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1. MODULI SPACE AND STABLE CURVES

1.1. Motivations. The main topic of this mini-course is stable reduction of
algebraic curves. Before that, we need to know what is a "stable curve". The
motivations of stable curves origin from the study of moduli spaces. Let M
be the (coarse) moduli space of projective smooth curves of genus g over an
algebraically closed field %, which is an algebraic variety over k. It turns out
that M, is not projective (even not proper), so we want to "compactify” M,
that is, find an open immersion

M, — Mg,

where Mg is a proper algebraic variety over k. There are many different com-
pactifications of M, such as Deligne-Mumford compactification and Satake
compactification. The stable curves appears as the boundary divisors of the
Deligne-Mumford compactification.

The second topic of this mini-course is degeneration of algebraic curves. A
family of algebraic varieties is a projective flat morphism f: X — S such that
there exists an open dense subset V € S such that X xgV — V is smooth. If
there exists a closed point sg € S such that X, is singular, we say that X — S
degenerates at sy.

The degeneration plays an important role in arithmetic geometry: Let C
be a smooth projective curve over  and extend C to a scheme C over Z, that
is, the generic fiber of C is isomorphic to C. A natural question is, does there
exist a prime number p such that

C xzF, — SpecF,

is a smooth projective curve over [,? If the answer is yes, then it is called a
good reduction, otherwise it is called a degeneration at p.

Theorem 1.1.1 (Abhyankar, Fontaine). If A — SpecZ is an abelian scheme,
then A[Fp is of dimension zero.

Corollary 1.1.1. If C is smooth projective curve over QQ of genus g = 1. Then
C degenerates at at least one prime p.

Remark 1.1.1. This is false if Q is replaced by a general number field.
Theorem 1.1.2 (Shafarevich).

D Iff. X— I]J’}le is a family of smooth projective curves, then f is isotriviall.
(2) If f: X — E is a family of abelian schemes over an elliptic curve E, then
f is isotrivial.

1.2. Moduli space of smooth projective curves of genus g. Let & be an
algebraically closed field. We denote the category of algebraic varieties? over
k by Var;, and denote the category of sets by Set. A functor of points is a

DN morphism is called isotrivial, if all of fibers are isomorphic to each other.
2An algebraic variety over k is a scheme of finite type over k.
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contravariant functor F': Var, — Set. For any algebraic variety M over &, it
defines a special functor

har: Varg — Set
X — Homy_v (X, M),

where Homy,_v,.(X, M) denotes the set of all algebraic morphisms between X
and M. A functor of points F' is called representable, if there exists a natural
isomorphism F' = hjs for some algebraic variety M.

Consider the functor

Mg : Vary, — Set

X — {families of smooth projective curves of genus g over X}/..

A natural question is whether M, representable or not. The answer is no. If
M is represented by an algebraic variety M, that is, there exists a natural
isomorphism n: Mg — hyy,.

By the natural isomorphism 7, we can define the universal curve Cg — Mg
by n;,}g(id M,) € Mg(Mg), which satisfies the following universal property: For
any S — Mgz € Mg4(S), there exists a unique X — S such that the following
diagram is Cartesian

U

S — M,

Let C € M 4(Speck) be a smooth projective curve over k such that there exists
a non-trivial automorphism o: C — C. Then we can construct a non-trivial
family X — S such that every fiber is isomorphic to C. In other words, S —
M, is the constant map. But in this case, the Cartesian diagram is

I

S — 3 M,,

which contradicts to X ZS x C. This shows that existence of universal family
is a strong constraint, and it can be violated by existence of automorphisms.

Remark 1.2.1. Although the functor of smooth projective curves of genus g is
not representable, the moduli functor of smooth projective curves with level
structure? is represented by an algebraic variety H ¢» and there exists a finite
surjective map Hg — M.

SFix N e Z>9, which is prime to char(k), a level structure on smooth projective curve C with
genus g is an isomorphism

Jac(C)IN1— (Z/NZ)%8.



Instead of considering representability, we should consider coarse moduli
space. A coarse moduli space is an algebraic variety M, over k with a natural
transformation Mg — hy o such that

(1) Mg(Q) = hp, () for any algebraically closed field Q.
(2) For any algebraic variety M’ with a natural transformation Mg — Ay
satisfies (1), there exists a morphism Mgz — M’ such that

Mg > hM’

~N

ha,-

Proposition 1.2.1.

(1) M exists;
(2) Mg is normal and irreducible;
(3) dimy M, =3g-3.

