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PREFACE

It’s a learning note for moduli problems of vector bundles. The main reference
for moduli space and geometric invariant theory is [Hos16], and the main refer-
ence for algebraic stack is [Hei10].

Assumptions.
(1) k always denotes an algebraically closed field;
(2) By a scheme we always mean a finite type scheme over k;
(3) By a variety we always mean a reduced seperated scheme over k;
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1. MODULI PROBLEMS

1.1. Functors of points.

Definition 1.1.1. The functor of points of a scheme X is a contravariant functor
hX := Hom(−, X ) : Sch → Set, and a morphism of schemes f : X → Y induces a
natural transformation of funtors h f : hX → hY , given by

h f (Z) : hX (Z)→ hY (Z)
g 7→ f ◦ g,

where Z is a scheme.

Definition 1.1.2. The contravariant functors from Sch to Set are called presheaves
on Sch. The category of presheaves on Sch is denoted by Psh(Sch)=Fun(Schop,Set).

Example 1.1.1. For a scheme X , hX (Speck)=Hom(Speck, X ) is the set of k-valued
points of X .

Lemma 1.1.1 (Yoneda lemma). Let C be any category. Then for any C ∈ C and
any presheaf F ∈Psh(C ), there is a bijection

{natural transformsations η : hC →F }←→F (C),

which is given by η 7→ ηC(idC ).

Proof. To see the surjectivity: For an object s ∈F (C), we define η : hC →F defined
as follows: For C′ ∈C , consider

ηC′ : hC(C′)→F (C′)
f 7→F ( f )(s).

(1) It’s well-defined: Since F is a contravariant functor, then for f : C′ → C, we
have F ( f ) : F (C)→F (C′), and thus F ( f )(s) ∈F (C′).

(2) It’s a natural transformation: Since if we take g : C′′ → C′, and consider the
following diagram

hC(C′) F (C′)

hC(C′′) F (C′′).

ηC′

hC(g) F (g)
ηC′′

For arbitrary f : C′ → C ∈ hC(C′), note that

ηC′′ ◦hC(g)= ηC′′( f ◦ g)
=F ( f ◦ g)(s)
=F (g)◦F ( f )(s)
=F (g)◦ηC′( f ).

Thus above diagram commutes, that is, η is a natural transformation.
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By construction, we have

ηC(idC)=F (idC)(s)= s.

This proves the surjectivity.
To see the injectivity: Suppose we have two natural transformation η,η′ : hC →

F such that ηC(idC) = η′C(idC). Then if we want to show η= η′, it suffices to show
for arbitrary C′ ∈C , we have ηC′ = η′C′ . Let g : C′ → C. Then we have the following
commutative diagram

hC(C) F (C)

hC(C′) F (C′).

ηC

hC(g) F (g)
ηC′

It follows that
F (g)◦ηC(idC)= ηC′ ◦hC(g)(idC)= ηC′(g),

and by the same argument one has F (g)◦η′C(idC)= η′C′(g). Hence

ηC′(g)=F (g)◦ηC(idC)=F (g)◦η′C(idC)= η′C′(g).

This completes the proof. □
Corollary 1.1.1. The functor h : C →Psh(C ) is fully faithful.

Proof. A functor is called fully faithful if for every C,C′ ∈C , there is the following
bijection

HomC
(
C,C′)↔HomPsh(C ) (hC,hC′) .

Then take F = hC′ in Yoneda lemma to conclude. □
Definition 1.1.3. A presheaf F ∈ Psh(C ) is called reprensentable if there exists
an object C ∈C and a natural isomorphism F ∼= hC.

So it’s natural to ask if every presheaf F is reprensentable by a scheme X? The
answer is negative, as we will see. However, we are quite interested in answering
this question for special functors, known as moduli functor.

1.2. Moduli problems. A moduli problem is a classification problem: we have a
collection of objects and we want to classify them up to some equivalence. In fact,
we want more than this: we want a moduli space encodes how these objects vary
continously in families.

Definition 1.2.1. A naive moduli problem (in algebraic geometry) is a collection
A of objects (in algebraic geometry) and an equivalence relation ∼ on A.

Example 1.2.1.

