2.6. **Vector bundles on abelian surface.** Let X be an abelian surface with Picard rank one. Let H be an ample generator of NS(X) and \widehat{H} be the ample generator of $NS(\widehat{X})$. Then

$$\mathcal{S}(r+dc_1(H)+a\omega)=a-dc_1(\widehat{H})+r\widehat{\omega},$$

where ω and $\widehat{\omega}$ are fundamental class of X and \widehat{X} , respectively.

Proposition 2.6.1. Let \mathcal{E} be a μ -stable sheaf on X of Mukai vector $v(\mathcal{E}) = r - c_1(H) + a\omega$. If a > 0, then \mathcal{E} satisfies WIT₂-condition, and $\mathscr{S}^2(\mathcal{E})$ is a μ -stable torsion-free sheaf.

Proof. Firstly we prove that \mathcal{E} is a WIT₂-sheaf. Since \mathcal{E} is μ -stable with negative slope, we know that $\operatorname{Hom}(\mathcal{P}_{\mathcal{E}},\mathcal{E})=0$ for all $\xi\in\widehat{X}$. Now we claim that

$$H^1(X,\mathcal{E}\otimes\mathcal{P}_{\mathcal{E}})=0$$

except for finitely many points $\xi \in \widehat{X}$. Indeed, if $H^1(X, \mathcal{E} \otimes \mathcal{P}_{\xi}) = \operatorname{Ext}^1(\mathcal{P}_{-\xi}, \mathcal{E}) \neq 0$ for distinct points $\xi = \xi_1, \dots, \xi_n$, then it gives a non-trivial extension

$$0 \to \mathcal{E} \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{P}_{-\xi_i} \to 0.$$

Now we claim that it is a μ -stable extension. Indeed, if $\mathcal{G} \subseteq \mathcal{F}$ is a subsheaf such that

$$\mu(\mathcal{G}) \ge \mu(\mathcal{F}) = \frac{-H^2}{\mathrm{rk}(\mathcal{F})},$$

then we must have $\mu(\mathcal{G}) \geq 0$, otherwise

$$\mu(\mathcal{G}) \le \frac{-H^2}{\operatorname{rk}(\mathcal{G})} < \mu(\mathcal{F})$$

since H is an ample generator of NS(X) and $rk(\mathcal{G}) < rk(\mathcal{F})$.

- (1) If $\mu(\mathcal{G}) > 0$, then the composite map $\mathcal{G} \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{P}_{-\xi_i}$ is zero, as $\bigoplus_{i=1}^n \mathcal{P}_{-\xi_i}$ is semistable of degree zero, and thus \mathcal{G} is contained in \mathcal{E} , which gives a contradiction, since \mathcal{E} is stable and $\mu(\mathcal{E}) < \mu(\mathcal{F})$.
- (2) If $\mu(\mathcal{G}) = 0$, without lose of generality, we may assume that the composite map $\mathcal{G} \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{P}_{-\xi_i}$ is non-trivial. Moreover, we may assume \mathcal{G} is a μ -stable sheaf, since we may replace \mathcal{G} by its maximal destabilizer and the first term in Jordan-Hölder filtration when necessary. Combine these two facts together we obtain that $\mathcal{G} \cong \mathcal{P}_{-\xi_i}$ for some i, which contradicts to the fact that the extension is non-trivial.

Since it is a stable extension, we have $\langle v(\mathcal{F}), v(\mathcal{F}) \rangle = \langle v(\mathcal{E}), v(\mathcal{E}) \rangle - 2na \ge 0$. Hence n must satisfy the inequality $n \le \langle v(\mathcal{E}), v(\mathcal{E}) \rangle / 2a$, and thus this completes the proof of claim. As a consequence, we have $\mathscr{S}^0(\mathcal{E}) = 0$ and $\mathscr{S}^1(\mathcal{E})$ is of dimension zero. This means that $\mathscr{S}^1(\mathcal{E})$ is an IT_0 -sheaf, but $\widehat{\mathscr{S}}^0\mathscr{S}^1(\mathcal{E}) = 0$, which implies that $\mathscr{S}^1(\mathcal{E}) = 0$. This completes the proof of \mathcal{E} is a WIT₂-sheaf.

Now let's show that $\mathscr{S}^2(\mathcal{E})$ is torsion-free. Let \mathcal{T} be a torsion subsheaf of $\mathscr{S}^2(\mathcal{E})$. Then \mathcal{T} is of dimension zero, as $\mathscr{S}^2(\mathcal{E})$ is locally free in codimension one. Hence \mathcal{T} is an IT₀-sheaf and $\mathscr{S}^0(\mathcal{T})$ is of degree zero. Since $\mathscr{S}^0(\mathcal{T})$ is a

subsheaf of \mathcal{E} , we must have $\mathscr{S}^0(\mathcal{T}) = 0$, since \mathcal{E} is μ -stable of negative degree. This shows $\mathcal{T} = 0$, that is, $\mathscr{S}^2(\mathcal{E})$ is torsion-free.