1.3. Stable curves.

1.3.1. Nodal curve. Let k be an algebraically closed field and C be a projec-
tive reduced curve over k with the normalization 7: C — C. For O¢-module
n.Og/Oc, it only supports at the singular locus Cging, which is a finite set.
For each p € Cging, the stalk (7. Ogz), is a finite dimensional k-vector space,
and the multiplicity 6, is defined as dimy(7.Oz/Oc¢),. The multiplicity one
case can be considered as the simplest singularity. There are two kinds of

multiplicity one singularity: node and cusp.

T Y

oo Q Ougr

Definition 1.3.1. A point p € C is called a node, if 6, = 1 and I~ 1(p)| = 2.

Proposition 1.3.1 ([Liu02, Proposition 7.5.15]). The following statements
are equivalent:

(1) peC is anode;
(2) 77 1(p) ={p1,pa}, and locally at p € V, we have

Oc(V)=1{f € Ogx \(V) | f(p1) = f(p2)}.

(3) The formal completion @C,p = Ek[lu,v])/(uv).
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Proof. For simplicity, locally around p € V < C, we fix the following notations:

A =0¢(V),

A1 ={f €O ' (V)| f(p1) = f(p2)},
B =0 (V).
(1) < (2): The assumption in (2) implies that A = A;. Since we have the
following exact sequence
0—-A;1—-B—-k—0,

where the map B — % is defined by f(p1)—f(p2), then dimy B/A = dimy B/A; =
1, that is, 6, = 1. Conversely, if p is a node, then dimj B/A = dim; B/A; =1,
and thus A =A;. O
Lemma 1.3.1. Let p € C be a node. Then
(1) dimT¢ p =2;
(2) annp,, ((1.05),/Oc p) = mp.

Proof. For (1). Use the structure of @c,p. For (2). Since anny B/A is an ideal
of A, and it is not equal to A, otherwise A = B and p is a smooth point, so
anny B/A cm,. Conversely, U

1.3.2. Stable curve.

Definition 1.3.2. Let C be an algebraic curve over an algebraically closed
field k.

(1) C is called semi-stable, if it is reduced and nodal*.
(2) C is called stable, if it is semi-stable, and the following conditions are
verified:
(@) C is connected, projective, with arithmetic genus® p,(C) = 2;
(b) For all irreducible component I'c C, if I' = IP%, then 'nC\T contains
at least three point.

Remark 1.3.1. The third condition is called the stability condition. Later we
will show that

(1) If C is a stable curve, then Aut(C) is finite.

(2) Let wc be the dualizing sheaf of C. Then wgn is very ample for n = 3.

If we do not require the stability condition, then Aut(C) is infinite and w¢ is
not ample. Roughly speaking, the finiteness of automorphism group is related
to the fact that any automorphism of IP’]% with three points fixed is identity.

Lemma 1.3.2. Let C be a reduced connected projective curve over a field k.
Then
n
Pa(C)=1-n+ Y 6,+) paly),

peCSing i=1

4A curve is nodal, if every singular point is a node.
5Let Cbea projective curve over a field k. The arithmetic genus is defined as 1— y3(O¢).
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where C = U?:l I'; is the irreducible decomposition of C, and [; is the normal-
ization of T';.
Proof. The short exact sequence

0—0¢c—n.05—n:050Oc —0
gives the long exact sequence

0—k—HYC,05 — QCB (0a/0¢), — HYC,00) — HYC,0p) — 0.
DPECSing

This completes the proof. O

Example 1.3.1. For g =2 case, stable curve is of one of the following types:
Type (a):

Type (b): y% = x%(x3 + a), where a € k* and char(k) # 2.

Type (c): y? = x*(x + 1)%(x + 2).

Type (d): y2 = (x(x + 1)(x + 2))2.



Type (e):

Type (f):

Type (g):

Remark 1.3.2. Let My be the coarse moduli space of smooth projective curves
of genus two and M be the Deligne-Mumford compactification. Then My is
of dimension three and thus Mo \ My is of dimension two. Moreover, Mo \ Mo
two irreducible components Ay and A1, where Ag consists of stable curves of
type (b),(c) and (d).
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1.3.3. Very ampleness of dualizing sheaf.
Proposition 1.3.2. Let C be a semi-stable curve over an algebraically closed
field k.

(1) Cis of locally complete intersection.
(2) Let m: C — C be the normalization. Then 7*w¢ = wé(n_l(CSing)).
(3) For any I' c C be an irreducible component. Then

wcklr = o (T N m) .

Proof. For (1). See (d) of [Liu02, Lemma 10.3.7].
For (2). See (b) of [Liu02, Lemma 10.3.12].
For (3). See proof of [Liu02, Corollary 10.3.13]. U

Corollary 1.3.1. Let C be a semi-stable curve over an algebraically closed
field k. Let I' < C be an irreducible component. Then

deg(werrlr) =2(p(I)-1)+ ‘Fn(C\F)).

