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1. MODULI SPACE AND STABLE CURVES

1.1. Motivations. The main topic of this mini-course is stable reduction of
algebraic curves. Before that, we need to know what is a "stable curve". The
motivations of stable curves origin from the study of moduli spaces. Let Mg
be the (coarse) moduli space of projective smooth curves of genus g over an
algebraically closed field k, which is an algebraic variety over k. It turns out
that Mg is not projective (even not proper), so we want to "compactify" Mg,
that is, find an open immersion

Mg ,→ Mg,

where Mg is a proper algebraic variety over k. There are many different com-
pactifications of Mg, such as Deligne-Mumford compactification and Satake
compactification. The stable curves appears as the boundary divisors of the
Deligne-Mumford compactification.

The second topic of this mini-course is degeneration of algebraic curves. A
family of algebraic varieties is a projective flat morphism f : X → S such that
there exists an open dense subset V ⊆ S such that X ×S V → V is smooth. If
there exists a closed point s0 ∈ S such that Xs0 is singular, we say that X → S
degenerates at s0.

The degeneration plays an important role in arithmetic geometry: Let C
be a smooth projective curve over Q and extend C to a scheme C over Z, that
is, the generic fiber of C is isomorphic to C. A natural question is, does there
exist a prime number p such that

C×Z Fp →SpecFp

is a smooth projective curve over Fp? If the answer is yes, then it is called a
good reduction, otherwise it is called a degeneration at p.

Theorem 1.1.1 (Abhyankar, Fontaine). If A → SpecZ is an abelian scheme,
then AFp is of dimension zero.

Corollary 1.1.1. If C is smooth projective curve over Q of genus g ≥ 1. Then
C degenerates at at least one prime p.

Remark 1.1.1. This is false if Q is replaced by a general number field.

Theorem 1.1.2 (Shafarevich).
(1) If f : X →P1

k is a family of smooth projective curves, then f is isotrivial1.
(2) If f : X → E is a family of abelian schemes over an elliptic curve E, then

f is isotrivial.

1.2. Moduli space of smooth projective curves of genus g. Let k be an
algebraically closed field. We denote the category of algebraic varieties2 over
k by Vark and denote the category of sets by Set. A functor of points is a

1A morphism is called isotrivial, if all of fibers are isomorphic to each other.
2An algebraic variety over k is a scheme of finite type over k.
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contravariant functor F : Vark → Set. For any algebraic variety M over k, it
defines a special functor

hM : Vark →Set
X 7→Homk−Var(X , M),

where Homk−Var(X , M) denotes the set of all algebraic morphisms between X
and M. A functor of points F is called representable, if there exists a natural
isomorphism F ∼= hM for some algebraic variety M.

Consider the functor

Mg : Vark →Set
X 7→ {families of smooth projective curves of genus g over X }/∼.

A natural question is whether Mg representable or not. The answer is no. If
Mg is represented by an algebraic variety Mg, that is, there exists a natural
isomorphism η : Mg → hMg .

By the natural isomorphism η, we can define the universal curve Cg → Mg
by η−1

Mg
(idMg ) ∈Mg(Mg), which satisfies the following universal property: For

any S → Mg ∈Mg(S), there exists a unique X → S such that the following
diagram is Cartesian

X Cg

S Mg.

Let C ∈Mg(Speck) be a smooth projective curve over k such that there exists
a non-trivial automorphism σ : C → C. Then we can construct a non-trivial
family X → S such that every fiber is isomorphic to C. In other words, S →
Mg is the constant map. But in this case, the Cartesian diagram is

S×C Cg

S Mg,

which contradicts to X 6∼= S×C. This shows that existence of universal family
is a strong constraint, and it can be violated by existence of automorphisms.

Remark 1.2.1. Although the functor of smooth projective curves of genus g is
not representable, the moduli functor of smooth projective curves with level
structure3 is represented by an algebraic variety Hg, and there exists a finite
surjective map Hg → Mg.

3Fix N ∈Z≥2, which is prime to char(k), a level structure on smooth projective curve C with
genus g is an isomorphism

Jac(C)[N]→ (Z /NZ)2g.
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Instead of considering representability, we should consider coarse moduli
space. A coarse moduli space is an algebraic variety Mg over k with a natural
transformation Mg → hMg , such that

(1) Mg(Ω)= hMg (Ω) for any algebraically closed field Ω.
(2) For any algebraic variety M′ with a natural transformation Mg → hM′

satisfies (1), there exists a morphism Mg → M′ such that

Mg hM′

hMg .

Proposition 1.2.1.

(1) Mg exists;
(2) Mg is normal and irreducible;
(3) dimk Mg = 3g−3.

1.3. Stable curves.

1.3.1. Nodal curve. Let k be an algebraically closed field and C be a projec-
tive reduced curve over k with the normalization π : C̃ → C. For OC-module
π∗OC̃/OC, it only supports at the singular locus CSing, which is a finite set.

For each p ∈ CSing, the stalk (π∗OC̃)p is a finite dimensional k-vector space,
and the multiplicity δp is defined as dimk(π∗OC̃/OC)p. The multiplicity one
case can be considered as the simplest singularity. There are two kinds of
multiplicity one singularity: node and cusp.