Finally, let's show that $\mathscr{S}^2(\mathcal{E})$ is μ -stable. Since $\mathscr{S}^2(\mathcal{E})$ has minimal positive degree, if $\mathscr{S}^2(\mathcal{E})$ is not μ -stable, then there is an exact sequence

$$0 \to \mathcal{A} \to \mathcal{S}^2(\mathcal{E}) \to \mathcal{B} \to 0$$
,

where \mathcal{B} is a μ -stable sheaf with degree ≤ 0 . By applying the Fourier-Mukai transform, it gives

$$0 \to \widehat{\mathcal{S}}^0(\mathcal{A}) \to (-1_X)^*\mathcal{E} \to \widehat{\mathcal{S}}^0(\mathcal{B}) \to \widehat{\mathcal{S}}^1(\mathcal{A}) \to 0$$

and

$$\widehat{\mathcal{I}}^{2}(\mathcal{B}) = 0$$

$$\widehat{\mathcal{I}}^{1}(\mathcal{B}) = \widehat{\mathcal{I}}^{2}(\mathcal{A}).$$

- (1) If \mathcal{B} is of negative degree, then $\operatorname{Hom}(\mathcal{P}_{\xi},\mathcal{B}) = 0$ for all $\xi \in \widehat{X}$, and thus \mathcal{B} is a WIT_1 -sheaf. But $\mathscr{S}^1\widehat{\mathscr{S}}^1(\mathcal{B}) = \mathscr{S}^1\widehat{\mathscr{S}}^2(\mathcal{A}) = 0$, which implies $\mathcal{B} = 0$.
- (2) If \mathcal{B} is of degree zero, then we consider the following cases:
 - (a) If $\operatorname{rk}(\mathcal{B}) = 1$, that is, $\mathcal{B} = \mathcal{P}_{\xi}$ for some $\xi \in \widehat{X}$, then $\widehat{\mathscr{S}}^{2}(\mathcal{B}) = \mathbb{C}_{\xi}$, a contradiction.
 - (b) If $\operatorname{rk}(\mathcal{B}) \geq 2$, then $h^0(\mathcal{E} \otimes \mathcal{P}_{\xi}) = h^2(\mathcal{E} \otimes \mathcal{P}_{\xi}) = 0$ for all $\xi \in \widehat{X}$ since \mathcal{B} is stable. This shows \mathcal{B} is an IT_1 -sheaf. However,

$$\mathscr{S}^1\widehat{\mathscr{S}}^1(\mathcal{B}) = \mathscr{S}^1\widehat{\mathscr{S}}^2(\mathcal{A}) = 0,$$

which implies $\mathcal{B} = 0$.

This completes the proof.

Proposition 2.6.2. Let \mathcal{E} be a μ -stable sheaf on X of Mukai vector $v(\mathcal{E}) = r + c_1(H) + a\omega$. If a < 0, then \mathcal{E} satisfies WIT₁-condition, and $\mathcal{S}^1(\mathcal{E})$ is a μ -stable torsion-free sheaf.

Proof. We show that $H^0(X, \mathcal{E} \otimes \mathcal{P}_{\xi}) = 0$ except for finitely many points $\xi \in \widehat{X}$. Suppose $k_i := h^i(X, \mathcal{E} \otimes \mathcal{P}_{\xi_i}) \neq 0$ for distinct points ξ_1, \dots, ξ_n . We shall consider the evaluation map

$$\phi \colon \bigoplus_{i=1}^n \mathcal{P}_{\xi_i}^{\vee} \otimes H^0(X, \mathcal{E} \otimes \mathcal{P}_{\xi_i}) \to \mathcal{E}.$$

Without lose of generality, we may assume $\sum_i^n k_i > r$, otherwise we already have $H^0(X, \mathcal{E} \otimes \mathcal{P}_{\xi}) \neq 0$ for only finitely many $\xi \in \widehat{X}$. By [Yos99, Lemma 2.1], one has ϕ is surjective in codimension 1 and $\ker \phi$ is μ -stable. If we set $b = \dim(\operatorname{coker} \phi)$, then the Mukai vector of $\ker \phi$ is

$$v(\ker \phi) = \sum_{i=1}^{n} k_i - (v(\mathcal{E}) - b\omega).$$

Since $\sum_{i=1}^{n} k_i > r$, we get

$$\begin{split} \langle v(\ker \phi), v(\ker \phi) \rangle &= \langle (\sum_{i}^{n} k_{i} - r - c_{1}(H) + (b - a)\omega, \sum_{i}^{n} k_{i} - r - c_{1}(H) + (b - a)\omega \rangle \\ &= \langle v(\mathcal{E}), v(\mathcal{E}) \rangle + 2(a - b) \sum_{i}^{n} k_{i} + 2br \\ &\leq \langle v(\mathcal{E}), v(\mathcal{E}) \rangle + 2a \sum_{i} k_{i}. \end{split}$$