Corollary 1.3.2. Let C be a semi-stable curve an algebraically closed field %.
If C is connected and p,(C) = 2, then C is stable if and only if deg wc/lr > 0
for all irreducible component I' c C.

Theorem 1.3.1. Let C be a stable curve over an algebraically closed field k.
Then
(1) Hl(C,wg”) =0foralln=2;
(2) wg" is very ample for n > 3.
Proof. For (1). By duality we have
HY(C,wg"" = H(C,wg™ ™).
For any irreducible component I', we have

deg (wg(l_”)lr) =(1-n)degwclr <O0.
Thus H O(F,wgl_” |r) = 0 since I is integral. Note that we have the following
exact sequence

®1- ®1-
0—wg "~ Do "I,
r

so H O(F,w%’l*” |r) = 0 for every irreducible component implies H O(F,w?}l’”) =
0

For (2). See Corollary of Theorem 1.2 in [DM69]. |
Corollary 1.3.3. Let f: X — S be a relative stable curve. Then
(@) le*‘“%s =0 for n = 2;

(2) w%‘s is relatively very ample for n = 3.
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1.3.4. Automorphism of stable curves. Let (X, L) be a polarized projective va-
riety over a field &, where L is a very ample divisor on X. Then we define
Aut(X,L):={oc e Aut(X) |c* L = L}.
Lemma 1.3.3. Aut(X, L) is an algebraic group.

Proof. Since L is very ample, it gives an inclusion X — P(H°(X, £)). Then for
any o € Aut(X, £), we have the following commutative diagram

X —— PHYX, L))

O'i \LO'
X — PHX, L)).
This shows that Aut(X, £) — Aut(P(H(X, £))) = PGL(H(X, £)) is a subgroup,
and it remains to show Aut(X, £) is a closed subvariety of PGL(H%(X, £)).
For 0 e PGL(H’(X, L)), we have ¢ € Aut(X, £) if and only if 0(X) = X. Sup-
pose X =V (I), where I is a homogeneous ideal. Then 0(X) = X is equivalent

to say for any x € X and G € I, we have G(o(x)) = 0, which is a closed condi-
tion. This completes the proof. ([l

Proposition 1.3.3. Let G = Aut(X, £). Then
dim Tg jay = dimHomo, (Q%;,, Ox).
Proof. For o € G, any element in Tg ,; is equivalent to a morphism 7: Xp.1/c2) —

Xhielez) Which lifts 0: X — X, that is, the following diagram commutes:

Xiterery — Xnieve)
X ———X.
Since the underlying topological spaces of X and Xj.y2) are the same, we
have 7 is determined by a morphism

Ox—>O'*OX 20*(9)(8960'*0)(

klel(e2)
a— o) +ep(a).
The condition for ¢ to be a k-linear homomorphism implies
plaraz) = o*(az)p(ar) + o'an)p(as).
If we take o =1idy, then it gives
plaiaz) = a1@laz) +azplay),

that is, ¢ € Der;(Ox,0x) = HomoX(Q‘%{/k, Ox). O

Corollary 1.3.4. If C is a stable curve and £ = wg3, then
Aut(C) := Aut(C, L)
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is an étale algebraic group®.
Proof. Tt suffices to prove
Homo,(Q4,;,, Oc) = 0.
Let 7: C — C be the normalization. Then we claim
Homo,(Q(;, Ox) = Homo, (1.0g,0¢)
= Homo,,(Qg,, O (Csing))).
Proof of claim.

6An algebraic group is étale if it is smooth and finite.
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2. STABLE REDUCTION

2.1. Model. A Noetherian, connected regular scheme of dimension”’ 1 or 0 is
called a Dedekind scheme. Let S be a Dedekind scheme. Then for any affine
open subset U c S, we have Og(U) is a Dedekind domain or a field.

Example 2.1.1.

(1) If S is a smooth connected curve over a field k, then S is a Dedekind scheme
with function field K = K(S).

(2) Let R be a discrete valuation ring. Then S = SpecR is a Dedekind scheme
with function field K = Frac(R).

(3) Let K be a number field and Ok be the ring of algebraic integers in K.
Then S = Spec Ok is a Dedekind scheme with function field K.

Definition 2.1.1. Let S be a Dedekind scheme and K be the function field of
S. Let X be an algebraic variety over K.

(1) Amodel of X over S is a S-scheme X — S together with an K-isomorphism
Xk =X.

(2) A morphism X — X’ of two models of X is a morphism of S-shechmes that
is compatible with the isomorphisms X = X and .’{}{ =X,

(3) A model X — S verifies a property (P) if X — S verifies (P).

