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PREFACE

It’s a learning note for moduli problems of vector bundles. The main reference
for moduli space and geometric invariant theory is [Hos16], and the main refer-
ence for algebraic stack is [HeilO].

Assumptions.

(1) % always denotes an algebraically closed field;

(2) By a scheme we always mean a finite type scheme over k;

(3) By a variety we always mean a reduced seperated scheme over k;



1. MODULI PROBLEMS
1.1. Functors of points.

Definition 1.1.1. The functor of points of a scheme X is a contravariant functor
hx := Hom(—,X): Sch — Set, and a morphism of schemes f: X — Y induces a
natural transformation of funtors ~s: hx — hy, given by

hi(Z): hx(Z) — hy(Z)
g—fog,
where Z is a scheme.

Definition 1.1.2. The contravariant functors from Sch to Set are called presheaves
on Sch. The category of presheaves on Sch is denoted by Psh(Sch) = Fun(Sch°P, Set).

Example 1.1.1. For a scheme X, hx(Speck) = Hom(Speck,X) is the set of k-valued
points of X.

Lemma 1.1.1 (Yoneda lemma). Let € be any category. Then for any C € ¥ and
any presheaf 7 € Psh(%), there is a bijection

{natural transformsations n: h¢ — F} — F(C),
which is given by n— n¢(idy).
Proof. To see the surjectivity: For an object s € 7(C), we define n: h¢ — F defined
as follows: For C' € €, consider
ner: he(Ch— F(C')
f—=F()s).

(1) It’s well-defined: Since F is a contravariant functor, then for f: C' — C, we
have F(f): F(C)— F(C"), and thus F(f)(s) € F(C").

(2) It’s a natural transformation: Since if we take g: C"” — C’, and consider the
following diagram

he(C) —<5 F(C)
e 7@
he(C") 2 Fe.
For arbitrary f: C' — C € hc(C’), note that

nerohe(g) =nc(fog)
=F(fog)s)
=F(g)o F(f)(s)
= F(g)onc/(f).

Thus above diagram commutes, that is, 1 is a natural transformation.
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By construction, we have
ne(ide) = FGde)(s) =s.

This proves the surjectivity.

To see the injectivity: Suppose we have two natural transformation n,7’: h¢c —
F such that nc(idc) = n (idc). Then if we want to show n =17/, it suffices to show
for arbitrary C' € ¢, we have ¢ =1,,. Let g: C' — C. Then we have the following
commutative diagram

he(C) — F(C)

lhc(g) lf(g)

he(Ch) 5 F (.

It follows that
F(g)onc(ide) =nc ohe(g)ide) =nci(g),
and by the same argument one has F| (g)on’c(idc) = n’C,(g). Hence

nc(g) = F(g)onclide) = F(g) ong(ide) = ne.(g).
This completes the proof. ]
Corollary 1.1.1. The functor i: ¥ — Psh(%) is fully faithful.

Proof. A functor is called fully faithful if for every C,C' € €, there is the following
bijection

Homy (C, C,) — Hompgn4)(hc,her).
Then take F = A in Yoneda lemma to conclude. ]

Definition 1.1.3. A presheaf F € Psh(%) is called reprensentable if there exists
an object C € € and a natural isomorphism F = A¢.

So it’s natural to ask if every presheaf F' is reprensentable by a scheme X? The
answer is negative, as we will see. However, we are quite interested in answering
this question for special functors, known as moduli functor.

1.2. Moduli problems. A moduli problem is a classification problem: we have a
collection of objects and we want to classify them up to some equivalence. In fact,
we want more than this: we want a moduli space encodes how these objects vary
continously in families.

Definition 1.2.1. A naive moduli problem (in algebraic geometry) is a collection
A of objects (in algebraic geometry) and an equivalence relation ~ on A.

Example 1.2.1.

