
ALGEBRAIC DE RHAM COHOMOLOGY

BOWEN LIU

ABSTRACT. In this note, we will introduce the algebraic de Rham coho-
mology for a smooth complex variety X . To be explicit, we mainly concern
about the following aspects.

On one hand, we will introduce the comparison theorem between the
algebraic de Rham cohomology of X and the singular cohomology of its
underlying manifold, and we will also introduce the local system valued
version of comparison theorem.

On the other hand, we also introduce the so-called Hodge to de Rham
spectral sequences, some results and consequences about its E1-degenerations
in both characteristic zero and positive characteristic.
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0. NOTATIONS

(1) X always denotes a complex manifold or a smooth complex algebraic
variety.

(2) F ,G always denote sheaves.
(3) L always denotes an invertible sheaf.
(4) V always denotes a local system.
(5) E always denotes a (quasi)-coherent sheaf or a locally free sheaf.
(6) I always denotes an injective sheaf or an acyclic sheaf.
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1. INTRODUCTION

1.1. Comparison theorems. In the intersection between topology and
geometry, there are some so-called comparison theorems, which explain
the cohomology groups defined in different settings reflect the same infor-
mation of the manifold in fact.

Let X be a smooth manifold. In the setting of topology, we may consider
its singular cohomology H∗

sing(X ,C), which is given by the cohomology of
singular cochain complex with C coefficients. On the other hand, in the
setting of differential geometry, we can use the de Rham theory to define
its de Rham cohomology H∗

dR(X ), which is defined by the cohomology of the
following complex

0→Γ(X ,Ω0
X ) d−→Γ(X ,Ω1

X ) d−→ . . . d−→Γ(X ,Ωn
X )→ 0,

where Γ(X ,Ωk
X ) is the C-vector space of differential k-forms on X , and n is

the dimension of X .
The classical comparison theorem says that the singular cohomology of

X is isomorphic to its de Rham cohomology.

Theorem 1.1.1. Let X be a smooth manifold. Then there is the following
isomorphism

H∗
sing(X ,C)∼= H∗

dR(X ).

The proof of above comparison theorem is based on the sheaf theory.
Given any sheaf F on a smooth manifold X , we may choose an injective
resolution of F →I •. Then the sheaf cohomology is defined by

H∗(X ,F ) := H∗(Γ(X ,I •)).

In this setting, the classical Poincaré lemma can be rephrased as the fol-
lowing sequence of sheaves

0→C→Ω0
X

d→Ω1
X

d→ . . . d→Ωn
X → 0

is exact, and thus it gives a fine resolution of the constant sheaf C.
In other words, in the sheaf-theoretic setting, the de Rham cohomology

is exactly the sheaf cohomology of the constant sheaf C, and similarly the
singular cochain also gives1 a resolution which can be used to compute the
cohomology of constant sheaf C. Thus the sheaf cohomology builds a bridge
which connects singular cohomology and de Rham cohomology.

In the algebraic setting, there is also an algebraic version of de Rham
complex. Let X be a smooth complex variety (with Zariski topology). The

1A good reference is [Wel80].
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algebraic de Rham complex Ω•
X is defined to be the complex of sheaves of

regular differentials as follows

OX
d→Ω1

X
d→ . . . d→Ωn

X → 0.

On the other hand, X has an underlying structure of complex manifold, de-
noted by X an. So it’s natural for us to conjecture that there is a comparison
theorem, but in general

H∗
sing(X an,C) ̸∼= H∗(Γ(X ,Ω•

X )).

In order to obtain the “right” comparison theorem, we need to consider the
hypercohomology of the complex instead of simply taking global sections
and then taking its cohomology.

The first goal of this note is to introduce the following comparison theo-
rem and its local system valued version.

Theorem 1.1.2 ([Gro66a]). Let X be a smooth complex variety and X an be
the underlying complex manifold. Then there is the following isomorphism

H∗(X an,C)∼=H∗(X ,Ω•
X ).

Theorem 1.1.3 ([Del70]). Let X be a smooth complex variety and X an be
the underlying complex manifold. Let E be a vector bundle on X equipped
with a regular integrable connection ∇ and V = E∇=0 be the local system of
horizontal sections on the underlying complex manifold X an. Then there is
the following isomorphism

H∗(X an,V )∼=H∗(X ,Ω•
X (E )).

1.2. Hodge to de Rham spectral sequences. In the setting of differen-
tial geometry, we don’t concern about the cohomology of the sheaf of dif-
ferential k-forms, since they’re so-called fine sheaves and thus they don’t
have any cohomology but zero degree. But in the setting of complex geom-
etry, things become more rigid and we also concern about the cohomology
of sheaves of holomorphic p-forms, also denoted by Ωp

X . The holomorphic
Poincaré lemma implies that the following complex

0→Ω
p
X →Ω

p,0
X

∂−→Ω
p,1
X

∂−→ . . . ∂−→Ω
p,n
X → 0

is a fine resolution of Ωp
X , and thus the Dolbeault cohomology Hp,q(X ) :=

Hq(Γ(X ,Ωp,•
X )) computes the sheaf cohomology of Ωp

X .
One of the most important results in complex geometry is the following

Hodge decomposition theorem, which relates the topology information and
holomorphic information together.
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Theorem 1.2.1 (Hodge). Let (X ,ω) be a compact Kähler manifold. Then
there is a decomposition

Hk
dR(X )∼=

⊕
p+q=k

Hp,q(X ).

A natural equestion is to ask is there any analogy of Hodge decomposi-
tion in the setting of algebraic geometry. The answer is affirmative, and
that’s the E1-degenration of Hodge to de Rham spectral spectral we’re go-
ing to introduce.

Let X be a smooth complex variety of dimension n. The Hodge filteration
on the algebraic de Rham complex Ω•

X is given by

Ω•
X = F0Ω•

X ⊃ F1Ω•
X ⊃ ·· · ⊃ FnΩ•

X ⊃ {0},

where
F pΩ•

X : 0→···→ 0→Ω
p
X →···→Ωn

X .
By the standard theory of spectral sequence, this filteration gives a spectral
sequence, which is called the Hodge to de Rham spectral sequence.

Theorem 1.2.2 (E1-degeneration). Let X be a smooth projective complex
variety. The Hodge to de Rham spectral sequence attached to algebraic de
Rham complex

Ep,q
1 = Hq(X ,Ωp

X )=⇒Hp+q(X ,Ω•
X )

degenerates at E1-page.

It’s clear that the Hodge decomposition theorem implies the E1-degeneration
of Hodge to de Rham spectral sequence since every projective manifold is
Kähler. However, for a long time no algebraic proof of E1-degeneration was
known until P. Deligne and L. Illusie’s work in positive characteristic, and
the standard degeneration arguments allow to deduce the degeneration of
the Hodge to de Rham spectral sequence in characteristic zero.

Theorem 1.2.3 ([DI87]). Let k be an algebraically closed field with char-
acteristic p > 0. Let X /k be a smooth proper variety which is W2(k)-liftable
and of dimension < p. Then the Hodge to de Rham spectral sequence de-
generates attached to algebraic de Rham complex at E1-page.
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Part 1. Preliminaries

In this part we select some basic definitions and techniques which may
be used later, it’s independent of our main topics, so feel free to skip this
part and return back when you’re not familiar with some certain proper-
ties.

2. SPECTRAL SEQUENCE

In this section, we always assume C is an abelian category.

Definition 2.1. A double complex K•• consists of objects K p,q ∈ C for
(p, q) ∈Z2, together with two sorts of differentials
(1) The horizontal differential δ, which maps K p,q to K p+1,q.
(2) The vertical differential d, which maps K p,q to K p,q+1.
such that δ2 = d2 = 0 and d◦δ= δ◦d.

Definition 2.2. A morphism φ : K•• → L•• of double complexes consists of
homomorphisms φp,q : K p,q → Lp,q which are compatible with differentials.

Definition 2.3. Let K•• be a double complex. Then the total complex
(K•,D) of K•• is defined by

Kn = ⊕
p+q=n

K p,q,

where D = δ+ (−1)pd.

Definition 2.4. Let K•• be a double complex and K• be its total complex.
The first filteration F•

H is given by the subcomplexes F p
H =⊕

i≥p K i, j, with
degree n component

⊕
i≥p K i,n−i.

Definition 2.5. Let K•• be a double complex and K• be its total complex.
The second filteration F•

H is given by the subcomplexes F p
V = ⊕

j≥p K i, j,
with degree n component

⊕
j≥p Kn− j, j.

Let (K••,δ,d) be a double complex and (K•,D) be its total complex equipped
with a filteration F. For any integer r ≥ 1, we define a new filteration

· · · ⊆ Zp+1
r ⊆ Zp

r ⊆ . . . ,

where Zp
r = {x ∈ F p | Dx ∈ F p+r}, and the (p+q)-component of Zp

r is denoted
by Zp,q

r . The Er-page of the spectral sequence is defined to be

Ep,q
r = Zp,q

r

F p+1K p+q +D(F p−r+1K p+q−1)
.
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Now let’s construct the differential

dr : Ep,q
r → Ep+r,q−r+1

r .

Let a ∈ Ep,q
r be represented by some x ∈ F p such that Dx ∈ F p+r. Then

Dx ∈ F p+r will be a representative of dr(a). To see it’s independent of the
choice of x, it suffices to show for x ∈ F p+1K p+q, the class of Dx in Ep+r,q−r+1

r
is trivial. It’s clear, since Dx ∈ D(F p+1K p+q), which is zero in Ep+r,q−r+1

r .