Example 2.1.2. Let C be a projective curve over a field K, defined by homo-
geneous polynomials F1,...,Fy, € K[Ty,...,T,]. Suppose A c K is a subring
such that all of F; have coefficients in A and Frac(A) = K. Then the scheme
C:=ProjAlTy,...,Ty)(F1,...,Fp)
is a model of C over S = SpecA, since its generic fiber
Cp=ProjAlTo,...,Ty)(F1,...,Fp) Xspeca SpecK
=ProjKI[To,...,ToV(F1,...,Fy,).
Example 2.1.3. Let C be the projective curve over Q defined by the equation
x?+y?+27=0.
Let C be the closed subscheme of IP% defined by the same equation. Then C —
SpecZ is a model of C over SpecZ.

If X is an algebraic variety with certain properties (projective, normal,
smooth), we would of course also like to find a model which preserves as
many as properties of X as possible.

Proposition 2.1.1. Let X be a projective variety over a field K.

(1) There exists flat projective model.
(2) If X is normal and S is excellents, then there exists flat normal model.

7Usually a Dedekind domain has dimension 1. Here we admit the dimension O case be-
cause we want to make the class of Dedekind scheme stable by localization.

8An excellent scheme is a complicated condition, here we provide some examples: Any alge-
braic variety over a field is excellent; Any Dedekind domain of characteristic zero is excellent.
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On the other hand, if C is a smooth projective curve, then we cannot find
a smooth model when g(C) = 1, since by Corollary 1.1.1 there always some
prime p such that C,, — Spec[F, is not smooth. But for smooth projective line
over (), it admits infinite many smooth models.

Example 2.1.4. Let X = [FD(IIJ) be the projective line over Q. Then IP’% — SpecZ

together with an isomorphism of I]J’Qll) is a model of IP’(E). The morphism defined
by x2is a morphism between models, that is, the following diagram commutes

1 1
erP@ —_— [P’Q32x

PL — Pl
Houwever, it is not an isomorphism IP% — IP’%. In other words, IP’%P has infinite
many smooth models over SpecZ.

Remark 2.1.1. If X is an abelian variety, although there may not exist smooth
projective model, there always exists a smooth model with group structure,
called Néron model.

The main goal of this section is to give a criterion to show whether a given
smooth projective curve C over a field K admits a stable model or not. Before
that, we need to introduce the notion of the regular fibered surface, as we will
see that every smooth projective curve over a field K admits a model, which
is a regular fibered surface.

2.2. Regular fibered surface.
2.2.1. Fibered surface and desingularization.

Definition 2.2.1. Let S be a Dedekind scheme with generic point 7.

(1) An integral, projective, flat S-scheme 7: X — S of dimension two is called
a fibered surface over S.

(2) A fiber X with s € S closed in called a closed fiber.

(3) The fiber X, is called the generic fiber.

Remark 2.2.1. Let X — S be a fibered surface.

(1) If dimS = 0, then X is an integral, projective algebraic surface over a
field.
(2) If dimS =1, we can say that X is a "relative curve" over S.

Proposition 2.2.1. Let C be a smooth projective curve over a field K. Then
C admits a model C — S with affine S, which is a fibered surface with generic
fiber isomorphic to C.

Proof. Firstly, let Co — S be as in Example 2.1.2, where S is affine. Let C be
the Zariski closure of C in Cy, endowed with the reduced closed subscheme

structure. Then C — S is a fibered surface with generic fiber isomorphic to
C. O
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Theorem 2.2.1 (Abhyankar,Hironaka,Lipman). If X is an excellent, reduced,
Noetherian scheme of dimension two, then there exists 7: X — X projective,
birational morphism such that X is regular, and n_l(Xreg) = Xreg.

Corollary 2.2.1. Let C be a smooth projective curve over a field K. Then C
admits a model, which is a regular fibered surface.

Proof. Let C — S be a model of C with fibered surface structure as proved
in Proposition 2.2.1. Then by Theorem 2.2.1, there exists a regular fibered
surface C — S which isomorphic to C on regular locus. In particular, we have
fK = C since C c Creg. This shows C is a model of C over S, which is a regular
fibered surface. O

2.2.2. Backgrounds on intersection theory. Let X be a regular, Noetherian,
connected scheme of dimension two. Let D,E be two effective divisors on X
with no common irreducible component. Let x € X be a closed point. Since
suppD NnsuppE = {x} or in a neighborhood of x, we have

VOx(-D); + Ox(-E), = m,Ox .

Hence Ox ./(Ox(=D),+Ox(-E),) is an Artinian ring, and consequently of
finite length.

Definition 2.2.2. Let D,E be two effective divisors on X with no common
irreducible component.

(1) Let x € X be a closed point. The integer
ix(D,E)=lengthy, Ox x/(Ox(=D), + Ox(=E)y).

is called intersection number of D and E at x.
(2) The intersection cycle D.E is a 0-cycle
DE=) i,D,E)x]
xeX
Remark 2.2.2. The intersection number is a non-negative integer, and i (D, E)
0 if and only if x ¢ suppD NnsuppE.