1. Let A be the set of k-dimensional linear subspaces of an n-dimensional vector
space and ∼ be equality.

2. Let A be the collection of vector bundles on a fixed scheme X and ∼ be the
relation given by isomorphism of vector bundles.
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Our aim is to find a scheme M whose k-points are in bijection with equivalence
classes A/∼. Furthermore, we want M to also encode how these objects vary conti-
nously in "families".

Definition 1.2.2. Let (A,∼) be a naive moduli problem. Then a moduli problem
is given by
1. sets AS of families over S and an equivalence relation ∼S on AS for all schemes

S.
2. pullback maps f ∗ : AS →AT , for every morphism of schemes f : T → S, such

that
(1) (ASpeck,∼Speck)= (A,∼);
(2) For the identity id: S → S and any family F over S, we have id∗F =F ;
(3) For a morphism f : T → S and equivalent families F ∼S G, we have f ∗F ∼T

f ∗G.
(4) For morphisms f : T → S, g : S → R, and a family F over R, we have an

equivalence
(g ◦ f )∗F ∼T f ∗g∗F

Notation 1.2.1. For a family F over S and a point s : Speck → S, Fs := s∗F de-
notes the corresponding family over Speck.

Corollary 1.2.1. A moduli problem defines a functor M ∈Psh(Sch), given by
M(S) := {families over S}/∼S

M( f : T → S) := f ∗ : M(S)→M(T)

Example 1.2.2. Consider the naive moduli problem given by vector bundles on a
fixed scheme X up to isomorphism. Then this can be extended in two different ways.
The natural notion for a family over S is a locally free sheaf F over X ×S which is
flat over S, but there are two possible ways to define relations:

F ∼′
S G⇐⇒F ∼=G

F ∼S G⇐⇒F ∼=G⊗π∗
SL

where L is a line bundle L→ S and πS : X ×S → S.

1.3. Fine moduli spaces. The ideal is when there is a scheme that reprensents
our given moduli functor.

Definition 1.3.1. Let M : Sch → Set be a moduli functor. Then a scheme M is a
fine moduli space for M if it reprensents M.

Remark 1.3.1. To be explicit, the scheme M is a fine moduli space for the moduli
functor M if there is a natural isomorphism η : M→ hM . Thus for every scheme
S, we have a bijection

ηS : M(S)= {families over S}/∼S ←→ hM(S)= {morphisms S → M}

In particular, if S =Speck, then the k-points of M are in bijection with the set A/∼.
Moreover, if T → S is a morphism between schemes, then the following diagram
commutes
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M(S) hM(S)

M(T) hM(T).

ηS

ηT

Definition 1.3.2. Let M be a fine moduli space for M. Then the family U ∈M(M),
determined by U := η−1

M (idM), is called the universal family.

Remark 1.3.2. For any F ∈M(S), that is, a family over a scheme S, it corresponds
to a morphism f : S → M. On the other hand, the family f ∗U corresponds to the
morphism idM ◦ f .

f ∗U ∈M(S) hM(S) 3 idM ◦ f

U ∈M(M) hM(M) 3 idM .

ηS

ηT

This shows families f ∗U and F correspond to the same morphism, and thus

f ∗U ∼S F .

This shows any family is equivalent to a family obtained by pulling back the uni-
versal family, and that’s why U is called the universal family.

Proposition 1.3.1. If a fine moduli space for moduli functor M exists, then it is
unique up to a unique isomorphism.

Proof. Suppose (M,η), (M′,η′) are two fine moduli spaces for the moduli functor
M. Then they are related by unique isomorphisms

η′M ◦ (ηM)−1(idM) : M → M′,

ηM′ ◦ (η′M′)−1(idM′) : M′ → M.

□
Example 1.3.1. In this example let’s show that the projective space Pn can be in-
terpreted as a fine moduli space for the moduli problem of lines through the origin
V := An+1. Firstly, we need to clearify the definition of the moduli functor in this
setting. A family of lines through the origin in V over a scheme S is a line bundle
L over S which is a subbundle of the trivial vector bundle V ×S over S, and two
families are equivalent if and only if they are equal.