Definition 1.3.1. A point p ∈ C is called a node, if δp = 1 and |π−1(p)| = 2.

Proposition 1.3.1 ([Liu02, Proposition 7.5.15]). The following statements
are equivalent:

(1) p ∈ C is a node;
(2) π−1(p)= {p1, p2}, and locally at p ∈V , we have

OC(V )= { f ∈OC̃(π−1(V )) | f (p1)= f (p2)}.

(3) The formal completion ÔC,p ∼= k[[u,v]]/(uv).
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Proof. For simplicity, locally around p ∈V ⊆ C, we fix the following notations:
A =OC(V ),

A1 = { f ∈OC̃(π−1(V )) | f (p1)= f (p2)},

B =OC̃(π−1(V )).

(1) ⇐⇒ (2): The assumption in (2) implies that A = A1. Since we have the
following exact sequence

0→ A1 → B → k → 0,

where the map B → k is defined by f (p̃1)− f (p̃2), then dimk B/A = dimk B/A1 =
1, that is, δp = 1. Conversely, if p is a node, then dimk B/A = dimk B/A1 = 1,
and thus A = A1. �
Lemma 1.3.1. Let p ∈ C be a node. Then
(1) dimTC,p = 2;
(2) annOC,p

(
(π∗OC̃)p/OC,p

)=mp.

Proof. For (1). Use the structure of ÔC,p. For (2). Since annA B/A is an ideal
of A, and it is not equal to A, otherwise A = B and p is a smooth point, so
annA B/A ⊆mp. Conversely, �

1.3.2. Stable curve.

Definition 1.3.2. Let C be an algebraic curve over an algebraically closed
field k.
(1) C is called semi-stable, if it is reduced and nodal4.
(2) C is called stable, if it is semi-stable, and the following conditions are

verified:
(a) C is connected, projective, with arithmetic genus5 pa(C)≥ 2;
(b) For all irreducible component Γ⊂ C, if Γ∼=P1

k, then Γ∩C \Γ contains
at least three point.

Remark 1.3.1. The third condition is called the stability condition. Later we
will show that
(1) If C is a stable curve, then Aut(C) is finite.
(2) Let ωC be the dualizing sheaf of C. Then ω⊗n

C is very ample for n ≥ 3.
If we do not require the stability condition, then Aut(C) is infinite and ωC is
not ample. Roughly speaking, the finiteness of automorphism group is related
to the fact that any automorphism of P1

k with three points fixed is identity.

Lemma 1.3.2. Let C be a reduced connected projective curve over a field k.
Then

pa(C)= 1−n+ ∑
p∈CSing

δp +
n∑

i=1
pa(Γ̃i),

4A curve is nodal, if every singular point is a node.
5Let C be a projective curve over a field k. The arithmetic genus is defined as 1−χk(OC).
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where C =⋃n
i=1Γi is the irreducible decomposition of C, and Γ̃i is the normal-

ization of Γi.

Proof. The short exact sequence

0→OC →π∗OC̃ →π∗OC̃/OC → 0

gives the long exact sequence

0→ k → H0(C̃,OC̃)→ ⊕
p∈CSing

(OC̃/OC)p → H1(C,OC)→ H1(C̃,OC̃)→ 0.

This completes the proof. �
Example 1.3.1. For g = 2 case, stable curve is of one of the following types:
Type (a):

Type (b): y2 = x2(x3 +a), where a ∈ k∗ and char(k) 6= 2.

Type (c): y2 = x2(x+1)2(x+2).

Type (d): y2 = (x(x+1)(x+2))2.



7

Type (e):

Type (f):

Type (g):

Remark 1.3.2. Let M2 be the coarse moduli space of smooth projective curves
of genus two and M2 be the Deligne-Mumford compactification. Then M2 is
of dimension three and thus M2 \ M2 is of dimension two. Moreover, M2 \ M2
two irreducible components ∆0 and ∆1, where ∆0 consists of stable curves of
type (b), (c) and (d).
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1.3.3. Very ampleness of dualizing sheaf.

Proposition 1.3.2. Let C be a semi-stable curve over an algebraically closed
field k.

(1) C is of locally complete intersection.
(2) Let π : C̃ → C be the normalization. Then π∗ωC =ωC̃(π−1(CSing)).
(3) For any Γ⊂ C be an irreducible component. Then

ωC/k|Γ =ωΓ/k

(
Γ∩C \Γ

)
.

Proof. For (1). See (d) of [Liu02, Lemma 10.3.7].
For (2). See (b) of [Liu02, Lemma 10.3.12].
For (3). See proof of [Liu02, Corollary 10.3.13]. �

Corollary 1.3.1. Let C be a semi-stable curve over an algebraically closed
field k. Let Γ⊂ C be an irreducible component. Then

deg(ωC/k|Γ)= 2(pa(Γ)−1)+
∣∣∣Γ∩ (C \Γ)

∣∣∣ .

Corollary 1.3.2. Let C be a semi-stable curve an algebraically closed field k.
If C is connected and pa(C) ≥ 2, then C is stable if and only if deg ωC/k|Γ > 0
for all irreducible component Γ⊂ C.

