
Abelian variety
Lectured by

Mao Sheng1

Typed by

Bowen Liu2

1msheng@mail.tsinghua.edu.cn
2liubw22@mails.tsinghua.edu.cn



1

CONTENTS

Preface 2
Motivation and plan 2
1. Basic structures 3
1.1. Introductions 3
1.2. Hodge structures 4
1.3. Line bundles on complex torus 5
References 9



2

PREFACE

Motivation and plan. Abelian varieties are special Calabi-Yau varieties. They’re
"linear", but extremely rich in geometry and arithmetic. For arithmtic, think about
BSD conjecture for elliptic curves (which are 1-dimensional abelian varieties) over
Q; For geometry, think about Hodge conjecture for abelian varieties over C.

This course is oriented around geometries of abelian varieties, so we basically
concern only abelian varieties over an algebraically closed field with characteristic
zero. Here is the outline of the course:
(1) Basic structures, [Mum70, Chapter I];
(2) Duality, [Mum70, Chapter II];
(3) Further structures;
(4) Fourier-Mukai transform, [Huy06];
(5) Classifications, [Mum70, Chapter III];
(6) Hodge conjecture for abelian varieties, [Gor97, Mar25, DMOS82];
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1. BASIC STRUCTURES

1.1. Introductions. One of the most basic and important examples in algebraic
geometry is the projective space Pn, which is obtained from projecti. We know that
πi(Pn)= {e} for i ≥ 0 and its Hodge number is given by

Hp,q(Pn)∼=
{
C, p = q
0, otherwise.

There is also an explicit description of the Chow group of Pn by the standard
hyperplane section [H]. To be precisely, we have

[Hp] ∈CHp(Pn)∼= Hp,p(Pn,Z)∼=Z,

so the Hodge conjecture holds for Pn trivially. Also, there are some good chracter-
izations of Pn:

Theorem 1.1.1 (Mori). Let X be a complex projective manifold with ample tan-
gent bundle. Then X is biholomorphic to Pn.

Theorem 1.1.2 (Yau). Let X be a complex Kähler manifold. If X is homeomorphic
to Pn, then X is biholomorphic to Pn.

Yet, we still have another Hartshorne’s conjecture, which is still unknown.

Conjecture 1.1.1. Any rank two (holomorphic) vector bundle on Pn is split for
n ≥ 6.

By Serre’s construction, it’s equivalent to the following conjecture:

Conjecture 1.1.2. Any smooth codimension two subvariety in Pn is a complete
intersection.

Another important example coming from vector space is elliptic curve. By defi-
nition an elliptic curve is the quotient of C by a lattice, that is, E =C /Z2. In higher
dimensional cases, simimlar construction provides the complex torus, which is the
wedge product of S1 topologically. However, a surprising result is that for almost
all lattices L in Cg, the complex torus X =Cg /L is not algebraic, that is, there does
not exist an algebraic variety Y /C such that Yan ∼= X as complex manifold.

By Chow’s theorem, X is algebraic if and only if X ,→Pn for some n ∈Z>0, and by
Kodaira’s embedding theorem, X is algebraic if and only if there exists a positive
line bundle on X . In fact, we shall prove the following beautiful result:

Theorem 1.1.3 (Lefschetz). The complex torus X =Cg /L is algebraic if and only if
there exists a positive definite Hermitian metric h on Cg such that Imh(L×L)⊆Z.

A cheap way to define abelian variety is to define abelian variety as the complex
torus which is algebraic.
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1.2. Hodge structures. Let X be a compact complex manifold of Kähler type3.
Then there is the following Hodge decomposition

Hk(X ,Z)∼=
⊕

p+q=k
Hp,q(X ),

such that Hp,q(X )= Hq,p(X ).
For the complex torus case, there is additional description on its de Rham co-

homology Hk(X ,Z). Suppose X =Cg /L. Then we have the following commutative
diagram

Cg Cg /L

T0X =V X .

∼=

π

∼=
exp

This implies that π1(X )= L and thus H1(X ,Z)=HomZ(L,Z)= L∗.
If we forget the complex structure, topologically we have X ∼= (S1)2g. Then

Hk(X ,Z)
∧k H1(X ,Z)

Hk((S1)2g,Z)
∧k H1((S1)2g,Z).

∼=

∼=

∼=

∼=

In other words, the k-th cohomology is determined by the 1-st cohomology group
H1(X ,Z).

In order to compute the Dolbeault cohomology, we equip X =Cg /L with a Kähler
metric ω. Then by the theory of harmonic forms, there is an isomorphism

H p,q(X )= {∆d(α)= 0 |α ∈A p,q(X )}∼= Hp,q(X ).

Since X =Cg /L is a Lie group, its tangent bundle is trivial. Thus

A p,q(X )= spanC∞(X ){dzi1 ∧·· ·∧dzi p ∧dz j1 ∧·· ·∧dz jq },

where {dz1, . . . ,dzg} is a basis of H0(X ,Ω1
X ).