But how to define the intersection number when two divisors have common
irreducible components, such as the self-intersection?

Lemma 2.2.1 (moving lemma). Let X be a normal, Noetherian, connected,
separated scheme. Let D,E be two Weil divisors on X. Then there exists an
f € K(X) such that div(f)+ D and E have no common component.

2.2.3. Intersection theory on regular fibered surface. Let X — S be a regular
fibered surface over a Dedekind scheme S. If dimS =1, then X is called an
arithmetic surface. In general it is impossible to define the intersection of two
arbitrary divisors on X, but this obstacle can be circumvented when one of
the divisors is vertical.

Definition 2.2.3. Let x € X be a closed point. A Cartier divisor E of X is
called a vertical divisor over s, if suppE < X;. The set Divs(X) consists of all
Cartier divisors of X which are vertical over s.
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Remark 2.2.3. If dimS = 1, then Divs(X) has the irreducible components of
X as a basis.

Theorem 2.2.2. Let X — S be a regular fibered surface. Let s € S be a closed
point. Then there exists a unique bilinear map
is: Div(X) x Divy(X) — Z
which verifies the following properties:
(1) If D € Div(X) and E € Divg(X) have no common component, then

is(D,E)=Y i.(D,E)lk(x):k(s)],

where x runs through the closed points of X.
(2) The restriction of i to Divs(X) x Divg(X) is symmetric.
3) is(D,E)=1i4,D’',E)if D is linearly equivalent to D’.
(4) If0< E < X, then

i5(D,E) = degy,) Ox(D)IE.
Proposition 2.2.2. Let X — S be an arithmetic surface and s € S be a closed

point. Then

(1) For any E € Divy(X), we have E.X; =0.
(2) LetI'y,...,I', be the irreducible components of X of respective multiplic-
ities d1,...,d,. Then for any i < r, we have

1
-—>d;T;.T;.

2 _
Iy = d;: &
L‘]?fl

Theorem 2.2.3. Let X — S be an arithmetic surface with geometrically con-
nected generic fiber. Then

Divg(X)g x Divg(X)p — R
is negative semi-definite, and E2 = 0 if and only if E € RX.

Proof. Suppose Xs =Y ;d;I';, where I';’s are irreducible components and d; is
the multiplicity of I';. For simplicity we denote a;; =I';.I'; 20, a;; = 0 when
i#jand b;jj=a;;d;d;. SinceI';. X; =3 ;d;a;; =0, it gives }; b;; =0.

For any V € Divs(X)r, we write it as V =Y ; x;I';. Denote y; = x;/d;. Then

V.V = (Zdiyiri) (Zdjyjrj
i J

=) vivididjaij
L

==Y bij(yi—y,)?
i>j
<0
The equality holds if and only if b,;(y; —y;) = 0 for all i < j. Note that y; = y;
if I';.I'; #0, that is, I'; NnI'; # &. Since the generic fiber of X is geometrically
connected, then Zariski’s theorem implies X is connected. O
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Proposition 2.2.3. Let X — S be an arithmetic surface and s € S be a closed
point. Let I'y,..., ', be the irreducible components of X with respective mul-
tiplicities d1,...,d,. Then

r
2pa(Xp)-2=) diwxs.T;.
i=1

Proof. By adjunction formula we have

WX, /k(s) = wxsslx, ® Ox(Xs)lx, -

Then intersect with X it gives

r
2pa(Xs)-2=wx/5.Xs =) diwxs.T;.
i=1

Since X — S is flat, we have 2p,(X;) -2 = 2g(X;)) — 2. This completes the
proof. ([

2.2.4. Minimal regular model. Let X — S be a regular fibered surface.

Definition 2.2.4. An irreducible divisor E of X is called an exceptional divi-
sor if there exists a regular fibered surface Y — S and a morphism f: X —-Y
of S-schemes such that f(E) is a pointand f: X \E — Y \ f(F) is an isomor-
phism.

Theorem 2.2.4 (Castelnuovo’s criterion). Let X — S be a regular fibered
surface. Let E < X be an irreducible divisor. Then E is an exceptional divisor
if and only if E = P!, and E? = —[F’ : k(s)], where k' = HY(E, OF).

Definition 2.2.5. Let X — S be a regular fibered surface. Then

(1) It is called relatively minimal if for all closed point s € S, the fiber X; has
no exceptional curve.

(2) It is called minimal every birational map of regular fibered S-surfaces
Y --+ X is a birational morphism.

Theorem 2.2.5 ([Liu02, Theorem 9.3.21]). Let X — S be an arithmetic sur-
face with generic fiber of genus g(C;) = 1. Then X admits a unique minimal
model over S, up to unique isomorphism.