Theorem 1.3.1. Let C be a stable curve over an algebraically closed field k.
Then

(1) H1(C,ω⊗n
C )= 0 for all n ≥ 2;

(2) ω⊗n
C is very ample for n ≥ 3.

Proof. For (1). By duality we have

H1(C,ω⊗n
C )∨ = H0(C,ω⊗(1−n)

C ).

For any irreducible component Γ, we have

deg
(
ω⊗(1−n)

C |Γ
)
= (1−n)deg ωC|Γ < 0.

Thus H0(Γ,ω⊗1−n
C

∣∣
Γ
) = 0 since Γ is integral. Note that we have the following

exact sequence

0→ω⊗1−n
C →⊕

Γ

ω⊗1−n
C |Γ,

so H0(Γ,ω⊗1−n
C

∣∣
Γ
)= 0 for every irreducible component implies H0(Γ,ω⊗1−n

C )=
0.

For (2). See Corollary of Theorem 1.2 in [DM69]. �

Corollary 1.3.3. Let f : X → S be a relative stable curve. Then

(1) R1 f∗ω⊗n
X /S = 0 for n ≥ 2;

(2) ω⊗n
X /S is relatively very ample for n ≥ 3.
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1.3.4. Automorphism of stable curves. Let (X ,L) be a polarized projective va-
riety over a field k, where L is a very ample divisor on X . Then we define

Aut(X ,L) := {σ ∈Aut(X ) |σ∗L∼=L}.

Lemma 1.3.3. Aut(X ,L) is an algebraic group.

Proof. Since L is very ample, it gives an inclusion X ,→P(H0(X ,L)). Then for
any σ ∈Aut(X ,L), we have the following commutative diagram

X P(H0(X ,L))

X P(H0(X ,L)).

σ σ

This shows that Aut(X ,L) ,→Aut(P(H0(X ,L)))=PGL(H0(X ,L)) is a subgroup,
and it remains to show Aut(X ,L) is a closed subvariety of PGL(H0(X ,L)).

For σ ∈PGL(H0(X ,L)), we have σ ∈Aut(X ,L) if and only if σ(X )= X . Sup-
pose X = V (I), where I is a homogeneous ideal. Then σ(X ) = X is equivalent
to say for any x ∈ X and G ∈ I, we have G(σ(x)) = 0, which is a closed condi-
tion. This completes the proof. �

Proposition 1.3.3. Let G =Aut(X ,L). Then

dimTG,idX = dimHomOX (Ω1
X /k,OX ).

Proof. For σ ∈G, any element in TG,σ is equivalent to a morphism τ : Xk[ϵ]/(ϵ2) →
Xk[ϵ]/(ϵ2) which lifts σ : X → X , that is, the following diagram commutes:

Xk[ϵ]/(ϵ2) Xk[ϵ]/(ϵ2)

X X .

τ

σ

Since the underlying topological spaces of X and Xk[ϵ]/(ϵ2) are the same, we
have τ is determined by a morphism

OX →σ∗OXk[ϵ]/(ϵ2)
=σ∗OX ⊕ϵσ∗OX

a 7→σ](a)+ϵφ(a).

The condition for φ to be a k-linear homomorphism implies

φ(a1a2)=σ](a2)φ(a1)+σ](a1)φ(a2).

If we take σ= idX , then it gives

φ(a1a2)= a1φ(a2)+a2φ(a1),

that is, φ ∈Derk(OX ,OX )=HomOX (Ω1
X /k,OX ). �

Corollary 1.3.4. If C is a stable curve and L=ω⊗3
C , then

Aut(C) :=Aut(C,L)
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is an étale algebraic group6.

Proof. It suffices to prove

HomOC (Ω1
C/k,OC)= 0.

Let π : C̃ → C be the normalization. Then we claim
HomOC (Ω1

C/k,OX )∼=HomOC (π∗OC̃,OC)
∼=HomOC̃

(Ω1
C̃/k

,OC̃(−π−1(CSing))).

Proof of claim. �
�

6An algebraic group is étale if it is smooth and finite.
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2. STABLE REDUCTION

2.1. Model. A Noetherian, connected regular scheme of dimension7 1 or 0 is
called a Dedekind scheme. Let S be a Dedekind scheme. Then for any affine
open subset U ⊂ S, we have OS(U) is a Dedekind domain or a field.

Example 2.1.1.
(1) If S is a smooth connected curve over a field k, then S is a Dedekind scheme

with function field K = K(S).
(2) Let R be a discrete valuation ring. Then S =SpecR is a Dedekind scheme

with function field K =Frac(R).
(3) Let K be a number field and OK be the ring of algebraic integers in K .

Then S =SpecOK is a Dedekind scheme with function field K .

Definition 2.1.1. Let S be a Dedekind scheme and K be the function field of
S. Let X be an algebraic variety over K .
(1) A model of X over S is a S-scheme X→ S together with an K-isomorphism

XK ∼= X .
(2) A morphism X→X′ of two models of X is a morphism of S-shechmes that

is compatible with the isomorphisms XK ∼= X and X′
K
∼= X ;

(3) A model X→ S verifies a property (P) if X→ S verifies (P).

