponential map exp : h→ H,

etY f(s) = (cos(~ts)− sin(~ts))f(s)

momentum.
etZf(s) = f(t+ s)

translation.
etX = ei~tf(s)

multiplication by a phase. This is representation of the Heisenberg uncer-
tainty relation

[x, p] = −i~
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12.3.2. Rank two. If dim g1 = 2, let g1 = 〈Y, Z〉C. So
[Y, Z] = αY + βZ

adY Y = 0, adY Z = αY + βZ, so tr adY = β = 0. Similarly we have
α = − tr adZ = 0. Thus g1 is abelian. adX : g1 → g1 is an isomorphism for
all X 6∈ g1. There are two possiblities: adX is diagonalizable or not.

If adX is diagonalizable. Let Y, Z be an eigenbasis of g1 for adX . Thus
[X,Y ] = λ1Y

[X,Z] = λ2Z

[Y, Z] = 0

with λ1, λ2 6= 0. So we can rewrite these relations as
[X,Y ] = Y

[X,Z] = αZ

[Y, Z] = 0

with α =
λ1
λ2
6= 0.

Exercise 12.1. Show that two Lie algebras gα, gα′ are isomorphic if and
only if

α = α′ or α =
1

α′

This is the first time we see a continously varying family of nonisomorphic
complex Lie algebras.

Proof. Clearly, if α = α′ or α = 1
α′ , gλ ∼= gα′ . Conversely, if gα ∼= gα′ , there

is a Lie algebra isomorphism φ, that is a vector space isomorphism such that
φ([X,Y ]) = [φ(X), φ(Y )], ∀X,Y ∈ g

In other words, we have φ ◦ adX = adφ(X) ◦φ. So operators adX and adφ(X)

are similar, thus they have the same characteristic polynomials, traces and
determinants.

Since we have the matrix representation of adX as 0 0 0
0 1 0
0 0 α


Assume φ(X) = aX + bY + cZ, then we can also compute the matrix
representation of adφ(X)  0 −b −cα′

0 a 0
0 0 aα′


After computing the characteristic polynomials, we have

λ2 − (α+ 1)λ+ α = λ2 − a(1 + α′)λ+ a2α′
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Thus by comparing coefficients and cancelling a we have
α′

(1 + α′)2
=

α

(1 + α)2

The only possiblities are α = α′ or α = 1
α′ . □

From above computation we also see that the adjoint representation of
g is faithful. Let’s rewrite in a more beautiful way: A general element
aX − bY − cZ of Lie algebras with respect to the basis {Y, Z,X} by the
matrix  a 0 b

0 αa αc
0 0 0


Exponentiating, we find that a group with Lie algebra g is

G = {

 et 0 u
0 eαt v
0 0 1

 | t, u, v ∈ C} ⊂ GL(3,C)

If adX is not diagonalizable. It’s natural to choose a basis {Y, Z} of g1
with respect to which adX is in Jordan form. Replacing X by a multiple,
we may assume both its eigenvalues are 1 so that we have Lie algebra

= Y

[X,Z] = Y + Z

[Y, Z] = 0

With respect to the basis {Y, Z,X} for g, then the adjoint action of general
element aX − bY − cZ of Lie algebra is representated by the matrix a a b+ c

0 a c
0 0 0


Exponentiating we have

G = {

 et tet u
0 et v
0 0 1

 | t, u, v ∈ C}

Over R, there is a third possiblity: adX acts on g1 with distinct complex
eigenvalues λ, λ.

adX(Y + iZ) = λ(Y + iZ), λ = α+ iβ

So
[Y,X] =

α

β
Y
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12.3.3. Rank three. dim g1 = 3. Claim: there exists H ∈ g such that adH :
g→ g has an eigenvector with eigenvalue λ 6= 0.

Indeed, note that for any X ∈ g, X 6= 0, we have rank of adX is 2
since [X,Y ], [X,Z] must be linearly independent, otherwise dim g1 < 3. So
ker adX = CX. Now for any X ∈ g, either adX has non zero eigenvalue or
adX is nilpotent. If it’s nilpotent, choose Y ∈ g1 such that Y is not in the
kernel of adX but is in the kernel of ad2X . In other words,

[X,Y ] = αY, α ∈ C∗

So of course X is a eigenvector for adY with non-zero eigenvalue.
So choose H and X ∈ g such that X is an eigenvector with non-zero

eigenvalue for adH , and write [H,X] = αX. H ∈ g1, adH is a commutator
in gl(g), so tr adH = 0. Thus adH must have a third eigenvector Y with
eigenvalue −α.

So in order to describe the structure of g, it remains to find the commu-
tator of X and Y . Jacobi identity implies that

[H, [X,Y ]] = −[X, [Y,H]]− [Y, [H,X]]

= −[X,αY ]− [Y, αX]

= 0

Thus [X,Y ] = βH. By multiply X or Y by a scalar to make β = 1. Thus,
there is only one possible complex Lie algebra of this type. We can realize
it or give a faithful representation as follows

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
with

[H,X] = 2X

[H,Y ] = −2Y
[X,Y ] = H

this is exactly the Lie algebra of special linear group SL(2,C), and we denote
it by sl(2,C), which is the smallest simple Lie algebra.

13. Representations of sl(n,C)

13.1. Representations of sl(2,C). Let ρ : sl(2,C) → gl(V ) be a repre-
sentation. From problem set we know sl(2,C) is semisimple, then Jordan–
Chevalley decomposition says that ρ(H) is diagonalizable. Set

V =
⊕
α

Vα, Vα = {v ∈ V | ρ(H)v = αv}

Notation 13.1. For the convenience of symbols, we use H to denote ρ(H).
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Lemma 13.2. Let v ∈ V be an eigenvector of H with eigenvalue α. If
Xv, Y v are nonzero, then

H(Xv) = (α+ 2)Xv

H(Y v) = (α− 2)Y v

Proof. Directly compute as follows

H(Xv) = [H,X]v +XHv

= 2Xv + αXv

□

Remark 13.3. Above lemma implies that

X : Vα → Vα+2

Y : Vα → Vα−2

If V is irreducible, then for any eigenvalue α, W =
⊕

m∈Z Vα+2m is an
invariant subspace. Hence W = V . We have the following picture of the
action of sl(2,C) on the vector space V :

. . . Vn−4 Vn−2 Vn

X

Y

X

H

Y

X

H

Y

H

Since the representation is finite dimensional, so there exists k ≥ 0 such
that Vβ 6= 0 for all β ∈ {α, α+ 2, . . . , α+ 2k}︸ ︷︷ ︸

unbroken string of complex numbers
We use n to denote the last element in this sequence, untill now we only

know n is a complex numbers, but later we will see it’s an integer. Since
Vn+2 = 0, then there exists v ∈ Vn, v 6= 0 such that Xv = 0. Let’s see what
will happen if we use Y to act on it.

Lemma 13.4. Given v ∈ Vn, v 6= 0 such thatXv = 0, then V = 〈v, Y v, Y 2v, . . . 〉C.

Proof. It suffices to show that W = 〈v, Y v, Y 2v, . . . 〉C is an invariant sub-
space since V is irreducible. YW ⊂W is clear. HW ⊂W , since

HY mv = (n− 2m)Y mv, ∀m ∈ Z≥0

For X,
XY v = [X,Y ]v + Y Xv

= Hv

= nv



REPRESENTATION THEORY 105

We claim X(Y mv) = m(n−m+1)Y m−1v. Assume this is true for all value
≤ m. Then

X(Y m+1v) = XY Y mv

= [X,Y ]Y mv + Y XY mv

= HY mv +m(n−m+ 1)Y mv

= [(n− 2m) +m(n−m+ 1)]Y mv

= (m+ 1)(n−m)Y mv

As desired. □
Corollary 13.5. dimVα = 1 for all α such that Vα 6= 0. Moreover, V is
completely determined by integer n.

Lemma 13.6. n is an integer.

Proof. Since dimV <∞, then there exists k such that Y kv = 0. If m is the
smallest power of Y such that Y mv = 0. Then

0 = XY mv = m(n−m+ 1)Y m−1v 6= 0

This means n−m+ 1 = 0, therefore n must be an integer. □
Theorem 13.7. The representations V (n) =

⊕n
α=−n Vα, α ≡ n (mod 2), n ∈

N of dimension n + 1 form complete set of irreducible representations of
sl(2,C) up to isomorphism. In particular, the eigenvalues of H are −n,−n+
2, . . . , n− 2, n.

Proof. Only the existence remains to be checked. Let n ∈ N, V a vector
space of dimension n+ 1 with basis {v0, . . . , vn}. Define

Hvm = (n− 2m)vm

Xvm = m(n−m+ 1)vm−1, Xv0 = 0

Y vm = vm+1, Y vn = 0

Clearly:
[H,X]vm = 2Xvm

[H,Y ]vm = −2Xvm
[X,Y ]vm = Hvm

□
Corollary 13.8. Any representation V of sl(2,C) such that the eigenvalues
of H all have same parity occur with multiplicity 1, is irreducible.

Corollary 13.9. The numbers of irreducible summands in a representation
V of sl(2,C) is equal to the sum of multiplicities of eigenvalue 0 and 1 of H.

In fact, we can rewrite these irreducible representations of sl(2,C) in terms
of the standard representation of sl(2,C).

Example 13.10. V (0) is the trivial representation.
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Example 13.11. V (1) is the standard representation.
Proof. Let x, y be a basis of C2, and consider the standard representation ρ
of sl(2,C), that is, ρ : H → (v 7→ Hv). Thus we have

Hx = x

Hy = −y

implies V = Cx⊕ Cy = V−1 ⊕ V1 = V (1). This completes the proof. □
Theorem 13.12. V (n) ∼= Symn V (1).
Proof. Note that if {x, y} be a basis of V , then Symn V has basis {xn, xn−1y, . . . , xyn−1, yn}.
Directly compute as follows:

H(xn−kyk) = (n− k)H(x)xn−k+1yk + kH(y)xn−kyk−1

= (n− 2k)xn−kyk

So eigenvalues of H on Symn V are exactly −n,−n + 2, . . . , n − 2, n. Thus
Symn V is irreducible with dimension n+ 1, then

Symn V ∼= V (n)

□
Corollary 13.13. V (2) is the adjoint representation.
13.2. Representations of sl(3,C). Recall

sl(3,C) = {A ∈ gl(3,C) | tr(A) = 0}
Clearly we have dim sl(3,C) = 8, and we can write the basis explictly using
elementary matrices Eij , that is

Eij , i 6= j, 1 ≤ i, j ≤ 3

E11 − E22

E11 − E33

Furthermore, we have
[Eij , Ei′j′ ] = δij′Ei′j − δi′jEij′

which determines the Lie algebra structure of sl(3,C).
The distinguished H ∈ sl(2,C) whose eigenvalue yields a decomposition

V =
⊕

α Vα is replaced by subspace h ⊂ sl(3,C), where
h = {A ∈ sl(3,C) | Aij = 0, i 6= j}

= {

 a1
a2

a3

 | a1, a2, a3 ∈ C, a1 + a2 + a3 = 0}

From problem set we know h is center of sl(3,C). Commuting diagonalizable
matrices are simultaneously diagonalizable. Then

V =
⊕
α

Vα, v ∈ Vα is an eigenvector for every element H ∈ h
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We need to generalize the notion of eigenvector and eigenspace from a single
H ∈ h to all H ∈ h. If v ∈ V is a simultaneous eigenvector for all H ∈ h, we
have Hv = α(v)v, ∀H ∈ h, where α(H) denotes the eigenvalue for action of
H ∈ h. α depends linearly on H and therefore defines an element in g∨.