Note that the above isomorphism is independent of the choice of Kähler metric,
we choose the standard flat metric, that is, the metric induced by the Euclidean
metric on Cg. Suppose α=∑

|I|=p,|J|=q f IJdzI ∧dzJ . Then

∆d(α)= 0⇐⇒∆ f IJ = 0⇐⇒ f IJ ∈C .

This shows the Hodge number of complex torus X =Cg /L is

hp,q(X )=
(

g
p

)
×

(
g
q

)
.

3A compact complex manifold is of Kähler, if there exists a Kähler metric ω on X .
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1.3. Line bundles on complex torus. In this section, we will show how to de-
scribe (holomorphic) line bundles on abelian varieties explicitly. Let X be a com-
plex torus defined by V /L, where V =Cg and L ⊆V is a lattice. Note that there is a
natural projection π : V → X , and by Oka-Grauert principle4, every vector bundle
on X pull back to trivial bundle on V , since V is contractible and Stein.

Remark 1.3.1. For line bundles, we may prove above fact algebraically by using
the exponential sequence

0→Z→OV →O∗
V → 0.

Indeed, since Hp(V ,Z) = 0 for p > 0 as V is contractible, and Hp(V ,OV ) = 0 for
p > 0 as V is Stein, then by the long exact sequence induced by the exponential
sequence, we have H1(V ,O∗

V )= 0, which shows every line bundle on V is trivial.

Although line bundles on V are trivial, there is a L-action on the structure sheaf
OV , and an L-equivariant locally free OV -module means an OV -module F together
with φ : L×F →F such that φℓ( f s)= ℓ∗( f )φℓ(s), where f ∈OV , s ∈F and ℓ∗( f ) is
the action of L on OV .

Then there is one to one correspondence defined by the pullback functor π∗:

{line bundles on X }←→ {L-equivariant locally free OV -module of rank 1}.

Thus it suffices to classify all L-equivariant locally free OV -modules of rank 1. Let
L be a line bundle on X and fix an isomorphism α : π∗L ∼=OV , then determine φ
is equivalant to determine a collection {φℓ}ℓ∈L such that

φℓ1+ℓ2 = ℓ∗2φℓ1 ·φℓ2 ,

that is, {φℓ}ℓ∈L satisfies the cocycle condition. For convenience, the set of all {φℓ}ℓ∈L
which satisfy the cocycle condition is denoted by Z1(L,H∗), where H = H0(V ,OV ).

There is an equivalant relation ∼ on Z1(L,H∗) defined by {φℓ}∼ {φ′
ℓ
} if and only

if there exists f ∈ H∗ such that for all ℓ ∈ L, we have

φ′
ℓ ·φ−1

ℓ = ℓ∗( f ) · f −1,

and the quotient group of Z1(L,H∗)/∼ is denoted by H1(L,H∗).
Then it’s not difficult to see the pullback functor π∗ induces an isomorphism

H1(L,H∗)
∼=−→ H1(X ,O∗

X )
[{φℓ}ℓ∈L]→ [L ].

Now let’s introduce how to construct {φℓ}ℓ∈L. Recall that for a Hermitian form h
on V , if we write h =Reh+p−1Imh, then Reh is symmetric and E := Imh is alter-
nating. Moreover, E preserves the complex structure of V , that is, E(

p−1x,
p−1y)=

E(x, y) for all x, y ∈V .

4In complex geometry, the Oka-Grauert principle states that over complex manifolds which are
Stein manifolds, the non-abelian cohomology-classification of holomorphic vector bundles coincides
with that of topological vector bundles.
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Suppose we’re given a Hermitian form h satisfying the integrality condition

E : L×L →Z .

Lemma 1.3.1.
(1) There exists α : L →U(1) such that for any ℓ1,ℓ2 ∈ L, we have

α(ℓ1 +ℓ2)
α(ℓ1) ·α(ℓ2)

= e
p−1πE(ℓ1,ℓ2) ∈ {±1}.

(2) For ℓ ∈ L, if we define

φℓ(z)=α(ℓ) · eπh(z,ℓ)+ 1
2πh(ℓ,ℓ) ∈ H∗,

then {φℓ} ∈ Z1(L,H∗).
(3) There is a commutative diagram

[L ] ∈ H1(X ,O∗
X ) H2(X ,Z)

[{φℓ}ℓ∈L] ∈ H1(L,H∗) H2(L,Z),

π∗

δ

π∗

δ

such that c1(L )= E under the identification H2(X ,Z)∼=∧2 L∗, where L is the
line bundle corresponding to {φℓ}ℓ∈L.

Proof. For (1). Suppose that the rank of L is 2 and take a basis {e, f } of L. Then
define a map

δ : L →R

ne+mf 7→ 1
2

nmE(e, f ).