Example 2.1.2. Let C be a projective curve over a field K , defined by homo-
geneous polynomials F1, . . . ,Fm ∈ K[T0, . . . ,Tn]. Suppose A ⊂ K is a subring
such that all of Fi have coefficients in A and Frac(A)= K . Then the scheme

C :=Proj A[T0, . . . ,Tn]/(F1, . . . ,Fm)

is a model of C over S =Spec A, since its generic fiber
Cη =Proj A[T0, . . . ,Tn]/(F1, . . . ,Fm)×Spec A SpecK

∼=ProjK[T0, . . . ,Tn]/(F1, . . . ,Fm).

Example 2.1.3. Let C be the projective curve over Q defined by the equation

xq + yq + zq = 0.

Let C be the closed subscheme of P2
Z

defined by the same equation. Then C →
SpecZ is a model of C over SpecZ.

If X is an algebraic variety with certain properties (projective, normal,
smooth), we would of course also like to find a model which preserves as
many as properties of X as possible.

Proposition 2.1.1. Let X be a projective variety over a field K .
(1) There exists flat projective model.
(2) If X is normal and S is excellent8, then there exists flat normal model.

7Usually a Dedekind domain has dimension 1. Here we admit the dimension 0 case be-
cause we want to make the class of Dedekind scheme stable by localization.

8An excellent scheme is a complicated condition, here we provide some examples: Any alge-
braic variety over a field is excellent; Any Dedekind domain of characteristic zero is excellent.
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On the other hand, if C is a smooth projective curve, then we cannot find
a smooth model when g(C) ≥ 1, since by Corollary 1.1.1 there always some
prime p such that Cp → SpecFp is not smooth. But for smooth projective line
over Q, it admits infinite many smooth models.

Example 2.1.4. Let X = P1
Q

be the projective line over Q. Then P1
Z
→ SpecZ

together with an isomorphism of P1
Q

is a model of P1
Q

. The morphism defined
by ×2 is a morphism between models, that is, the following diagram commutes

x ∈P1
Q

P1
Q
3 2x

P1
Z

P1
Z

.

However, it is not an isomorphism P1
Z
→ P1

Z
. In other words, P1

Q
has infinite

many smooth models over SpecZ.

Remark 2.1.1. If X is an abelian variety, although there may not exist smooth
projective model, there always exists a smooth model with group structure,
called Néron model.

The main goal of this section is to give a criterion to show whether a given
smooth projective curve C over a field K admits a stable model or not. Before
that, we need to introduce the notion of the regular fibered surface, as we will
see that every smooth projective curve over a field K admits a model, which
is a regular fibered surface.

2.2. Regular fibered surface.

2.2.1. Fibered surface and desingularization.

Definition 2.2.1. Let S be a Dedekind scheme with generic point η.
(1) An integral, projective, flat S-scheme π : X → S of dimension two is called

a fibered surface over S.
(2) A fiber Xs with s ∈ S closed in called a closed fiber.
(3) The fiber Xη is called the generic fiber.

Remark 2.2.1. Let X → S be a fibered surface.
(1) If dimS = 0, then X is an integral, projective algebraic surface over a

field.
(2) If dimS = 1, we can say that X is a "relative curve" over S.

Proposition 2.2.1. Let C be a smooth projective curve over a field K . Then
C admits a model C→ S with affine S, which is a fibered surface with generic
fiber isomorphic to C.

Proof. Firstly, let C0 → S be as in Example 2.1.2, where S is affine. Let C be
the Zariski closure of C in C0, endowed with the reduced closed subscheme
structure. Then C → S is a fibered surface with generic fiber isomorphic to
C. �
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Theorem 2.2.1 (Abhyankar,Hironaka,Lipman). If X is an excellent, reduced,
Noetherian scheme of dimension two, then there exists π : X̃ → X projective,
birational morphism such that X̃ is regular, and π−1(Xreg)∼= Xreg.

Corollary 2.2.1. Let C be a smooth projective curve over a field K . Then C
admits a model, which is a regular fibered surface.

Proof. Let C → S be a model of C with fibered surface structure as proved
in Proposition 2.2.1. Then by Theorem 2.2.1, there exists a regular fibered
surface C̃→ S which isomorphic to C on regular locus. In particular, we have
C̃K ∼= C since C ⊂ Creg. This shows C̃ is a model of C over S, which is a regular
fibered surface. �
2.2.2. Backgrounds on intersection theory. Let X be a regular, Noetherian,
connected scheme of dimension two. Let D,E be two effective divisors on X
with no common irreducible component. Let x ∈ X be a closed point. Since
suppD∩suppE = {x} or in a neighborhood of x, we have√

OX (−D)x +OX (−E)x =mxOX ,x.

Hence OX ,x/ (OX (−D)x +OX (−E)x) is an Artinian ring, and consequently of
finite length.

Definition 2.2.2. Let D,E be two effective divisors on X with no common
irreducible component.
(1) Let x ∈ X be a closed point. The integer

ix(D,E)= lengthOX ,x
OX ,x/(OX (−D)x +OX (−E)x).

is called intersection number of D and E at x.
(2) The intersection cycle D.E is a 0-cycle

D.E = ∑
x∈X

ix(D,E)[x].