Definition 13.14 (weight). Let V be a finite dimensional representation of
sl(3,C), α ∈ h∨.

Vα = {v ∈ V | Hv = α(H)v, ∀H ∈ h}

If Vα 6= 0, then α is called a weight and Vα is called weight space, and

V =
⊕
α

Vα

is called weight space decomposition.

Definition 13.15 (root). If V = g = sl(3,C) is the adjoint representation,
then α is called a root, gα is called a root space and

g = h⊕
⊕
α

gα

is called root space decomposition. The set of all roots is called root system,
denoted by Φ.

Proposition 13.16. Let V be a finite dimensional representation of sl(3,C).
Then there exists a weight space decomposition V =

⊕
α Vα, where α runs

over a finite subset of weights in h∨.

Having decided what the analogous for sl(3,C) of H ∈ sl(2,C), let’s see
what will play the role of X and Y . The relations [H,X] = 2X, [H,Y ]− 2Y
in sl(2,C) should be understood adH X = 2X, adH Y = −2Y , that is, X,Y
are eigenvectors for the adjoint action of H on sl(2,C).

The correct way to interpret these is to look for eigenvectors of the adjoint
action of h on sl(3,C), that is to consider the root space decomposition of g

g = h⊕
⊕
α

gα

h acts on gα by scalar multiplication, i.e.

adH X = [H,X] = α(H)X, ∀H ∈ h, X ∈ gα

If H =
∑3

k=1 akEkk ∈ h, then

[H,Eij ] =
∑

ak(δikEkj − δjkEki)
= (ai − aj)Eij

Thus CEij , 1 ≤ i 6= j ≤ 3 are simultaneously eigenspaces of h.
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Since h = {

 a1
a2

a3

 | a1, a2, a3 ∈ C, a1 + a2 + a3 = 0}, we can

write h∨ explictly as

h∨ = CL1 ⊕ CL2 ⊕ CL3/〈L1 + L2 + L3 = 0〉

with Li

 a1
a2

a3

 = ai. So roots α of sl(3,C) are α(H)ij = ai − aj .

In other words,

Φ = {Li − Lj | 1 ≤ i 6= j ≤ 3}

We can draw a picture as follows

We can read off from this picture almost everything. For example: if
X ∈ gα, Y ∈ gβ, what is adX Y ? One way is to compute directly as follows:

[H, adX Y ] = [H, [X,Y ]]

= [X, [H,Y ]] + [[H,X], Y ]

= [X,β(H)Y ] + [α(H)X,Y ]

= (α(H) + β(H))[X,Y ]

= (α(H) + β(H)) adX Y

So adX Y is an eigenvector for H with eigenvalue α+ β. In other words,

adgα : gβ → gα+β

So we can see directly from the picture. In the following picture, gα acts by
translation in the direction α = L1 − L3.



REPRESENTATION THEORY 109

More explictly, it carries gL2−L1 to gL2→L3 ; gL3−L1 → h; h to gL1−L3 ; gL3−L2

to gL1−L2 and kills gL2−L3 , gL1−L3 and gL1−L2 .
The same structure holds for any representation V of sl(3,C). The action

of h on V yields the weight space decomposition V =
⊕

α Vα. The action of
gα on Vβ is determined by the commutation relations: Let v ∈ Vβ, X ∈ gα.

HXv = [H,X]v +XHv

= α(H)Xv + βXv

= (α(H) + β(H))Xv

We see from this that X(v) is again an eigenvector for the action for the
action of h, with eigenvalue α+ β. In other words:

gα : Vα → Vα+β

We can again represent Vα by dots in a plane diagram such that gα acts by
translation.

So we have the following important observation: Let V be an irreducible
representation, α, α′ ∈ h∨ be two weights, then

α− α′ =
∑

nij(Li − Lj) ∈ h∨, nij ∈ Z

Definition 13.17 (root lattice). The lattice ΛR ⊂ h∨ generated by the
roots Φ is called the root lattice.

Definition 13.18 (simple root). A subset of roots ∆ ⊂ Φ forming a lattice
basis is called the set of simple roots.

We have a decomposition

Φ = Φ+ ∪ Φ−
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with Φ+ = Φ ∩
⊕

α∈∆ Z≥0,Φ
− = −Φ+. The roots in Φ+ are called positive

roots and roots in Φ− are called negative roots.

Example 13.19.
∆ = {L1 − L2, L2 − L3}

Φ+ = {L1 − L2, L2 − L3, L1 − L3}

Consider the representation with V = C3, ρ : sl(3,C) → gl(C3) defined
by X 7→ (v 7→ Xv), called the standard representation of sl(3,C).

The standard basis vectors e1, e2, e3 of C3 are weight vectors with weight
L1, L2, L3, then

C3 = (C3)L1 ⊕ (C3)L2 ⊕ (C3)L3

Part 4. Solutions to problem sets
14. Problem set 1: Basic and faithful representation

Problem 14.1 (morphisms of representations). Let G be a finite group,
V,W be G-modules.
1. Let φ : V → W a morphism of G-modules. Show that kerφ is a G-

submodule of V , imφ, cokerφ are G submodules of W .
2. Let ρ : G → GL(V ) be a representation, ρ∨ : G → GL (V ∨) the dual

representation defined as ρ∨(g)(α) = ρ
(
g−1
)T
α for g ∈ G,α ∈ V ∨.

Show that〈
ρ∨(g)(α), ρ(g)(v)

〉
= 〈α, v〉 for all g ∈ G, v ∈ V, α ∈ V ∨

3. Let HomG(V,W ) be the vector space of morphisms of G-modules V,W .
Let Hom(V,W )G be the subspace Hom(V,W )G = {φ ∈ Hom(V,W ) |
g ◦ φ = φ} of Hom(V,W ). Show that HomG(V,W ) ∼= Hom(V,W )G.

Proof. For (1). Routines.
For (2). Check by definition

〈ρ∨(g)(α), ρ(g)(v)〉 = 〈ρ(g−1)Tα, ρ(g)v〉
= 〈α, ρ(g−1)ρ(g)v〉
= 〈α, v〉

For (3). It’s important to keep in mind if ρV : G → GL(V ), ρW : G →
GL(W ) are two representations of G. how does G acts on Hom(V,W ) to
make it as a representation of G. In fact, G acts on φ ∈ Hom(V,W ) as
follows

g ◦ φ(v) = ρW (g)φ(ρ−1
V (g)v)

So the condition g ◦ φ = φ is equivalent to
ρW (g)φ = φρV (g)

and that’s the definition of morphisms of G-modules. □
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Problem 14.2 (Calculus of representations). Let G be a finite group, V,W
be G-modules. Show that the following are isomorphisms of G-modules:
1. Hom(V,W ) ∼=W ⊗ V ∨

2. ∧k(V ⊕W ) ∼=
⊕

a+b=k ∧aV ⊗ ∧bW
3. Ak (V ∨) ∼=

(
AkV

)∨
4. Ak (V ∨) ' An−kV ⊗ detV ∨, n = dimV where det V :=

∧n V .

Proof. Routines. □
Problem 14.3 (Faithful representations). Let G be a finite group, ρ :
G → GL(V ) be a representation. Its kernel is defined to be ker ρ =
{g ∈ G | ρ(g) = idV }. A representation is called faithful if it is injective.
1. Show that ker ρ is a normal subgroup of G and find a condition on ker ρ

equivalent to the representation being faithful
2. Let H ⊂ G be a subgroup. Show that for the coset representation,

ker ρ =
⋂
i giHg

−1
i , where {gi} is a complete set of representatives of

G/H.
3. For each of the following representations, under what conditions are they

faithful: trivial, regular, coset, alternating for Sn, defining for Sn, dimen-
sion 1 for Cn, where Cn is the cyclic group of order n ?

Proof. For (1). If x ∈ ker ρ, for any g ∈ G, we need to show gxg−1 still lies
in ker ρ. Check by definition we have

ρ(gxg−1) = ρ(g)ρ(x)ρ(g)−1

= ρ(g)ρ(g)−1

= idV

This shows ker ρ is normal. Clealy ρ is faithful if and only if ker ρ is trivial.
For (2). If g ∈ G lies in kernel of coset representation, then for any gi, we

have
g(giH) = giH

where gi runs over the complete set of representatives of G/H. Thus for
each i we have

g ∈ giHg−1
i

So we have g ∈
⋂
i giHg

−1
i , that is ker ρ ⊆

⋂
i giHg

−1
i . Conversely it’s trivial.

For (3). Trivial representation is faithful if and only if G is trivial; Regular
representation is always faithful; From (2), coset representation is faithful if
and only if

⋂
i giHg

−1
i is trivial. □

Problem 14.4 (Lifting representations). Let G be a finite group, ρ : G→
GL(V ) be a representation. Set N = ker ρ and define a mapψ : G/N →
GL(V ) by setting ψ(gN) = ρ(g) for gN ∈ G/N .
1. Show that ψ is a well-defined faithful representation of the factor group
G/N .

2. Show that ψ is irreducible if and only if ρ is.
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3. If ρ is the coset representation for a normal subgroup H of G, what is
the corresponding representation ψ?
Now we turn this around. Let N be any normal subgroup of G and let

ψ : G/N → GL(V ) be a representation. Define a map ρ : G → GL(V ) by
setting ρ(g) = ψ(gN) for g ∈ G. Show that the following holds:
4. ρ is a representation. We say that the representation ψ has been lifted

to a representation ρ.
5. If ψ is faithful, then ker ρ = N .
6. ρ is irreducible if and only if ψ is.

Proof. For (1). Firstly show ψ is well-defined, that is if g1N = g2N , then
we need to show ρ(g1) = ρ(g2). Clearly g1 = g2n, n ∈ N , then

ρ(g1) = ρ(g2)ρ(n) = ρ(g2)

as desired. It’s faithful since if ψ(gN) = ρ(g) = idV , then g ∈ N , that is
gN = N . So ψ is a well-defined faithful representation.

For (2). It suffices to show W ⊂ V is ρ invariant if and only if ψ invariant.
Clearly if W is ρ invariant then it’s ψ invariant; Conversely, for any g ∈ G,
write it as g′n for some n ∈ N , then

ρ(g)W = ρ(g′n)W

= ρ(g′)W

= ψ(g′N)W ⊂W
As desired.

For (3). It’s the restriction of ρ to G/H, obviously.
For (4). By definition we need to check for any g1, g2 ∈ G, we have

ρ(g1g2) = ρ(g1)ρ(g2), that is to show
ψ(g1g2N) = ψ(g1N)ψ(g2N)

It suffices to show g1g2N = g1Ng2N , but that’s clear.
For (5). g ∈ G is in ker ρ if and only if ψ(gN) = idV . Since ψ is faithful,

this is equivalent to gN = N , and that’s equivalent to g ∈ N . So we have
ker ρ = N .

For (6). The same as (2). □
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15. Problem set 2: Characters of finite groups

Problem 15.1. Decompositions of tensor and alternating powers

1. Let V be a faithful representation of G. Show that any irreducible rep-
resentation of G is contained in V ⊗n for some n ∈ N.

