Stable reduction of algebraic curves

Lectured by Qing Liu

CONTENTS

1. Moduli space and stable curves	2
1.1. Motivations	2
1.2. Moduli space of smooth projective curves of genus g	2
1.3. Stable curves	4
2. Stable reduction	11
2.1. Model	11
2.2. Regular fibered surface	12
3. Deligne-Mumford theorem	17
3.1. Simple normal crossing regular fibered surface	17
3.2. Néron model of abelian variety	17
Appendix A. Kähler differential	20
A.1. Local picture	20
A.2. The sheaf of Kähler differential	21
A.3. Dualizing sheaf on locally complete intersection	21
References	24

1. MODULI SPACE AND STABLE CURVES

1.1. Motivations. The main topic of this mini-course is stable reduction of algebraic curves. Before that, we need to know what is a "stable curve". The motivations of stable curves origin from the study of moduli spaces. Let M_{g} be the (coarse) moduli space of projective smooth curves of genus g over an algebraically closed field k, which is an algebraic variety over k. It turns out that M_g is not projective (even not proper), so we want to "compactify" M_g , that is, find an open immersion

$$M_g \hookrightarrow M_g$$

where M_g is a proper algebraic variety over k. There are many different compactifications of M_g , such as Deligne-Mumford compactification and Satake compactification. The stable curves appears as the boundary divisors of the Deligne-Mumford compactification.

The second topic of this mini-course is degeneration of algebraic curves. A *family of algebraic varieties* is a projective flat morphism $f: X \to S$ such that there exists an open dense subset $V \subseteq S$ such that $X \times_S V \to V$ is smooth. If there exists a closed point $s_0 \in S$ such that X_{s_0} is singular, we say that $X \to S$ degenerates at s_0 .

The degeneration plays an important role in arithmetic geometry: Let C be a smooth projective curve over \mathbb{Q} and extend *C* to a scheme \mathcal{C} over \mathbb{Z} , that is, the generic fiber of \mathcal{C} is isomorphic to C. A natural question is, does there exist a prime number p such that

$$\mathcal{C} \times_{\mathbb{Z}} \mathbb{F}_p \to \operatorname{Spec} \mathbb{F}_p$$

is a smooth projective curve over \mathbb{F}_p ? If the answer is yes, then it is called a good reduction, otherwise it is called a *degeneration* at *p*.

Theorem 1.1.1 (Abhyankar, Fontaine). If $A \to \operatorname{Spec} \mathbb{Z}$ is an abelian scheme, then $A_{\mathbb{F}_n}$ is of dimension zero.

Corollary 1.1.1. If *C* is smooth projective curve over \mathbb{Q} of genus $g \ge 1$. Then C degenerates at at least one prime p.

Remark 1.1.1. This is false if \mathbb{Q} is replaced by a general number field.

Theorem 1.1.2 (Shafarevich).

- (1) If f: X → P¹_k is a family of smooth projective curves, then f is isotrivial¹.
 (2) If f: X → E is a family of abelian schemes over an elliptic curve E, then f is isotrivial.

1.2. Moduli space of smooth projective curves of genus g. Let k be an algebraically closed field. We denote the category of algebraic varieties² over k by Var_k and denote the category of sets by Set. A functor of points is a

¹A morphism is called *isotrivial*, if all of fibers are isomorphic to each other.

²An *algebraic variety* over k is a scheme of finite type over k.

contravariant functor $F: \operatorname{Var}_k \to \operatorname{Set}$. For any algebraic variety M over k, it defines a special functor

$$h_M \colon \operatorname{Var}_k \to \operatorname{Set}$$

 $X \mapsto \operatorname{Hom}_{k-\operatorname{Var}}(X, M),$

where $\operatorname{Hom}_{k-\operatorname{Var}}(X, M)$ denotes the set of all algebraic morphisms between X and M. A functor of points F is called *representable*, if there exists a natural isomorphism $F \cong h_M$ for some algebraic variety M.

Consider the functor

 $\mathcal{M}_g \colon \operatorname{Var}_k \to \operatorname{Set}$ $X \mapsto \{ \text{families of smooth projective curves of genus } g \text{ over } X \}/_{\sim}.$

A natural question is whether \mathcal{M}_g representable or not. The answer is no. If \mathcal{M}_g is represented by an algebraic variety M_g , that is, there exists a natural isomorphism $\eta: \mathcal{M}_g \to h_{M_g}$.

By the natural isomorphism η , we can define the *universal curve* $C_g \to M_g$ by $\eta_{M_g}^{-1}(\operatorname{id}_{M_g}) \in \mathcal{M}_g(M_g)$, which satisfies the following universal property: For any $S \to M_g \in \mathcal{M}_g(S)$, there exists a unique $X \to S$ such that the following diagram is Cartesian

Let $C \in \mathcal{M}_g(\operatorname{Spec} k)$ be a smooth projective curve over k such that there exists a non-trivial automorphism $\sigma: C \to C$. Then we can construct a non-trivial family $X \to S$ such that every fiber is isomorphic to C. In other words, $S \to M_g$ is the constant map. But in this case, the Cartesian diagram is

$$egin{array}{ccc} S imes C & \longrightarrow \mathcal{C}_g \ & & \downarrow \ S & \longrightarrow M_g, \end{array}$$

which contradicts to $X \not\cong S \times C$. This shows that existence of universal family is a strong constraint, and it can be violated by existence of automorphisms.

Remark 1.2.1. Although the functor of smooth projective curves of genus g is not representable, the moduli functor of smooth projective curves with level structure³ is represented by an algebraic variety H_g , and there exists a finite surjective map $H_g \to M_g$.

$$\operatorname{Jac}(C)[N] \to (\mathbb{Z}/N\mathbb{Z})^{2g}.$$

³Fix $N \in \mathbb{Z}_{\geq 2}$, which is prime to char(k), a *level structure* on smooth projective curve C with genus g is an isomorphism

Instead of considering representability, we should consider coarse moduli space. A coarse moduli space is an algebraic variety M_g over k with a natural transformation $\mathcal{M}_g \to h_{M_g}$, such that

- (1) $\mathcal{M}_{g}(\Omega) = h_{M_{g}}(\Omega)$ for any algebraically closed field Ω .
- (2) For any algebraic variety M' with a natural transformation $\mathcal{M}_g \to h_{M'}$ satisfies (1), there exists a morphism $M_g \to M'$ such that

Proposition 1.2.1.

(1) M_g exists;

(2) M_g is normal and irreducible;

(3) $\dim_k M_g = 3g - 3$.

1.3. Stable curves.

1.3.1. Nodal curve. Let k be an algebraically closed field and C be a projective reduced curve over k with the normalization $\pi: \widetilde{C} \to C$. For \mathcal{O}_C -module $\pi_*\mathcal{O}_{\widetilde{C}}/\mathcal{O}_C$, it only supports at the singular locus C_{Sing} , which is a finite set.