Remark 2.1. The begining terms of a spectral sequence are easy to under-
stand, that is,

Ep,q
1 = Hp+q(F p/F p+1),

and the differential d1 : Hp+q(F p/F p+1) → Hp+q+1(F p+1/F p+2) is the con-
necting homomorphism in the exact sequence of complexes

0→ F p+1/F p+2 → F p/F p+2 → F p/F p+1 → 0.

Proposition 2.1. The maps {dr} satisfy d2
r = 0, and the cohomology

ker(dr : Ep,q
r → Ep+r,q−r+1

r )/ im(dr : Ep−r,q+r−1
r → Ep,q

r )

identifies canonically with Ep,q
r+1.

Proof. It’s clear that d2
r = 0 as D2 = 0. Now let’s describe the group

A = ker(dr : Ep,q
r → Ep+r,q−r+1

r ).

It consists of classes in Ep,q
r represented by some x ∈ F pK p+q such that Dx

is of the form y+Dz, where y ∈ F p+r+1K p+r+q and z ∈ F p+1K p+q.
As the class of z in Ep,q

r is zero, the class of x is represented also by
x− z, which satisfies D(x− z) = y ∈ F p+r+1. This gives a well-defined map
f : A → Ep,q

r+1, mapping the class of x to the class of x− z, which is also
surjective.

The kernel of f consists of the classes of x ∈ F pK p+q such that x− z is of
the form u+Dv, where u ∈ F p+1K p+q and v ∈ F p−rK p+q−1. In other words,
one has

x− z−u = Dv.
Since the class of x is also represented by x− z− u, this shows [x] ∈ Ep,q

r
is equal to dr([v]), and thus the kernel of f is contained in the image of
dr. The same argument proves the inverse inclusion, which completes the
proof. □

Proposition 2.2. If the filteration F of K• satisfies that for every n there
exist mn ≤ qn such that Kn ∩ Fqn = 0 and Kn ⊆ Fmn , then the spectral
sequence converges to the H∗

D(K•), that is,

Ep,q
∞ = F pHp+q(K•).
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Proof. Proposition 1.2.2 in [Bry08]. □

Definition 2.6. A spectral sequence degenerates at Er if Er = Er+1 = ·· · =
E∞.

Definition 2.7. Let E••
r and (E′

r)•• be two spectral sequences. A mor-
phism of spectral sequence means for each r, there is a homomorphism
φr : Ep,q

r → (E′)p,q
r such that dr ◦φr =φr ◦dr

Proposition 2.3. Let E••
r and (E′

r)•• be convergent spectral sequences and
φr : Ep,q

r → (E′)p,q
r be a morphism of spectral sequences. If for some s, the

morphism φs is an isomorphism, then φr is an isomorphism for all r ≥ s,
including r =∞.

Proof. Proposition 1.2.4 in [Bry08]. □
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3. SHEAF AND ITS COHOMOLOGY

Along this section, X denotes a topological space unless otherwise speci-
fied.

3.1. Sheaves.

3.1.1. Sheaves and its morphisms.

Definition 3.1.1. A presheaf of abelian group F on X consisting of the
following data:
(1) For any open subset U of X , F (U) is an abelian group.
(2) If V ⊆ U are two open subsets of X , then there is a group homomor-

phism rUV : F (U)→F (V ). Moreover, above data satisfy
I F (∅)= 0.

II rUU = id.
III If W ⊆V ⊆U are open subsets of X , then rUW = rVW ◦ rUV .

Moreover, F is called a sheaf if it satisfies the following extra conditions
IV Let {Vi}i∈I be an open covering of open subset U ⊆ X and s ∈ F (U).

If s|Vi := rUVi (s)= 0 for all i ∈ I, then s = 0.
V Let {Vi}i∈I be an open covering of open subset U ⊆ X and si ∈F (Vi).

If si|Vi∩Vj = s j|Vi∩Vj for all i, j ∈ I, then there exists s ∈ F (U) such
that s|Vi = si for all i ∈ I.

Example 3.1.1. For an abelian group G, the constant presheaf assign
each open subset U the group G itself, but in general it’s not a sheaf.

Definition 3.1.2. A morphism ϕ : F →G between presheaves consisting
of the following data:
(1) For any open subset U of X , there is a group homomorphism ϕ(U) : F (U)→

G (U).
(2) If U ⊆ V are two open subsets of X , then the following diagram com-

mutes

F (U) G (U)

F (V ) G (V ).

rUV

ϕ(U)

rUV

ϕ(V )

Notation 3.1.1. For convenience, for s ∈F (U), we often write ϕ(s) instead
of ϕ(U)(s).

Remark 3.1.1. The morphisms between sheaves are defined as morphisms
of presheaves.
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Definition 3.1.3. A morphism of presheaves ϕ : F → G is called an iso-
morphism if it has two-sided inverse, that is, there exists a morphism of
presheaves ψ : G →F such that ψ◦ϕ= idF and ϕ◦ψ= idG .

Remark 3.1.2. A morphism of presheaves ϕ : F → G is an isomorphism if
and only if for every open subset U ⊆ X , ϕ(U) : F (U) →G (U) is an isomor-
phism of abelian groups.

3.1.2. Stalks.

Definition 3.1.4. For a presheaf F and p ∈ X , the stalk at p is defined as

Fp = lim−−→
p∈U

F (U)

Remark 3.1.3. In order to avoid language of direct limit, we give a more
useful but equivalent description of stalk: For p ∈ U ∩V , sU ∈ F (U) and
sV ∈ F (V ) are equivalent if there exists p ∈ W ⊆ U ∩V such that sU |W =
sV |W . An element sp ∈ Fp, which is called a germ, is an equivalence class
[sU ].

Notation 3.1.2.
(1) For s ∈F (U) and p ∈U , s|p denotes the equivalent class it gives.
(2) For sp ∈Fp, s ∈F (U) denotes the section such that s|p = sp.

Definition 3.1.5. Given a morphism of sheaves ϕ : F → G , it induces a
morphism of stalks ϕp : Fp →Gp as follows:

ϕp : Fp →Gp

sp 7→ϕ(s)|p.

Remark 3.1.4. It’s neccessary to check the ϕp is well-defined since there
are different choices s such that s|p = sp.

Proposition 3.1.1. Let ϕ : F → G be a morphism between sheaves. Then
ϕ is an isomorphism if and only if the induced map ϕp : Fp → Gp is an
isomorphism for every p ∈ X .

Proof. It’s clear if ϕ is an isomorphism between sheaves, then it induces an
isomorphism between stalks. Conversely, it suffices to show ϕ(U) : F (U)→
G (U) is an isomorphism for every open subset U ⊆ X .
(1) Injectivity: For s, s′ ∈ F (U) such that ϕ(s) = ϕ(s′), by passing to stalks

one has ϕp(s|p) = ϕp(s′|p) for every p ∈ U , and thus s|p = s′|p since ϕp
is an isomorphism. By definition of stalks there exists an open subset
Vp ⊆U containing p such that s agrees with s′ on Vp. Then it gives an
open covering {Vp} of U , and by axiom (IV) one has s = s′ on U .
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(2) Surjectivity: For t ∈G (U), by passing to stalks there exists sp ∈Fp such
that ϕp(sp) = t|p for every p ∈U since ϕp is surjective. By definition of
stalks there exists an open subset Vp ⊆ U containing p and s ∈ F (Vp)
such that ϕ(s) = t on Vp. This gives a collection of sections defined
on an open covering {Vp} of U , and by injectivity we proved above one
has these sections agree with each other on the intersections. Then by
axiom (V) there exists a section s ∈F (U) such that ϕ(s)= t.

□

3.1.3. Sheafification. In Example 3.1.1, we come across a presheaf that is
not a sheaf. To obtain a sheaf from a presheaf, we require a process known
as sheafification. One approach to defining sheafification is through its
universal property.

Definition 3.1.6. Given a presheaf F there is a sheaf F+ and a morphism
θ : F → F+, called sheafification with the property that for any sheaf G

and any morphism ϕ : F →G there is a unique morphism ϕ : F+ →G such
that the following diagram commutes

F G

F+
θ

ϕ

ϕ

The universal property shows that if the sheafification exists, then it’s
unique up to a unique isomorphism. One way to give an explicit construc-
tion of sheafification is to glue stalks together in a suitable way. Let F+(U)
be a set of functions

f : U → ∐
p∈U

Fp

such that f (p) ∈ Fp and for every p ∈ U there is an open subset Vp ⊆ U
containing p and t ∈F (Vp) such that t|q = f (q) for all q ∈Vp.

Proposition 3.1.2. F+ is the sheafication of F .

Proof. Firstly let’s show F+ is a sheaf: It’s clear F+ is a presheaf, so it
suffices to check conditions (IV) and (V) in the definition. Let U ⊆ X be an
open subset and {Vi} be an open covering of U .
(1) If s ∈F+(U) such that s|Vi = 0 for all i, then s must be zero: It suffices

to show s(p) = 0 for all p ∈U . For any p ∈U , then there exists an open
subset Vi contains p, hence s(p)= s|Vi (p)= 0.

(2) Suppose there exists a collection of sections {si ∈F+(Vi)}i∈I such that

si|Vi∩Vj = s j|Vi∩Vj
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holds for all i, j ∈ I. Now we construct s ∈ F+(U) as follows: For p ∈U
and Vi containing p, we define s(p) = si(p). This is well-defined since
si agree on the intersections, so it remains to show s ∈F+(U). It’s clear
s(p) ∈Fp. For p ∈U , there exists Vi containing p, and thus there exists
Wi ⊆ Vi containing p and t ∈ F (Wi) such that t|q = si(q) = s(q) for all
q ∈Vp.

There is a canonical morphism θ : F → F+ as follows: For open subset
U ⊆ X , and s ∈F (U), θ(s) is defined by

θ(s) : U → ∐
p∈U

Fp

p 7→ s|p.