2. Let V be the standard representation of Sn. Show that ∧kV is irreducible
for every 0 ≤ k ≤ n−1. Hint: Recall that the permutation representation
P = R{1,...,n} decomposes as P = U⊕V with U the trivial representation,
and consider ∧kP . Use Problem 14.2 to argue that it suffices to show that
(χ∧kP , χ∧kP ) = 2. Compute (χ∧kP , χ∧kP ).

Proof. For (1). Let W be any irreducible representation of G, 1the trivial
representation, I will show instead W appears in some representation of
(V ⊕ 1)⊗N . This is equivalent since

(V ⊕ 1)⊗N =

N⊕
k=0

(
N
k

)
V ⊗k

It suffices to show

dimHomG(W, (V ⊕ 1)⊗N ) =
1

|G|
∑
g∈G

χ(g)(ψ(g) + 1)N ≥ 1

for sufficiently large n, where χ is the character of W and ψ is the one of V .
We have |ψ(g)| ≤ dimV for all g ∈ G. And since V is faithful, ψ(g) is

dimV if and only if g = e. So |ψ(g)+1| ≤ dimV +1 with equality precisely
for g = e. So the right hand side is a finite sum of exponentials, and the
term (dimW )(dimV + 1)N has a larger base that any of others.

For (2). Let’s prove 〈χ∧k V , χ
∧k V 〉 = 1 if and only if 〈χ∧k P , χ

∧k P 〉 = 2.
Since

∧k U = 0, k ≥ 2, then

k∧
P =

⊕
a+b=k

a∧
U ⊗

b∧
V =

k∧
V ⊕

k−1∧
V

So

〈χ∧k P , χ
∧k P 〉 = 〈χ∧k V , χ

∧k V 〉+ 〈χ∧k−1 V , χ
∧k−1 V 〉

It suffices to show 〈χ∧k P , χ
∧k P 〉 = 2, which will force the two on the right

hand side to be 1. Now let’s try to compute 〈χ∧k P , χ
∧k P 〉. □

Problem 15.2. Character table of S5.

1. Show that the character table of S5 takes the following form
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1 (12) (123) (1234) (12345) (12)(34) (12)(345)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1
V ′ 4 −2 1 0 −1 0 1
∧2V 6 0 0 0 1 −2 0
W 5 1 −1 −1 0 1 1
W ′ 5 −1 −1 1 0 1 −1

Hints: Determine the cardinality of the conjugacy classes. Verify the
characters of the trivial representation U , the alternating representation
U ′, the standard representation V = R/U . Show that V ′ = V ⊗ U ′

is irreducible. Use Problem 15.1 for ∧2V . Determine the character for
Sym2 V . Without using any knowledge of the character table show that
Sym2 V is the sum of three distinct irreducible representations of S5.
Using the character table show that Sym 2V ∼= U ⊕ V ⊕W . Complete
the table.

2. Find the decomposition into irreducible representations of ∧2W,Sym2W
and V ⊗W . Remark: We will see later in the course a completely general
way for determining the character table for any Sn.

Proof. For (1). Firstly, the number of conjugacy classes of S5 equals to the
number of partitions of 5. And for 5, clearly we have following partitions:

5 =



5

4 + 1

3 + 2

3 + 1 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1

Thus there are seven conjugacy classes of S5, and we can write them explictly
as

1, (12), (123), (1234), (12345), (12)(34), (12)(345)

It’s easy to compute trivial representation U and alternating representation
U ′. Now let’s consider standard representation, that is V = R/U , where R
is regular representation. By fixed point formula, we can easily determine
the character of R as follows

1 (12) (123) (1234) (12345) (12)(34) (12)(345)
R 5 3 2 1 0 1 0

Thus we have the character of V as follows:
1 (12) (123) (1234) (12345) (12)(34) (12)(345)

V 4 2 1 0 -1 0 -1
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It’s easy to check V is irreducible. Furthermore, V ′ = U ⊗ U ′ is also ir-
reducible. (2) of Problem 15.1 implies that

∧2 V is also irreducible. By
formula χ∧2 V (g) =

1
2(χV (g)

2 − χV (g2)), we have the character of
∧2 V as

follows
1 (12) (123) (1234) (12345) (12)(34) (12)(345)∧2 V 6 0 0 0 1 -2 0

Since there are only two irreducible representations W,W ′ left to determine,
we have

(dimW )2 + (dimW ′)2 = 50 =⇒ dimW = dimW ′ = 5

Clearly W ′ = W ⊗ U ′, since if W is irreducible, then W ⊗ U ′ is also irre-
ducible.

It’s easy to compute character of Sym2 V , since χSym2 V + χ∧2 V = (χV )
2

1 (12) (123) (1234) (12345) (12)(34) (12)(345)

Sym2 V 10 4 1 0 0 2 1

If we directly compute 〈χSym2 V , χSym2 V 〉

〈χSym2 V , χSym2 V 〉 = 3

Thus Sym2 V is the sum of three distinct irreducible representation, we must
have Sym2 V ∼= U⊕V ⊕W , and we can determine W using this isomorphism.

For (2). Firstly we compute characters as follows

1 (12) (123) (1234) (12345) (12)(34) (12)(345)∧2W 10 -2 1 0 0 -2 1
Sym2W 15 3 0 1 0 3 0
V ⊗W 20 2 -1 0 0 0 −1

So we have
2∧
W ∼=

2∧
V ⊕ V ′

Sym2W ∼= U ⊕ V ⊕W ⊕W ′

V ⊗W ∼= V ⊕
2∧
V ⊕W ⊕W ′

□
Problem 15.3. Character table of A5.
1. Let C be a conjugacy class in S5 of cycle type λ = (λ1, λ2, . . .). Show

that when viewed as subset of A5 :

C =

{
C1 ∪ C2 all λi are odd and distinct
C otherwise

where C1, C2 are distinct conjugacy classes of A5. Determine the conju-
gacy classes for A5 and their cardinality.
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2. Let U,U ′, V, V ′,W,W ′,∧2V be the irreducible representations of S5 of
Problem 15.2. Show that

ResS5
A5
U ∼= ResS5

A5
U ′

ResS5
A5
V ∼= ResS5

A5
V ′

ResS5
A5
W ∼= ResS5

A5
W ′

ResS5
A5
∧2V ∼= Y ⊕ Z

for some irreducible representations Y, Z of A5.
3. Show that the character table of A5 takes the following form

1 (123) (12)(34) (12345) (21345)

ResS5
A5
U 1 1 1 1 1

ResS5
A5
V 4 1 0 −1 −1

ResS5
A5
W 5 −1 1 0 0

Y 3 0 −1 1
2(1 +

√
5) 1

2(1−
√
5)

Z 3 0 −1 1
2(1−

√
5) 1

2(1 +
√
5)

4. Find the decomposition of the permutation representation of A5 corre-
sponding to the vertices, the faces, and the edges of the icosahedron.

Proof. For (1). For any α ∈ An, we use StabS5(α) to denote the stabilizer
of α with respect to the conjuagate action of Sn, and use orbSn(α) to de-
note orbits of this action, that is all conjugacy classes of Sn. On the other
hand, we use orbAn(α) to denote the orbits of α with respect to the conju-
gation action of An. By basic facts of group action, we have the following
isomorphisms

orbSn(α) = Sn/ StabSn(α)

orbAn(α) = An/ StabAn(α) = An/ StabSn(α) ∩An
So we want what’s the difference between orbSn(α) and orbAn(α). There
are two cases:

1. If StabSn(α) ⊆ An, in this case StabSn(α) ∩ An = StabSn(α), and
since An has just half as many elements as Sn, we have

orbAn(α)
∼= An/StabSn(α)

has half as many elements as orbSn(α).
2. If StabSn(α) ( An. In this case orbAn(α)

∼= orbSn(α). Indeed, by
assumption there is some odd element τ in StabSn(α). Then if σ is
any odd elements of Sn, then

σ(α) = σ(τα) = στ(α) ∈ orbAn(α)

If σ is even, then σα is already in orbAn(α). So this shows they’re
equal.

So let’s see what will happen if we let n = 5. For all even permutation,
there are only follows possible types: 3-cycles,5-cycles,products of 2-cycles
and 2-cycles and identity element.
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1. For 3-cycles, take α = (123). There are | orbS5(α)| = 20, and (45) is
an odd element in StabS5(α), then | orbA5(α)| = | orbS5 | = 20;

2. For 5-cycles, take α = (12345), and StabS5(α) = 〈α〉 ⊂ A5, thus this
conjugacy class splits into two pieces, each of size 12. For example,
(21345) is not A5-conjugate to (12345);

3. For products of 2-cycles and 2-cycles, take α = (12)(34), and | orbS5(α)| =
15. Note that (12) is an odd element in StabS5(α), thus | ordA5(α)| =
15

4. Identity element is fixed by conjugation.
Thus An has the following conjugacy classes:

1. (123), with 20 elements;
2. (12345), with 12 elements;
3. (21345), with 12 elements;
4. (12)(34), with 15 elements;
5. (1), with 1 element.

Note that 60 = 20+12+12+15+1, as it should6. This completes the proof
of (1).

For (2). It’s easy to see first three isomorphism by computing characters
of these representations. For forth, we still determine the number of irre-
ducible irreducible representations in ResS5

A5

∧2 V by computing its character
as follows:

1 (123) (12)(34) (12345) (21345)

ResS5
A5

∧2 V 6 0 -2 1 1
Thus

〈χ
Res

S5
A5

∧2 V
, χ

Res
S5
A5

∧2 V
〉 = 1

|A5|
(62 × 1 + 02 × 20 + (−2)2 × 15 + 12 × 12 + 12 × 12) =

120

60
= 2

Thus ResS5
A5

∧2 V = Y ⊕Z , where Y, Z are some irreducible representations
of A5.

For (4). It suffices to compute the characters of Y, Z. Use the fact
χ
Res

S5
A5

∧2 V
= χY + χZ and the orthonormal relations of character table

to conclude. □
Problem 15.4 (The dihedral group D2n). Let D2n be the group of sym-
metries (rotations and reflections) of a regular n-gon. This group is called
a dihedral group.
1. Show that D2n

∼=
〈
s, r | s2 = rn = (sr)2 = e

〉
.

2. Conclude that every element of D2n is uniquely expressible as sirj where
0 ≤ i ≤ 1 and 0 ≤ j ≤ n− 1.

6This can be used to show A5 is simple, since any normal subgroup is invariant under
conjugation, and hence must be a union of conjugacy classes. Furthermore, it contains
identity element. So the number of elements in a normal subgroup is a sum of the some
of the above numbers, including 1, and it divides 60, but the only possible number of this
form is 1 and 60. This completes the proof.
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3. Find the conjugacy classes of D2n.
4. Find all the irreducible representations of D2n. Hint: Use the fact that

the cyclic group Cn is a normal subgroup of D2n.
Proof. Since the cases of n = 1, 2 are quite trivial, here we assume n ≥ 3.