For each $p \in C_{\text{Sing}}$, the stalk $(\pi_* \mathcal{O}_{\widetilde{C}})_p$ is a finite dimensional *k*-vector space, and the *multiplicity* δ_p is defined as $\dim_k(\pi_* \mathcal{O}_{\widetilde{C}}/\mathcal{O}_C)_p$. The multiplicity one case can be considered as the simplest singularity. There are two kinds of multiplicity one singularity: node and cusp.

Definition 1.3.1. A point $p \in C$ is called a *node*, if $\delta_p = 1$ and $|\pi^{-1}(p)| = 2$.

Proposition 1.3.1 ([Liu02, Proposition 7.5.15]). The following statements are equivalent:

- (1) $p \in C$ is a node;
- (2) $\pi^{-1}(p) = \{p_1, p_2\}$, and locally at $p \in V$, we have

$$\mathcal{O}_C(V) = \{ f \in \mathcal{O}_{\widetilde{C}}(\pi^{-1}(V)) \mid f(p_1) = f(p_2) \}.$$

(3) The formal completion $\widehat{\mathcal{O}}_{C,p} \cong k[[u,v]]/(uv)$.

Proof. For simplicity, locally around $p \in V \subseteq C$, we fix the following notations:

$$\begin{split} &A = \mathcal{O}_{C}(V), \\ &A_{1} = \{f \in \mathcal{O}_{\widetilde{C}}(\pi^{-1}(V)) \mid f(p_{1}) = f(p_{2})\}, \\ &B = \mathcal{O}_{\widetilde{C}}(\pi^{-1}(V)). \end{split}$$

(1) \iff (2): The assumption in (2) implies that $A = A_1$. Since we have the following exact sequence

$$0 \to A_1 \to B \to k \to 0,$$

where the map $B \to k$ is defined by $f(\tilde{p}_1) - f(\tilde{p}_2)$, then $\dim_k B/A = \dim_k B/A_1 = 1$, that is, $\delta_p = 1$. Conversely, if p is a node, then $\dim_k B/A = \dim_k B/A_1 = 1$, and thus $A = A_1$.

Lemma 1.3.1. Let $p \in C$ be a node. Then

(1) dim $T_{C,p} = 2$; (2) ann $\mathcal{O}_{C,p} \left((\pi_* \mathcal{O}_{\widetilde{C}})_p / \mathcal{O}_{C,p} \right) = \mathfrak{m}_p$.

Proof. For (1). Use the structure of $\widehat{\mathcal{O}}_{C,p}$. For (2). Since $\operatorname{ann}_A B/A$ is an ideal of A, and it is not equal to A, otherwise A = B and p is a smooth point, so $\operatorname{ann}_A B/A \subseteq \mathfrak{m}_p$. Conversely,

1.3.2. Stable curve.

Definition 1.3.2. Let C be an algebraic curve over an algebraically closed field k.

- (1) C is called *semi-stable*, if it is reduced and nodal⁴.
- (2) C is called *stable*, if it is semi-stable, and the following conditions are verified:
 - (a) C is connected, projective, with arithmetic genus⁵ $p_a(C) \ge 2$;
 - (b) For all irreducible component $\Gamma \subset C$, if $\Gamma \cong \mathbb{P}^1_k$, then $\Gamma \cap \overline{C \setminus \Gamma}$ contains at least three point.

Remark 1.3.1. The third condition is called the *stability condition*. Later we will show that

(1) If *C* is a stable curve, then Aut(*C*) is finite.

(2) Let ω_C be the dualizing sheaf of *C*. Then $\omega_C^{\otimes n}$ is very ample for $n \ge 3$.

If we do not require the stability condition, then $\operatorname{Aut}(C)$ is infinite and ω_C is not ample. Roughly speaking, the finiteness of automorphism group is related to the fact that any automorphism of \mathbb{P}^1_k with three points fixed is identity.

Lemma 1.3.2. Let C be a reduced connected projective curve over a field k. Then

$$p_a(C) = 1 - n + \sum_{p \in C_{\text{Sing}}} \delta_p + \sum_{i=1}^n p_a(\widetilde{\Gamma}_i),$$

⁴A curve is *nodal*, if every singular point is a node.

⁵Let *C* be a projective curve over a field *k*. The *arithmetic genus* is defined as $1 - \chi_k(\mathcal{O}_C)$.

where $C = \bigcup_{i=1}^{n} \Gamma_i$ is the irreducible decomposition of *C*, and $\widetilde{\Gamma}_i$ is the normalization of Γ_i .

Proof. The short exact sequence

$$0 \to \mathcal{O}_C \to \pi_* \mathcal{O}_{\widetilde{C}} \to \pi_* \mathcal{O}_{\widetilde{C}} / \mathcal{O}_C \to 0$$

gives the long exact sequence

$$\begin{array}{l} 0 \to k \to H^0(\widetilde{C}, \mathcal{O}_{\widetilde{C}}) \to \bigoplus_{p \in C_{\mathrm{Sing}}} (\mathcal{O}_{\widetilde{C}}/\mathcal{O}_C)_p \to H^1(C, \mathcal{O}_C) \to H^1(\widetilde{C}, \mathcal{O}_{\widetilde{C}}) \to 0. \\ \\ \mathrm{s \ completes \ the \ proof.} \end{array}$$

This completes the proof.

Example 1.3.1. For g = 2 case, stable curve is of one of the following types: Type (a):

Type (b): $y^2 = x^2(x^3 + a)$, where $a \in k^*$ and $char(k) \neq 2$.

Type (c): $y^2 = x^2(x+1)^2(x+2)$.

Type (*d*): $y^2 = (x(x+1)(x+2))^2$.

Remark 1.3.2. Let M_2 be the coarse moduli space of smooth projective curves of genus two and \overline{M}_2 be the Deligne-Mumford compactification. Then \overline{M}_2 is of dimension three and thus $\overline{M}_2 \setminus M_2$ is of dimension two. Moreover, $\overline{M}_2 \setminus M_2$ two irreducible components Δ_0 and Δ_1 , where Δ_0 consists of stable curves of type (b), (c) and (d).

1.3.3. Very ampleness of dualizing sheaf.

Proposition 1.3.2. Let *C* be a semi-stable curve over an algebraically closed field *k*.

- (1) C is of locally complete intersection.
- (2) Let $\pi: \widetilde{C} \to C$ be the normalization. Then $\pi^* \omega_C = \omega_{\widetilde{C}}(\pi^{-1}(C_{\text{Sing}}))$.
- (3) For any $\Gamma \subset C$ be an irreducible component. Then

$$\omega_{C/k}|_{\Gamma} = \omega_{\Gamma/k} \left(\Gamma \cap \overline{C \setminus \Gamma} \right).$$

Proof. For (1). See (d) of [Liu02, Lemma 10.3.7].

For (2). See (b) of [Liu02, Lemma 10.3.12].

For (3). See proof of [Liu02, Corollary 10.3.13].