Remark 2.2.2. The intersection number is a non-negative integer, and ix(D,E)=
0 if and only if x 6∈ suppD∩suppE.

But how to define the intersection number when two divisors have common
irreducible components, such as the self-intersection?

Lemma 2.2.1 (moving lemma). Let X be a normal, Noetherian, connected,
separated scheme. Let D,E be two Weil divisors on X . Then there exists an
f ∈ K(X ) such that div( f )+D and E have no common component.

2.2.3. Intersection theory on regular fibered surface. Let X → S be a regular
fibered surface over a Dedekind scheme S. If dimS = 1, then X is called an
arithmetic surface. In general it is impossible to define the intersection of two
arbitrary divisors on X , but this obstacle can be circumvented when one of
the divisors is vertical.

Definition 2.2.3. Let x ∈ X be a closed point. A Cartier divisor E of X is
called a vertical divisor over s, if suppE ⊆ Xs. The set Divs(X ) consists of all
Cartier divisors of X which are vertical over s.
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Remark 2.2.3. If dimS = 1, then Divs(X ) has the irreducible components of
Xs as a basis.

Theorem 2.2.2. Let X → S be a regular fibered surface. Let s ∈ S be a closed
point. Then there exists a unique bilinear map

is : Div(X )×Divs(X )→Z

which verifies the following properties:
(1) If D ∈Div(X ) and E ∈Divs(X ) have no common component, then

is(D,E)=∑
x

ix(D,E)[k(x) : k(s)],

where x runs through the closed points of X .
(2) The restriction of is to Divs(X )×Divs(X ) is symmetric.
(3) is(D,E)= is(D′,E) if D is linearly equivalent to D′.
(4) If 0< E ≤ Xs, then

is(D,E)= degk(s)OX (D)|E.

Proposition 2.2.2. Let X → S be an arithmetic surface and s ∈ S be a closed
point. Then
(1) For any E ∈Divs(X ), we have E.Xs = 0.
(2) Let Γ1, . . . ,Γr be the irreducible components of Xs of respective multiplic-

ities d1, . . . ,dr. Then for any i ≤ r, we have

Γ2
i =− 1

di

∑
j 6=i

d jΓi.Γ j.

Theorem 2.2.3. Let X → S be an arithmetic surface with geometrically con-
nected generic fiber. Then

Divs(X )R×Divs(X )R →R

is negative semi-definite, and E2 = 0 if and only if E ∈RXs.

Proof. Suppose Xs =∑
i diΓi, where Γi ’s are irreducible components and di is

the multiplicity of Γi. For simplicity we denote ai j = Γi.Γ j ≥ 0, ai j ≥ 0 when
i 6= j and bi j = ai jdid j. Since Γi.Xs =∑

i d jai j = 0, it gives
∑

i bi j = 0.
For any V ∈Divs(X )R, we write it as V =∑

i xiΓi. Denote yi = xi/di. Then

V .V =
(∑

i
di yiΓi

)(∑
j

d j yjΓ j

)
=∑

i, j
yi yjdid jai j

=−∑
i> j

bi j(yi − yj)2

≤ 0

The equality holds if and only if bi j(yi − yj) = 0 for all i < j. Note that yi = yj
if Γi.Γ j 6= 0, that is, Γi ∩Γ j 6=∅. Since the generic fiber of X is geometrically
connected, then Zariski’s theorem implies Xs is connected. �



15

Proposition 2.2.3. Let X → S be an arithmetic surface and s ∈ S be a closed
point. Let Γ1, . . . ,Γr be the irreducible components of Xs with respective mul-
tiplicities d1, . . . ,dr. Then

2pa(Xη)−2=
r∑

i=1
diωX /S.Γi.

Proof. By adjunction formula we have

ωXs/k(s)
∼= ωX /S|Xs ⊗OX (Xs)|Xs .

Then intersect with Xs it gives

2pa(Xs)−2=ωX /S.Xs =
r∑

i=1
diωX /S.Γi.

Since X → S is flat, we have 2pa(Xs)− 2 = 2g(Xη)− 2. This completes the
proof. �
2.2.4. Minimal regular model. Let X → S be a regular fibered surface.

Definition 2.2.4. An irreducible divisor E of X is called an exceptional divi-
sor if there exists a regular fibered surface Y → S and a morphism f : X →Y
of S-schemes such that f (E) is a point and f : X \ E → Y \ f (E) is an isomor-
phism.

Theorem 2.2.4 (Castelnuovo’s criterion). Let X → S be a regular fibered
surface. Let E ⊂ Xs be an irreducible divisor. Then E is an exceptional divisor
if and only if E ∼=P1

k′ and E2 =−[k′ : k(s)], where k′ = H0(E,OE).

Definition 2.2.5. Let X → S be a regular fibered surface. Then
(1) It is called relatively minimal if for all closed point s ∈ S, the fiber Xs has

no exceptional curve.
(2) It is called minimal every birational map of regular fibered S-surfaces

Y 99K X is a birational morphism.

Theorem 2.2.5 ([Liu02, Theorem 9.3.21]). Let X → S be an arithmetic sur-
face with generic fiber of genus g(Cη) ≥ 1. Then X admits a unique minimal
model over S, up to unique isomorphism.

