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2.6. Vector bundles on abelian surface. Let X be an abelizin surface with
Picard rank one. ALet H be an ample generator of NS(X) and H be the ample
generator of NS(X). Then

S(r+dci(H)+aw)=a—dci(H) +ra,
where » and @ are fundamental class of X and X, respectively.

Proposition 2.6.1. Let £ be a u-stable sheaf on X of Mukai vector v(€) =
r—ci(H)+aw. If a >0, then £ satisfies WITy-condition, and .72(€) is a p-
stable torsion-free sheaf.

Proof. Firstly we prove that £ is a WITg-sheaf. Since £ is u-stable with neg-
ative slope, we know that Hom(P¢,£) = 0 for all { € X. Now we claim that

HYX,E®P:)=0

except for finitely many points ¢ € X. Indeed, if HX(X,& ®Pe) = Extl(P_g,S ) #
0 for distinct points ¢ = ¢1,...,¢,, then it gives a non-trivial extension

n
0-E—-F—>PP- —0.
i=1
Now we claim that it is a u-stable extension. Indeed, if G € F is a subsheaf

such that )

-H
wG) = u(F) = Y

then we must have u(G) = 0, otherwise
2

rk(G)

since H is an ample generator of NS(X) and rk(G) < rk(F).

(1) If w(G) > 0, then the composite map G — F — @?:1 P_¢, is zero, as @?:1 P_g,
is semistable of degree zero, and thus G is contained in £, which gives a
contradiction, since £ is stable and (&) < u(F).

(2) If w(G) =0, without lose of generality, we may assume that the composite
map § - F — @?:173_&. is non-trivial. Moreover, we may assume G is a
u-stable sheaf, since we may replace G by its maximal destabilizer and
the first term in Jordan-Hoélder filtration when necessary. Combine these
two facts together we obtain that G = P_¢, for some i, which contradicts
to the fact that the extension is non-trivial.

Since it is a stable extension, we have (v(F),v(F)) = (v(€),v(E)) —2na = 0.
Hence n must satisfy the inequality n < (v(£),v(£))/2a, and thus this com-
pletes the proof of claim. As a consequence, we have .#%(€) = 0 and .71(€) is
of dimension zero. This means that . 1(£) is an ITy-sheaf, but A7 L& =o,
which implies that .#(€) = 0. This completes the proof of £ is a WITy-sheaf.

Now let’s show that .72(€) is torsion-free. Let 7 be a torsion subsheaf of
S2(E). Then T is of dimension zero, as .72(£) is locally free in codimension
one. Hence 7 is an ITy-sheaf and .#%(7) is of degree zero. Since .#%(7) is a

wg) =

< u(F)
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subsheaf of £, we must have .7°(7) = 0, since £ is p-stable of negative degree.
This shows 7 = 0, that is, .72(£) is torsion-free.

Finally, let’s show that .72(€) is p-stable. Since .%(£) has minimal posi-
tive degree, if .72(£) is not p-stable, then there is an exact sequence

0—A— %) —B—0,

where B is a u-stable sheaf with degree < 0. By applying the Fourier-Mukai
transform, it gives

0— . 7°A) - (-1x)* E — SUB) - .S (A) -0

and
F%B)=0
FUB) = F2(A).

(1) If B is of negative degree, then Hom(P;,5) =0 for all { € X, and thus B is
a WIT;-sheaf. But .#1.7Y(B) = .71.72(A) = 0, which implies B=0.
(2) If B is of degree zero, then we consider the following cases:
(a) If rk(B) =1, that is, B = P; for some ¢ € X, then .72(B) = C¢, a contra-
diction.
(b) If rk(B) = 2, then A% ® P;) = h%(£ ® P) = 0 for all ¢ € X since B is
stable. This shows B is an IT-sheaf. However,

ALY B) = 7L.72(A) =0,

which implies B = 0.
This completes the proof.

0

Proposition 2.6.2. Let £ be a u-stable sheaf on X of Mukai vector v(€) =
r+ci(H)+aw. If a <0, then £ satisfies WIT;-condition, and .#1(€) is a u-
stable torsion-free sheaf.

Proof We show that HO(X,E ® P¢) = 0 except for finitely many points ¢ € X.
Suppose k; := h'(X,E ®P;,) # 0 for distinct points {1,...,{,. We shall consider
the evaluation map

n
¢: PP oH'X,E0P)—E.
i=1
Without lose of generality, we may assume Z?ki > r, otherwise we already
have H)(X,E ® Pe) # 0 for only finitely many ¢ € X. By [Y0s99, Lemma 2.1],

one has ¢ is surjective in codimension 1 and ker¢ is p-stable. If we set b =
dim(coker ¢), then the Mukai vector of ker ¢ is

v(ker¢) = Z k;—@wW(€)-bw).
i=1
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Since }."  k; >, we get

(v(ker¢),v(ker)) = ((iki —r—ci1(H)+( —a)w,iki —r—c1(H)+ (b -a)w)

= (W(&),v(&)) +2(a - b)iki +2br
< W(€),v(€)) +2aZki.

Since (v(ker¢),v(ker¢)) = 0, we get

(W(&),v(€))

This completes the proof of finiteness. The base change theorem implies that
#9(&) is a torsion sheaf of dimension zero. Hence .#°(€) = 0. By the stability
of £ and Serre duality, we have H%(X,£ ® P¢) = 0 for all ¢ € X. This shows
that £ satisfies WIT-condition.

Now let’s prove that .(€) is torsion-free. Let 7 <.#(E) be the torsion
subsheaf. By base change theorem, we know that .”1(€) is locally free on the
open subscheme {¢ € X | HO(X,& ®Pr) = 0}. Then by above argument we know
that 7 is supported on finite many points, and thus 7 is an ITy-sheaf. Then

0— %) - 7°7HE =0
implies 7 =0.

Finally, let’s prove .7 1(£) is p-stable. Suppose that .1(€) is not u-stable.
Let

0cFicFy-cFe=I1E)
be the Harder-Narasimhan filtration. Since deg(.¥ Ly = deg(€) has minimal
positive degree, we may choose the integer k£ such that deg(F;/F;-1) > 0 for
i <k and deg(F;/F;_1) <0 for i > k. In other words, we put .”1(£) into the
following exact sequence

0— Fp — . SNE) — SUENF, — 0.

Since .7 1(€) is an IT;-sheaf, it is clear that .#2(Z X&)/ F;,) =0 and .7°(F,) =
0. For any i < %, the semi-stability of F;/F;_; implies that .”%(F;/F;_1) =0,
and thus .72(F;,) = 0. On the other hand, for i > &, one can show .%(F;/Fi_1)
is of dimension zero. Since F;/F;_; is torsion-free, we have .#°(F;/F;_1) =0
for i > k. Hence we conclude that .7°(.Z1(E)/Fy) = 0.

This shows both F;, and .71(E)/F;, are WIT;-sheaves, and we get an exact
sequence

0— S Fp) — E - FUSUENF) — 0.

Since deg(.71(F3) = deg(F) > 0, the u-stability of € implies that rk(ﬁ(]—"k)) =
rk(£). Thus 571(5” 1(5)/]:k) is of dimension zero, and thus it is an IT-sheaf,
a contradiction. O
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