Corollary 1.3.1. Let *C* be a semi-stable curve over an algebraically closed field *k*. Let $\Gamma \subset C$ be an irreducible component. Then

$$\deg(\omega_{C/k}|_{\Gamma}) = 2(p_a(\Gamma) - 1) + \left|\Gamma \cap \overline{(C \setminus \Gamma)}\right|.$$

Corollary 1.3.2. Let *C* be a semi-stable curve an algebraically closed field *k*. If *C* is connected and $p_a(C) \ge 2$, then *C* is stable if and only if deg $\omega_{C/k}|_{\Gamma} > 0$ for all irreducible component $\Gamma \subset C$.

Theorem 1.3.1. Let C be a stable curve over an algebraically closed field k. Then

(1) $H^1(C, \omega_C^{\otimes n}) = 0$ for all $n \ge 2$; (2) $\omega_C^{\otimes n}$ is very ample for $n \ge 3$.

Proof. For (1). By duality we have

$$H^1(C,\omega_C^{\otimes n})^{\vee} = H^0(C,\omega_C^{\otimes (1-n)}).$$

For any irreducible component Γ , we have

$$\deg\left(\omega_C^{\otimes(1-n)}|_{\Gamma}\right) = (1-n)\deg\omega_C|_{\Gamma} < 0.$$

Thus $H^0(\Gamma, \omega_C^{\otimes 1-n}|_{\Gamma}) = 0$ since Γ is integral. Note that we have the following exact sequence

$$0 \to \omega_C^{\otimes 1-n} \to \bigoplus_{\Gamma} \omega_C^{\otimes 1-n}|_{\Gamma},$$

so $H^0(\Gamma, \omega_C^{\otimes 1-n}|_{\Gamma}) = 0$ for every irreducible component implies $H^0(\Gamma, \omega_C^{\otimes 1-n}) = 0$.

For (2). See Corollary of Theorem 1.2 in [DM69].

Corollary 1.3.3. Let $f: X \to S$ be a relative stable curve. Then

(1) $R^1 f_* \omega_{X/S}^{\otimes n} = 0$ for $n \ge 2$;

(2) $\omega_{X/S}^{\otimes n}$ is relatively very ample for $n \ge 3$.

$$\operatorname{Aut}(X,\mathcal{L}) := \{ \sigma \in \operatorname{Aut}(X) \mid \sigma^* \mathcal{L} \cong \mathcal{L} \}.$$

Lemma 1.3.3. Aut(X, \mathcal{L}) is an algebraic group.

Proof. Since \mathcal{L} is very ample, it gives an inclusion $X \hookrightarrow \mathbb{P}(H^0(X, \mathcal{L}))$. Then for any $\sigma \in \operatorname{Aut}(X, \mathcal{L})$, we have the following commutative diagram

This shows that $\operatorname{Aut}(X, \mathcal{L}) \hookrightarrow \operatorname{Aut}(\mathbb{P}(H^0(X, \mathcal{L}))) = \operatorname{PGL}(H^0(X, \mathcal{L}))$ is a subgroup, and it remains to show $\operatorname{Aut}(X, \mathcal{L})$ is a closed subvariety of $\operatorname{PGL}(H^0(X, \mathcal{L}))$.

For $\sigma \in \text{PGL}(H^0(X, \mathcal{L}))$, we have $\sigma \in \text{Aut}(X, \mathcal{L})$ if and only if $\sigma(X) = X$. Suppose X = V(I), where I is a homogeneous ideal. Then $\sigma(X) = X$ is equivalent to say for any $x \in X$ and $G \in I$, we have $G(\sigma(x)) = 0$, which is a closed condition. This completes the proof.

Proposition 1.3.3. Let $G = \operatorname{Aut}(X, \mathcal{L})$. Then

$$\dim T_{G,\mathrm{id}_X} = \dim \operatorname{Hom}_{\mathcal{O}_X}(\Omega^1_{X/k}, \mathcal{O}_X).$$

Proof. For $\sigma \in G$, any element in $T_{G,\sigma}$ is equivalent to a morphism $\tau : X_{k[\varepsilon]/(\varepsilon^2)} \to X_{k[\varepsilon]/(\varepsilon^2)}$ which lifts $\sigma : X \to X$, that is, the following diagram commutes:

$$\begin{array}{ccc} X_{k[\epsilon]/(\epsilon^2)} & \stackrel{\tau}{\longrightarrow} & X_{k[\epsilon]/(\epsilon^2)} \\ & \downarrow & & \downarrow \\ & \chi & \stackrel{\sigma}{\longrightarrow} & \chi. \end{array}$$

Since the underlying topological spaces of X and $X_{k[\epsilon]/(\epsilon^2)}$ are the same, we have τ is determined by a morphism

$$\mathcal{O}_X \to \sigma_* \mathcal{O}_{X_{k[\epsilon]/(\epsilon^2)}} = \sigma_* \mathcal{O}_X \oplus \epsilon \sigma_* \mathcal{O}_X$$
$$a \mapsto \sigma^{\sharp}(a) + \epsilon \varphi(a).$$

The condition for φ to be a *k*-linear homomorphism implies

$$\varphi(a_1a_2) = \sigma^{\sharp}(a_2)\varphi(a_1) + \sigma^{\sharp}(a_1)\varphi(a_2).$$

If we take $\sigma = id_X$, then it gives

$$\varphi(a_1 a_2) = a_1 \varphi(a_2) + a_2 \varphi(a_1),$$

that is, $\varphi \in \operatorname{Der}_k(\mathcal{O}_X, \mathcal{O}_X) = \operatorname{Hom}_{\mathcal{O}_X}(\Omega^1_{X/k}, \mathcal{O}_X).$

Corollary 1.3.4. If *C* is a stable curve and $\mathcal{L} = \omega_C^{\otimes 3}$, then

$$\operatorname{Aut}(C) := \operatorname{Aut}(C, \mathcal{L})$$

is an étale algebraic group 6 .

Proof. It suffices to prove

$$\operatorname{Hom}_{\mathcal{O}_C}(\Omega^1_{C/k}, \mathcal{O}_C) = 0.$$

Let $\pi \colon \widetilde{C} \to C$ be the normalization. Then we claim $\operatorname{Hom}_{\mathcal{O}_C}(\Omega^1_{C/k}, \mathcal{O}_X) \cong \operatorname{Hom}_{\mathcal{O}_C}(\pi_*\mathcal{O}_{\widetilde{C}}, \mathcal{O}_C)$ $\cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{C}}}(\Omega^1_{\widetilde{C}/k}, \mathcal{O}_{\widetilde{C}}(-\pi^{-1}(C_{\operatorname{Sing}}))).$

Proof of claim.

 $^{^{6}\}mathrm{An}$ algebraic group is étale if it is smooth and finite.

2. STABLE REDUCTION

2.1. **Model.** A Noetherian, connected regular scheme of dimension⁷ 1 or 0 is called a *Dedekind scheme*. Let S be a Dedekind scheme. Then for any affine open subset $U \subset S$, we have $\mathcal{O}_S(U)$ is a Dedekind domain or a field.

Example 2.1.1.