Since $\langle v(\ker \phi), v(\ker \phi) \rangle \ge 0$, we get

$$\sum_{i} k_{i} \leq \frac{\langle v(\mathcal{E}), v(\mathcal{E}) \rangle}{-2a}.$$

This completes the proof of finiteness. The base change theorem implies that $\mathscr{S}^0(\mathcal{E})$ is a torsion sheaf of dimension zero. Hence $\mathscr{S}^0(\mathcal{E}) = 0$. By the stability of \mathcal{E} and Serre duality, we have $H^2(X, \mathcal{E} \otimes \mathcal{P}_{\xi}) = 0$ for all $\xi \in \widehat{X}$. This shows that \mathcal{E} satisfies WIT₁-condition.

Now let's prove that $\mathscr{S}^1(\mathcal{E})$ is torsion-free. Let $\mathcal{T}\subseteq \mathscr{S}^1(\mathcal{E})$ be the torsion subsheaf. By base change theorem, we know that $\mathscr{S}^1(\mathcal{E})$ is locally free on the open subscheme $\{\xi\in\widehat{X}\mid H^0(X,\mathcal{E}\otimes\mathcal{P}_\xi)=0\}$. Then by above argument we know that \mathcal{T} is supported on finite many points, and thus \mathcal{T} is an IT_0 -sheaf. Then

$$0 \to \widehat{\mathscr{S}}^0(\mathcal{T}) \to \widehat{\mathscr{S}}^0 \mathscr{S}^1(\mathcal{E}) = 0$$

implies T = 0.

Finally, let's prove $\mathscr{S}^1(\mathcal{E})$ is μ -stable. Suppose that $\mathscr{S}^1(\mathcal{E})$ is not μ -stable. Let

$$0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \cdots \subset \mathcal{F}_s = \mathcal{S}^1(\mathcal{E})$$

be the Harder-Narasimhan filtration. Since $\deg(\mathscr{S}^1(\mathcal{E})) = \deg(\mathcal{E})$ has minimal positive degree, we may choose the integer k such that $\deg(\mathcal{F}_i/\mathcal{F}_{i-1}) > 0$ for $i \leq k$ and $\deg(\mathcal{F}_i/\mathcal{F}_{i-1}) \leq 0$ for i > k. In other words, we put $\mathscr{S}^1(\mathcal{E})$ into the following exact sequence

$$0 \to \mathcal{F}_k \to \mathcal{S}^1(\mathcal{E}) \to \mathcal{S}^1(\mathcal{E})/\mathcal{F}_k \to 0.$$

Since $\mathscr{S}^1(\mathcal{E})$ is an IT_1 -sheaf, it is clear that $\mathscr{S}^2(\mathscr{S}^1(\mathcal{E})/\mathcal{F}_k)=0$ and $\mathscr{S}^0(\mathscr{F}_k)=0$. For any $i\leq k$, the semi-stability of $\mathcal{F}_i/\mathcal{F}_{i-1}$ implies that $\mathscr{S}^2(\mathcal{F}_i/\mathcal{F}_{i-1})=0$, and thus $\mathscr{S}^2(\mathcal{F}_k)=0$. On the other hand, for i>k, one can show $\mathscr{S}^0(\mathcal{F}_i/\mathcal{F}_{i-1})=0$ is of dimension zero. Since $\mathcal{F}_i/\mathcal{F}_{i-1}$ is torsion-free, we have $\mathscr{S}^0(\mathcal{F}_i/\mathcal{F}_{i-1})=0$ for i>k. Hence we conclude that $\mathscr{S}^0(\mathscr{S}^1(\mathcal{E})/\mathcal{F}_k)=0$.

This shows both \mathcal{F}_k and $\mathscr{S}^1(\mathcal{E})/\mathcal{F}_k$ are WIT₁-sheaves, and we get an exact sequence

$$0 \to \widehat{\mathcal{S}}^1(\mathcal{F}_k) \to \mathcal{E} \to \widehat{\mathcal{S}}^1(\mathcal{S}^1(\mathcal{E})/\mathcal{F}_k) \to 0.$$

Since $\deg(\mathscr{S}^1(\mathcal{F}_k) = \deg(\mathcal{F}_k) > 0$, the μ -stability of \mathcal{E} implies that $\mathrm{rk}(\widehat{\mathscr{S}}^1(\mathcal{F}_k)) = \mathrm{rk}(\mathcal{E})$. Thus $\widehat{\mathscr{S}}^1(\mathscr{S}^1(\mathcal{E})/\mathcal{F}_k)$ is of dimension zero, and thus it is an IT_0 -sheaf, a contradiction.