Note that if F is a sheaf, the canonical morphism θ : F →F+ is an isomor-
phism.
(1) Injectivity: If s ∈F (U) such that s|p = 0 for all p ∈U , then there exists

an open covering {Vi}i∈I of U such that s|Vi = 0, by axiom (IV) of sheaf
one has s = 0.

(2) Surjectivity: For f ∈ F+(U) and p ∈ U , there exists p ∈ Vp ⊆ U and
t ∈ F (Vp) such that f (p) = t|p by construction of F+. Then glue these
sections together to get our desired s such that θ(s)= f .

Finally let’s show F+ statisfies the universal property of sheafification.
A morphism of presheaves ϕ : F →G induces a map on stalks

ϕp : Fp →Gp.

For f ∈F+(U), the composite of f with the map∐
p∈U

ϕp :
∐
p∈U

Fp → ∐
p∈U

Gp

gives a map ϕ̃( f ) : U → ∐
p∈U Gp, and in fact ϕ̃( f ) ∈ G+(U): For p ∈ U ,

ϕ̃( f )(p) ∈ Gp since f (p) ∈ Fp and ϕp : Fp → Gp. If for all q ∈ Vp we have
t|q = f (q), then

ϕ̃( f )(q)=ϕq( f (q))=ϕq(t|q)=ϕ(t)|q.

Since G is a sheaf, the canonical morphism θ′ : G →G+ is an isomorphism,
so we can define ϕ : = θ′−1 ◦ ϕ̃. Now let’s show ϕ = ϕ ◦θ = θ′−1 ◦ ϕ̃ ◦θ. It’s
easy to show they coincide on each stalk since ϕp = θ′−1

p ◦ ϕ̃p ◦θp, and thus
ϕ = ϕ ◦θ by Proposition 3.1.1. Furthermore, uniqueness follows from the
fact that ϕp is uniquely determined by ϕp. □

Remark 3.1.5. From the construction, one can see the stalk of F+ at p is
exactly Fp.
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Remark 3.1.6. The sheafification can be described in a more fancy lan-
guage: Since we have sheaf of abelian groups on X as a category, denote it
by AbX , and presheaf is a full subcategory of AbX , there is a natural in-
clusion functor ι from category of sheaf to category of presheaf. The sheafi-
fication is the adjoint functor of ι.

Example 3.1.2. For an abelian group G, the associated constant sheaf G
is the sheafication of the constant presheaf. By the construction of sheafifi-
cation, G can be explicitly expressed as

G(U)= {locally constant function f : U →G}

3.1.4. Exact sequence of sheaf. Given a morphism ϕ : F →G between sheaves
of abelian groups, there are the following presheaves

U 7→ kerϕ(U)
U 7→ imϕ(U)
U 7→ cokerϕ(U),

since ϕ(U) : F (U)→G (U) is a group homomorphism.

Proposition 3.1.3. The kernel of a morphism between sheaves is a sheaf.

Proof. Let {Vi}i∈I be an open covering of U .
(1) For s ∈ kerϕ(U), if s|Vi = 0, then s = 0 since s is also in F (U).
(2) If there exists si ∈ kerϕ(Vi) such that si|Vi∩Vj = s j|Vi∩Vj , then they glue

together to get s ∈F (U). Note that

ϕ(U)(s)|Vi =ϕ(Vi)(s|Vi )=ϕ(Vi)(si)= 0

Then s ∈ kerϕ(U).
□

But the image of morphism may not be a sheaf. Although we can prove
the first requirement in the same way, the proof for the second requirement
fails: If there exists si ∈ imϕ(Vi), and we can glue them together to get a
s ∈ G (U), but s may not be the image of some t ∈ F (U). The cokernel fails
to be a sheaf for the same reason.

Definition 3.1.7. Let ϕ : F →G be a morphism between sheaves of abelian
groups. Then the image and cokernel of ϕ is defined to be the sheafifica-
tion of the following presheaves

U 7→ imϕ(U)
U 7→ cokerϕ(U)

respectively.
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Definition 3.1.8. For a sequence of sheaves:

· · ·→F i−1 ϕi−1

−→F i ϕi

−→F i+1 → . . .

It’s called exact at F i, if kerϕi = imϕi−1. If a sequence is exact at every-
where, then it’s an exact sequence of sheaves.

Definition 3.1.9. An exact sequence of sheaves is called a short exact
sequence if it’s of the form

0→F
ϕ−→G

ψ−→H → 0.

Proposition 3.1.4. Let ϕ : F →G be a morphism between sheaves of abelian
groups. Then for any p ∈ X , one has

(kerϕ)p = kerϕp

(imϕ)p = imϕp.

Proof. (1). It’s clear (kerϕ)p ⊆ kerϕp. Conversely, if sp ∈ kerϕp, then
ϕp(sp) = 0 ∈ Gp. In other words, there exists an open subset U contain-
ing p and s ∈F (U) such that s|p = sp and ϕ(s)|p = 0, which implies there is
another open subset V containing p such that ϕ(s)|V = 0. Hence ϕ(s|V )= 0,
that is, s|V ∈ kerϕ(V ). Thus sp = (s|V )|p ∈ (kerϕ)p.

(2). It’s clear (imϕ)p ⊆ imϕp since the sheafication doesn’t change stalk.
Conversely, if sp ∈ imϕp, then there exists tp ∈ Fp such that ϕp(tp) = sp.
Suppose t ∈F (U) is a section of some open subset U containing p such that
t|p = tp. Then ϕ(t)|p =ϕp(tp) = sp. In other words, sp is in the stalk of the
image presheaf at p, but the sheafication doesn’t change stalk, so we have
sp ∈ (imϕ)p. □

Corollary 3.1.1. The sequence of sheaves

· · ·→F i−1 ϕi−1

−→F i ϕi

−→F i+1 → . . .

is exact if and only if the sequence of abelian groups are exact

· · ·→F i−1
p

ϕi−1
p−→F i

p
ϕi

p−→F i+1
p → . . .

for all p ∈ X .

Corollary 3.1.2. The the sequence of sheaves

0→F →G

is exact if and only if for any open subset U , the following sequence of
abelian groups is exact

0→F (U)→G (U).
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Proof. For each p ∈U , we have

ϕp : Fp →Gp

is injective. That is kerϕp = 0. So we obtain (kerϕ(U))p = 0 for all p ∈ U .
But for a section s ∈F (U) if we have s|p = 0, then we must have s = 0, and
thus kerϕ(U)= 0. □

Example 3.1.3. Let X be a complex manifold and OX be its holomorphic
function sheaf. Then

0→ 2π
p
−1Z→OX

exp−→O∗
X → 0

is an exact sequence of sheaves, which is called exponential sequence.

Proof. The difficulty is to show exponential map is surjective on stalks at
p ∈ X . That is we need to construct logarithms of functions g ∈ O∗

X (U) for
U , a neighborhood of p. We may choose U is simply-connected, then define

log g(q)= log g(p)+
ˆ
γq

dg
g

for q ∈U , where γq is a path from p to q in U , and the definition of log g(q)
is independent of the choice of γq since U is simply-connected. □

Remark 3.1.7. In fact, U is simply-connected is crucial for constructing log-
arithm. If we consider X =C and U =C\{0}, then

exp: OX (U)→O∗
X (U)

cannot be surjective.

3.1.5. Direct image.

Definition 3.1.10. Let f : X → Y be continuous map between topological
spaces and F be a sheaf of abelian groups on X . The direct image of F ,
denoted by f∗F , is a sheaf on Y defined by

f∗F (U) :=F ( f −1(U)).

Proposition 3.1.5. f∗ : AbX → AbY is a left exact functor.

Proof. Given an exact sequence of sheaves on X

0→F ′ →F →F ′′.

Then we need to show

0→ f∗F ′ → f∗F → f∗F ′′
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is also an exact sequence of sheaves on Y . By Remark ?? it suffices to show
that for any open subset V ⊆Y , we have the following exact sequence

0→ f∗F ′(V )→ f∗F (V )→ f∗F ′′(V ),

and that’s exactly

0→F ′( f −1(V ))→F ( f −1(V ))→F ′′( f −1(V )).

Since f is continuous, then f −1(V ) is an open subset in X , and thus above
sequence of abelian is exact since 0→F ′ →F →F ′′ is exact. □

3.2. Sheaf cohomology.

3.2.1. Derived functor formulation. Let AbX denote the category of sheaves
of abelian groups on X . In this section we will introduce sheaf cohomology
by considering it as a derived functor.

Given an exact sequence of sheaf as follows

0→F ′ φ−→F
ψ−→F ′′.

By taking its section over open subset U , we obtain a sequence of abelian
groups

0→F ′(U)
φ(U)−→ F (U)

ψ(U)−→ F ′′(U).

Above sequence is not only exact at F ′(U), but also is exact at F (U). In
other words, the functor given by taking section over open subset is a left
exact functor.

(1) Firstly let’s show kerψ(U)⊇ imφ(U). For s ∈F ′(U), if we want to show
ψ◦φ(s) = 0, it suffices to show (ψ◦φ(s))|p = 0 for all p ∈ U since F ′′ is
a sheaf. For any p ∈ U , by considering stalk at p we obtain an exact
sequence of abelian groups

0→F ′
p

φp−→Fp
ψp−→F ′′

p .