- (1) If S is a smooth connected curve over a field k, then S is a Dedekind scheme with function field K = K(S).
- (2) Let R be a discrete valuation ring. Then $S = \operatorname{Spec} R$ is a Dedekind scheme with function field $K = \operatorname{Frac}(R)$.
- (3) Let K be a number field and \mathcal{O}_K be the ring of algebraic integers in K. Then $S = \operatorname{Spec}\mathcal{O}_K$ is a Dedekind scheme with function field K.

Definition 2.1.1. Let S be a Dedekind scheme and K be the function field of S. Let X be an algebraic variety over K.

- (1) A *model* of *X* over *S* is a *S*-scheme $\mathfrak{X} \to S$ together with an *K*-isomorphism $\mathfrak{X}_K \cong X$.
- (2) A morphism $\mathfrak{X} \to \mathfrak{X}'$ of two models of X is a morphism of S-shechmes that is compatible with the isomorphisms $\mathfrak{X}_K \cong X$ and $\mathfrak{X}'_K \cong X$;
- (3) A model $\mathfrak{X} \to S$ verifies a property (*P*) if $\mathfrak{X} \to S$ verifies (*P*).

Example 2.1.2. Let C be a projective curve over a field K, defined by homogeneous polynomials $F_1, \ldots, F_m \in K[T_0, \ldots, T_n]$. Suppose $A \subset K$ is a subring such that all of F_i have coefficients in A and Frac(A) = K. Then the scheme

$$\mathcal{C} := \operatorname{Proj} A[T_0, \dots, T_n] / (F_1, \dots, F_m)$$

is a model of C over S = SpecA, since its generic fiber

 $C_{\eta} = \operatorname{Proj} A[T_0, \dots, T_n]/(F_1, \dots, F_m) \times_{\operatorname{Spec} A} \operatorname{Spec} K$ $\cong \operatorname{Proj} K[T_0, \dots, T_n]/(F_1, \dots, F_m).$

Example 2.1.3. Let C be the projective curve over \mathbb{Q} defined by the equation

$$x^q + y^q + z^q = 0.$$

Let C be the closed subscheme of $\mathbb{P}^2_{\mathbb{Z}}$ defined by the same equation. Then $C \to \operatorname{Spec} \mathbb{Z}$ is a model of C over $\operatorname{Spec} \mathbb{Z}$.

If X is an algebraic variety with certain properties (projective, normal, smooth), we would of course also like to find a model which preserves as many as properties of X as possible.

Proposition 2.1.1. Let *X* be a projective variety over a field *K*.

(1) There exists flat projective model.

(2) If X is normal and S is excellent⁸, then there exists flat normal model.

 $^{^{7}}$ Usually a Dedekind domain has dimension 1. Here we admit the dimension 0 case because we want to make the class of Dedekind scheme stable by localization.

⁸An excellent scheme is a complicated condition, here we provide some examples: Any algebraic variety over a field is excellent; Any Dedekind domain of characteristic zero is excellent.

On the other hand, if *C* is a smooth projective curve, then we cannot find a smooth model when $g(C) \ge 1$, since by Corollary 1.1.1 there always some prime *p* such that $C_p \to \operatorname{Spec} \mathbb{F}_p$ is not smooth. But for smooth projective line over \mathbb{Q} , it admits infinite many smooth models.

Example 2.1.4. Let $X = \mathbb{P}^1_{\mathbb{Q}}$ be the projective line over \mathbb{Q} . Then $\mathbb{P}^1_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$ together with an isomorphism of $\mathbb{P}^1_{\mathbb{Q}}$ is a model of $\mathbb{P}^1_{\mathbb{Q}}$. The morphism defined by $\times 2$ is a morphism between models, that is, the following diagram commutes

However, it is not an isomorphism $\mathbb{P}^1_{\mathbb{Z}} \to \mathbb{P}^1_{\mathbb{Z}}$. In other words, $\mathbb{P}^1_{\mathbb{Q}}$ has infinite many smooth models over Spec \mathbb{Z} .

Remark 2.1.1. If X is an abelian variety, although there may not exist smooth projective model, there always exists a smooth model with group structure, called *Néron model*.

The main goal of this section is to give a criterion to show whether a given smooth projective curve C over a field K admits a stable model or not. Before that, we need to introduce the notion of the regular fibered surface, as we will see that every smooth projective curve over a field K admits a model, which is a regular fibered surface.

2.2. Regular fibered surface.

2.2.1. Fibered surface and desingularization.

Definition 2.2.1. Let S be a Dedekind scheme with generic point η .

- (1) An integral, projective, flat *S*-scheme $\pi: X \to S$ of dimension two is called a *fibered surface* over *S*.
- (2) A fiber X_s with $s \in S$ closed in called a *closed fiber*.
- (3) The fiber X_{η} is called the *generic fiber*.

Remark 2.2.1. Let $X \to S$ be a fibered surface.

- (1) If $\dim S = 0$, then X is an integral, projective algebraic surface over a field.
- (2) If dim S = 1, we can say that X is a "relative curve" over S.

Proposition 2.2.1. Let *C* be a smooth projective curve over a field *K*. Then *C* admits a model $C \rightarrow S$ with affine *S*, which is a fibered surface with generic fiber isomorphic to *C*.

Proof. Firstly, let $C_0 \to S$ be as in Example 2.1.2, where S is affine. Let C be the Zariski closure of C in C_0 , endowed with the reduced closed subscheme structure. Then $C \to S$ is a fibered surface with generic fiber isomorphic to C.

Theorem 2.2.1 (Abhyankar,Hironaka,Lipman). If X is an excellent, reduced, Noetherian scheme of dimension two, then there exists $\pi: \widetilde{X} \to X$ projective, birational morphism such that \widetilde{X} is regular, and $\pi^{-1}(X_{\text{reg}}) \cong X_{\text{reg}}$.

Corollary 2.2.1. Let C be a smooth projective curve over a field K. Then C admits a model, which is a regular fibered surface.

Proof. Let $\mathcal{C} \to S$ be a model of C with fibered surface structure as proved in Proposition 2.2.1. Then by Theorem 2.2.1, there exists a regular fibered surface $\tilde{\mathcal{C}} \to S$ which isomorphic to \mathcal{C} on regular locus. In particular, we have $\tilde{\mathcal{C}}_K \cong C$ since $C \subset \mathcal{C}_{\text{reg}}$. This shows $\tilde{\mathcal{C}}$ is a model of C over S, which is a regular fibered surface.

2.2.2. *Backgrounds on intersection theory*. Let *X* be a regular, Noetherian, connected scheme of dimension two. Let D, E be two effective divisors on *X* with no common irreducible component. Let $x \in X$ be a closed point. Since $\operatorname{supp} D \cap \operatorname{supp} E = \{x\}$ or in a neighborhood of *x*, we have

$$\sqrt{\mathcal{O}_X(-D)_x} + \mathcal{O}_X(-E)_x = \mathfrak{m}_x \mathcal{O}_{X,x}.$$

Hence $\mathcal{O}_{X,x}/(\mathcal{O}_X(-D)_x + \mathcal{O}_X(-E)_x)$ is an Artinian ring, and consequently of finite length.