For (1). A regular polygon with n sides has 2n different symmetries: n
rotational symmetries and n reflection symmetries. If we use s to represent
reflection about a given symmetric axis and r to represent rotate 2π

n . Then
clearly

D2n
∼= 〈a, b | s2 = rn = (sr)2 = e〉

For (2). It suffices to show for any m ∈ Z, we have rms = sr−m. We
prove this by induction on m. For m = 1, we need to show rs = s−1. From
definition we have

srsr = e⇐⇒ rsr = s

⇐⇒ rs = sr−1

Let m > 1 and suppose rms = sr−m, then
rm+1s = (rmr)s

= rm(rs)

= (rms)r−1

= (sr−m)r−1

= sr−(m+1)

For (3). It’s a long to find all conjugacy classes of D2n, let’s state it as a
theorem.
Theorem 15.5 (conjugacy classes of D2n). Let D2n, n ≥ 3 be dihedral
group, then
1. If n = 2k for k ≥ 2, then D2n has k + 3 conjugacy classes;
2. If n = 2k + 1 for k ≥ 1, then D2n has k + 2 conjugacy classes.

Before prove of the theorem, let’s state a lemma which will be used.
Lemma 15.6. If x ∈ D2n such that x 6= rm for any 0 ≤ m ≤ n, then
rx = xr−1.
Proof. If x ∈ D2n such that x 6= rm for any 0 ≤ m ≤ n, then x = srm for
some 0 ≤ m ≤ n. Thus

rx = r(srm)

= (rs)rm

= (sr−1)rm

= s(r−1rm)

= s(rmr−1)

= (srm)r−1

= xr−1
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□

Let’s show the first part of Theorem 15.4, that is conjugacy classes of D2n

when n = 2k, k ≥ 2 are listed as follows

[1] = {1}
[r] = {r, r−1},
[r2] = {r2, r2}

...
[rk−1] = {rk−1, r−(k+1)}

[rk] = {rk}

[sr] = {sr2b−1 : b = 1, · · · , k}

[sr2] = {sr2b : b = 1, · · · , k}

Firstly, if x ∈ Z(D2n), then [x] = {x}. Thus we see that [1] = {1} and
[rk] = {rk} since Z(D2n) = {1, rk}.

Now let’s check [rm] = {rm, r−m} for all 1 ≤ m ≤ k − 1. Clearly rm ∈
[rm], and for r−m. Note that Lemma 15.5 implies that rx = xr−1, that is
r−1 = x−1rx. Then

r−m = (x−1rx)m

= x−1rmx

Thus r−m ∈ [rm]; Conversely, let g ∈ [rm], then g = x−1rmx for some
x ∈ D2n. Let’s consider what does x look like:

1. If x = rt, 0 ≤ t ≤ n− 1, then

g = (rt)−1rmrt

= r−trmrt

= rm ∈ {rm, r−m}

2. If x = srt, 0 ≤ t ≤ n− 1, then

g = (srt)−1rm(srt)

= r−tsrmsrt

= r−tssr−mrt

= r−tr−mrt

= r−m ∈ {rm, r−m}

Thus we have [rm] = {rm, r−m}.
Now let’s check [sr] = {sr2b−1 : b = 1, . . . , k}. Firstly we check sr2b−1, 1 ≤

b ≤ k do lies in [sr]. By induction on b. If b = 1, clearly sr ∈ [sr]. Let
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1 < b < k and suppose sr2b−1 ∈ [sr], that is sr2b−1 = x−1srx for some
x ∈ D2n, we need to show sr2b+1 ∈ [sr]. By Lemma 15.5 we have

r(sr2b+1) = (sr2b+1)r−1

Thus

sr2b+1 = r−1(sr2b+1)r−1

= r−1sr2b

= r−1sr2b−1r

= r−1x−1srxr

= (xr)−1sr(xr) ∈ [sr]

Conversely, let g ∈ [sr] and write g = x−1srx for some x ∈ D2n. Similarly
we consider what does x look like:

1. If x = rt, 0 ≤ t ≤ n− 1, then

g = r−tsrrt

= r−tstt+1

= srtrt+1

= sr2t+1

≡ sr2b−1 (mod 2k), for some 1 ≤ b ≤ k

2. If x = srt, 0 ≤ t ≤ n− 1, then

g = (srt)−1sr(srt)

= r−tssrsrt

= r−tsr−1rt

= srtr−1rt

= sr2t−1

≡ sr2b−1 (mod 2k), for some 1 ≤ b ≤ k

Thus we have proven [sr] = {sr2b−1 : b = 1, . . . k}.Finally let’s check [sr2] =
{sr2b : b = 1, . . . , k}, we use the same method in the case of [sr]. This
completes the proof of conjugacy classes of D2n when n is even.
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For n = 2k + 1, it can be proved similarly and we omit the proof there,
but list these conjugacy classes as follows:

[1] = {1}
[r] = {r, r−1},
[r2] = {r2, r−2}

...
[rk−1] = {rk−1, r−(k+1)}

[rk] = {rk, r−k}

[s] = {srb : b = 1, · · · , n}

For (4). Firstly let’s try to determine the possible dimensions of irre-
ducible representation of D2n. Whether n is even or odd, there are two
irreducible representations of D2n, that is trivial one and alternating one:

ϕ1 : D2n → C ϕ2 : D2n → C
r 7→ 1 r 7→ 1

s 7→ 1 s 7→ −1

If n = 2k is even, then there are still k + 1 irreducible representations
left, and only possible dimensions are 2, 4, k. In this case there is only one
possiblity, that is

4k = 1 + 1 + 1 + 1 + (k − 1)× 4

If n = 2k + 1 is odd, then there are still k irreducible representations left,
and only possible dimensions are 2, 4, 2k + 1. In this case there is only one
possiblity, that is

4k + 2 = 1 + 1 + k × 4

So as we can see, the case of n = 2k + 1 is easier, we just need to find
k two-dimensional irreducible representations. By considering its geometric
explainations, we have the following k representations ρm, 1 ≤ m ≤ k

ρm : D2n → GL2(C)

r 7→

(
e

2mπi
n 0

0 e−
2mπi

n

)

s 7→
(

0 1
1 0

)
After directly checking the character, we can prove all these ρm are irre-
ducible, thus we already have all irreducible representations of D2n, when
n = 2k + 1 is odd.
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For the case n = 2k, we still can consider above representations ρm, but
when m = k, we have

ρm : D2n → GL2(C)

r 7→
(
−1 0
0 −1

)
s 7→

(
0 1
1 0

)
which is not irreducible. So untill now we only get k + 1 irreducible rep-
resentations of D2n when n = 2k is even. In fact, there are two other
one-dimensional irreducible representations of D2n, since we can prove the
cyclic subgroup Cn = 〈r2〉 is the commutator of D2n, and thus the number
of one dimension irreducible representations are |D2n/Cn|. The other two
ones are listed as follows

ϕ3 : D2n → C ϕ4 : D2n → C
r 7→ −1 r 7→ −1
s 7→ 1 s 7→ −1

□
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16. Problem set 3: Induced representations

Problem 16.1 (Induction in terms of class functions). Let H ≤ G be a
subgroup of a finite group G with embedding ι : H → G. We define linear
maps for class functions by

IndGH : CH → CG, β 7→
(
IndGH β

)
(g) =

1

|H|
∑
x∈G

x−1gx∈H

β
(
x−1gx

)
and

ResGH : CG → CH , α 7→
(
ResGH α

)
(h) = α(ι(h))

Let (·, ·)G denote the standard bilinear form on CG. Verify that
1. IndGH ∈ CG for all β ∈ CH .
2.
(
IndGH β, α

)
G
=
(
β,ResGH α

)
H

for all α ∈ CG, β ∈ CH .
3. IndGH

(
β · ResGH α

)
=
(
IndGH β

)
· α for all α ∈ CG, β ∈ CH .

4. IndGH ◦ IndHK = IndGK for K ≤ H ≤ G.

Proof. For (1). We need to show for any g, h ∈ G, we have
IndGH β(h

−1gh) = IndGH β(g)

By definition

IndGH β(h
−1gh) =

1

|H|
∑
x′∈G

x′−1h−1ghx′∈H

β(x′−1h−1ghx′)

y=hx′
=

1

|H|
∑
y∈G

y−1gy∈H

β(y−1gy)

= IndGH β(g)

For (2).
□
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17. Problem set 4: Symmetric groups I

Problem 17.1 (Induction and restriction from product subgroups). Let S2
act on {1, 2}, S3 act on {3, 4, 5} and embed H = S2×S3 into G = S5 acting
on {1, 2, 3, 4, 5}

1. Let U2, V2 ∈ Irr (S2) , U3, U
′
3, V3 ∈ Irr (S3). Compute the character table

of H.
2. Compute ResGH V =

⊕
j:Wj∈Irr(H)W

⊕bj
j for each V ∈ Irr(G).

3. Compute IndGHW =
⊕

i:Vi∈Irr(G) V
⊕ai
i for each W ∈ Irr(H).

Proof. For (1). Firstly, we list the conjugacy class of H as follows

(1), (12), (34), (12)(34), (345), (12)(345)

And by Proposition 2.26 all irreducible representations are as follows

U2 ⊠ U3, V2 ⊠ U3, U2 ⊠ U ′
3, V2 ⊠ U ′

3, U2 ⊠ V3, V2 ⊠ V3

We can use formula χV ⊠W = χV χW to compute the character table of H as
follows

1 (12) (34) (12)(34) (345) (12)(345)
U2 ⊠ U3 1 1 1 1 1 1
V2 ⊠ U3 1 -1 1 −1 1 -1
U2 ⊠ U ′

3 2 2 0 0 -1 -1
V2 ⊠ U ′

3 2 -2 0 0 -1 1
U2 ⊠ V3 1 1 -1 -1 1 1
V2 ⊠ V3 1 -1 -1 1 1 -1

For (2). We compute the characters of these restriction as follows

1 (12) (34) (12)(34) (345) (12)(345)
ResU 1 1 1 1 1 1
ResU ′ 1 -1 -1 1 1 -1
ResV 4 2 2 0 1 -1
ResV ′ 4 -2 -2 0 1 1

Res
∧2 V 6 0 0 -2 0 0

ResW 5 1 1 1 -1 1
ResW ′ 5 -1 -1 1 -1 -1
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From the character, we can directly have the following decomposition
ResU = U2 ⊠ U3

ResU ′ = V2 ⊠ V3

ResV = (U2 ⊠ U3)⊕ (V2 ⊠ U3)⊕ (U2 ⊠ U ′
3)

ResV ′ = (V2 ⊠ U ′
3)⊕ (U2 ⊠ V3)⊕ (V2 ⊠ V3)

Res
2∧
V = (V2 ⊠ U3)⊕ (U2 ⊠ U ′

3)⊕ (V2 ⊠ U ′
3)⊕ (U2 ⊠ V3)

ResW = (U2 ⊠ U3)⊕ (U2 ⊠ U ′
3)⊕ (V2 ⊠ U ′

3)

ResW ′ = (U2 ⊠ U ′
3)⊕ (V2 ⊠ U ′

3)⊕ (V2 ⊠ V3)