Corollary 2.2.2 ([Liu02, Corollary 9.3.24]). Let X → S be a relatively mini-
mal arithmetic surface with generic fiber g(Xη)≥ 1. Then X is minimal.

Proposition 2.2.4. Let C be a smooth projective curve over a field K and S
be a Dedekind scheme with function field K . Then C has a stable model over
S if and only if the minimal model Cmin over S is semi-stable.
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Example 2.2.1. Let S =SpecC[t] and C→ S is defined by the compactification
of the affine plane curve y2 = tx(x−1)(x−2)(x−3)(x−4). By Jacobi criterion C
is not regular, with singular locus

CSing = {[0 : 0 : x] | x = 0,1,2,3,4,∞}⊂P1
C,

that is,

By blow-up these six singular points we have

These components are isomorphic P1
C

with self-intersection −2, and thus
this gives the minimal model Cmin over S, but it is not semi-stable.

Remark 2.2.4. Let t1 be a variable such that t2
1 = t and consider C[t] ⊂ C[t1].

Then C→ S′ =SpecC[t1] defined by y2 = tx(x−1)(x−2)(x−3)(x−4) is a smooth
model over S′, since we have(

y
t1

)2
= x(x−1)(x−2)(x−3)(x−4).

This is a simple example of Deligne-Mumford theorem.
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3. DELIGNE-MUMFORD THEOREM

3.1. Simple normal crossing regular fibered surface. Let C be a smooth
projective curve over an algebraically closed field K with char(K) = 0 and S
be a Dedekind scheme with function field K .

Theorem 3.1.1 (Deligne-Mumford). There exists a finite map S′ → S, where
S′ is a Dedekind scheme and K ′ = K(S′)→ K is separable, such that C/K ′ has
a stable model.

Definition 3.1.1. A regular model C → S is called simple normal crossing
(SNC), if for every closed point s ∈ S, every irreducible component Γi of Cs is
smooth, and p ∈Γi ∩Γ j is a node.

Proposition 3.1.1. There exists a SNC regular model.

Proof. We start with a regular model and consider resolution of singularity of
singular fiber. �
Proposition 3.1.2. Let C → S be a SNC regular model and p ∈ Cs be a point
in a closed fiber.
(1) If p is not an intersection point, then we have C ,→ Z → S, where Z → S

is smooth and dim Zs = 2. Moreover, locally at p we have

OC,p = OZ ,p

(ud − ta)
,

where t is uniformizer of OK and a ∈O∗
Z,p.

(2) If p ∈Γ1 ∩Γ2, then there exists Z as above, and locally at p we have

OC,p = OZ ,p

(ud1 vd2 − ta)
,

where t is uniformizer of OK and a ∈O∗
Z,p.

Theorem 3.1.2 ([Liu02, Proposition 10.4.6]). Let C → S be a SNC regular
model and Cs = ∑

i diΓi be the irreducible components. Let e = lcm(di) and
OL =OK [t

1
e ]. Then the normalization of C×OK OL is a semi-stable model over

OL.

Lemma 3.1.1. If C has stable reduction over an étale extension L/K . Then
C has a stable reduction over K .

Remark 3.1.1. If C has a stable model C→ S. Then for any finite S′ → S, C/K ′
has a stable model over S′, which is exactly C×S S′ → S′.

3.2. Néron model of abelian variety. Let S be a Dedekind scheme with
function field K and A be an abelian variety over K .

Definition 3.2.1. A Néron model A of A is a smooth, separated model of A
such that for any smooth scheme X→ S, there exists an one to one correspon-
dence

MorS(X,A)⇐⇒MorK (XK , A).
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Remark 3.2.1. Let A→ S be a Néron model of A over S. Then for any smooth
scheme X→ S and any fK : XK → A, there exists a unique extension f : X→
A. In particular,

A(S)⇐⇒ A(K)
For any closed point s ∈ S, there is a natural morphism A(S) →A(k(s)), we
can composite it with the bijection between A(S) and A(K) to obtain the so-
called reduction map. For example. Let A be an abelian variety over Q. Then
S =SpecZ and

A(Q)→AFp (Fp)
is the reduction map.

Proposition 3.2.1.
(1) Néron model is unique up to a unique isomorphism.
(2) Néron model is a group scheme, since generic fiber is an abelian variety,

so multiplication, addition maps can uniquely extend to the Néron model
A.

A×k A A

A×S A A

Theorem 3.2.1 (Néron, Raynaud). The Néron model exists.

Example 3.2.1. Let A be an elliptic curve over K . Then minimal projective
regular model Amin over S. Then Néron model is (Amin)sm.

Let A→ S be a commutative group scheme over S. For any closed point
s ∈ S, there exists the following exact sequence

0→ (As)0 →As →ϕs → 0,

where (As)0 is the connected component of identity and ϕs is étale finite al-
gebraic group. By Chevalley’s theorem we have

0→ L →A0
s → B → 0,

where L is a linear group and B is an abelian variety over k(s). If k(s) is a
perfect field, then L ∼= T ×U , where T is a torus and U is a nilpotent group.