1. Let A be the set of k-dimensional linear subspaces of an n-dimensional vector
space and ~ be equality.

2. Let A be the collection of vector bundles on a fixed scheme X and ~ be the
relation given by isomorphism of vector bundles.
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Our aim is to find a scheme M whose k-points are in bijection with equivalence
classes A/.. Furthermore, we want M to also encode how these objects vary conti-
nously in "families".

Definition 1.2.2. Let (A, ~) be a naive moduli problem. Then a moduli problem
is given by
1. sets Ag of families over S and an equivalence relation ~g on Ag for all schemes

S.

2. pullback maps f*: Ag — Ar, for every morphism of schemes f: T'— S, such
that

o) (ASpeck ’ NSpeck) =(A,~);

(2) For the identity id: S — S and any family F over S, we have id* F = F;

(3) For a morphism f: T'— S and equivalent families 7 ~g G, we have f*F ~p

frg.

(4) For morphisms f: T — S, g:S — R, and a family F over R, we have an

equivalence
(gof)'F~rf g F
Notation 1.2.1. For a family F over S and a point s: Speck — S, F; := s*F de-
notes the corresponding family over Speck.

Corollary 1.2.1. A moduli problem defines a functor M € Psh(Sch), given by
M(S) := {families over S}/
M(f:T—8S):=f": M(S)— M(T)
Example 1.2.2. Consider the naive moduli problem given by vector bundles on a
fixed scheme X up to isomorphism. Then this can be extended in two different ways.

The natural notion for a family over S is a locally free sheaf F over X x S which is
flat over S, but there are two possible ways to define relations:

F~sGe=F=G
FrsG=F=Gonil
where L is a line bundle L — S and ng: X xS — S.

1.3. Fine moduli spaces. The ideal is when there is a scheme that reprensents
our given moduli functor.

Definition 1.3.1. Let M: Sch — Set be a moduli functor. Then a scheme M is a
fine moduli space for M if it reprensents M.

Remark 1.3.1. To be explicit, the scheme M is a fine moduli space for the moduli

functor M if there is a natural isomorphism 7: M — hjs. Thus for every scheme
S, we have a bijection

ns: M(S) = {families over S}/.; <~ hy(S) = {morphisms S — M}

In particular, if S = Speck, then the k-points of M are in bijection with the set A/...
Moreover, if T'— S is a morphism between schemes, then the following diagram
commutes



MS) —E hp(S)

| l

M(T) —— hy(T).

Definition 1.3.2. Let M be a fine moduli space for M. Then the family i/ € M(M),
determined by I/ := n]_ul(idM), is called the universal family.

Remark 1.3.2. For any F € M(S), that is, a family over a scheme S, it corresponds
to a morphism f: S — M. On the other hand, the family f*U{ corresponds to the
morphism idsof .

F*U e MES) —25 hy(S)3idyof

| !

Ue M(M) — hy(M)>idyy.
This shows families f*U/ and F correspond to the same morphism, and thus
ffUu~s F.

This shows any family is equivalent to a family obtained by pulling back the uni-
versal family, and that’s why U/ is called the universal family.

Proposition 1.3.1. If a fine moduli space for moduli functor M exists, then it is
unique up to a unique isomorphism.

Proof. Suppose (M,n),(M’',n') are two fine moduli spaces for the moduli functor
M. Then they are related by unique isomorphisms

My o)™ Hdp): M — M,
nur o Myp) " Hdar): M — M.
O

Example 1.3.1. In this example let’s show that the projective space P" can be in-
terpreted as a fine moduli space for the moduli problem of lines through the origin
V := AL Firstly, we need to clearify the definition of the moduli functor in this
setting. A family of lines through the origin in V over a scheme S is a line bundle
L over S which is a subbundle of the trivial vector bundle V x S over S, and two
families are equivalent if and only if they are equal.