Definition 2.2.2. Let D, E be two effective divisors on X with no common irreducible component.

(1) Let $x \in X$ be a closed point. The integer

$$i_x(D,E) = \text{length}_{\mathcal{O}_{X,x}} \mathcal{O}_{X,x} / (\mathcal{O}_X(-D)_x + \mathcal{O}_X(-E)_x).$$

is called *intersection number* of *D* and *E* at *x*.

(2) The *intersection cycle* D.E is a 0-cycle

$$D.E = \sum_{x \in X} i_x(D, E)[x].$$

Remark 2.2.2. The intersection number is a non-negative integer, and $i_x(D, E) = 0$ if and only if $x \notin \text{supp} D \cap \text{supp} E$.

But how to define the intersection number when two divisors have common irreducible components, such as the self-intersection?

Lemma 2.2.1 (moving lemma). Let *X* be a normal, Noetherian, connected, separated scheme. Let D, E be two Weil divisors on *X*. Then there exists an $f \in K(X)$ such that $\operatorname{div}(f) + D$ and *E* have no common component.

2.2.3. Intersection theory on regular fibered surface. Let $X \to S$ be a regular fibered surface over a Dedekind scheme S. If dim S = 1, then X is called an *arithmetic surface*. In general it is impossible to define the intersection of two arbitrary divisors on X, but this obstacle can be circumvented when one of the divisors is vertical.

Definition 2.2.3. Let $x \in X$ be a closed point. A Cartier divisor E of X is called a *vertical divisor* over s, if $\operatorname{supp} E \subseteq X_s$. The set $\operatorname{Div}_s(X)$ consists of all Cartier divisors of X which are vertical over s.

Remark 2.2.3. If dim S = 1, then $\text{Div}_s(X)$ has the irreducible components of X_s as a basis.

Theorem 2.2.2. Let $X \to S$ be a regular fibered surface. Let $s \in S$ be a closed point. Then there exists a unique bilinear map

$$i_s$$
: Div $(X) \times$ Div $_s(X) \rightarrow \mathbb{Z}$

which verifies the following properties:

(1) If $D \in \text{Div}(X)$ and $E \in \text{Div}_{s}(X)$ have no common component, then

$$i_s(D, E) = \sum_x i_x(D, E)[k(x) : k(s)],$$

where x runs through the closed points of X.

- (2) The restriction of i_s to $\text{Div}_s(X) \times \text{Div}_s(X)$ is symmetric.
- (3) $i_s(D,E) = i_s(D',E)$ if *D* is linearly equivalent to *D'*.
- (4) If $0 < E \le X_s$, then

$$i_s(D,E) = \deg_{k(s)} \mathcal{O}_X(D)|_E$$

Proposition 2.2.2. Let $X \to S$ be an arithmetic surface and $s \in S$ be a closed point. Then

- (1) For any $E \in \text{Div}_{s}(X)$, we have $E X_{s} = 0$.
- (2) Let Γ₁,..., Γ_r be the irreducible components of X_s of respective multiplicities d₁,..., d_r. Then for any i ≤ r, we have

$$\Gamma_i^2 = -\frac{1}{d_i} \sum_{j \neq i} d_j \Gamma_i . \Gamma_j.$$

Theorem 2.2.3. Let $X \to S$ be an arithmetic surface with geometrically connected generic fiber. Then

 $\operatorname{Div}_{s}(X)_{\mathbb{R}} \times \operatorname{Div}_{s}(X)_{\mathbb{R}} \to \mathbb{R}$

is negative semi-definite, and $E^2 = 0$ if and only if $E \in \mathbb{R}X_s$.

Proof. Suppose $X_s = \sum_i d_i \Gamma_i$, where Γ_i 's are irreducible components and d_i is the multiplicity of Γ_i . For simplicity we denote $a_{ij} = \Gamma_i \cdot \Gamma_j \ge 0$, $a_{ij} \ge 0$ when $i \ne j$ and $b_{ij} = a_{ij}d_id_j$. Since $\Gamma_i \cdot X_s = \sum_i d_ja_{ij} = 0$, it gives $\sum_i b_{ij} = 0$.

For any $V \in \text{Div}_{s}(X)_{\mathbb{R}}$, we write it as $V = \sum_{i} x_{i} \Gamma_{i}$. Denote $y_{i} = x_{i}/d_{i}$. Then

$$V.V = \left(\sum_{i} d_{i} y_{i} \Gamma_{i}\right) \left(\sum_{j} d_{j} y_{j} \Gamma_{j}\right)$$
$$= \sum_{i,j} y_{i} y_{j} d_{i} d_{j} a_{ij}$$
$$= -\sum_{i>j} b_{ij} (y_{i} - y_{j})^{2}$$
$$\leq 0$$

The equality holds if and only if $b_{ij}(y_i - y_j) = 0$ for all i < j. Note that $y_i = y_j$ if $\Gamma_i . \Gamma_j \neq 0$, that is, $\Gamma_i \cap \Gamma_j \neq \emptyset$. Since the generic fiber of *X* is geometrically connected, then Zariski's theorem implies X_s is connected.

Proposition 2.2.3. Let $X \to S$ be an arithmetic surface and $s \in S$ be a closed point. Let $\Gamma_1, \ldots, \Gamma_r$ be the irreducible components of X_s with respective multiplicities d_1, \ldots, d_r . Then

$$2p_a(X_\eta) - 2 = \sum_{i=1}^r d_i \omega_{X/S} \cdot \Gamma_i$$

Proof. By adjunction formula we have

$$\omega_{X_s/k(s)} \cong \omega_{X/S}|_{X_s} \otimes \mathcal{O}_X(X_s)|_{X_s}.$$

Then intersect with X_s it gives

$$2p_a(X_s) - 2 = \omega_{X/S} \cdot X_s = \sum_{i=1}^r d_i \omega_{X/S} \cdot \Gamma_i.$$

Since $X \to S$ is flat, we have $2p_a(X_s) - 2 = 2g(X_\eta) - 2$. This completes the proof.

2.2.4. *Minimal regular model*. Let $X \rightarrow S$ be a regular fibered surface.

Definition 2.2.4. An irreducible divisor *E* of *X* is called an *exceptional divisor* if there exists a regular fibered surface $Y \to S$ and a morphism $f: X \to Y$ of *S*-schemes such that f(E) is a point and $f: X \setminus E \to Y \setminus f(E)$ is an isomorphism.

Theorem 2.2.4 (Castelnuovo's criterion). Let $X \to S$ be a regular fibered surface. Let $E \subset X_s$ be an irreducible divisor. Then *E* is an exceptional divisor if and only if $E \cong \mathbb{P}^1_{k'}$ and $E^2 = -[k':k(s)]$, where $k' = H^0(E, \mathcal{O}_E)$.

Definition 2.2.5. Let $X \rightarrow S$ be a regular fibered surface. Then

- (1) It is called *relatively minimal* if for all closed point $s \in S$, the fiber X_s has no exceptional curve.
- (2) It is called *minimal* every birational map of regular fibered S-surfaces $Y \rightarrow X$ is a birational morphism.