Definition 3.2.2. Let A→ S be the Néron model.
(1) We say that A has a good reduction at s if As is projective.
(2) We say that A has a semi-abelian at s if the nilpotent part of As is zero.

Theorem 3.2.2 (Grothendieck). There exists a finite S′ → S, where S′ is
Dedekind scheme with function field K ′, such that AK ′ has a semi-abelian
reduction.

Theorem 3.2.3 (Deligne-Mumford). Let C be a smooth projective curve over
a field k with genus ≥ 1. Then C has stable reduction if and only if Jac(C) has
semi-abelian reduction.
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Idea of the proof. Let C be the minimal regular model of C. It gives a func-
tor Pic0

C/S, which is represented by a commutative smooth group schemes if
C(K) 6=∅ (Raynaud), and it is also isomorphic to A0, where A is Néron model
of Jac(C). This shows A0

s = Pic0
Cs/k(s). Thus it suffices to consider the picard

group of nodal curves. �
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APPENDIX A. KÄHLER DIFFERENTIAL

A.1. Local picture. Let k be a field and A be a k-algebra.

Definition A.1.1. Let M be an A-module. A derivation is a map d: A → M
such that

(1) d is k-linear;
(2) d satisfies Leibniz rule, that is, for any a,b ∈ A,

d(a1a2)= a1da2 +a2da1.

The set of all derivations is a A-module, which is denoted by Derk(A, M).

Example A.1.1. Let A = k[x1, . . . , xn]. To determine a derivation d: A → M is
equivalent to determine {dx1, . . . ,dxn}⊂ M. Thus

Derk(k[x1, . . . , xn], M)= M⊕n

as A-modules.

Example A.1.2. Let A,B be k-algebras and φ0 : A → B be a k-algebra homo-
morphism. A k-algebra homomorphism

φ : A → B⊗k[ϵ]/(ϵ2)

such that φ(a)=φ0(a)+ϵφ1(a) is called a deformation of φ0.
In order to determine all possible deformations of φ0, it suffices to determine

all possible φ1. For any a,b ∈ A, the condition φ(ab) =φ(a)φ(b) is equivalent
to φ1 ∈ Derk(A,B). In other words, the set of deformations of φ0 : A → B is in
one to one correspondence with the set of derivations Derk(A,B).

Definition A.1.2. The Kähler differential Ω1
A/k is an A-module together with

a k-derivation dA such that

HomA(Ω1
A/k, M) 1−1←→Derk(A, M)

φ 7→φ◦dA.

Proposition A.1.1 ([Liu02, Proposition 1.8]). Let A be a k-algebra.

(1) For any field extension k ⊆ k′, let us set A′ = A⊗k k′. Then there exists a
canonical isomorphism

ΩA′/k′ =ΩA/k ⊗k k′.

(2) Let S be a multiplicative subset of A. Then

S−1Ω1
A/k

∼=Ω1
S−1 A/k.

(3) Let A → B be a surjective morphism of k-algebras with kernel I. Then
there is an exact sequence of S-modules

I/I2 →Ω1
A/k ⊗k B →Ω1

B/k → 0,

where [ f ] ∈ I/I2 maps to 1⊗d f ∈Ω1
A/k ⊗k B.
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A.2. The sheaf of Kähler differential.

Definition A.2.1. Let X be an algebraic variety over a field k. The sheaf of
Kähler differential Ω1

X is the sheaf of OX -modules defined by

Ω1
X (U) :=Ω1

OX (U)/k

on affine open subsets U .

Proposition A.2.1 ([Liu02, Proposition 2.2]). Let X be an algebraic variety
over a field k of (pure) dimension d. Then X is smooth if and only if Ω1

X /k is
locally free of rank d.

Definition A.2.2. Let X be a smooth algebraic variety over a field k. The
dualizing sheaf ωX /k is defined as

ωX /k := detΩ1
X /k.

Theorem A.2.1 (Serre duality). Let X be a smooth algebraic variety over
a field k of dimension d. For any coherent sheaf F on X , there exists a
canonical non-degenerate pairing

Hd(X ,F )×HomOX (F ,ωX /k)→ Hd(X ,ωX /k)∼= k.

A.3. Dualizing sheaf on locally complete intersection. In this section,
we will introduce how to defined the dualizing sheaf ωX /k on an algebraic
variety of locally complete intersection.

Definition A.3.1. Let A be a ring and a1, . . . ,an be a sequence of elements
of A. It is a regular sequence, if a1 is not a zero divisor, and ai is not a zero
divisor in A/(a1, . . . ,ai−1) for any i ≥ 2.

Lemma A.3.1. Let A be a ring and I be an ideal generated by a regular
sequence a1, . . . ,an ∈m. Then I/I2 is a free A/I-module of rank n.

Proof. If there exist a1, . . . ,an ∈ A such that x1a1 + ·· · + xnan ∈ I2, then we
need to prove x1, . . . , xn ∈ I. Firstly we prove that if

∑n
i=1 xiai = 0, then xi ∈ I,

by induction on n.
If n = 1, we have x1a1 = 0 implies x1 = 0 since a1 is not a zero divisor. For

n ≥ 2, we have
xnan =−xn−1an−1 −·· ·− x1a1.