For (3). Use Frobenius reciprocity
〈χIndGH W , χV 〉G = 〈χW , χResGH V 〉H

to compute ai, since we already know χResGH V . For example, take W =

U2 ⊠ U3. Then

〈χIndGH U2⊠U3
, χU 〉G = 〈χU2⊠U3 , χResGH U 〉H =

1

12
(1 + 1 + 1× 3 + 1× 3 + 1× 2 + 1× 2) = 1

〈χIndGH U2⊠U3
, χU ′〉G = 〈χU2⊠U3 , χResGH U ′〉H =

1

12
(1− 1− 1× 3 + 1× 3 + 1× 2− 1× 2) = 0

〈χIndGH U2⊠U3
, χV 〉G = 〈χU2⊠U3 , χResGH V 〉H =

1

12
(4 + 2 + 2× 3 + 1× 2− 1× 2) = 1

〈χIndGH U2⊠U3
, χV ′〉G = 〈χU2⊠U3 , χResGH V ′〉H =

1

12
(4− 2− 2× 3 + 1× 2 + 1× 2) = 0

〈χIndGH U2⊠U3
, χ∧2 V 〉G = 〈χU2⊠U3 , χResGH

∧2 V 〉H =
1

12
(6− 2× 3) = 0

〈χIndGH U2⊠U3
, χW 〉G = 〈χU2⊠U3 , χResGH W 〉H =

1

12
(5 + 1 + 1× 3 + 1× 3− 1× 2 + 1× 2) = 1

〈χIndGH U2⊠U3
, χW ′〉G = 〈χU2⊠U3 , χResGH W ′〉H =

1

12
(5− 1− 1× 3 + 1× 3− 1× 2− 1× 2) = 0

Thus we have
IndGH U2 ⊠ U3

∼= U ⊕ V ⊕W
Similarly we will have

IndGH V2 ⊠ U3
∼= V ⊕

2∧
V

IndGH U2 ⊠ U ′
3
∼= V ⊕

2∧
V ⊕W ⊕W ′

IndGH V2 ⊠ U ′
3
∼= V ′ ⊕

2∧
V ⊕W ⊕W ′

IndGH U2 ⊠ U3
∼= V ′ ⊕

2∧
V

IndGH V2 ⊠ V3 ∼= U ′ ⊕ V ′ ⊕W ′
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□
Problem 17.2 (Induction and product groups). Let G1, G2 be finite groups,
and G1 ×G2 the direct product.
1. Show that C[G1 ×G2] ∼= C[G1]⊗ C[G2] as C-algebras.
2. Let Hi be subgroups of Gi, i = 1, 2, and let ρi : Hi → GL (Vi) be repre-

sentations, i = 1, 2. Denote by V1⊗V2 the exterior tensor product. Show
that

IndG1×G2
H1×H2

(V1 ⊗ V2) ∼= IndG1
H1
V1 ⊗ IndG2

H2
V2.

Hint: Use the universal property of the tensor product for the direct
product C[G1 × G2] × (V1 ⊗ V2) and verify that the involved maps are
module homomorphisms.

Proof. For (1). Consider the following isomorphism
C[G1 ×G2] ∼= C[G1]⊗ C[G2]

(g1, g2) 7→ g1 ⊗ g2
For (2). The following isomorphisms complete the proof

C[G1 ×G2]⊗C[H1×H2] V1 ⊗C V2 ∼= (C[G1]⊗C C[G2])⊗C[H1×H2] V1 ⊗C V2
∼= (C[G1]⊗C[H1] V1)⊗C ∼= (C[G2]⊗C[H2] V2)

= IndG1
H1
V1 ⊗ IndG2

H2
V2

□
Problem 17.3 (A ring structure coming from product subgroups). Let Rn
denote the Z-module generated by the irreducible representations of Sn, and
set R =

⊕
n≥0R

n with S0 = {e}, R0 = Z. For V ∈ Rm,W ∈ Rn, let V ⊗W
be the corresponding representation of Sm × Sn. Set

V •W = Ind
Sm+n

Sm×Sn
(V ⊗W )

For V =
∑

n≥0 Vn,W =
∑

n≥0Wn ∈ R with Vn,Wn ∈ Rn set

(V,W ) =
∑
n≥0

(Vn,Wn)Sn

where (Vn,Wn)Sn
= dimHomSn (Vn,Wn). Show that

1. V •W ∈ Rm+n is well-defined
2. (R, •) is a commutative, associative, graded ring with unit.
3. (·, ·) : R×R→ R is a well defined scalar product.

Proof. □
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18. Problem set 5: Symmetric functions

Problem 18.1. Character of a special representation of Sn.
1. Let H ≤ G be a subgroup, let K ∈ Conj(G). Assume that K ∩ H =
K1 t · · · tKr for Kj ∈ Conj(H), j = 1, . . . , r. Let W be a representation
of H. Show that

(IndGH χW )(K) =
|G|
|H|

r∑
i=1

|Ki|
|K|

χW (Ki)

2. Let λ ` n be a partition of n. Let Sλ = Sλ1 ×Sλ2 × · · · ×Sλr be a Young
subgroup of Sn. Let aλ =

∑
g∈Sλ

eg ∈ C [Sn] and set Uλ = C [Sn] aλ.
Show that Uλ = IndSn

Sλ
U where U is the trivial representation of Sλ.

3. Suppose that λ is of the form λ = (1m1 , 2m2 , . . . , rmr), and let g ∈ Sn have
cycle type λ. Let Zg =

{
h ∈ G | h−1gh = g

}
be the centralizer of g ∈ G.

Show that |Zg| depends only on λ and that zλ := |Zg| =
∏r
j=1 j

mjmj !.
4. Let Kλ = Kg be the conjugacy class of g ∈ Sn. Use Problem (c) to derive

a formula for |Kλ|
5. Let µ be a partition of n. Compute χUλ

(Kµ) and show that χUλ
(Kµ) =

[pµ]λ, the coefficient of xλ = xλ11 x
λ2
2 . . . in pµ. Here, pµ is defined as the

symmetric polynomial pµ = pµ1pµ2 . . . with pr (x1, . . . , xn) =
∑n

i=1 x
r
i .

6. Compute χUλ
(Kµ) for n = 5, λ = (3, 2), µ ` 5, and compare with the

result of Problem 14(c).

Proof. For (1). For induced character we have the following formula:

IndGH χW (g) =
1

|H|
∑
x∈G

x−1gx∈H

χW (x−1gx)

But if g ∈ K, then g−1xg in the summation lies in K ∩H in fact. □



128 BOWEN LIU

19. Problem set 8: Lie groups: Topology

Problem 19.1 (Component group of a Lie group). Let G be a Lie group,
G0 its connected component of the identity e. Show that G0 is a normal
subgroup of G, and a Lie group itself. Any connected component of G is a
coset of G0. Hint: The image of a continuous map of a connected topological
space is connected.

Remark 19.2. The (discrete) quotient group G/G0 is called the group of
components of G, denoted by π0(G).

Proof. It suffices to show that for all g ∈ G, x ∈ G0, we have gxg−1 ∈ G0.
Consider the map Ψg : x 7→ gxg−1, it’s continous since the multiplication
and inversion are continous, so is their composition. Furthermore, imΨg

contains e since e 7→ geg−1 = e. So imΨg ⊆ G0, by the definition of G0, so
we have proved gxg−1 ∈ G0 for any g ∈ G, x ∈ G0. In particular, G0 is a
Lie group itself. □

Problem 19.3. The center of a connected Lie group:
1. Let G be a connected Lie group, N ≤ G a discrete normal subgroup.

Show that N ⊂ Z(G), the center of G. Hint: Consider the map G →
N, g 7→ ghg−1h−1 where h ∈ N is fixed element. A topological space is
connected if and only if every discrete-valued map is constant.

2. Let G be a connected Lie group with discrete center Z(G). Show that
G/Z(G) has trivial center. Hint: Reduce to problem (1).

Proof. For (1), we need to show for any h ∈ N, g ∈ G, we have gh = hg, in
other words, ghg−1h−1 = e. Fix h ∈ N and consider the map

φh : G→ N

g 7→ ghg−1h−1

It suffices to show φh is a constant map valued e. However, N is discrete,
thus φh is always constant, and we can value it for arbitrary g. So we take
g = e to complete the proof of (1).

For (2), if h+Z(G) lies in the center of G/Z(G), that is for any g1, g2 ∈ G,
we have

hg1 − g2h ∈ Z(G)
and what we need to show is h ∈ Z(G). If we want to reduce to the case of
(1), it suffices to show that the set of h is a discrete normal subgroup of G.
To be explict, let

N = {h ∈ G | h+ Z(G) lies in the center of G/Z(G)}
Clearly N is a normal subgroup. If N is not discrete, there exists an accumu-
lation point h in N , thus for any g1, g2 ∈ G, hg1−g2h will be an accumulation
point of Z(G). A contradiction to the fact that Z(G) is discrete. □

Problem 19.4. Coverings of Lie groups
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1. Let M,N be connected manifolds, π : M̃ →M,ψ : Ñ → N be their
universal coverings. Let f : M → N be a continuous map. Choose
m ∈ M,n ∈ N, m̃ ∈ M̃, ñ ∈ Ñ such that π(m̃) = m,ψ(ñ) = n
and f(m) = n. Show that there exists a unique continuous map
f̃ : M̃ → Ñ such that ψ ◦ f̃ = f ◦ π and f̃(m̃) = ñ. Hint: Consider
ϕ = f ◦ π and use the results from the lecture.

2. Let H be a group, G be a connected Lie group, and π : H → G be
a covering map. Show that H has a unique structure as a Lie group
such that f is a morphism of Lie groups. Hint: Argue first that it
suffices to show this statement for the universal covering H = G̃.
Use (a) and the results from the lecture.

3. In the situation of (2), show that ker π is a discrete subgroup of
Z(H). Hint: Use Problem 30 (1).

Proof. For (1), □
Problem 19.5 (SU(2) is a double covering of SO(3)). Let H denote the
algebra of quaternions. Show that the following holds:

1. Sn is simply connected for n > 1. Hint: Show that for any p ∈ Sn
any map f : S1 → Sn is homotopic to a map g : S1 → Sn\{p}.

2. SU(2) is diffeomorphic to S3.
3. SU(2) ∼= Sp(2) ∼= {q ∈ H | qq̄ = 1}.
4. For any q ∈ H such that qq̄ = 1, the map fq : R3 → R3, v → qvq̄ is

an isometry of the Euclidean space R3. Hint: Use that the subspace
{q ∈ H | q = −q̄} ⊂ H of imaginary quaternions is isomorphic to R3.

5. The induced map SU(2) 7→ SO(3), q → fq is a covering map of SO(3)
of multiplicity 2 . Conclude that SU(2) is the universal covering of
SO(3).

Proof. For (1), we need to show that for any map f : S1 → Sn is null
homotopy. Since Sn\{p} is homomorphic to Rn, and any loop in Rn is null
homotopy since Rn is a convex set. So it suffices to show for any p ∈ Sn and
any f : S1 → Sn, f is homotopic to a map g : S1 → Sn\{p}. If p /∈ im f ,
it’s clear. If p ∈ im f , we can disturb f slightly in order to avoid p, and this
is clearly a homotopy.

For (2), by definition we have

SU(2) =

{(
a −b̄
b ā

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
Since R4 ∼= C2, we may think S3 as

S3 = {(a, b) ∈ C2 : |a|2 + |b|2 = 1}
We can define a map as follows

F : S3 → SU(2)

(a, b) 7→
(
a −b̄
b ā

)
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Clealy F is a bijection, it remains to show it’s smooth. This is also clear since
we can regard S3 and SU(2) as a submanifold of R8, and in this view F is a
smooth function since its components are linear functions of the coordinates.
So is its restriction on S3 and SU(2).