There is a tautological line bundle Opn(—1) €V x P, and the dual line bun-
dle Op1(1) is generated by global sections xg,...,x,. Given any morphism f:S —
P, the line bundle f*Opn(1) is generated by the global sections f*(xg),...,f " (xp).
Hence there is a surjection Og’”l — [*Opr(1). Dualize the above surjection we ob-
tain an inclusion L := f*Opr(1) — (’)g””l =V x 8. This provides a family of lines
through the origin in V over S.

Conversely, let L <V xS be a family of lines through the origin in V over S.
Then dualize this inclusion this provides a surjection q: V* xS — L*. The vector



7

bundle V* x S is globally generated by the global sections oy,...,0, corresponding
to the dual basis of the standard basis on V. In particular, it provides a unique
morphism
f:S—pP"
s—[qoadg(s),...,qoa,(s)],
and f*Opr(—1)= LV xS by [Har77, Theorem 7.1].

Hence, there is a bijective correspondence between morphisms S — P" and fami-
lies of lines through the origin in V over S, and this bijection has functoriality. In
particular, the projective space P" is a fine moduli space for this moduli problem
and tautological line bundle is the universal family.

Example 1.3.2. The Grassmannian variety Gr(d,n) is a fine moduli space for the
moduli problem of d-dimensional linear subspaces of a fixed vector space V = A",

1.4. Coarse moduli spaces.

Definition 1.4.1. A coarse moduli space for a moduli functor M is a scheme M
and a natural transformation of funtors n: M — hjs such that

(1) nspecr: M(Speck) — hp(Speck) is bijective;

(2) For any scheme N and natural transformation v: M — hp, there exists a

unique morphism of schemes f: M — N such that v=~hron, where hy: hy —
hy is the corresponding natural transformation of presheaves.

M 7 S Ay
N /hf
hn

Remark 1.4.1. A coarse moduli space for M is unique up to unique isomorphism,
which can be determined by the universal property (2) in the definition.

Proposition 1.4.1. Let (M,n) be a corase moduli space for a moduli problem M.

Then (M,n) is a fine moduli space if and only if

(1) there exists a family U/ over M such that () =idyy;

(2) for families F and G over a scheme S, we have F ~g G if and only if ng(F) =
ns(9).

Proof: If (M,n) is a fine moduli space, then (1) and (2) satisfy automatically. Con-
versely, suppose (M,n) is a coarse moduli space satisfying (1) and (2). In order to
show the natural transformation 7 is a natural isomorphism, it suffices to show
that for any scheme S, ng: M(S) — hp/(S) is an isomorphism. The condition (2)
implies the injectivity. For any morphism f: S — M, the family F := f*U over S
satisfies ng(F) = f, and this shows the surjectivity. ]

Lemma 1.4.1. Let M be a moduli problem and suppose there exists a family F
over A! such that F; ~ F; for all s # 0 and Fy # F;. Then for any scheme M
and natural transformation n: M — hjy, we have n,1(F): Al — M is constant. In
particular, there is no coarse moduli space for this moduli problem.
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Proof. Suppose there is a natural transformation 1: M — hjs. Then 71 sends the
family F over A! to a morphism f: Al — M. For any s: Speck — Al, the functori-
ality implies f os = ngpecr(Fs)

FeMA) — ™ s puAY)sf

| l

Fs:=s*F € M(Speck) Doeeck, hp(Speck)> f os.

Since for s # 0, F5 = F1 € M(Speck), so that f|41o, is constant. Let m: Speck —
M be the k-valued point corresponding to the equivalent class for F; under 7.
Since M is a scheme of finite type, the k-valued points of M are closed, and thus
their preimages must also be closed. Then, as A'\{0} € f~1(m), the closure Al of
A\{0} must also be contained in f~1(m). In other words, f is the constant map
from A to the k-valued point m of M. This shows Nspeck : M(Speck) — hp(Speck)
is not a bijection, since JFy # F1 in M(Speck), but these non-equivalent objects
correspond to the same k-point m in M. O

Above lemma provides a pathological behavior, which is called jumping phe-
nomenon, for a moduli problem not to admit a corase moduli space.