There is a tautological line bundle OPn (−1) ⊆ V ×Pn, and the dual line bun-
dle OP1(1) is generated by global sections x0, . . . , xn. Given any morphism f : S →
Pn, the line bundle f ∗OPn (1) is generated by the global sections f ∗(x0), . . . , f ∗(xn).
Hence there is a surjection O⊕n+1

S ↠ f ∗OPn (1). Dualize the above surjection we ob-
tain an inclusion L := f ∗OPn (1) ,→O⊕n+1

S = V ×S. This provides a family of lines
through the origin in V over S.

Conversely, let L ⊆ V ×S be a family of lines through the origin in V over S.
Then dualize this inclusion this provides a surjection q : V∗×S ↠L∗. The vector
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bundle V∗×S is globally generated by the global sections σ0, . . . ,σn corresponding
to the dual basis of the standard basis on V . In particular, it provides a unique
morphism

f : S →Pn

s 7→ [q ◦σ0(s), . . . , q ◦σn(s)],
and f ∗OPn (−1)=L⊆V ×S by [Har77, Theorem 7.1].

Hence, there is a bijective correspondence between morphisms S →Pn and fami-
lies of lines through the origin in V over S, and this bijection has functoriality. In
particular, the projective space Pn is a fine moduli space for this moduli problem
and tautological line bundle is the universal family.

Example 1.3.2. The Grassmannian variety Gr(d,n) is a fine moduli space for the
moduli problem of d-dimensional linear subspaces of a fixed vector space V =An.

1.4. Coarse moduli spaces.

Definition 1.4.1. A coarse moduli space for a moduli functor M is a scheme M
and a natural transformation of funtors η : M→ hM such that
(1) ηSpeck : M(Speck)→ hM(Speck) is bijective;
(2) For any scheme N and natural transformation ν : M → hN , there exists a

unique morphism of schemes f : M → N such that ν= h f ◦η, where h f : hM →
hN is the corresponding natural transformation of presheaves.

M hM

hN

η

ν h f

Remark 1.4.1. A coarse moduli space for M is unique up to unique isomorphism,
which can be determined by the universal property (2) in the definition.

Proposition 1.4.1. Let (M,η) be a corase moduli space for a moduli problem M.
Then (M,η) is a fine moduli space if and only if
(1) there exists a family U over M such that ηM(U )= idM ;
(2) for families F and G over a scheme S, we have F ∼S G if and only if ηS(F ) =

ηS(G).

Proof. If (M,η) is a fine moduli space, then (1) and (2) satisfy automatically. Con-
versely, suppose (M,η) is a coarse moduli space satisfying (1) and (2). In order to
show the natural transformation η is a natural isomorphism, it suffices to show
that for any scheme S, ηS : M(S) → hM(S) is an isomorphism. The condition (2)
implies the injectivity. For any morphism f : S → M, the family F := f ∗U over S
satisfies ηS(F )= f , and this shows the surjectivity. □
Lemma 1.4.1. Let M be a moduli problem and suppose there exists a family F
over A1 such that Fs ∼ F1 for all s 6= 0 and F0 6∼ F1. Then for any scheme M
and natural transformation η : M→ hM , we have ηA1(F ) : A1 → M is constant. In
particular, there is no coarse moduli space for this moduli problem.



8

Proof. Suppose there is a natural transformation η : M→ hM . Then η sends the
family F over A1 to a morphism f : A1 → M. For any s : Speck →A1, the functori-
ality implies f ◦ s = ηSpeck(Fs)

F ∈M(A1) hM(A1) 3 f

Fs := s∗F ∈M(Speck) hM(Speck) 3 f ◦ s.

η
A1

ηSpeck

Since for s 6= 0, Fs =F1 ∈M(Speck), so that f |A1 \{0} is constant. Let m : Speck →
M be the k-valued point corresponding to the equivalent class for F1 under η.
Since M is a scheme of finite type, the k-valued points of M are closed, and thus
their preimages must also be closed. Then, as A1 \{0} ⊆ f −1(m), the closure A1 of
A1 \{0} must also be contained in f −1(m). In other words, f is the constant map
from A1 to the k-valued point m of M. This shows ηSpeck : M(Speck)→ hM(Speck)
is not a bijection, since F0 6= F1 in M(Speck), but these non-equivalent objects
correspond to the same k-point m in M. □

Above lemma provides a pathological behavior, which is called jumping phe-
nomenon, for a moduli problem not to admit a corase moduli space.