For (3), take any (
x −ȳ
y x̄

)
∈ SU(2)

we can write x = a+ ib, y = c+ id, consider the following map
G : SU(2)→ H(
x −ȳ
y x̄

)
7→ a+ bi+ cj + dk

Since |x|2 + |y|2 = 1, then
(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2 = 1

So G is an isomorphism between SU(2) and {q ∈ H | qq = 1}. Further-
more, it preserves the Lie group structures of them, thus it’s a Lie group
isomorphism.

For (4). Firstly regard R3 as the imaginary quaternions, that is v =
(x, y, z) ∼= xi+ yj + zk. For any q = a+ bi+ cj + dk ∈ H, directly compute
as follows

qvq = (a+ bi+ cj + dk)(xi+ yj + zk)(a− bi− cj − dk)
= (a+ bi+ cj + dk)

Thus it’s an isometry, since a2 + b2 + c2 + d2 = 1.
For (5), Since SU(2) is homomorphic to S3, thus it’s simply connected,

and it’s a covering space of SO(3), thus it’s the universal covering space of
SO(3). □
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20. Problem set 9: Lie groups: Examples

Problem 20.1 (Orthogonal and unitary groups). Let O(n) =
{
A ∈ GL(n,R) | ATA = 1

}
and U(n) =

{
A ∈ GL(n,C) | ĀTA = 1

}
. Show that the following holds:

1. O(n) and U(n) are compact. Hint: What properties do these groups
have as subsets of End (Rn) and End (Cn), respectively.

2. O(n) and U(n) are Lie groups. Hint: In the first case, apply the
inverse function theorem to f : End (Rn)→ Sym2Rn, f : A→ ATA.

3. U(n) ⊂ SO(2n) and GL(n,C) ⊂ GL+(2n,R) = {A ∈ GL(2n,R) |
detA > 0} as Lie subgroups.

4. GL(n,C) ∩ SO(2n) = U(n) and GL(n,R) ∩U(n) = O(n).

Proof. For (1), it suffices to show O(n) and U(n) are bounded and closed.
Let’s see O(n) first: Clearly O(n) is a closed subset of Rn2 , since it’s the
zero set of some polynomials defined by ATA = 1. And it’s bounded since
all its components |tij | ≤ 1. Indeed, for each i,

a21i + · · ·+ a2ni = (ATA)ii = 1

The story for U(n) is almost the same: U(n) is also a closed subset of R2n2

for the same reason. And it’s bounded since for each i we have

|a1i|2 + · · ·+ |ani|2 = (A
T
A)ii = 1

For (2), it suffices to use regular value theorem to show O(n) and U(n) are
smooth manifolds, the multiplication and inversion is automatically smooth
since they’re just operations of polynomials. Let’s see O(n) first: Since O(n)
is the preimage of 1 of f : A 7→ ATA. So it suffices to show 1 is the regular
value of f . Directly computing we have

d

dt

∣∣∣∣
t=0

f(A+ tX) =
d

dt

∣∣∣∣
t=0

(A+ tX)T (A+ tX) = ATX +XTA

So the differential of f at 1 is a linear map from End(Rn) → Sym2Rn,
defined by X 7→ ATX +XTA. As A ∈ f−1(1), any symmetric matrix B is
ATX +XTA when X = 1

2AB. Indeed,

ATX +XTA = AT (
1

2
AB) +

1

2
BTATA

=
1

2
B +

1

2
BT

= B

This shows the differential is surjective and hence 1 is a regular value of f .
The story for U(n) is totally same, just use AT to replace AT .

For the second part of (3), take Z ∈ GL(n,C), we can define a R linear
transformation RZ as follows: For each entry Zjk, we write it as

Zjk = Xjk + iYjk
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and replace it by the 2× 2 matrix(
Xjk −Yjk
Yjk Xjk

)
This map is denoted by Z 7→ RZ. Clearly it’s injective, and we have

detRZ = |detZ|2

It follows immediately that the map Z 7→ RZ from GL(n,C)→ GL(2n,R).
So we have an inclusion GL(n,C) ⊂ GL+(2n,R). Let’s see more explictly.

The matrix X ∈ GL(2n,R) belongs to GL(n,C) if and only if it is built out
of 2× 2 matrices of the form (

x −y
y x

)
Let

iI 7→ J =


0 −1
1 0

0 −1
1 0

. . .


Since any scalar multiple of the identity commutes with all matrices, we
have

X ∈ GL(n,C) =⇒ (iI)X = X(iI)

Applying the operator R, we have

X ∈ GL(2n,R) =⇒ JX = XJ

Conversely, if JX = XJ , then it is readily to verified X is of the required
form, thus

GL(n,C) = {X ∈ GL(2n,R) | JX = XJ}
For the first part of (3), note that there is an important property of

Z 7→ RZ, that is
R(ZT ) = (RZ)T

So if Z ∈ U(n), then Z
T
Z = 1, that is (RZ)T (RZ) = 1, and the module of

determinant of unitary matrix is 1, so is RZ, that is U(n) ⊂ SO(2n).
For (4), □

Problem 20.2. More on unitary and orthogonal groups:
1. Show that O(2n+ 1) ∼= SO(2n+ 1)× Z/2Z as Lie groups.
2. Show that O(2n) ∼= SO(2n) × Z/2Z as manifolds. Describe the

multiplication SO(2n)× Z/2Z inherits from O(2n).
3. Show that U(n) ∼= SU(n)× S1 as manifolds.
4. Show that there is a surjective group homomorphism S1× SU(n)→

U(n), (ζ, A) 7→ ζ ·A whose kernel is isomorphic to Z/nZ.
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Problem 20.3 (The relation between unitary, orthogonal and symplectic
groups). Let V be a complex vector space with underlying real vector space
VR. Let H : V × V → C be a Hermitian form, g = ReH and ω = imH.
Show that

1. g : VR × VR → R is symmetric, ω : VR × VR → R is skew-symmetric.
2. g(iv, iw) = g(v, w), ω(iv, iw) = ω(v, w) and ω(v, w) = −g(iv, w).
3. Any symmetric form g : VR × VR → R such that g(iv, iw) = g(v, w)

is the real part of a unique Hermitian form H : V × V → C.
4. If V has a basis such that H(v, w) = v̄Tw, then g(v, w) = vTw

and ω corresponds to the matrix J =

(
0 In
−In 0

)
. Deduce that

U(n) = O(2n) ∩ Sp(2n,R).

Proof. For (1), since H is Hermitian, then for v, w ∈ V , we have

ReH(v, w)+ i imH(v, w) = H(v, w) = H(w, v) = ReH(w, v)− i imH(w, v)

By comparing the real part and imaginary part, we have{
g(v, w) = g(w, v)

ω(v, w) = −ω(w, v)

For (2), we still need to use the fact thatH is Hermitian. Directly compute
as follows

g(v, w) + iω(v, w) = −(i)2H(v, w)

= H(iv, iw)

= g(iv, iw) + iω(iv, iw)

So we have {
g(iv, iw) = g(v, w)

ω(iv, iw) = ω(v, w)

And consider
−ig(v, w) + ω(v, w) = −iH(v, w)

= H(v, iw)

= g(v, iw) + iω(v, iw)

So we have {
g(v, w) = −ω(v, iw)
ω(v, w) = g(v, iw) = −g(iv, w)

For (3). Note that we already have a relation between g and ω in (2), so
we may define

ω(v, w) = −g(iv, w)
and define

H(v, w) = g(v, w) + iω(v, w)
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We directly check H(v, w), v, w ∈ V is Hermitian as follows
H(v, w) = g(v, w)− iω(v, w)

= g(w, v) + ig(iv, w)

= g(w, v)− ig(v, iw)
= g(w, v)− ig(iw, v)
= g(w, v) + iω(w, v)

= H(w, v)

H(iv, w) = g(iv, w) + iω(iv, w)

= −ω(v, w) + ig(v, w)

= i(g(v, w) + iω(v, w))

= iH(v, w)

For (4). If we already choose a basis such that H(v, w) = vTw for all
v, w ∈ V . Then □



REPRESENTATION THEORY 135

21. Problem set 10: Lie algebras I

Problem 21.1. The Lie algebra of derivations
1. Let A be an algebra over a field k. Show that Derk(A) is a Lie

algebra with [D,E] = D ◦ E − E ◦D,D,E ∈ Derk(A).
2. Let g be a Lie algebra. Show that ad : g→ Derk(g) ⊆ Endk(g), X 7→

adX = [X,−] is a morphism of Lie algebras.

Proof. The proof for (1) is the same as proof of Proposition 10.40.
For (2). adX is a derivation since there exists Jacobi identity.

adX([Y, Z]) = [X, [Y, Z]]

= −[Y, [Z,X]]− [Z, [X,Y ]]

= [Y, adX(Z)] + [adX(Y ), Z]

In fact, Jacobi identity is equivalent to adX is a derivation of g. Furthermore,
we need to check ad[X,Y ] = adX ◦ adY , this still holds thanks to Jacobi
identity. □
Problem 21.2 (Lie algebras of classical Lie groups). Verify that the Lie al-
gebras so(n), u(n), sl(n,R), sl(n,C) and sp(n) are closed under the Lie prod-
uct of matrices and are invariant under conjugation by elements of the cor-
responding groups SO(n),U(n), SL(n,R),SL(n,C) and Sp(n), respectively.

Proof. □
Problem 21.3 (Kernel and quotient of Lie algebra morphisms). Let g be
a Lie algebra.

1. Let h ⊂ g be an ideal. Show that the quotient space g/h has a
unique structure of LIe algebra such that the canonical projection is
a morphism of Lie algebras.

2. Let h ⊂ g a subspace. Show that h is an ideal if and only if it is the
kernel of a morphism of Lie algebras.

Proof. For (1), clearly the Lie structure of g/h is defined as follows: For any
g1 + h, g2 + h ∈ g/h, we define

[g1 + h, g2 + h] := [g1, g2] + h

For (2). If h is a kernel of some Lie algebra morphisms, it’s clearly an
ideal; Conversely, if h is an ideal, then it’s the kernel of canonical projection
we construct in (1). □
Problem 21.4 (Second isomorphism theorem). Let g be a Lie algebra.
1. Let a, b be ideals in g. Show that a+ b, a ∩ b are ideals in g.
2. Let a, b be ideals in g such that a+ b = g. Show that g/a = a/(a ∩ b) is

an isomorphism of Lie algebras.

Proof. Routines. □
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22. Problem set 11: The exponential map

Problem 22.1 (Abelian Lie groups and Lie algebras). Let G be a connected
Lie group and g its Lie algebra.
1. For any X,Y ∈ g show that [X,Y ] = 0 if and only if exp(tX) exp(sY ) =

exp(sY ) exp(tY ) for all s, t ∈ R.
2. Show that G is abelian if and only if g is abelian
3. Give a counterexample to (2) if G is not connected
4. Assume that G is not necessarily connected. Show that exp(X + Y ) =

exp(X) exp(Y ) for all X,Y ∈ g if and only if the identity component of
G is abelian.

Proof. For (1). It’s clear if [X,Y ] = 0 then
exp(tX) exp(sY ) = exp(sY ) exp(tX), ∀s, t ∈ R

Conversely, take differential of t and s respectively we have
X exp(tX)Y (exp sY ) = Y exp(sY )X exp(tX)

and set t = s = 0 to get
XY = Y X

that is [X,Y ] = 0.
For (2). Corollary 10.59 says that if G is abelian, then its Lie algebra g

is also abelian. Here we don’t use the assumption of connectness of G. If g
is abelian, then by (1) we have

exp(tX) exp(sY ) = exp(sY ) exp(tX), ∀X,Y ∈ g

However, exp is a local diffeomorphism near 0 ∈ g, and if G is connected,
then any neighborhood of e ∈ G can generate the whole group. So the
converse is still true.