Corollary 2.2.2 ([Liu02, Corollary 9.3.24]). Let X — S be a relatively mini-
mal arithmetic surface with generic fiber g(X;) = 1. Then X is minimal.

Proposition 2.2.4. Let C be a smooth projective curve over a field K and S
be a Dedekind scheme with function ﬁeld K. Then C has a stable model over
S if and only if the minimal model C™™" over S is semi-stable.



16

Example 2.2.1. Let S = SpecClt] and C — S is defined by the compactification
of the affine plane curve y® = tx(x — 1)(x — 2)(x — 3)(x — 4). By Jacobi criterion C
is not regular, with singular locus

Csing ={[0:0:x]]x=0,1,2,3,4,00} <P,

that is,

These components are isomorphic Iqu: with self-intersection —2, and thus
this gives the minimal model C™™ over S, but it is not semi-stable.

Remark 2.2.4. Let t1 be a variable such that t% =t and consider C[¢] < C[¢#1].
Then C — S’ = SpecC[t1] defined by y2 =tx(x—1)(x—2)(x—3)(x—4) is a smooth
model over S’, since we have

y\2
(t_) =x(x—1)(x—2)(x —3)(x —4).
1

This is a simple example of Deligne-Mumford theorem.
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3. DELIGNE-MUMFORD THEOREM

3.1. Simple normal crossing regular fibered surface. Let C be a smooth
projective curve over an algebraically closed field K with char(K) =0 and S
be a Dedekind scheme with function field K.

Theorem 3.1.1 (Deligne-Mumford). There exists a finite map S’ — S, where
S’ is a Dedekind scheme and K’ = K(S') — K is separable, such that C/K’ has
a stable model.

Definition 3.1.1. A regular model C — S is called simple normal crossing
(SNC), if for every closed point s € S, every irreducible component I'; of Cs is
smooth, and p € I'; NT’; is a node.

Proposition 3.1.1. There exists a SNC regular model.

Proof. We start with a regular model and consider resolution of singularity of
singular fiber. O

Proposition 3.1.2. Let C — S be a SNC regular model and p € C; be a point
in a closed fiber.

(1) If p is not an intersection point, then we have C — Z — S, where Z — S
is smooth and dim Z; = 2. Moreover, locally at p we have

__Ozp
" (wl-ta)’
where ¢ is uniformizer of O and a € (’)E,p.
(2) If peT'1nTg, then there exists Z as above, and locally at p we have

_ OZ,p
(w2 —tq)’
where ¢ is uniformizer of Og and a € O, .

Oc D

Oc 5

Theorem 3.1.2 ([Liu02, Proposition 10.4.6]). Let C — S be a SNC regular
model and C; = Y ;d;T'; be the irreducible components. Let e = lem(d;) and

Or = OK[t%]. Then the normalization of C x o, Of, is a semi-stable model over
OL.

Lemma 3.1.1. If C has stable reduction over an étale extension L/K. Then
C has a stable reduction over K.

Remark 3.1.1. If C has a stable model C — S. Then for any finite S’ — S, C/K’
has a stable model over S’, which is exactly C xg S’ — S’.

3.2. Néron model of abelian variety. Let S be a Dedekind scheme with
function field K and A be an abelian variety over K.

Definition 3.2.1. A Néron model A of A is a smooth, separated model of A
such that for any smooth scheme X — S, there exists an one to one correspon-

dence
Morg(X, A) < Morg(Xg,A).
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Remark 3.2.1. Let A — S be a Néron model of A over S. Then for any smooth
scheme X — S and any fx: Xg — A, there exists a unique extension f: X —
A. In particular,

A(S) <= A(K)

For any closed point s € S, there is a natural morphism A(S) — A(k(s)), we
can composite it with the bijection between A(S) and A(K) to obtain the so-
called reduction map. For example. Let A be an abelian variety over ). Then
S = SpecZ and

A@Q) — Ag, (Fp)

is the reduction map.

Proposition 3.2.1.

(1) Néron model is unique up to a unique isomorphism.
(2) Néron model is a group scheme, since generic fiber is an abelian variety,
so multiplication, addition maps can uniquely extend to the Néron model

A.
AXkA —)A

L

Axg A — A
Theorem 3.2.1 (Néron, Raynaud). The Néron model exists.

Example 3.2.1. Let A be an elliptic curve over K. Then minimal projective
regular model A™"™ over S. Then Néron model is (A™)gm,.

Let A — S be a commutative group scheme over S. For any closed point
s € S, there exists the following exact sequence

0_’(./43)0_’./43_’([)3_’0)
where (As)0 is the connected component of identity and ¢ is étale finite al-
gebraic group. By Chevalley’s theorem we have
0—-L—A’—~B—0,

where L is a linear group and B is an abelian variety over k(s). If k(s) is a
perfect field, then L =T x U, where T is a torus and U is a nilpotent group.