Example 1.4.1. Consider the moduli problem of classifying endomorphisms of a
n-dimensional k-vector space. To be explicit, a family over a scheme S is a rank n
vector bundle F with an endomorphism ϕ, and (F ,ϕ) ∼S (G,ϕ′) if there exists an
isomorphism h : F →G such that h◦ϕ=ϕ′ ◦h.

For n ≥ 2, we can construct families which exhibit the jumping phenomenon.
For example, let n = 2. Then consider the family over A1 given by O⊕2

A1 ,ϕ), where for
s ∈A1,

ϕs =
(
1 s
0 1

)
.

For s, t 6= 0, these matrices are similar and thus ϕs ∼ϕt. However, ϕ0 6∼ϕ1 as these
two matrices have different Jordan form.
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2. ALGEBRAIC STACK

2.1. Motivation and definition.

Definition 2.1.1. A stack M is a sheaf of groupoids:

M : Sch→Groupoids,

that is, an assignment
(1) for any scheme T, M(T) is a category in which all morphisms are isomor-

phisms.
(2) for any morphism f : X →Y , a functor f ∗ : M(Y )→M(X ).

(3) for any pair of composable morphisms X
f−→Y

g−→ Z, a natural transformation
φ f ,g : f ∗ ◦ g∗ =⇒ (g◦ f )∗. These natural transformations have to be associative
for composition, in particular we assume this natural transformation to be the
identity, if one of the f , g is identity,

satisfying the following gluing conditions:
(a) Given a covering2 {Ui} of T, objects Ei ∈M(Ui) and isomorphisms φi j : Ei|Ui∩U j →

E j|Ui∩U j satisfying a cocycle condition on three-fold intersections, there exists
an object E ∈M(T), unique up to isomorphisms, together with isomorphisms
ψi : E |Ui → Ei such that φi j =ψ j ◦ψ−1

i .
(b) Given a covering {Ui} of T, objects E ,F ∈M(T) and morphisms φi : E |Ui →F |Ui

such that φ|Ui∩U j = φ j|Ui∩U j , there is a unique morphism φ : E →F such that
φ|Ui =φi.

Example 2.1.1. Let G be an affine algebraic group. Then

BG(T)= {principal G-bundles on T}

is the classifying stack of G.

Example 2.1.2. Let X be a scheme. Then X (T) := Hom(T, X ) is a stack, where
Hom(T, X ) is considered as a category in which the only morphisms are identities.
The pullback functor f ∗ for S → T is given by composition with f . Such a stack is
called a representable stack.

Example 2.1.3. Let X be a scheme and G be an algebraic group acting on X . Then
the quotient stack [X /G] is defined by

[X /G](T) :=


P X

T

g

p : P → T is a G-bundle, P → X is a G-equivariant map

 .

Morphisms in this category are isomorphisms of G-bundles commuting with the
maps to X .

2A covering means one of the following choices: In complex geometry we use the analytic topology.
Otherwise we use either the étale topology or the fppf topology. In this case, the intersection Ui∩U j
has to be defined as Ui ×X U j .
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Remark 2.1.1. The quotient stack [X /G] should catch the properties of the quotient
space "X /G", which may not exist in the category of schemes. Suppose there exists
a scheme X /G together with a G-bundle map X → X /G. In this case, any diagram
in [X /G](T) defines a map g : T → X /G as follows:

P X

T X /G,

g

p
g

and P is canonically isomorphic to the pullback of the G-bundle g∗X = X ×X /G T
over T. Thus the category [X /G](T) is canonically equivalent to the set X /G(T),
which is considered as a category in which the only morphisms are the identities
of elements.

Lemma 2.1.1 (Yoneda lemma). Let M be a stack. Then for any scheme T there
is a natural equivalence of categories:

MorStacks(T,M)∼=M(T).

Let G be an affine algebraic group and BG be the classifying stack. Let pt =
Speck be a point and E be a G-bundle on a scheme X . By Lemma 2.1.1, E defines
a morphism FE : X → BG and the trivial bundle defines a morphism triv: pt→ BG:

pt

X BG.

triv
FE

Let’s compute the fiber product of the above diagram.
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