For (3). Let H be any non abelian finite group, G an abelian group. Then
G×H is a non abelian Lie group with abelian Lie algebra.

For (4). □

Problem 22.2. The adjoint form of a Lie group
1. Let G,H be connected Lie groups and π : H → G is a covering map.

Show that Z(G) is discrete if and only if Z(H) is discrete, and in this
case G/Z(G) ∼= H/Z(H).

2. Let G be a connected Lie group, G̃ its universal covering, and g its Lie
algebra. Show that imAd = G̃/Z(G̃). The Lie group G̃/Z(G̃) is called
the adjoint form of G.

3. Let H = exp(Z(g)), where Z(g) = {X ∈ g | [X,Y ] = 0, ∀Y ∈ g}. Show
that H is the connected component of the identity in Z(G).

Proof. For (1). Firstly note that π(Z(H)) ⊂ Z(G), since for any x ∈ Z(H),
then xyx−1y−1 = eH ,∀y ∈ H, then

π(x)π(y)π(x)−1π(y)−1 = eG
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And since π is a covering map, then it’s surjective, then any element in G
can be written as some π(y), which implies π(x) ∈ Z(G), that is π(Z(H)) ⊂
Z(G); Conversely, π−1(Z(G)) is a discrete normal subgroup in H, since fiber
of covering map is discrete, then by the second problem in Problem set 8,
we have π−1(Z(G)) ⊂ Z(H), thus π(Z(H)) = Z(G). So Z(G) is discrete if
and only if Z(H) is. Furthermore, let π : H → G descend on H/Z(H), we
have

π̃ : H/Z(H)→ G/Z(G)

is an isomorphism, since it’s injective and surjective.
For (2). Together (1) and first isomorphism theorem, it suffices to show

kerAd = Z(G). Suppose x ∈ kerAd, for any y ∈ G, the connectedness of G
implies that we can write y as eY1 . . . eYn , Yi ∈ g. Then7

xyx−1 = xeY1 . . . eYnx−1

= xeY1x−1 . . . xeYnx−1

= exY1x
−1
. . . exYnx

−1

= eY1 . . . eYn

= y

proving x ∈ Z(G); Conversely, suppose y ∈ Z(G), then we can define a
group homomorphism

ψy : G→ G

x 7→ yxy−1

Let ϕy be the induced map on Lie algebras, then
etϕy(X) = eϕy(tX)

= ψy(e
tX)

= yetXy−1

= et(yXy
−1)

Take differential at t = 0, then we have
ϕy(X) = yXy−1

then ϕy is exactly Ady. However, yetXy−1 = etX , since y ∈ Z(G). It follows
ϕy(X) = Ady(X) = X for all X ∈ g. This shows y ∈ kerAd. This completes
the proof of (2).

For (3). □

7For convenience of computing and WLOG, we regard G as a linear Lie group, so we
have xeYix−1 = exYix

−1

= eAdx Yi
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23. Problem set 12: The exponential map II

Problem 23.1 (The Heisenberg group). LetH = N(3,R) be the Heisenberg
group, i.e. the group of upper triangular unipotent 3 × 3 matrices and
h = Lie(H) = n(3,R) with basis {X,Y, Z} such that [Y, Z] = X, [X,Y ] =
[X,Z] = 0

1. Show that exp : h→ H is injective and surjective.
2. Let Y, Z ∈ Mat(n × n,C) such that [Y, [Y, Z]] = [Z, [Y, Z]] = 0 . Show

that eY eZ = eY+Z+ 1
2
[Y,Z]. Hint: Show that t 7→ etY etZe−

t2

2
[Y,Z] and

t 7→ et(Y+Z) satisfy the same differential equation.
3. Let G ⊂ GL(n,R) be a Lie group with Lie algebra Lie (G) = g. Let
ϕ : h→ g be a morphism of Lie algebras. Show that there exists a unique
morphism of Lie groups Φ : H → G such that Φ(expX) = exp(ϕ(X)) for
all X ∈ h.

4. Let V = 〈Y, Z〉R be a vector subspace of h and K = exp(V ). Show that
K = H and conclude that Lie (K) 6= V .

Proof. For (1). For any Heisenberg group H

H =

 1 a c
0 1 b
0 0 1


we have

exp(aY + bZ + cX) = H

Furthermore, exp(aY + bZ + cX) = 0 if and only if a = b = c = 0. So exp
is both injective and surjective.

For (2). From hint, it suffices to show if we denote γ(t) = etY etZe−
1
2
[Y,Z],

then
γ′(t) = (Y + Z)γ(t)

Directly compute we have

γ′(t) = Y etY etZe−
t2

2
[Y,Z] + etY ZetZe−

t2

2
[Y,Z] − etY etZ [Y, Z]te−

t2

2
[Y,Z]

Note that we have [Y, [Y, Z]] = [Z, [Y, Z]] = 0, thus we have

etY etZ [Y, Z]te−
t2

2
[Y,Z] = t[Y, Z]etY etZe−

t2

2
[Y,Z]

So it suffices to show

[etY , Z]etZe−
t2

2
[Y,Z] = t[Y, Z]etY etZe−

t2

2
[Y,Z]

And this is equivalent to show

[etY , Z] = t[Y, Z]etY

It’s quite easy to check these two functions satisfying the same differential
equation.
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For (3). Since exp : h→ H is an isomorphism, it’s clear to define Φ(h), h ∈
H as

Φ(h) := exp(ϕ(exp−1(h)))

and this is unique.
For (4). Note that (Y + Z)2 = H, thus exp(V ) = H. As a consequence

Lie(K) = Lie(H) = h 6= V . □

Problem 23.2. Surjectivity of the exponential map
1. Show that there does not exist a matrix X ∈ sl(2,C) with exp(X) =(

−1 1
0 −1

)
∈ SL(2,C).

2. Give an example of matrices X and Y in sl(2,C) such that [X,Y ] = 2πiY
but such that there does not exist any Z in sl(2,C) with expX expY =
expZ.

3. Let X,Y ∈ gl(n,C) such that [X,Y ] = αY for some α ∈ C.. Suppose
further that there is no nonzero integer n such that α = 2πin. Show that
expX expY = exp

(
X + α

1−e−αY
)

.

Proof. For (1). Note that exp(P−1AP ) = P−1 exp(A)P , so WLOG we may
assume X ∈ sl(2,C) is in its Jordan form. But for X ∈ sl(2,C), its Jordan
form J are in following forms(

−λ 0
0 λ

)
,

(
0 1
0 0

)
So any matrix in the image of exponential map must have Jordan forms
which are listed as follows(

e−λ 0
0 eλ

)
,

(
1 1
0 1

)
But

(
−1 1
0 −1

)
∈ SL(2,C) is already its Jordan form and it is not in any

form listed above. Thus it doesn’t lie in the image of exponential map.
For (2). Consider

X =

(
iπ 0
0 −iπ

)
, Y =

(
0 −1
0 0

)
It’s easy to check [X,Y ] = 2πiY , and we have

expX expY =

(
eiπ 0
0 e−iπ

)(
1 −1
0 1

)
=

(
−1 1
0 −1

)
From (1) we know that expX expY does not lie in the image of exponential.

For (3). Let

A(t) = eXetY = eZ(t), B(t) = exp{X +
α

1− e−α
Y } = eC(t)



140 BOWEN LIU

It suffices to show Z(t) and C(t) satisfy the same differential equation and
initial conditions, then A(t) = B(t) and let t = 1 to conclude.

d

dt
eZ(t) = eZ(t)(

I − e− adZ(t)

adZ(t)
(
dZ(t)

dt
))

d

dt
eXetY = eXY etY = eZ(t)Y

Thus

dZ(t)

dt
= (

I − e− adZ(t)

adZ(t)
)−1(Y )

For C(t), we have

dC(t)

dt
=

α

1− e−α
Y

=
adC(t)

I − e− adC(t)
(Y )

= (
I − e− adC(t)

adC(t)
)−1(Y )

This completes the proof. □

Problem 23.3 (The relation between Ad and ad for GL(n,C)). Let X,Y ∈
gl(n,C), adnX = adX ◦ . . . adX︸ ︷︷ ︸

n

. Show that:

1.

adnX(Y ) =

n∑
m=0

(
n
m

)
XmY (−X)n−m

2.

exp(adX Y ) = AdexpX Y = exp(X)Y exp(−X)

Proof. For (1). We prove it by induction. If n = 1, then

adX Y = −Y X +XY
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If this relation holds for n ≤ k. Then consider n = k + 1 we have
adk+1

X (Y ) = adX(ad
k
X(Y ))

= adX(

k∑
m=0

(
k
m

)
XmY (−X)k−m)

=
k∑

m=0

(
k
m

)
Xm adX(Y )(−X)k−m

=
k∑

m=0

(
k
m

)
Xm(XY − Y X)(−X)k−m

=

k∑
m=0

(
k
m

)
Xm+1Y (−X)k−m +

k∑
m=0

(
k
m

)
XmY (−X)k−m+1

m′=m+1
=

k+1∑
m′=1

(
k

m′−1

)
Xm′

Y (−X)k−m
′+1 +

k∑
m=0

(
k
m

)
XmY (−X)k−m+1

= Xk+1Y + Y (−X)k+1 +
k∑

m=1

(
(

k
m−1

)
+
(
k
m

)
)XmY (−X)k−m+1

=

k+1∑
m=0

(
k+1
m

)
XmY (−X)k−m+1

In the last equality we use the identity(
k

m−1

)
+
(
k
m

)
=
(

k
m+1

)
For (2). Expand exp(adX(Y )) in power series, we have

exp(adX Y ) =
∞∑
n=0

1

n!
adnX(Y )

=
∞∑
n=0

1

n!

n∑
m=0

(
n
m

)
XmY (−X)n−m

And expand exp(X)Y exp(−X) in power series, we have

exp(X)Y exp(−X) = (
∞∑
n=0

1

n!
Xn)Y (

∞∑
m=0

1

m!
(−X)m)

=

∞∑
n=0

n∑
m=0

1

m!(n−m)!
XmY (−X)n−m

=
∞∑
n=0

1

n!

n∑
m=0

(
n
m

)
XmY (−X)n−m

= exp(adX Y )
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This completes the proof. □
Problem 23.4 (Lower central and derived series). Let g be a finite dimen-
sional Lie algebra. We define recursively for j ≥ 0

g0 = g, g1 = [g, g], gj+1 =
[
gj , gj

]
.

g0 = g, g1 = [g, g], gj+1 = [g, gj ] .