Definition 3.2.2. Let A — S be the Néron model.

(1) We say that A has a good reduction at s if Ay is projective.
(2) We say that A has a semi-abelian at s if the nilpotent part of A; is zero.

Theorem 3.2.2 (Grothendieck). There exists a finite S’ — S, where S’ is
Dedekind scheme with function field K’, such that Ax: has a semi-abelian
reduction.

Theorem 3.2.3 (Deligne-Mumford). Let C be a smooth projective curve over
a field £ with genus = 1. Then C has stable reduction if and only if Jac(C) has
semi-abelian reduction.
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Idea of the proof. Let C be the minimal regular model of C. It gives a func-
tor Picg/s, which is represented by a commutative smooth group schemes if
C(K) # @ (Raynaud), and it is also isomorphic to .A°, where A is Néron model
of Jac(C). This shows A? = Picgs /u(s)- Thus it suffices to consider the picard
group of nodal curves. O
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APPENDIX A. KAHLER DIFFERENTIAL
A.1. Local picture. Let % be a field and A be a k-algebra.

Definition A.1.1. Let M be an A-module. A derivation is a map d: A - M
such that
(1) dis k-linear;
(2) d satisfies Leibniz rule, that is, for any a,b€ A,
d(a1a2) = aldag + azdal.
The set of all derivations is a A-module, which is denoted by Der(A, M).

Example A.1.1. Let A = klx1,...,x,]). To determine a derivation d: A — M is
equivalent to determine {dx1,...,dx,} c M. Thus

Dery(klx1,...,x,],M) = M®"
as A-modules.

Example A.1.2. Let A,B be k-algebras and ¢y: A — B be a k-algebra homo-
morphism. A k-algebra homomorphism

¢: A— Bak[el(e?)

such that @p(a) = po(a) +epi(a) is called a deformation of ¢o.

In order to determine all possible deformations of @, it suffices to determine
all possible ¢1. For any a,b € A, the condition ¢(ab) = p(a)p(b) is equivalent
to @1 € Derp(A,B). In other words, the set of deformations of ¢o: A — B is in
one to one correspondence with the set of derivations Derp(A,B).

Definition A.1.2. The Kdhler differential Q}‘ 1, 1s an A-module together with
a k-derivation d4 such that

Hom(QY ,, M) <= Dery(A, M)
@—@oda.
Proposition A.1.1 ([Liu02, Proposition 1.8]). Let A be a k-algebra.

(1) For any field extension k£ c %&’, let us set A’ = A ®; k'. Then there exists a
canonical isomorphism

Qar =Qan ®r k.
(2) Let S be a multiplicative subset of A. Then
ST = Qg

(3) Let A — B be a surjective morphism of k-algebras with kernel I. Then
there is an exact sequence of S-modules

rr—ql, e,B—Qp, —0,

where [f]€ I/I* maps to 1®df € Q) , 8, B.
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A.2. The sheaf of Kihler differential.

Definition A.2.1. Let X be an algebraic variety over a field k. The sheaf of
Kdhler differential Q)l( is the sheaf of Ox-modules defined by

1 0l
Qx(U):= Qo wyr
on affine open subsets U.

Proposition A.2.1 ([Liu02, Proposition 2.2]). Let X be an algebraic variety
over a field & of (pure) dimension d. Then X is smooth if and only if Q%( /18
locally free of rank d.

Definition A.2.2. Let X be a smooth algebraic variety over a field 2. The
dualizing sheaf wxyp, is defined as

e 1
Wx/E = detQX/k'

Theorem A.2.1 (Serre duality). Let X be a smooth algebraic variety over
a field £ of dimension d. For any coherent sheaf F on X, there exists a
canonical non-degenerate pairing

HY(X,F)x Homo, (F,0xp) — HY(X,wx) = k.

A.3. Dualizing sheaf on locally complete intersection. In this section,
we will introduce how to defined the dualizing sheaf wx/ on an algebraic
variety of locally complete intersection.

Definition A.3.1. Let A be a ring and a1,...,a, be a sequence of elements
of A. It is a regular sequence, if a; is not a zero divisor, and «a; is not a zero
divisor in A/(a1,...,a;-1) for any i = 2.

Lemma A.3.1. Let A be a ring and I be an ideal generated by a regular
sequence ai,...,a, € m. Then I/I? is a free A/I-module of rank n.

Proof. If there exist a1,...,a, € A such that xja1 + -+ +x,an € I2, then we
need to prove x1,...,x, € I. Firstly we prove that if Z?zlxiai =0, thenx; €1,
by induction on n.