Then we obtain ψp ◦φp(s|p)= 0, which implies (ψ◦φ(s))|p = 0.
(2) Conversely, Given s ∈ kerψ(U), we have s|p ∈ kerψp for any p ∈U . By

exactness of stalks, there exists tp ∈ F ′
p such that φp(tp) = s|p. Thus

there exists an open subset Vi containing p and ti ∈ F ′(Vi) such that
φ(ti) = s|Vi . Now it suffices to show these ti can be glued together to
obtain t ∈F (U), and since F is a sheaf, it suffices to check these ti agree
on intersections Vi ∩Vj. Note that φ(ti − t j|Vi∩Vi ) = s|Vi∩Vj − s|Vi∩Vj = 0,
then these ti agree on intersections since φ is injective.
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In homological algebra, we always consider the derived functor of a left
or right-exact functor. In particular, the functor of taking global section is
a left exact functor, and its right derived functor defines the cohomology of
a sheaf. Before we come into the definition of derived functor, firstly let’s
define the injective resolution of a sheaf.

Definition 3.2.1. A sheaf I is injective if Hom(−,I ) is an exact functor.

Definition 3.2.2. Let F be a sheaf. An injective resolution of F is an
exact sequence

0→F →I 0 →I 1 →I 2 → . . .
where I i are injective for all i.

Theorem 3.2.1.
(1) Every sheaf admits an injective resolution.
(2) Let F → I • and G → G • are two resolutions and φ : F → G be a mor-

phism of sheaves. Then there exists a morphism φ̃ : I • →G • which lifts
φ, which is unique up to homotopy.

Proof. Proposition 1.1.15 in [Bry08]. □

Theorem 3.2.2. Let 0 →F →G →Q → 0 be an exact sequence of sheaves
of abelian groups. Let F →I • and Q →J • be injective resolutions. Then
there exists an injective resolution G → K • such that the following dia-
gram commutes

0 0 0

0 F I 0 I 1 . . .

0 G K 0 K 1 . . .

0 Q J 0 J 1 . . .

0 0 0
with each sequence 0→I n →K n →J n → 0 is exact.

Proof. Proposition 1.1.18 of [Bry08]. □

Definition 3.2.3. Let F be a sheaf of abelian groups. Then its cohomol-
ogy

Hp(X ,F ) := Hp(Γ(X ,I •)).
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Remark 3.2.1. The Theorem 3.2.1 shows that the definition of sheaf coho-
mology is independent of the choice of injective resolution.

Example 3.2.1. The cohomology of zero degree consists of the global sec-
tions.

Example 3.2.2. If F is a injective sheaf, then H i(X ,F ) = 0 for all i > 0,
since the sheaf cohomology of injective sheaf can be computed by using the
following special injective resolution

0→F
id−→F → 0→ 0→ . . .

Theorem 3.2.3 (zig-zag). If

0→F →G →H → 0

is a short sequence of sheaves, then there is an induced long exact sequence
of abelian groups

0→ H0(X ,F )→ H0(X ,G )→ H0(X ,H )→ H1(X ,F )→ H1(X ,G )→ . . .

Proof. Corollary 1.1.19 in [Bry08]. □

3.2.2. Hypercohomology. In homological algebra, the hypercohomology is
a generalization of cohomology functor which takes as input not objects in
abelian category but instead chain complexes of objects.

Definition 3.2.4. Let F • be a bounded below2 complex of sheaves on X .
The hypercohomology of the complex F • is defined by the total cohomol-
ogy of the double complex Γ(X ,I ••), where I p,• is an injective resolution
of F p for each p.

In fact, we can find the following injective resolution with better proper-
ties.

Proposition 3.2.1. Let (F •,dF ) be a bounded below complex of sheaves
on X . There exists a double complex (I ••,δ,d) with I p,q = 0 for q < 0, and
a morphism of complexes u : F • → (I •,0,d) such that
(1) For each p ∈Z, the complex of sheaves (I p,•,d) is an injective resolution

of F p.
(2) For each p ∈ Z, the complex of sheaves im{δ : I p−1,• → I p,•} ⊆ I p,• is

an injective resolution of im{dF : F p−1 →F p}.
(3) For each p ∈ Z, the complex of sheaves ker{δ : I p,• → I p+1,•} ⊆ I p,• is

an injective resolution of ker{dF : F p →F p+1}.

2From now on, we always assume our complex of sheaves of abelian groups is bounded
below for convenience.



20 BOWEN LIU

(4) For each p ∈Z, the complex of sheaves H p,•(I ••) (the horizontal coho-
mology) is an injective resolution of H p(F •).

Furthermore, the morphism between complexes of sheaves induces mor-
phism of double complexes, which is unique up to homotopy.

...
...

...

. . . I p−1,1 I p,1 I p+1,1 . . .

. . . I p−1,0 I p,0 I p+1,0 . . .

. . . F p−1 F p F p+1 . . .

Proof. Since F • is bounded from below, so we may choose k such that F p =
0 for p < k. Firstly we construct an injective resolution H p,• of H p(F •)
for all p, and an injective resolution R•,p for im{dF : F p−1 →F p}. Then by
Theorem 3.2.2 there is an injective resolution S p,• of ker{dF : F q →F q+1}
such that the following diagram commutes

0 Rp,• S p,• H p,• 0

0 im{dF : F p−1 →F p} ker{dF : F q →F q+1} H p(F •) 0.

Then by induction on p, we may use Theorem 3.2.2 again to construct an
injective resolution I p,• of F p such that the following diagram commutes

0 S p,• I p,• Rp+1,• 0

0 ker{dF : F q →F q+1} F p im{dF : F p →F p+1} 0.

The horizontal differential d: I p,• → I p+1,• is defined to be the composi-
tion of the maps I p,• → Rp+1,• → S p+1,• → I p+1,•. This gives the desired
double complex I ••. □

Theorem 3.2.4. Let F • be a bounded below complex of sheaves on X . Then
there is a spectral sequence converging to the hypercohomology H∗(X ,F •)
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with Ep,q
1 = Hq(X ,F p). The differential d1 : Hq(X ,F p) → Hq(X ,F p+1) is

induced by the morphism of sheaves F p →F p+1.

Proof. Let I •• be an injective resolution of F • and consider the first filter-
ation of the double complex Γ(X ,I ••). Note that the E1-page is the ver-
tical cohomology, that is, Ep,q

1 is the degree q-cohomology of the complex
Γ(X ,I p,•). Since I •,p is an injective resolution of the sheaf F p, we have
Ep,q

1 = Hq(X ,F p).
As the complex F • is bounded below, by Proposition 2.2 one has the

spectral sequence converges to the total complex of Γ(X ,I ••), that is, the
hypercohomology H∗(X ,F •). □

In fact, the hypercohomology generalize the usual sheaf cohomology, since
for any sheaf F , it gives a complex of sheaves F •[0], and compute its hy-
percohomology, which will recover the sheaf cohomology of F .

Definition 3.2.5. For a sheaf F , the shifted complex F •[n] is a sheaf of
complex defined by

(F •[n])i =
{

F , i = n
0, otherwise.

Corollary 3.2.1. Let F • be a complex of sheaves on X . If each sheaf in
F • is acyclic, then there is an isomorphism between the hypercohomology
H∗(X ,F •) and the cohomology groups of the complex

· · ·→Γ(X ,F p−1)→Γ(X ,F p)→ . . .

In particular, the hypercohomology is a generalization of the usual coho-
mology.

Proof. Note that the assumption means that the spectral sequence attached
to the complex F • satisfies Ep,q

1 = 0 for q > 0, and thus it degenerates at
E2-page. This shows Hp(X ,F •) = Ep,0

2 , which is the cohomology groups of
the complex

· · ·→Γ(X ,F p−1)→Γ(X ,F p)→ . . .
as desired. □

3.3. Čech cohomology.

3.3.1. Čech cohomology of presheaf. Let F be a presheaf on X and U =
{Uα}α∈J be an open covering of X . For convenience, we use Uαβ to denote
the intersection Uα∩Uβ, and similarly for Uαβγ. Now consider the following
complex

0→ C0(U,F ) δ−→ C1(U,F ) δ−→ C2(U,F )→ . . . ,
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where Cp(U,F )=∏
F (Uα0...αp ), and the differential δ is defined by

δ : Cp(U,F )→ Cp+1(U,F )

ω 7→
p+1∑
i=0

(−1)iωα0...α̂i ...αp+1 .

A routine computation shows that (Cp(U,F ),δ) forms a complex.

Definition 3.3.1. The Čech cohomology of presheaf F with repest to
open covering U is defined by the cohomology of the complex (Cp(U,F ),δ).

Note that the definition of Čech cohomology depends on the choice of
the open coverings, so it’s natural to ask what will happen if we consider
different open coverings.

Lemma 3.3.1. Given U = {Uα}α∈I an open cover and B = {Vβ}β∈J a refine-
ment, if φ,ψ are two refinement maps J → I, then there is a homotopy
operator between φ# and ψ#.

Proof. Define K : Cq(U,F )→ Cq−1(B,F ) by

(Kω)(Vβ0...βq−1)=∑
(−1)iω(Uφ(β0)...φ(βi)ψ(βi)...ψ(βq−1)).

Now we claim the following formula holds

ψ# −φ# = δK +Kδ.

Indeed, take a cochain ω ∈ Cq(U,F ), and an intersection of open covering
Vβ0...βq , then it’s easy to see

ψ# −φ#(ω)(Vβ0...βq )=ω(Uψ(β0)...ψ(βq))−ω(Uφ(β0)...φ(βq)).