Theorem 2.2.5 ([Liu02, Theorem 9.3.21]). Let $X \to S$ be an arithmetic surface with generic fiber of genus $g(C_{\eta}) \ge 1$. Then X admits a unique minimal model over S, up to unique isomorphism.

Corollary 2.2.2 ([Liu02, Corollary 9.3.24]). Let $X \to S$ be a relatively minimal arithmetic surface with generic fiber $g(X_n) \ge 1$. Then X is minimal.

Proposition 2.2.4. Let *C* be a smooth projective curve over a field *K* and *S* be a Dedekind scheme with function field *K*. Then *C* has a stable model over *S* if and only if the minimal model C^{\min} over *S* is semi-stable.

Example 2.2.1. Let $S = \text{Spec } \mathbb{C}[t]$ and $\mathcal{C} \to S$ is defined by the compactification of the affine plane curve $y^2 = tx(x-1)(x-2)(x-3)(x-4)$. By Jacobi criterion \mathcal{C} is not regular, with singular locus

$$\mathcal{C}_{\text{Sing}} = \{ [0:0:x] \mid x = 0, 1, 2, 3, 4, \infty \} \subset \mathbb{P}^1_{\mathbb{C}},$$

that is,

By blow-up these six singular points we have

These components are isomorphic $\mathbb{P}^1_{\mathbb{C}}$ with self-intersection -2, and thus this gives the minimal model \mathcal{C}^{\min} over S, but it is not semi-stable.

Remark 2.2.4. Let t_1 be a variable such that $t_1^2 = t$ and consider $\mathbb{C}[t] \subset \mathbb{C}[t_1]$. Then $\mathcal{C} \to S' = \operatorname{Spec} \mathbb{C}[t_1]$ defined by $y^2 = tx(x-1)(x-2)(x-3)(x-4)$ is a smooth model over S', since we have

$$\left(\frac{y}{t_1}\right)^2 = x(x-1)(x-2)(x-3)(x-4).$$

This is a simple example of Deligne-Mumford theorem.

3.1. Simple normal crossing regular fibered surface. Let *C* be a smooth projective curve over an algebraically closed field *K* with char(K) = 0 and *S* be a Dedekind scheme with function field *K*.

Theorem 3.1.1 (Deligne-Mumford). There exists a finite map $S' \to S$, where S' is a Dedekind scheme and $K' = K(S') \to K$ is separable, such that C/K' has a stable model.

Definition 3.1.1. A regular model $\mathcal{C} \to S$ is called *simple normal crossing* (*SNC*), if for every closed point $s \in S$, every irreducible component Γ_i of \mathcal{C}_s is smooth, and $p \in \Gamma_i \cap \Gamma_j$ is a node.

Proposition 3.1.1. There exists a SNC regular model.

Proof. We start with a regular model and consider resolution of singularity of singular fiber. $\hfill \Box$

Proposition 3.1.2. Let $C \to S$ be a SNC regular model and $p \in C_s$ be a point in a closed fiber.

(1) If p is not an intersection point, then we have $\mathcal{C} \hookrightarrow Z \to S$, where $\mathcal{Z} \to S$ is smooth and dim $Z_s = 2$. Moreover, locally at p we have

$$\mathcal{O}_{\mathcal{C},p} = \frac{\mathcal{O}_{\mathcal{Z},p}}{(u^d - ta)}$$

where *t* is uniformizer of \mathcal{O}_K and $a \in \mathcal{O}_{Z,p}^*$.

(2) If $p \in \Gamma_1 \cap \Gamma_2$, then there exists \mathcal{Z} as above, and locally at p we have

$$\mathcal{O}_{\mathcal{C},p} = \frac{\mathcal{O}_{\mathcal{Z},p}}{(u^{d_1}v^{d_2} - ta)},$$

where *t* is uniformizer of \mathcal{O}_K and $a \in \mathcal{O}_{Z,p}^*$.

Theorem 3.1.2 ([Liu02, Proposition 10.4.6]). Let $\mathcal{C} \to S$ be a SNC regular model and $\mathcal{C}_s = \sum_i d_i \Gamma_i$ be the irreducible components. Let $e = \operatorname{lcm}(d_i)$ and $\mathcal{O}_L = \mathcal{O}_K[t^{\frac{1}{e}}]$. Then the normalization of $\mathcal{C} \times_{\mathcal{O}_K} \mathcal{O}_L$ is a semi-stable model over \mathcal{O}_L .

Lemma 3.1.1. If *C* has stable reduction over an étale extension L/K. Then *C* has a stable reduction over *K*.

Remark 3.1.1. If *C* has a stable model $\mathcal{C} \to S$. Then for any finite $S' \to S$, C/K' has a stable model over S', which is exactly $\mathcal{C} \times_S S' \to S'$.

3.2. Néron model of abelian variety. Let S be a Dedekind scheme with function field K and A be an abelian variety over K.

Definition 3.2.1. A *Néron model* A of A is a smooth, separated model of A such that for any smooth scheme $\mathfrak{X} \to S$, there exists an one to one correspondence

$$\operatorname{Mor}_{S}(\mathfrak{X}, \mathcal{A}) \Longleftrightarrow \operatorname{Mor}_{K}(\mathfrak{X}_{K}, \mathcal{A}).$$

Remark 3.2.1. Let $\mathcal{A} \to S$ be a Néron model of A over S. Then for any smooth scheme $\mathfrak{X} \to S$ and any $f_K \colon \mathfrak{X}_K \to A$, there exists a unique extension $f \colon \mathfrak{X} \to \mathcal{A}$. In particular,

$$\mathcal{A}(S) \Longleftrightarrow \mathcal{A}(K)$$

For any closed point $s \in S$, there is a natural morphism $\mathcal{A}(S) \to \mathcal{A}(k(s))$, we can composite it with the bijection between $\mathcal{A}(S)$ and A(K) to obtain the so-called *reduction map*. For example. Let A be an abelian variety over \mathbb{Q} . Then $S = \operatorname{Spec} \mathbb{Z}$ and

$$A(\mathbb{Q}) \to \mathcal{A}_{\mathbb{F}_p}(\mathbb{F}_p)$$

is the reduction map.

Proposition 3.2.1.

- (1) Néron model is unique up to a unique isomorphism.
- (2) Néron model is a group scheme, since generic fiber is an abelian variety, so multiplication, addition maps can uniquely extend to the Néron model \mathcal{A} .

$$\begin{array}{ccc} A \times_k A \longrightarrow A \\ \downarrow & \downarrow \\ \mathcal{A} \times_S \mathcal{A} \longrightarrow \mathcal{A} \end{array}$$

Theorem 3.2.1 (Néron, Raynaud). The Néron model exists.

Example 3.2.1. Let A be an elliptic curve over K. Then minimal projective regular model \mathcal{A}^{\min} over S. Then Néron model is $(\mathcal{A}^{\min})_{sm}$.