A direct computation shows that for any ℓ1,ℓ2 ∈ L,

(1.1) δ(ℓ1 +ℓ2)−δ(ℓ1)−δ(ℓ2)≡ 1
2

E(ℓ1,ℓ2) (mod 1).

Then we may define α= e2π
p−1δ : L →U(1).

In the general case, we may do induction on the rank of L, or we simply find a
symplectic basis of L, denoted by {e1, f1, e2, f2, . . . , eg, fg} such that L = ⊕g

i=1 L i is
an orthogonal decomposition with respect to E, where L i = spanZ{e i, f i}. Then a
direct computation yields that δ : L →R defined by

δ

(
g∑

i=1
(ni e i +mi f i)

)
= 1

2

g∑
i=1

nimiE(e i, f i)

satisfy (1.1), and we may define α= e2π
p−1δ : L →U(1).

For (2). It follows from direct computation.
For (3). By the exponential sequence

0→Z→OV →O∗
V → 0,

there is the following short exact sequence

(1.2) 0→Z→ H → H∗ → 0,



7

since H1(V ,Z)= 0. Moreover, since V is contractible and Stein, we have H i(V ,O∗
V )=

0 for i ≥ 1. Thus by Appendix to §2 of [Mum70], we get natural isomorphisms as
vertical maps

H1(X ,O∗
X ) H2(X ,Z)

H1(L,H∗) H2(L,Z),

∼=

δ

∼=
δ

and the commutativity can be checked by using a small open covering of X .
By the commutativity of the diagram, in order to compute the first Chern class

of L corresponding to {φℓ}ℓ∈L ∈ Z1(L,H∗), it suffices to compute δ
(
{φℓ}ℓ∈L

)
. By

the short exact sequence (1.2), we have Z1(L,H)↠ Z1(L,H∗), that is, there exists
{ fℓ}ℓ∈L ∈ Z1(L,H) such that exp(2π

p−1 fℓ)=φℓ. For { fℓ}ℓ∈L, we have

δ( fℓ)(ℓ1,ℓ2)(z)= fℓ2(z+ℓ1)− fℓ1+ℓ2(z)+ fℓ1(z) ∈Z .

Then use the following fact

Z2(L,Z) Hom(
∧2 L,Z)

∧2 L∗ H2(X ,Z)

H2(L,Z),

A ∼= ∼=
∼=

where for F ∈ Z2(L,Z), we have A(F)(ℓ1,ℓ2) := F(ℓ1,ℓ2)−F(ℓ2,ℓ1).
Thus we get

δ({φℓ}ℓ∈L)(ℓ1,ℓ2)= fℓ2(z+ℓ1)− fℓ1+ℓ2(z)+ fℓ1(z)− fℓ1(z+ℓ2)+ fℓ1+ℓ2(z)− fℓ2(z)
= fℓ2(z+ℓ1)− fℓ1(z+ℓ2)+ fℓ1(z)− fℓ2(z)

= 1

2π
p−1

logα(ℓ2)+ 1

2π
p−1

(
πh(z+ℓ1,ℓ2)+ 1

2
πh(ℓ2,ℓ1)

)
− 1

2π
p−1

logα(ℓ1)− 1

2π
p−1

(
πh(z+ℓ2,ℓ1)+ 1

2
πh(ℓ1,ℓ2)

)
+ 1

2π
p−1

logα(ℓ1)+ 1

2π
p−1

(
πh(z,ℓ1)+ π

h
(ℓ1,ℓ2)

)
− 1

2π
p−1

logα(ℓ2)− 1

2π
p−1

(
πh(z,ℓ2)+ 1

2
πh(ℓ2,ℓ2)

)
= 1

2
p−1

(h(ℓ1,ℓ2)−h(ℓ2,ℓ1))

=E(ℓ1,ℓ2).

□

Notation 1.3.1. Since the construction of {φℓ}ℓ∈L depends on Hermitian metric h
and α, we write L (h,α) to denote the line bundle determined by h and α.
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Lemma 1.3.2.
L (h1,α1)⊗L (h1,α1)=L (h1 +h2,α1 ·α2).

Theorem 1.3.1 (Appell-Humbert). Any line bundle on X is isomorphic to a unique
L(H,α).

Remark 1.3.2. In other words, if we set

Hermint(V )= {h : V×V →C | h is a Hermitian metric and Imh satisfies the integrable condition}

andãHermint(V )= {(h,α) | h ∈Hermint(V ), α : L →U(1) such that α(ℓ1+ℓ2)= eπ
p−1Imh(ℓ1+ℓ2)α(ℓ1)·α(ℓ2)},

then we have the following commutative diagram

0 Hom(L,U(1)) ãHermint(V ) Hermint(V ) 0

0 Pic0(X ) Pic(X ) H1,1(X ,Z) 0

∼= ∼= ∼=
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