Now let’s compute δKω as follows:

δK(ω)(Vβ0...βq )=∑
i

(−1)iKω(Vβ0...β̂i ...βq
)

=∑
i≤ j

(−1)i+ jω(Uφ(β0)...�φ(βi)...φ(β j+1)ψ(β j+1)...ψ(βq))︸ ︷︷ ︸
part I

+∑
i> j

(−1)i+ jω(Uφ(β0)...φ(β j)ψ(β j)...�ψ(β j)...ψ(βq)).︸ ︷︷ ︸
part II
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Similarly we have Kδω as follows

Kδω(Vβ0...βq )=∑
j

(−1) jδω(Uφ(β0)...φ(β j)ψ(β j)...ψ(βq))

=∑
i< j

(−1)i+ jω(Uφ(β0)...�φ(βi)...φ(β j)ψ(β j)...ψ(βq))︸ ︷︷ ︸
part III

+∑
i> j

(−1)i+ jω(U
φ(β0)...φ(β j)ψ(β j)...áψ(βi−1)...ψ(βq))︸ ︷︷ ︸

part IV

+∑
j
ω(Uφ(β0)...�φ(β j)ψ(β j)...ψ(βq)).︸ ︷︷ ︸

part V

Note that part I cancels with part III, since if you fix i, you will find j-th
terms of part I and part III are equal but differ a sign. Similarly you can
find part II and part IV almost cancel each other, but

part II+part IV=∑
j
−ω(Uφ(β0)...φ(β j)�ψ(β j)ψ(β j+1)...ψ(βq))︸ ︷︷ ︸

part VI

,

and it’s clear to see that

part V+part VI=ω(Uψ(β0)...ψ(βq))−ω(Uφ(β0)...φ(βq))

as desired. This completes the proof. □

Thus for two different open coverings U,B such that B is a refinement
of U, there is a natural homomorphism

fUB : H∗(U,F )→ H∗(B,F ).

Furthermore, if there are three open covering such that C is a refinement
of B, and B is a refinement of U. then we have

fUC = fUB ◦ fBC.

If we give a partial order on set of all open coverings, that is, U<B if and
only if B is a refinement of U, then {H∗(U,F ), fUB} is a direct system.

Definition 3.3.2. The direct limit of direct system {H∗(U,F ), fUB} is called
Čech cohomology of X with values in the presheaf F , that is,

Ȟ∗(X ,F ) := lim−−→
U

H∗(U,F ).
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3.3.2. Comparison theorem for Čech cohomology.

Proposition 3.3.1. Let F be a sheaf on X and U = {Ui}i∈I be an open
covering of X . For every intersection Ui1...ik , we always use j to denote the
inclusion Ui1...ik → X . Then

0→F →∏
i

j∗F |Ui →
∏
i, j

j∗F |Ui, j → . . .

is a resolution of F , which is called Čech resolution.

Proof. Proposition 4.17 in [Voi02]. □

Definition 3.3.3. Let F be a sheaf on X and U= {Ui}i∈I be an open cover-
ing of X . Then F is called to be acyclic on U, if Hq(Ui0...i p ,F ) = 0 for all
q > 0 and i0, . . . , i p ∈ I.

Theorem 3.3.1. Let F be a sheaf which is acyclic on the open covering
U= {Ui}i∈I of X . Then there is an isomorphism

Ȟ∗(U,F )∼= H∗(X ,F ).

Proof. Let I • be a flabby resolution of F . For each p ≥ 0, let 0→I p →I p,•
be the Čech resolution, which is also a flabby resolution, since I p is flabby
and flabby is stable under direct image. Then H∗(X ,F ) ∼= H∗(X ,I •) is
given by the total cohomology of the double complex Γ(X ,I ••).

By the assumption, the E1-page of spectral sequence given by the second
filteration is

Ep,q
1 =

{
Cq(U,F ), p = 0
0, p > 0.

In particular, the spectral sequence degenerates at E2-page and

H∗(X ,F )∼=H∗(X ,I •)∼= Ȟ∗(U,F ).

□

3.3.3. Comparison theorem for hypercohomology.

Definition 3.3.4. Let F • be a complex of sheaves and U = {Ui}i∈I be an
open covering of X . The Čech hypercohomology Ȟ(U,F •) is defined to
be the total cohomology of the following double complex
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. . . Cp(U,F q+1) Cp+1(U,F q+1) . . .

. . . Cp(U,F q) Cp+1(U,F q) . . .

Theorem 3.3.2. Let F • be a complex of sheaves such that each F q is
acyclic on the open covering U= {Ui}i∈I of X . Then there is an isomorphism

Ȟ∗(U,F •)∼=H∗(X ,F •).
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4. ALGEBRAIC AND ANALYTIC GEOMETRY

4.1. Algebraic and analytic variety.

Definition 4.1.1. A complex algebraic variety3 is a topological space X
together with a sheaf OX such that
(1) There exists a finite open covering {Ui}i∈I of X such that each Ui to-

gether with OX |Ui is isomorphic to some affine variety over C with its
sheaf of regular functions.

(2) The diagonal ∆ of X × X is closed in X × X .

Definition 4.1.2. A complex analytic variety4 is a topological space X
together with a sheaf OX such that
(1) There exists an open covering {Ui}i∈I of X such that each Ui together

with OX |Ui is isomorphic to some analytic subset5 in Cn equipped with
sheaf of holomorphic functions.

(2) The topology of X is Hausdorff.

Definition 4.1.3. Let X be a complex algebraic variety.
(1) A point x ∈ X is called non-singular if OX ,x is a regular local ring.
(2) X is called smooth if every point in X is non-singular.

4.2. Algebraic and analytic coherent sheaves.

4.2.1. Definitions. Let X be a topological space and A a sheaf of rings on
X .

Definition 4.2.1. A sheaf of A -modules F is said to be coherent if
(1) F is of finite type.
(2) If s1, . . . , sp are sections of F over an open subset U ⊆ X , the sheaf of

relations between the si is of finite type.

Proposition 4.2.1. Every coherent sheaves is locally isomorphic to the
cokernel of a homomorphism φ : A q →A p.

Proof. Proposition 2 in [Ser55], n◦12. □

Definition 4.2.2. Let X be a complex algebraic variety. The sheaf of OX -
modules is called an algebraic sheaf.

3in the sense of [Ser55], n◦34.
4in the sense of [Ser56], n◦2.
5A subset U of Cn is analytic if for each x ∈U , there are functions f1, . . . , fk, holomorphic

in a neighborhood of W of x, such that U ∩W is given by the zero locus of f i(z) = 0, where
i = 1, . . . ,k.
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Definition 4.2.3. Let X be a complex analytic variety. The sheaf of OX -
modules is called an analytic sheaf.

Definition 4.2.4. Let X be a complex algebraic variety. An algebraic sheaf
is called coherent if it’s a coherent sheaf of OX -modules.

Definition 4.2.5. Let X be a complex analytic variety. An analytic sheaf
is called coherent if it’s a coherent sheaf of OX -modules.

Theorem 4.2.1 ([Car53]). Let X be a Stein manifold6 and F be an coherent
analytic sheaf on X . Then

Hq(X ,F )= 0
for all q > 0.

Theorem 4.2.2 ([Ser55]). Let X be an affine variety and F be an coherent
algebraic sheaf on X . Then

Hq(X ,F )= 0

for all q > 0.

4.2.2. The analytic variety associated to an algebraic variety. Let (X ,OX )
be a complex algebraic variety equipped with Zariski topology. Then there
is a complex analytic variety structure on X , and X together with this
complex analytic structure is denoted by (X an,OX an).

Example 4.2.1. If X is a smooth complex algebraic variety, then X an is a
complex manifold.

Example 4.2.2. If X is the affine space of dimension n, then X an =Cn.

Example 4.2.3. If X is a smooth affine variety, then X an is a Stein mani-
fold.

Definition 4.2.6. Let F be an algebraic sheaf on X . The analytic sheaf
associated to F is defined by

F an := ϵ∗F = ϵ−1F ⊗ϵ−1OX
OX an ,

where ϵ : X an → X is the identity map, which is continuous.

Example 4.2.4. Oan
X =OX an .

Proposition 4.2.2.
(1) The functor F an is an exact functor.
(2) If F is a coherent algebraic sheaf, then F an is a coherent analytic sheaf.

Proof. Proposition 10 in [Ser56], n◦9. □
6A complex manifold is called Stein if it can be embedded into some CN .
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4.2.3. Homomorphism induced on cohomology. Let X be an complex alge-
braic variety and ϵ : X an → X be the identity map. Let F be an algebraic
sheaf on X . If U is a Zariski open subset of X , and s is a section of F over
U , one can consider s as a section of s′ of ϵ−1F over the open subset Uan of
X an, and α(s′)= s′⊗1 is a section of F an = ϵ−1F ⊗OX an . The map s 7→α(s′)
is a homomorphism

ϵ : Γ(U ,F )→Γ(Uan,F an).
Now let U = {Ui}i∈I be a Zariski open covering of X and thus {Uan

i } forms
an open covering of X an, which we denote by Uan.

For all induces i0, . . . , iq ∈ I, there is a canonical homomorphism

ϵ : Γ(Ui0 ∩ . . .Uiq ,F )→Γ(Uan
i0

∩ . . .Uan
iq

,F an),

and hence a homomorphism

ϵ : C∗(U,F )→ C∗(Uan,F an).

This homomorphism commutes with the coboundary δ, and so defines, by
passing to cohomology, the homomorphisms

ϵ : H∗(U,F )→ H∗(Uan,F an).

Finally, by passing to the direct limit over U, one obtains the homomor-
phisms induced on cohomology groups

(4.1) ϵ : H∗(X ,F )→ H∗(X an,F an).

Remark 4.2.1. These homomorphisms also induce homomorphisms between
hypercohomology groups of complexes of sheaves.

4.2.4. GAGA principle.

Theorem 4.2.3 ([Ser56]). Let X be a projective variety. For any coherent
algebraic sheaf on X , the homomorphism in (4.1)

ϵ : H∗(X ,F )→ H∗(X an,F an)

is an isomorphism.

Theorem 4.2.4 ([Ser56]). Let X be a projective variety. If F and G are two
coherent algebraic sheaves on X , every analytic homomorphism of F an to
G an comes from a unique algebraic homomorphism of F to G .