Let $\mathcal{A} \to S$ be a commutative group scheme over S. For any closed point $s \in S$, there exists the following exact sequence

$$0 \to (\mathcal{A}_s)^0 \to \mathcal{A}_s \to \phi_s \to 0,$$

where $(\mathcal{A}_s)^0$ is the connected component of identity and ϕ_s is étale finite algebraic group. By Chevalley's theorem we have

$$0 \to L \to \mathcal{A}^0_s \to B \to 0,$$

where *L* is a linear group and *B* is an abelian variety over k(s). If k(s) is a perfect field, then $L \cong T \times U$, where *T* is a torus and *U* is a nilpotent group.

Definition 3.2.2. Let $\mathcal{A} \to S$ be the Néron model.

(1) We say that \mathcal{A} has a good reduction at *s* if \mathcal{A}_s is projective.

(2) We say that \mathcal{A} has a semi-abelian at *s* if the nilpotent part of \mathcal{A}_s is zero.

Theorem 3.2.2 (Grothendieck). There exists a finite $S' \to S$, where S' is Dedekind scheme with function field K', such that $A_{K'}$ has a semi-abelian reduction.

Theorem 3.2.3 (Deligne-Mumford). Let *C* be a smooth projective curve over a field *k* with genus ≥ 1 . Then *C* has stable reduction if and only if Jac(*C*) has semi-abelian reduction.

Idea of the proof. Let \mathcal{C} be the minimal regular model of C. It gives a functor $\operatorname{Pic}_{\mathcal{C}/S}^0$, which is represented by a commutative smooth group schemes if $C(K) \neq \emptyset$ (Raynaud), and it is also isomorphic to \mathcal{A}^0 , where \mathcal{A} is Néron model of Jac(C). This shows $\mathcal{A}_s^0 = \operatorname{Pic}_{\mathcal{C}_s/k(s)}^0$. Thus it suffices to consider the picard group of nodal curves.

A.1. Local picture. Let *k* be a field and *A* be a *k*-algebra.

Definition A.1.1. Let *M* be an *A*-module. A *derivation* is a map $d: A \rightarrow M$ such that

(1) d is *k*-linear;

(2) d satisfies Leibniz rule, that is, for any $a, b \in A$,

$$\mathbf{d}(a_1a_2) = a_1\mathbf{d}a_2 + a_2\mathbf{d}a_1.$$

The set of all derivations is a *A*-module, which is denoted by $\text{Der}_k(A, M)$.

Example A.1.1. Let $A = k[x_1, ..., x_n]$. To determine a derivation $d: A \rightarrow M$ is equivalent to determine $\{dx_1, ..., dx_n\} \subset M$. Thus

$$\operatorname{Der}_k(k[x_1,\ldots,x_n],M) = M^{\oplus n}$$

as A-modules.

Example A.1.2. Let A, B be k-algebras and $\varphi_0 : A \to B$ be a k-algebra homomorphism. A k-algebra homomorphism

$$\varphi: A \to B \otimes k[\varepsilon]/(\varepsilon^2)$$

such that $\varphi(a) = \varphi_0(a) + \epsilon \varphi_1(a)$ is called a deformation of φ_0 .

In order to determine all possible deformations of φ_0 , it suffices to determine all possible φ_1 . For any $a, b \in A$, the condition $\varphi(ab) = \varphi(a)\varphi(b)$ is equivalent to $\varphi_1 \in \text{Der}_k(A, B)$. In other words, the set of deformations of $\varphi_0 : A \to B$ is in one to one correspondence with the set of derivations $\text{Der}_k(A, B)$.

Definition A.1.2. The *Kähler differential* $\Omega^1_{A/k}$ is an *A*-module together with a *k*-derivation d_A such that

$$\operatorname{Hom}_{A}(\Omega^{1}_{A/k}, M) \stackrel{1-1}{\longleftrightarrow} \operatorname{Der}_{k}(A, M)$$
$$\varphi \mapsto \varphi \circ d_{A}.$$

Proposition A.1.1 ([Liu02, Proposition 1.8]). Let *A* be a *k*-algebra.

(1) For any field extension $k \subseteq k'$, let us set $A' = A \otimes_k k'$. Then there exists a canonical isomorphism

$$\Omega_{A'/k'} = \Omega_{A/k} \otimes_k k'.$$

(2) Let S be a multiplicative subset of A. Then

$$S^{-1}\Omega^1_{A/k} \cong \Omega^1_{S^{-1}A/k}.$$

(3) Let $A \rightarrow B$ be a surjective morphism of *k*-algebras with kernel *I*. Then there is an exact sequence of *S*-modules

$$I/I^2 \to \Omega^1_{A/k} \otimes_k B \to \Omega^1_{B/k} \to 0,$$

where $[f] \in I/I^2$ maps to $1 \otimes df \in \Omega^1_{A/k} \otimes_k B$.

A.2. The sheaf of Kähler differential.

Definition A.2.1. Let X be an algebraic variety over a field k. The *sheaf of* Kähler differential Ω^1_X is the sheaf of \mathcal{O}_X -modules defined by

$$\Omega^1_X(U) := \Omega^1_{\mathcal{O}_X(U)/k}$$

on affine open subsets U.

Proposition A.2.1 ([Liu02, Proposition 2.2]). Let *X* be an algebraic variety over a field *k* of (pure) dimension *d*. Then *X* is smooth if and only if $\Omega^1_{X/k}$ is locally free of rank *d*.

Definition A.2.2. Let X be a smooth algebraic variety over a field k. The *dualizing sheaf* $\omega_{X/k}$ is defined as

$$\omega_{X/k} := \det \Omega^1_{X/k}.$$

Theorem A.2.1 (Serre duality). Let X be a smooth algebraic variety over a field k of dimension d. For any coherent sheaf \mathcal{F} on X, there exists a canonical non-degenerate pairing

$$H^{d}(X,\mathcal{F}) \times \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F},\omega_{X/k}) \to H^{d}(X,\omega_{X/k}) \cong k.$$

A.3. **Dualizing sheaf on locally complete intersection.** In this section, we will introduce how to defined the dualizing sheaf $\omega_{X/k}$ on an algebraic variety of locally complete intersection.

Definition A.3.1. Let *A* be a ring and $a_1, ..., a_n$ be a sequence of elements of *A*. It is a *regular sequence*, if a_1 is not a zero divisor, and a_i is not a zero divisor in $A/(a_1, ..., a_{i-1})$ for any $i \ge 2$.

Lemma A.3.1. Let *A* be a ring and *I* be an ideal generated by a regular sequence $a_1, \ldots, a_n \in \mathfrak{m}$. Then I/I^2 is a free A/I-module of rank *n*.

Proof. If there exist $a_1, \ldots, a_n \in A$ such that $x_1a_1 + \cdots + x_na_n \in I^2$, then we need to prove $x_1, \ldots, x_n \in I$. Firstly we prove that if $\sum_{i=1}^n x_ia_i = 0$, then $x_i \in I$, by induction on n.