If n =1, we have x1a1 = 0 implies x; = 0 since a1 is not a zero divisor. For
n =2, we have

XnQn = —Xp-1An-1—"""—X10a1.

By passing to the quotient ring A/(aq,...,a,-1), it gives x,a, = 0, and thus
x, € (ai,...,an—1) since a, is not a zero divisor in A/(ai,...,a,—1). Suppose
Xp = Z?;lla ;y; with y; € A. It follows that

n-1

ai(x; +any;) =0,

i=1
and by induction hypothesis it gives x; +a,y; € (a1,...,a,-1), hence x; € I, and
we have already proved a, € I.
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Now we back to the proof the freeness of I/1 2 as A/I-module. Since x1a1 +
-+ Xx,a, € I2, there exist z1,...,2, € I such that

n
Y ailxi—z))=0,
i=1
since I? = Y." ya;I. From the above, we have x; —z; € I, and thus x; € I. U

Definition A.3.2. Let X be an algebraic variety over a field 2 and Z < X be
a closed subvariety. Let 7z be the ideal sheaf of Z. Then Z — X is a regular
immersion if for all x € X, the stalk 7z , is generated by a regular sequence.

Definition A.3.3. Let X be an algebraic variety over a field 2 and i: Z — X
be a closed subvariety. Let 77 be the ideal sheaf of Z. Then Czx :=i* (Iz/13)
is called conormal bundle of Z in X.

Corollary A.3.1. Let X be an algebraic variety over a field 2 and i: Z — X
be a regular immersion. Then the conormal bundle Cz/x is locally free.

Definition A.3.4. Let X be an algebraic variety over a field k.

(1) X is called locally complete intersection at x € X, if there exists a neigh-
borhood U of x and a regular immersion i: U — Z, where Z is a smooth
algebraic variety over a field k.

(2) X is called locally complete intersection, if X is locally complete intersec-
tion at every point x € X.

Example A.3.1. Any smooth algebraic variety is a locally complete intersec-
tion.

Lemma A.3.2 ([Liu02, Lemma 6.3.21]). Let X be an algebraic variety over a
field £ which is a locally complete intersection. Then any immersion X — Y
is a regular immersion, where Y is an algebraic variety over a field %.

Lemma A.3.3. Let X be a reduced variety over a field £ which is a locally
complete intersection. Suppose X — Y is a regular immersion, where Y is a
smooth variety over a field 2. Then

1 1
0—Cxyy — QY/k'X — Qxy, —0
is exact.
Proof. If X is smooth, then
1 1
0—Cxy — QY/k|X = Qxy, — 0

is exact and split. If X is reduced, then there exists an open dense subset
U c X such that U is smooth. Thus Cxy — Q%,/k |X is injective on U, that is,
ker {Cxry — Qy |}

supports in X \U. Since X is a locally complete intersection, we have conor-
mal bundle Cx/y is locally free, which implies the kernel must be zero. O
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Definition A.3.5. Let X be an algebraic variety over a field £ which is a

locally complete intersection. Suppose X — Y is a regular immersion, where

Y is a smooth variety over a field £. The dualizing sheaf of X is defined by
wxr = wylx ® det(Cy/x)”

Remark A.3.1. Note that the dualizing sheaf of X is independent of the choice
of regular immersion X — Y ([Liu02, Lemma 6.4.5]).

Lemma A.3.4 ([Liu02, Corollary 6.4.14]). Let X =V (F4,...,F,) c AZ = Speck[T1,...

and (F',...,F,) is a regular sequence. Suppose X is integral and
OF; )
6Tj 1<i,j<r

A:det(

is non-zero in K(X). Then
1
wx/E = K(dTr+1 A---ANdT,) Ox.

Example A.3.2. Let C be the algebraic curve over a field k defined by the

equation y? +xy—x3 = 0. It is clear that A = 2y + x is non-zero in K(C). Then
weyy = 23ﬁx Oc¢. The curve C has a unique singular point p =(0,0) of multi-

plicity one and the normalization of C is given by
n:C—C
t— (2 +¢,82(t+ 1)),

This shows the singular point p is a node. Note that

B dx B d¢
C2y+x  Ht+1)

wo

This shows wy is a rational differential form on AL, with simple pole at t =0
and t = —1 such that
Res;—gwo+Res;—_1wo =0.
For any a € O¢, we have wc = awg is a rational form on C, and
Res;—gwc +Resi—_1wc=a(t=0)—al(t=-1)
=0.

This shows wc is a rational differential form on C with simple pole at n~(p)
such that Res,, 1+ Resp,n = 0. Conversely, for any rational differential form

n=>bdt on C with simple pole at 1 X(p) = {p1, pa} such that Resp, n+Resp,n=
0, we have b(p1) = b(p2).
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