By passing to the quotient ring A/(a1, . . . ,an−1), it gives xnan = 0, and thus
xn ∈ (a1, . . . ,an−1) since an is not a zero divisor in A/(a1, . . . ,an−1). Suppose
xn =∑n−1

i=1 ai yi with yi ∈ A. It follows that

n−1∑
i=1

ai(xi +an yi)= 0,

and by induction hypothesis it gives xi+an yi ∈ (a1, . . . ,an−1), hence xi ∈ I, and
we have already proved an ∈ I.
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Now we back to the proof the freeness of I/I2 as A/I-module. Since x1a1 +
·· ·+ xnan ∈ I2, there exist z1, . . . , zn ∈ I such that

n∑
i=1

ai(xi − zi)= 0,

since I2 =∑n
i=1 ai I. From the above, we have xi − zi ∈ I, and thus xi ∈ I. �

Definition A.3.2. Let X be an algebraic variety over a field k and Z ⊆ X be
a closed subvariety. Let IZ be the ideal sheaf of Z. Then Z ,→ X is a regular
immersion if for all x ∈ X , the stalk IZ,x is generated by a regular sequence.

Definition A.3.3. Let X be an algebraic variety over a field k and i : Z ,→ X
be a closed subvariety. Let IZ be the ideal sheaf of Z. Then CZ/X := i∗

(
IZ /I2

Z
)

is called conormal bundle of Z in X .

Corollary A.3.1. Let X be an algebraic variety over a field k and i : Z ,→ X
be a regular immersion. Then the conormal bundle CZ/X is locally free.

Definition A.3.4. Let X be an algebraic variety over a field k.
(1) X is called locally complete intersection at x ∈ X , if there exists a neigh-

borhood U of x and a regular immersion i : U → Z, where Z is a smooth
algebraic variety over a field k.

(2) X is called locally complete intersection, if X is locally complete intersec-
tion at every point x ∈ X .

Example A.3.1. Any smooth algebraic variety is a locally complete intersec-
tion.

Lemma A.3.2 ([Liu02, Lemma 6.3.21]). Let X be an algebraic variety over a
field k which is a locally complete intersection. Then any immersion X ,→ Y
is a regular immersion, where Y is an algebraic variety over a field k.

Lemma A.3.3. Let X be a reduced variety over a field k which is a locally
complete intersection. Suppose X ,→ Y is a regular immersion, where Y is a
smooth variety over a field k. Then

0→ CX /Y → Ω1
Y /k

∣∣
X →Ω1

X /k → 0

is exact.

Proof. If X is smooth, then

0→ CX /Y → Ω1
Y /k

∣∣
X →Ω1

X /k → 0

is exact and split. If X is reduced, then there exists an open dense subset
U ⊂ X such that U is smooth. Thus CX /Y → Ω1

Y /k

∣∣
X is injective on U , that is,

ker
{
CX /Y → Ω1

Y /k
∣∣
X

}
supports in X \U . Since X is a locally complete intersection, we have conor-
mal bundle CX /Y is locally free, which implies the kernel must be zero. �
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Definition A.3.5. Let X be an algebraic variety over a field k which is a
locally complete intersection. Suppose X ,→Y is a regular immersion, where
Y is a smooth variety over a field k. The dualizing sheaf of X is defined by

ωX /k := ωY /k|X ⊗det(CY /X )∨

Remark A.3.1. Note that the dualizing sheaf of X is independent of the choice
of regular immersion X ,→Y ([Liu02, Lemma 6.4.5]).

Lemma A.3.4 ([Liu02, Corollary 6.4.14]). Let X =V (F1, . . . ,Fr)⊂An
k =Speck[T1, . . . ,Tn]

and (F1, . . . ,Fr) is a regular sequence. Suppose X is integral and

∆= det
(
∂Fi

∂T j

)
1≤i, j≤r

is non-zero in K(X ). Then

ωX /k =
1
∆

(dTr+1 ∧·· ·∧dTn)OX .

Example A.3.2. Let C be the algebraic curve over a field k defined by the
equation y2 + xy− x3 = 0. It is clear that ∆= 2y+ x is non-zero in K(C). Then
ωC/k = dx

2y+xOC. The curve C has a unique singular point p = (0,0) of multi-
plicity one and the normalization of C is given by

π : C̃ → C

t 7→ (
t2 + t, t2(t+1)

)
.

This shows the singular point p is a node. Note that

ω0 = dx
2y+ x

= dt
t(t+1)

.

This shows ω0 is a rational differential form on A1, with simple pole at t = 0
and t =−1 such that

Rest=0ω0 +Rest=−1ω0 = 0.
For any a ∈OC, we have ωC = aω0 is a rational form on C̃, and

Rest=0ωC +Rest=−1ωC = a(t = 0)−a(t =−1)
= 0.

This shows ωC is a rational differential form on C̃ with simple pole at π−1(p)
such that Resp1 η+Resp2 η = 0. Conversely, for any rational differential form
η= bdt on C̃ with simple pole at π−1(p)= {p1, p2} such that Resp1 η+Resp2 η=
0, we have b(p1)= b(p2).
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