If n = 1, we have $x_1a_1 = 0$ implies $x_1 = 0$ since a_1 is not a zero divisor. For $n \ge 2$, we have

$$x_na_n=-x_{n-1}a_{n-1}-\cdots-x_1a_1.$$

By passing to the quotient ring $A/(a_1,...,a_{n-1})$, it gives $\overline{x}_n\overline{a}_n = 0$, and thus $x_n \in (a_1,...,a_{n-1})$ since \overline{a}_n is not a zero divisor in $A/(a_1,...,a_{n-1})$. Suppose $x_n = \sum_{i=1}^{n-1} a_i y_i$ with $y_i \in A$. It follows that

$$\sum_{i=1}^{n-1} a_i (x_i + a_n y_i) = 0,$$

and by induction hypothesis it gives $x_i + a_n y_i \in (a_1, ..., a_{n-1})$, hence $x_i \in I$, and we have already proved $a_n \in I$.

Now we back to the proof the freeness of I/I^2 as A/I-module. Since $x_1a_1 + \cdots + x_na_n \in I^2$, there exist $z_1, \ldots, z_n \in I$ such that

$$\sum_{i=1}^n a_i(x_i-z_i)=0,$$

since $I^2 = \sum_{i=1}^n a_i I$. From the above, we have $x_i - z_i \in I$, and thus $x_i \in I$.

Definition A.3.2. Let *X* be an algebraic variety over a field *k* and $Z \subseteq X$ be a closed subvariety. Let \mathcal{I}_Z be the ideal sheaf of *Z*. Then $Z \hookrightarrow X$ is a *regular immersion* if for all $x \in X$, the stalk $\mathcal{I}_{Z,x}$ is generated by a regular sequence.

Definition A.3.3. Let X be an algebraic variety over a field k and $i: Z \hookrightarrow X$ be a closed subvariety. Let \mathcal{I}_Z be the ideal sheaf of Z. Then $\mathcal{C}_{Z/X} := i^* (\mathcal{I}_Z/\mathcal{I}_Z^2)$ is called *conormal bundle* of Z in X.

Corollary A.3.1. Let *X* be an algebraic variety over a field *k* and $i: Z \hookrightarrow X$ be a regular immersion. Then the conormal bundle $\mathcal{C}_{Z/X}$ is locally free.

Definition A.3.4. Let *X* be an algebraic variety over a field *k*.

- (1) X is called *locally complete intersection at* $x \in X$, if there exists a neighborhood U of x and a regular immersion $i: U \to Z$, where Z is a smooth algebraic variety over a field k.
- (2) X is called *locally complete intersection*, if X is locally complete intersection at every point $x \in X$.

Example A.3.1. Any smooth algebraic variety is a locally complete intersection.

Lemma A.3.2 ([Liu02, Lemma 6.3.21]). Let *X* be an algebraic variety over a field *k* which is a locally complete intersection. Then any immersion $X \hookrightarrow Y$ is a regular immersion, where *Y* is an algebraic variety over a field *k*.

Lemma A.3.3. Let *X* be a reduced variety over a field *k* which is a locally complete intersection. Suppose $X \hookrightarrow Y$ is a regular immersion, where *Y* is a smooth variety over a field *k*. Then

$$0 \to \mathcal{C}_{X/Y} \to \Omega^1_{Y/k} \big|_X \to \Omega^1_{X/k} \to 0$$

is exact.

Proof. If X is smooth, then

$$0 \to \mathcal{C}_{X/Y} \to \Omega^1_{Y/k} \big|_X \to \Omega^1_{X/k} \to 0$$

is exact and split. If X is reduced, then there exists an open dense subset $U \subset X$ such that U is smooth. Thus $\mathcal{C}_{X/Y} \to \Omega^1_{Y/k}|_X$ is injective on U, that is,

$$\ker \left\{ \mathcal{C}_{X/Y} \to \Omega^1_{Y/k} \right|_X \right\}$$

supports in $X \setminus U$. Since X is a locally complete intersection, we have conormal bundle $C_{X/Y}$ is locally free, which implies the kernel must be zero. \Box

Definition A.3.5. Let *X* be an algebraic variety over a field *k* which is a locally complete intersection. Suppose $X \hookrightarrow Y$ is a regular immersion, where *Y* is a smooth variety over a field *k*. The dualizing sheaf of *X* is defined by

$$\omega_{X/k} := \omega_{Y/k}|_X \otimes \det(C_{Y/X})$$

Remark A.3.1. Note that the dualizing sheaf of X is independent of the choice of regular immersion $X \hookrightarrow Y$ ([Liu02, Lemma 6.4.5]).

Lemma A.3.4 ([Liu02, Corollary 6.4.14]). Let $X = V(F_1, \ldots, F_r) \subset \mathbb{A}^n_k = \operatorname{Spec} k[T_1, \ldots, T_n]$ and (F_1, \ldots, F_r) is a regular sequence. Suppose X is integral and

$$\Delta = \det \left(\frac{\partial F_i}{\partial T_j} \right)_{1 \le i, j \le r}$$

is non-zero in K(X). Then

$$\omega_{X/k} = \frac{1}{\Delta} (\mathrm{d}T_{r+1} \wedge \cdots \wedge \mathrm{d}T_n) \mathcal{O}_X.$$

Example A.3.2. Let C be the algebraic curve over a field k defined by the equation $y^2 + xy - x^3 = 0$. It is clear that $\Delta = 2y + x$ is non-zero in K(C). Then $\omega_{C/k} = \frac{dx}{2y+x} \mathcal{O}_C$. The curve C has a unique singular point p = (0,0) of multiplicity one and the normalization of C is given by

$$\pi \colon \widetilde{C} \to C$$
$$t \mapsto \left(t^2 + t, t^2(t+1)\right).$$

This shows the singular point p is a node. Note that

$$\omega_0 = \frac{\mathrm{d}x}{2y+x} = \frac{\mathrm{d}t}{t(t+1)}$$

This shows ω_0 is a rational differential form on \mathbb{A}^1 , with simple pole at t = 0and t = -1 such that

$$\operatorname{Res}_{t=0}\omega_0 + \operatorname{Res}_{t=-1}\omega_0 = 0$$

For any $a \in \mathcal{O}_C$, we have $\omega_C = a\omega_0$ is a rational form on \widetilde{C} , and

 $\operatorname{Res}_{t=0}\omega_C + \operatorname{Res}_{t=-1}\omega_C = a(t=0) - a(t=-1)$

$$= 0.$$

This shows ω_C is a rational differential form on \widetilde{C} with simple pole at $\pi^{-1}(p)$ such that $\operatorname{Res}_{p_1}\eta + \operatorname{Res}_{p_2}\eta = 0$. Conversely, for any rational differential form $\eta = \operatorname{bdt}$ on \widetilde{C} with simple pole at $\pi^{-1}(p) = \{p_1, p_2\}$ such that $\operatorname{Res}_{p_1}\eta + \operatorname{Res}_{p_2}\eta = 0$, we have $b(p_1) = b(p_2)$.

References

- [DM69] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., (36):75–109, 1969.
- [Liu02] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.