Example 1.4.1. Consider the moduli problem of classifying endomorphisms of a
n-dimensional k-vector space. To be explicit, a family over a scheme S is a rank n
vector bundle F with an endomorphism ¢, and (F,p) ~s (G,d') if there exists an
isomorphism h: F — G such that hodp =¢'oh.

For n = 2, we can construct families which exhibit the jumping phenomenon.
For example, let n = 2. Then consider the family over Al given by (’):?, ¢), where for

s(—:Al,
1 s
()bs_(o 1)'

For s,t #0, these matrices are similar and thus ¢ ~ ¢;. However, ¢ # P1 as these
two matrices have different Jordan form.



2. ALGEBRAIC STACK
2.1. Motivation and definition.
Definition 2.1.1. A stack M is a sheaf of groupoids:
M Sch — Groupoids,

that is, an assignment

(1) for any scheme T, M(T) is a category in which all morphisms are isomor-
phisms.
(2) for any morphism f: X — Y, a functor f*: M((Y) - M(X).

(3) for any pair of composable morphisms X 1 y-£2z , a natural transformation
@rg: [Fog* = (gof)*. These natural transformations have to be associative
for composition, in particular we assume this natural transformation to be the
identity, if one of the f, g is identity,

satisfying the following gluing conditions:

(a) Givena covering2 {U;} of T, objects &; € M(U;) and isomorphisms ¢;;: &; lu;nu; —
£ jlu;nu; satisfying a cocycle condition on three-fold intersections, there exists
an object £ € M(T), unique up to isomorphisms, together with isomorphisms
v;: 5|Ui — &; such that Yij=V; Oi,l/i_l.

(b) Given a covering {U;} of T, objects £, F € M(T') and morphisms ¢; : €|y, — Fly,
such that ¢ly,nu; = ¢;jlu,nu;, there is a unique morphism ¢: & — F such that
elu, = ¢i.

Example 2.1.1. Let G be an affine algebraic group. Then

BG(T) = {principal G-bundles on T}

is the classifying stack of G.

Example 2.1.2. Let X be a scheme. Then X(T):= Hom(T,X) is a stack, where
Hom(T,X) is considered as a category in which the only morphisms are identities.
The pullback functor f* for S — T is given by composition with f. Such a stack is
called a representable stack.

Example 2.1.3. Let X be a scheme and G be an algebraic group acting on X. Then
the quotient stack [ X/G]is defined by

P53 x
[X/GIT):= p\L :P — T isa G-bundle, P — Xis a G-equivariant map
T

Morphisms in this category are isomorphisms of G-bundles commuting with the
maps to X.

27 covering means one of the following choices: In complex geometry we use the analytic topology.
Otherwise we use either the étale topology or the fppf topology. In this case, the intersection U; nU;;
has to be defined as U; xx Uj.
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Remark 2.1.1. The quotient stack [X/G] should catch the properties of the quotient
space "X/G", which may not exist in the category of schemes. Suppose there exists
a scheme X/G together with a G-bundle map X — X/G. In this case, any diagram
in [X/GI(T) defines a map g: T — X/G as follows:

P—25Xx
L]
T -£3 X/G,

and P is canonically isomorphic to the pullback of the G-bundle g*X = X xx/c T
over T. Thus the category [X/GI(T) is canonically equivalent to the set X/G(T),
which is considered as a category in which the only morphisms are the identities
of elements.

Lemma 2.1.1 (Yoneda lemma). Let M be a stack. Then for any scheme T there
is a natural equivalence of categories:

MorStacks(IaM) = M(D).

Let G be an affine algebraic group and BG be the classifying stack. Let pt =
Speck be a point and £ be a G-bundle on a scheme X. By Lemma 2.1.1, £ defines
amorphism F¢: X — BG and the trivial bundle defines a morphism triv: pt — BG:

pt
itriv
Fe
X — BG.

Let’s compute the fiber product of the above diagram.
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