1. Show that each gj and each gj is an ideal in g, and that gj ⊆ gj for all j.
2. Show that the following are equivalent:

(i) gk = 0 for some k;
(ii) g has a sequence of Lie subalgebras g = h0 ⊃ h1 ⊃ · · · ⊃ hk = 0 such

that hi+1 is an ideal in hi and hi/hi+1 is abelian.
(iii) g has a sequence of ideals g = h0 ⊃ h1 ⊃ · · · ⊃ hk = 0 such that

hi/hi+1 is an abelian Lie algebra.
3. Show that the following are equivalent:

(i) gk = 0 for some k.
(ii) g has a sequence of ideals g = h0 ⊃ h1 ⊃ · · · ⊃ hk = 0 such that

hi/hi+1 ⊂ Z (g/hi+1)
(iii) adX1 ◦ adX2 ◦ . . . ◦ adXk

Y = [X1, [X2, . . . , [Xk, Y ] . . .]] = 0 for some
integer k and all X1, . . . , Xk, Y ∈ g

Proof. For (1). Show gj is an ideal by induction on j as an example. Clearly
it’s an ideal when j = 0, 1. If gk is an ideal, then take any g ∈ G, [u, v] ∈
gk+1, u, v ∈ gk, we have

[g, [u, v]] = [[g, u], v] + [u, [g, v]]

Since gk is an ideal, then [g, u], [g, v] ∈ gk. This shows gk+1 is an ideal. We
also prove gj ⊆ gj by induction on j. It’s clear gj = gj if j = 0, 1. But for
j = 2, then

g2 = [g1, g1] ⊆ [g, g1] = [g, g1] = g2

For higher order, gj+1 ⊆ gj+1 since gj ⊆ gj and gj ⊆ g.
For (2). It’s a problem for equivalent conditions of solvable Lie algebras.

It’s clear from (i) to (iii), since we can take hi = gi. (iii) to (ii) is also trivial,
since if hi+1 is an ideal of g, it’s also an ideal of hi. It suffices to show (iii)
to (i), we claim that gk ⊆ hk. Indeed, take k = 1 for example, since g/g1 is
its abelianization, thus if g/h1 is abelian, then g/h1 ⊆ g/g1, which implies
g1 ⊆ h1. The argument for higher order is same.

For (3). It’s a problem for equivalent conditions of nilpotent Lie algebras.
(i) to (ii) is clear since hi = gi satisfies the desired properties. It suffices to
show (ii) to (i), since the equivalence between (i) and (iii) we will prove in
the first problem in the next problem set. Here we also need to show gi ⊆ hi.
Indeed, take k = 0 for an example, if

g/h1 ⊂ Z(g/h1)
Then g/h1 must be abelian, then g1 ⊆ h1. If gi ⊆ hi holds for i < k, and
assume gk ( hk, then there exists g ∈ gk = [g, gk−1] ⊆ [g, hk−1], g /∈ hk. But
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hk−1/hk ⊆ Z(g/hk) implies that
[g, hk−1/hk] ⊆ hk

A contradiction to the existence of g. □
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24. Problem set 13: Solvable, nilpotent and semisimple Lie
algebra

Problem 24.1 (Criteria for nilpotency and solvability). Let g be a finite-
dimensional Lie algebra. Show that
1. g is nilpotent if and only if the Lie algebra ad g is nilpotent.
2. g is solvable if and only if [g, g] is nilpotent.

Proof. For (1). If g is nilpotent, then ad g is nilpotent clearly, since ad g =
g/Z(g); Conversely, if ad g is nilpotent, then there exists integer n such that

[ad g, [. . . , ad g]]︸ ︷︷ ︸
n times

= 0

That’s equivalent to
[g, [. . . g]]︸ ︷︷ ︸
n times

⊂ Z(g)

And that’s equivalent to
[g, [. . . g]]︸ ︷︷ ︸
n+1 times

= 0

So g is nilpotent.
For (2). If [g, g] is nilpotent, then [g, g] is solvable, so is g; Conversely,

if g is solvable. From (1) it suffices to show ad[g, g] is nilpotent. Since g is
solvable, by Lie’s theorem, over an algebraic closure k of the ground field
the elements of ad g are simultaneously upper triangularizable. It follows
that over k the elements of ad[g, g] can be representated by strictly upper
triangular matrices, and hence ad[g, g] is nilpotent over k. But it doesn’t
depend on whether we extend our ground field or not. This completes the
proof. □

Problem 24.2. Let V 6= 0 be a finite-dimensional complex vector space,
g ⊂ gl(V ) be a complex Lie algebra. Show that
1. If g is nilpotent, then there exists a basis for V such that the matrix

representative of each X ∈ g is strictly upper triangular.
2. If g is solvable, then there exists a basis for V such that the matrix

representative of each X ∈ g is upper triangular.

Proof. Just Engel/Lie’s theorem together with induction on dimension of
V . □

Problem 24.3 (Simple Lie algebras). Let g be a finite-dimensional Lie
algebra. Show that the following are equivalent:
1. g is simple, i.e. g has no nontrivial ideals and dim g > 1.
2. g has no nontrivial ideals and g is nonabelian.
3. g has no nontrivial ideals and is semisimple.
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Proof. From (1) to (2): It suffices to show g is nonabelian, if g is abelian
and dim g > 1, then any subspace 0 ( h ( g is an ideal. A contradiction.

The equivalence between (2) and (3): From Proposition 11.18, we know
that for any finite-dimensional Lie algebra, g is semisimple if and only if g
has no abelian ideals. Since here g has no nontrivial ideals, so g is semisimple
if and only if g is nonabelian.

From (2) to (1) is trivial, since any Lie algebra of dimension 1 must be
abelian. □
Problem 24.4. Semisimplicity of sl(n,C)
1. Show that Z(gl(n,C)) = s(n,C), where s(n,C) = {λIn | λ ∈ C} and Im

is the m×m identity matrix. Show that Z(sl(n,C)) = 0.
2. Show that rad(sl(n,C)) = Z(sl(n,C)), hence sl(n,C) is semisimple. Hint:

Show that rad(sl(n,C)) is contained in every maximal solvable subalgebra
b ⊂ sl(n,C). Use Lie’s theorem to show that rad(sl(n,C)) ⊂ sl(n,C) ∩
o(n,C), where o(n,C) denotes the Lie algebra of diagonal n×n matrices.

Proof. For the first part of (1), it’s a basic result in linear algebra: Clearly
s(n,C) ⊆ Z(gl(n,C)); Conversely, if A ∈ Z(gl(n,C)), consider elementary
matrix Eij , then for any 1 ≤ i, j ≤ n

EijA = AEij =⇒

{
aij = 0, i 6= j

aii = λ, ∀1 ≤ i ≤ n

That is A ∈ s(n,C).

Remark 24.5. It suffices to use Eij , i 6= j to complete the proof, since
AEii = EiiA gives nothing new.

For the second part of (2), note that
sl(n,C) = {A ∈ gl(n,C) | trA = 0} ⊂ gl(n,C)

And use the remark we mentioned above, we have
Z(sl(n,C)) = Z(gl(n,C)) ∩ sl(n,C) = 0

For (2). Recall that rad(sl(n,C)) is the maximal solvable ideal of sl(n,C).
If rad(sl(n,C)) isn’t contained in some maximal solvable subalgebra b, and if
we can prove rad(sl(n,C))+b is still a solvable subalgebra, then it contradicts
to the maximality of b. So it suffices to show a solvable ideal plus a solvable
subalgebra is still a solvable subalgebra. Assume h is a solvable ideal and b
is a solvable subalgebra, clearly h+ b is still a subalgebra. If we use second
isomorphism, we have

h+ b/h ∼= h/h ∩ g

Use the fact h and h/h ∩ g are solvable to get desired result.
Applying Lie’s theorem to rad(sl(n,C)), we can think rad(sl(n,C)) con-

sists of upper triangular matrices. Use the fact that rad(sl(n,C)) is an ideal,
we can show

rad(sl(n,C)) ∈ sl(n,C) ∩ o(n,C)
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It suffices to show for any A ∈ rad(sl(n,C)), all entries in the first row
are zero except a11, then we can use induction to get desired result. Since
rad(sl(n,C)) is an ideal, then first take E1n and consider [E1n, A], which is
still upper triangular, then we must have a1i = 0, i 6= 1, n. Then use E2n

and consider [E2n, A] to get a1n = 0, since we have already proved matrices
in rad(sl(n,C)) has the property a12 = 08.

Finally let’s show rad(sl(n,C)) ⊆ Z(sl(n,C)) which still depends heavily
on the fact rad(sl(n,C)) is an ideal. Since sl(n,C) is spanned by Eij , i 6= j
and Eii−Ejj , 1 ≤ i < j ≤ n, we just need to show for any A ∈ rad(sl(n,C)),
we have [A,Eij ] or [A,Eii−Ejj ] = 0. It’s easy to see [A,Eii−Ejj ] = 0 always
holds for any diagonal matrice A, here we don’t need the fact rad(sl(n,C))
is an ideal. But for [A,Eij ], i 6= j, it is compelled to be zero, since it’s
diagonal. This completes the proof. □

8In fact, here we can use more Eij to test, then we can conclude rad(sl(n,C)) = {A ∈
sl(n,C) | A = λIn}
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25. Problem set 14: Representations of sl(2,C)

Problem 25.1 (The Casimir operator for sl(2,C)). Let ρ : sl(2,C) →
gl(V ), ρ′ : sl(2,C) → gl (V ′) be representations. Define Z = 1

2ρ(H)2+
ρ(H) + 2ρ(Y )ρ(X)

1. Show that [Z, ρ(A)] = 0 for all A ∈ sl(2,C).
2. Assume that V and V ′ are irreducible. Let L ∈ Hom(V, V ′) such that
L ◦ ρ = ρ′ ◦L. Show that either L = 0 or L is invertible. Furthermore, if
V ′ = V , then L is multiplication by a scalar.

3. Let V (n) be an irreducible representation of dimension n+ 1. Show that
Zv =

(
1
2n

2 + n
)
v for v ∈ V (n).

Proof. For (1). If suffices to check Z commutes with ρ(X), ρ(Y ), ρ(Z). Di-
rectly compute as follows:

[ρ(X),
1

2
ρ(H)2 + ρ(H) + 2ρ(Y )ρ(X)] =

1

2
ρ(H)ρ([X,H]) +

1

2
ρ([X,H])ρ(H)

+ ρ([X,H]) + 2ρ(Y )ρ([X,X]) + 2ρ([X,Y ])ρ(X)

=− ρ(H)ρ(X)− ρ(X)ρ(H)− 2ρ(X) + 2ρ(H)ρ(X)

=[ρ(H), ρ(X)]− 2ρ(X)

=2ρ(X)− 2ρ(X)

=0

Similar for ρ(Y ) and ρ(Z).
For (2). Parallel to Schur lemma.
For (3). From (1) and (2) we know that Z acts on V (n) as multiplication

by a constant, thus we can choose a special v ∈ V (n) to figure it out, that
is, choose v to be the eigenvector of ρ(H) with respect to eigenvalue n. So

(
1

2
ρ(H)2 + ρ(H) + ρ(Y )ρ(X))v = (

1

2
n2 + n)v

As desired. □
Problem 25.2 (Complementary invariant subspace for representations of
s((2,C)). Let ρ : sl(2,C) → gl(V ) be a finite dimenaional representation.
let W ⊂ V be an invariant subspace of codimension 1. Show that there is a
complementary invariant subspace W ′.

Hints: Consider first the case dimW = 1 and analyze the quotient repre-
sentation V/W . Then consider the case dimW > 1 and ρ|W is irreducible,
and study ker Z where Z is the Casimir operator in above problem. Finally,
consider the case dimW ≥ 1 and ρ|W is not necessarily irreducible. Apply
induction on dimW .

Proof. □
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