Theorem 4.2.5 ([Ser56]). Let X be a projective variety. For every coherent
analytic sheaf G on X an, there exists a coherent algebraic sheaf on X such
that F an is isomorphic to G . Moreover, this property determines F up to
isomorphisms.

4.3. Algebraic de Rham complex.
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4.3.1. Kähler differentials. Let R be a C-algebra.

Definition 4.3.1. The module of Kähler differentials of R over C is a R-
moduleΩ1

R/C, together with a derivation d: R →Ω1
R/C satisfies the following

universal property: For any R-module M and any derivation d′ : R → M,
there exists a unique R-module morphism f : Ω1

R/C→ M such that d′ = f ◦d.

Remark 4.3.1. The module of Kähler differentials of R over C can be con-
structed as free R-module generated by the symbol {d f | f ∈ R}, and to
divide out by the submodule generated by all expression of the form
(1) dc for all c ∈C.
(2) d(c f + g)= cd f +dg for all c ∈C, f , g ∈ R.
(3) d( f g)= f dg+ gd f for all f , g ∈ R.

Example 4.3.1. If R =C[x1, . . . , xn], then

Ω1
R/C

∼=
n⊕

i=1
Rdxi.

Proposition 4.3.1. Let R → S be a surjective morphism of C-algebras with
kernel I. Then there is an exact sequence of S-modules

I/I2 → S⊗RΩ
1
R/C→Ω1

S/C→ 0,

where [ f ] ∈ I/I2 maps to 1⊗d f ∈ S⊗RΩ
1
R/C.

Proof. See Theorem 25.2 in [Mat86]. □

Corollary 4.3.1. Let R = C[x1, . . . , xn] and S = R/I, where I = 〈 f1, . . . , fs〉.
Then there is an exact sequence

I/I2 → Sn →Ω1
S/C→ 0

4.3.2. Sheaf of Kähler differentials. Let X be a complex algebraic variety
of dimension n.

Definition 4.3.2. The cotangent sheaf Ω1
X is the sheaf of OX -modules

defined by
Ω1

X (U) :=Ω1
OX (U)/C

on affine open subsets U .

Definition 4.3.3. The tangent sheaf TX is defined by TX =Hom (Ω1
X ,OX ).

Definition 4.3.4. The sheaf of k-forms Ωk
X is the sheaf of OX -modules

defined by the wedge product
∧kΩ1

X .
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Definition 4.3.5. The derivation d: OX →Ω1
X extends to a complex

OX
d−→Ω1

X
d−→Ω2

X
d−→ . . . d−→Ωn

X ,

which is called the algebraic de Rham complex.

Theorem 4.3.1 ([Har75]). Let X be the affine space of dimension n. Then

0→C→Γ(X ,OX )→Γ(X ,Ω1
X )→···→Γ(X ,Ωn

X )→ 0

is an exact sequence of C-vector spaces.

Theorem 4.3.2. The algebraic variety X is smooth if and only if Ω1
X is

locally free of rank n.

Proof. See Theorem 8.15 in ChapterII of [Har77]. □
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5. LOCAL SYSTEM AND INTEGRABLE CONNECTION

In this section we always assume X is a complex manifold and A
p
X is the

locally free sheaf of smooth p-forms.

Definition 5.1. A sheaf V on X is called a locally constant sheaf of rank r
valued in C, if for each point x ∈ X , there is an open subset U containing x
such that V |U is constant sheaf Cr.

Remark 5.1. In other words, there exists an open covering {Uα} such that
V |Uα is isomorphic to constant sheaf Cr. Then the local system V is com-
pletely determined by the transition functions gαβ : Uαβ → GLn(C), which
are locally constant functions.

Definition 5.2. Let E be a locally free sheaf on X . A connection is a
C-linear map

∇ : E →A 1
X ⊗E

satisfying the following condition

∇(ϕ⊗ e)= dϕ⊗ e+ϕ∇e

for all sections e of E and ϕ of OX .

Remark 5.2. The definition of ∇ extends to ∇ : A
p
X ⊗E →A

p+1
X ⊗E by defin-

ing

∇(ω⊗ e)= dω⊗ e+ (−1)pω∧∇e

for all sections ω of A
p
X and sections e of E .

Remark 5.3. Let {eα} be a local frame of E . For any section s = sαeα of E ,
one has

∇(sαeα)= dsαeα+ sα∇eα.

Thus the connection ∇ is completely determined by

∇eα =ωβαeβ,

where ωβα are 1-forms, which forms a (smooth) 1-form valued matrix ω.

Definition 5.3. A connection ∇ is integrable if its curvature ∇2 : E →A 2
X⊗

E vanishes.
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Remark 5.4. Let {eα} be a local frame of E . For any section s = sαeα of E ,
one has

∇2(sαeα)=∇(dsα⊗ eα+ sαωβα⊗ eβ)

=−dsα∧ωβα⊗ eβ+d(sαωβα)⊗ eβ− sαωβα∧ωγβ⊗ eγ

= sα(dωβα−ωγα∧ωβγ)⊗ eβ,

∇2(eα)=∇(ωβα⊗ eβ)

= dωβα⊗ eβ−ωβα∧∇eβ

= dωβα⊗ eβ−ωβα∧ωγβ⊗ eγ

= (dωβα−ωγα∧ωβγ)⊗ eβ.

This shows ∇2 is a global section of A 2
X ⊗EndOX

(E ), which is locally given
by dω−ω∧ω.

Definition 5.4. A locally free sheaf together with an integrable connection
is called a flat bundle.

Proposition 5.1. Let ∇ be a integrable connection on locally free sheaf E

on X . Then the horizontal section E∇=0 is a local system.

Proposition 5.2. Let V be a local system on X . Then the locally free sheaf
E :=OX ⊗V together with canonical connection ∇can( f ⊗ s) := d f ⊗ s is a flat
bundle.

Theorem 5.1. The functor (E ,∇) 7→ E∇=0 is an equivalence between cat-
egory of flat bundles and the category of the complex local system with
quasi-inverse V 7→ (OX ⊗V ,∇can).

Proposition 5.3. Let V be a local system on X . Then

H∗(X ,V )∼=H∗(X ,A •
X ⊗V ).

Proof. Note the following complex of sheaves

0→ V →A •
X ⊗V

gives a resolution of V by coherent sheaves. □
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Part 2. Comparison theorems

6. GROTHENDIECK’S VERSION

6.1. Introduction. In this section, we will prove the following comparison
theorem.

Theorem 6.1.1 ([Gro66a]). Let X be a smooth complex variety and X an be
the underlying complex manifold. Then there is the following isomorphism

H∗(X an,C)∼=H∗(X ,Ω•
X ),

where Ω•
X is the algebraic de Rham complex.

The following is the sketch of the proof. Firstly we use Čech cohomology
arguments to reduce to the case X is a smooth affine variety, and then
we embed X into some smooth projective variety Y by j : X → Y , since for
smooth projective variety, there is GAGA principle (Theorem 4.2.3) which
relates algebraic geometry and analytic geometry closely.

To be precise, let X be an smooth affine variety. Then its projectivization
X gives a projective variety, but it may admit some singularities. By Hiron-
aka’s resolution of singularities ([Hir64]), there is a surjective regular map
π : Y → X , where Y is a smooth projective variety such that π−1(X − X ) is
a simple normal crossing divisor7 D ⊂ Y , and the restriction π|Y−D is an
isomorphism.

The proof of the affine case is divided into the following three steps.
(1) Firstly, we establish the following two isomorphisms.

Theorem 6.1.2. There is an isomorphism between hypercohomology
groups

H∗(Y , j∗Ω•
X )∼=H∗(X ,Ω•

X ).

Proof. Let V= {Vi}i∈I be an affine open covering of Y . As j is an affine
morphism, the direct image j∗Ω•

X is a complex of coherent sheaves on
Y , and thus by Serre’s theorem (Theorem 4.2.2) and Theorem 3.3.2, one
has

H∗(Y , j∗Ω•
X )= Ȟ∗(V, j∗Ω•

X ).
On the other hand, U = {Vi ∩ X }i∈I is also an affine open covering of X
as X is affine and the intersection of affine varieties is still affine. By
the same argument one has

H∗(X ,Ω•
X )= Ȟ(U,Ω•

X ).

7A divisor D is called a simple normal crossing divisor, if locally there exists a
coordinate {z1, . . . , zn} on X such that D is defined by the equation z1 . . . zr = 0 for an integer
r which naturally depends on the considered open set.
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This completes the proof, since by definition one has

Ȟ∗(V, j∗Ω•
X )= Ȟ(U,Ω•

X ).

□

Theorem 6.1.3.

H∗(Y an, jan
∗ Ω•

X an)∼= H∗(X an,C).

Proof. Since there is Cartan’s theorem (4.2.1) which is the analytic anal-
ogy of Serre’s theorem, so by the same argument as above we can prove

H∗(Y an, jan
∗ Ω•

X an)∼=H∗(X an,Ω•
X an).

On the other hand, by holomorphic Poincaré lemma Ω•
X an gives an res-

olution of constant sheaf C, and thus H∗(X an,Ω•
X an)∼= H∗(X an,C). □

(2) Secondly, by using direct limit arguments and GAGA principle to prove
the following isomorphism.

Theorem 6.1.4.

H∗(Y an, jm
∗ Ω

•
X an)∼=H∗(Y , j∗Ω•

X ),

where jm∗ Ω•
X an := ( j∗Ω•

X )an is exactly the sheaf of sections of Ω•
X an that

are meromorphic along D.

Proof. For each p, one has j∗Ω
p
X = lim−−→n

Ω
p
Y (nD), where Ωp

Y (nD) is the
sheaves of p-forms on Y which are regular on X and admit poles along
D with order ≤ n. Similarly one has jm∗ Ω

p
X an = lim−−→n

Ω
p
Y an(nD).

On the other hand, direct limit commutes with cohomology (Proposi-
tion 2.9 in ChapterIII of [Har77]). Then for any q, one has

Hq(Y an, jm
∗ Ω

p
X an)∼= Hq(Y an, lim−−→

n
Ω

p
Y an(nD))

∼= Hq(Y , lim−−→
n
Ω

p
Y (nD))

∼= Hq(Y , j∗Ω
p
X ).

This gives an isomorphism between E1-page of spectral sequences, which
is compatible with the differentials in the spectral sequence, and thus
it gives the isomorphism between E∞-page (Proposition 2.3), that is,

H∗(Y an, jm
∗ Ω

•
X an)∼=H∗(Y , j∗Ω•

X ).

□

(3) The key step is to prove the following isomorphism
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Theorem 6.1.5.

H∗(Y an, jm
∗ Ω

•
X an)∼=H∗(Y an, jan

∗ Ω•
X an).

In a summary, we prove the following diagram.

H∗(Y , j∗Ω•
X ) H∗(X ,Ω•

X )

H∗(Y an, jm∗ Ω•
X an)

H∗(Y an, jan∗ Ω•
X an) H∗(X an,C).

6.1.4

6.1.2

6.3.2

6.1.3

6.2. Reduce to affine case. Let X be a smooth complex variety and U=
{Ui}i∈I be an affine open covering of X . Since coherent sheaves are acyclic
on affine pieces (Theorem 4.2.2), the algebraic de Rham complex Ω•

X is
acyclic with respect to U, and thus by Theorem 3.3.2 one has

Ȟ∗(U,Ω•
X )∼=H∗(X ,Ω•

X ).

Similarly, since coherent sheaves are acyclic on Stein manifolds, there is
the following isomorphism

Ȟ∗(Uan,Ω•
X an)∼=H∗(X an,Ω•

X an).

Note that the E1-page of spectral sequences converging to Ȟ∗(U,Ω•
X ) is

Ep,q
1 = Hq

d

(
Cp(U,Ω•

X )
)

= ∏
i0,...,i p

Hq
d (Γ(Ui0...i p ,Ω•

X ))

= ∏
i0,...,i p

Hq(Γ(Ui0...i p ,Ω•
X )),

where the last equality holds since Ui0...i p is affine, and thus Ω•
X is acyclic

on Ui0...i p . Similarly the E1-page of spectral sequences converging to Ȟ∗(Uan,Ω•
X an)

is
(E′

1)p,q = Hq
d

(
Cp(Uan,Ω•

X an)
)

= ∏
i0,...,i p

Hq
d (Γ(Uan

i0...i p
,Ω•

X an))

= ∏
i0,...,i p

Hq(Uan
i0...i p

,C).

The proof of the affine case shows the following map

ϵ : H∗(Ui0...i p ,Ω•
X )→H∗(Uan

i0...i p
,Ω•

X an)∼= H∗(Uan
i0...i p

,C)
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is an isomorphism, and it also commutes with differentials in spectral se-
quences. By Proposition 2.3, it induces an isomorphism between the E∞-
pages, that is, an isomorphism

H∗(X ,Ω•
X )∼= H∗(X an,C).

6.3. Logarithmic differential forms.

6.3.1. Logarithmic differential forms. In order to prove the key step, firstly
we introduce the differential forms with logarithmic poles along some sim-
ple normal crossing divisor in this section. Let Y be a complex manifold
with a simple normal crossing divisor D and j : X =Y −D →Y .

Definition 6.3.1. The sheaf of differential k-forms with logarithmic
poles along D, denoted by Ωk

Y (logD), is the subsheaf of jm∗ Ωk
X defined by

the following condition:
• If α ∈ Γ(U , jmΩk

X ) for some open subset U ⊆ Y , then α ∈ Γ(U ,Ωk
Y (logD))

if and only if α admits a pole of order at most 1 along D, and the same
holds for dα.

Lemma 6.3.1. Let {z1, . . . , zn} be a local coordinate on an open subset U ⊆
Y , in which D ∩U is defined by the equation z1 . . . zr = 0. For convenience
we denote

δ j =
{

dz j/z j, j ≤ r
dz j, j > r,

and for I = { j1, . . . , jk}⊆ {1, . . . ,n} with j1 < ·· · < js, we denote

δI = δ j1 ∧·· ·∧δ jk .

Then Ωk
Y (logD)|U is a sheaf of free OU -modules with basis {δI}|I|=k

Proof. Lemma 8.16 in [Voi02]. □

Corollary 6.3.1. The sheaves Ωk
Y (logD) are sheaves of locally free OY -

modules.

Proof. Corollary 8.17 in [Voi02]. □

6.3.2. The proof of the key step. Note that there is a natural inclusion

(6.1) Ω•
Y (logD)⊆ j∗Ω•

X ,

which is compatible with differentials.

Theorem 6.3.1. The morphism (6.1) is a quasi-isomorphism.
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Proof. In order to show H k(Ω•
Y (logD)) ∼= H k( j∗Ω•

X ) for each k, it suffices
to check it stalk by stalk. If x ∈ X , it’s easy to show that

(H k(Ω•
Y (logD)))x ∼= (H k( j∗Ω•

X ))x ∼=C
unless k = 0 by holomorphic Poincaré lemma.

Now suppose x ∈ D, so without lose of generality we may assume Y =
D1 ×·· ·×Dn is a polydisk of dimension n and D = {(z1, . . . , zn) | z1 . . . zr = 0}.
Thus X =Y −D = D∗

1 ×·· ·×D∗
r ×Dr+1×·· ·×Dn retracts onto the product of

circles Tr = (S1)r =∏
i≤r ∂D i and the cohomology of such a product of circles

Tr is given by
H1(Tr,C)∼=Cr

Hk(Tr,C)∼=
k∧

H1(Tr,C),

where the second equality can be obtained by Künneth formula easily.
Firstly, let’s prove the morphism (6.1) induces a surjective map in co-

homology. For closed 1-forms ωi = dzi/zi ∈ Γ(Y ,Ω1
Y (logD)), their integrals

over the circles ∂D i satisfy ˆ
∂D j

ωi = 2π
p
−1δi j,

and thus the classes of these forms generate H1(Tr,C). The exterior prod-
ucts ωI = ∧i∈Iωi ∈ Γ(Y ,Ωk

Y (logD)) also generates the cohomology of Tr in
degree k since Hk(Tr,C)=∧k H1(Tr,C). This proves surjectivity.

For the injectivity, we need to show that if any closed α ∈Γ(Y ,Ωk
Y (logD))

is d-exact in Γ(Y , j∗Ω•
X ) = Γ(X ,Ω•

X ), then it’s d-exact in Γ(Y ,Ωk
Y (logD)).

The proof of injectivity is based on the induction on r.
If r = 0, the statement holds from the holomorphic Poincaré lemma. Now

assume the statement holds for r−1. For any α ∈ Γ(Y ,Ωk
Y (logD)), we de-

compose it into

α= dzr

zr
∧β+γ,

where dzr does not occur in β, and the coefficients of β are independent of
zr, while γ is holomorphic in zr.
(1) If α is closed, one has

dα= dzr

zr
∧dβ+dγ= 0.

Note that γ is holomorphic in zr and the coefficients of β are indepen-
dent of zr, so it leads to dβ= 0 and dγ= 0.
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(2) If α is d-exact in Γ(X ,Ω•
X ), say α= dα̃, then we decompose as

α= dα̃= d
(
dzr

zr
∧ β̃+ γ̃

)
= dzr

zr
∧dβ̃+dγ̃.

By the same reason we have β and γ are d-exact in Γ(X ,Ω•
X ).

Now suppose α ∈ Γ(Y ,Ωk
Y (logD))) is closed and write α = dzr/zr ∧β+γ.

Since γ is closed and holomorphic in zr, it may be regarded as a closed
holomorphic k-form has logarithmic poles along D′ = {z | z1 . . . zr−1 = 0}, and
thus by induction hypothesis it’s d-exact in Γ(Y ,Ωk

Y (logD)). By the same
argument one can show dzr/zr ∧β is also also d-exact in Γ(Y ,Ωk

Y (logD)).
This completes the proof. □

On the other hand, there is also a natural inclusion

(6.2) Ω•
Y (logD)⊆ jm

∗ Ω
•
X ,

which is compatible with differentials.

Theorem 6.3.2. The morphism (6.2) is a quasi-isomorphism.

Proof. By the same reason we may assume X and Y as before, and as seen
above, the stalk of H 1(Ω•

Y (logD)) is generated by [dz1/z1], . . . , [dzr/zr]. Now
we prove the morphism (6.2) is a quasi-isomorphism by induction on r, and
the r = 0 case is clear.

Lemma 6.3.2. Let ϕ ∈ Γ(Y , jm∗ Ωk
X ) be a closed meromorphic k-form on Y

that is holomorphic on X . Then there exists closed meromorphic forms
ϕ0 ∈Γ(Y , jm∗ Ωk

X ) and α1 ∈Γ(Y , jm∗ Ωk−1
X ), which have no poles along zr, and

[ϕ]= [ϕ0]+
[

dzr

zr

]
∧ [α1].

Proof. Firstly we write
ϕ= dzr ∧α+β,

where α is meromorphic (k−1)-form and β do not involve dzr. Then let’s
expand α and β as Laurent series in zr as

α=α0 +α1z−1
r +·· ·+αℓz−ℓr

β=β0 +β1z−1
r +·· ·+βℓz−ℓr ,

where αi and βi for 1≤ i ≤ ℓ do not involve zr or dzr and are meromorphic
in the other variables, and α0,β0 are holomorphic in zr, are meromorphic
in the other variables, and do not involve dzr. Thus

ϕ=ϕ0 +
(
dzr ∧

r∑
i=1

αi z−i
r +

r∑
i=1

βi z−i
r

)
,
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where ϕ0 = dzr ∧α0 +β0. By comparing the coefficients of z−i
r dzr and z−i

r ,
one can deduce from dϕ,

dα1 = dα2 +β1 = dα3 +2β2 = ·· · = rβr = 0
dβ1 = dβ2 = ·· · = dβ= 0,

and dϕ0 = 0. If we write

ϕ=ϕ0 + dzr

zr
∧α1 +

(
dzr ∧

r∑
i=2

αi z−i
r +

r∑
i=1

βi z−i
r

)
It turns out

θ =−α2

zr
− α3

2z2
r
−·· ·− αr

(r−1)zr−1
r

satisfies
ϕ−ϕ0 − dzr

zr
∧α1 = dθ.

□

Since ϕ0 and α1 are meromorphic forms which do not have poles along
zr = 0, their singularities set is contained in the simple normal crossing
divisor z1 . . . zr−1 = 0. By induction on r, the cohomology class of ϕ0 and ϕ1
is generated by [dz1/z1], . . . , [dzr−1/zr−1]. This completes the proof. □

Corollary 6.3.2.
H∗(Y an, jm

∗ Ω
•
X an)∼=H∗(Y an, jan

∗ Ω•
X an).

Remark 6.3.1. There is also an analogy in the algebraic setting.

Theorem 6.3.3. Let X be a smooth complex algebraic variety and j : X →Y
be an inclusion such that D =Y − X is simple normal crossing. Then

H∗(Y ,Ω•
Y (D))∼=H∗(Y , j∗Ω•

X ).
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7. LOCAL SYSTEM VALUED VERSION

7.1. Introduction. In this section we will prove the local system valued
version of Grothendieck’s comparison theorem, and the ideas are almost
the same as before.

Theorem 7.1.1 ([Del70]). Let X be a smooth complex algebraic variety and
X an be the corresponding complex manifold. Let E be a locally free sheaf on
X equipped with a regular integrable connection ∇ and V := (E an)∇

an=0 be
the local system of horizontal sections on the underlying complex manifold
X an. Then there is the following isomorphism

H∗(X an,V )∼=H∗(X ,Ω•
X (E )).

The ideas of the proof is the same as before. Firstly by the same argu-
ment we can reduce to the case that X is smooth affine with an embedding
j : X → Y , where Y is a smooth projective variety and D =Y − X . Then we
need to go through the following diagram

H∗(Y , j∗Ω•
X (E )) H∗(X ,Ω•

X (E ))

H∗(Y an, jm∗ Ω•
X an(E an))

H∗(Y an, jan∗ Ω•
X an(E an)) H∗(X an,V ).

2

1

3

4

The proof of (1), (2) and (4) is the same as before, and the most difficult
step is to show the morphism of complexes

jm
∗ Ω

•
X an(E )→ j∗Ω•

X an(E )

is a quasi-isomorphism. In this section, we will define the so-called Deligne’s
canonical extension Ẽ of E on Y an, and prove

Ω•
Y an(logD)(Ẽ )→ jm

∗ Ω
•
X an(E )→ jan

∗ Ω•
X an(E )

are quasi-isomorphisms.

7.2. Local system valued logarithmic pole differential. For simplic-
ity, we write X ,Y instead of X an,Y an, since we focus on the analytic set-
ting, and the simple normal crossing divisor D = Y − X is written as D1 +
·· ·+Dr.
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7.2.1. Residue map.

Definition 7.2.1. For every k ≥ 1, the residue map along D i is a map

Resi : Ωk
Y (logD)→Ωk−1

D i
(log(D−D i)|D i )

such that if ϕ is a local section of Ωk
Y (logD), we write it as

ϕ=ϕ1 +ϕ2 ∧ dzi

zi
,

where ϕ1 lies in the span of the δI with i ̸∈ I and ϕ2 =∑
i∈I aIδI−{i}, then

ResD i (ϕ)=∑
aIδI−{1}|D i .

Remark 7.2.1.
(1) Let E be a locally free sheaf on Y . Then the residue map extends to

Resi : Ωk
Y (logD)(E )→Ωk−1

D i
(log(D−D i)|D i )(E )

linearly.
(2) In particular, if k = 1, the residue map along D i is a map

Resi : Ω1
Y (logD)(Ẽ )→OD i ⊗ Ẽ .

7.2.2. Residue of the connection with logarithmic poles. Let E be a locally
free sheaf on X and ∇ be a integrable connection on E . Suppose that E is
given as the restriction of a locally free sheaf Ẽ on Y . Locally on X , the
choice of basis e of Ẽ gives a connection matrix Γ ∈ j∗Ω1

X (End(Ẽ )), and a
change of basis e 7→ e′ modifies Γ by a section of Ω1

Y (End(Ẽ )). Thus the
“pole part" of Γ depends only on Ẽ and ∇.

Definition 7.2.2. The connection ∇ has at worst logarithmic poles along
D if the connection forms present at worst logarithmic poles along D.

Definition 7.2.3. The residue of the connection Γ along a local compo-
nent D i of D is defined by

Resi(Γ) ∈End(Ẽ |D i ),

which depends only on Ẽ and ∇.

Theorem 7.2.1. Let Ẽ be a locally free sheaf on Y and ∇ be a integrable
connection on Ẽ |X which has at worst logarithmic poles along D. If the
residues of connection form Γ along all components of D do not admit any
strictly positive integer as an eigenvalue, then

Ω•
Y (logD)(Ẽ )→ jm

∗ Ω
•
X (Ẽ )

is a quasi-isomorphism.

Proof. Proposition 3.13 in [Del70]. □
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7.3. Regularity.

7.3.1. Regularity in dimension 1. Let O be a discrete valuation ring of char-
acteristic zero, with maximal ideal m and field of fractions K . Suppose
that O is endowed with a free rank-1 O -module Ω along with a derivation
d: O →Ω such that there exists a uniformiser t such that dt generates Ω.

7.3.2. Regularity in dimension n.

Theorem 7.3.1. Let X be a smooth complex algebraic variety. Then the
functor E 7→ E an gives an equivalence of categories between
(1) the category of algebraic locally free sheaf on X equipped with a regular

integrable connection;
(2) the category of holomorphic locally free sheaf on X an endowed with an

integrable connection.

Proof. Theorem 5.9 in [Del70]. □

7.4. Deligne’s canonical extension. Notations as above.

Definition 7.4.1. A local system V on X is said to be unipotent along
D if the fundamental group π1(X ) acts on this local system by unipotent
transformations.

Definition 7.4.2. A flat bundle (E ,∇) on X is said to be unipotent along
D if local system E∇=0 is unipotent along D.

Theorem 7.4.1. Let (E ,∇) be a flat bundle on X that is unipotent along D.
Then there exists a unique extension Ẽ of E on Y such that
(1) The matrix of the connection ∇, in an arbitrary local basis of Ẽ , has at

worst a logarithmic pole along Y .
(2) The residue Resi(Γ) of the connection along D i is nilpotent.

Proof. Proposition 5.2 in [Del70]. □

Remark 7.4.1. In general, it’s still possible to make an extension of E . See
Proposition 5.4 in [Del70].

7.5. Proof of the theorem.

Proposition 7.5.1. The map

Ω•
Y (logD)(Ẽ )→ j∗Ω•

X (E )

is a quasi-isomorphism.

Proof. Lemma 6.9 in [Del70]. □
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Part 3. Hodge to de Rham spectral sequence

8. CARTIER DESCENT THEOREM

8.1. Characteristic p geometry. In this section we assume k is an alge-
braically closed field with positive characteristic p, Fk : k → k is the Frobe-
nius map and X is a smooth algebraic variety over k.

8.1.1. Absolute Frobenius map and relative Frobenius map.

Definition 8.1.1. The Frobenius map Fk induces so-called absolute Frobe-
nius map Fabs : X → X , which is the identity on the underlying space of X
and the p-th power on the structure sheaf.

Remark 8.1.1. Let F be a sheaf of OX -modules. The direct image (Fabs)∗F

equals F as sheaves of abelian groups, but the OX -module structure on
(Fabs)∗F is given by f · s := f p · s for any local sections f of OX and s of F .

Definition 8.1.2. Let X (p) be the base change of X given by the Frobenius
map Fk, that is,

X (p) X

k k.

π

Fk

By the universal property of base change there exists a morphism F : X →
X (p) such that the following diagram commutes, which is called relative
Frobenius map.

X

X (p) X

k k,

α

Fabs

α′
π

α

Fk

8.1.2. Connections in algebraic setting.

Definition 8.1.3. A k-connection on X is a pair (E ,∇), which consists of
the following data:
(1) E is a quasi-coherent OX -module.
(2) ∇ : E →Ω1

X ⊗E is k-linear satisfying the Leibiniz rule

∇( f s)= d f ⊗ s+ f∇s.

Definition 8.1.4. For a k-connection (E ,∇) on X , the curvature of k-
connection (E ,∇) is defined by ∇2 : E →Ω2

X ⊗E .
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Remark 8.1.2. The curvatureΘ∇ is OX -linear, that is,Θ∇ :
∧2 TX →EndOX (E ).

8.1.3. p-curvature. In the case of positive characteristic, there is so-called
p-curvature which doesn’t appear in the zero characteristic case, since the
p-th power map D 7→ Dp := D ◦ · · · ◦D︸ ︷︷ ︸

p times

gives a map between TX →TX .

Definition 8.1.5. The p-curvature of a k-connection (E ,∇) over X /k is
defined by

Ψ∇ : TX 7→Endk(E )

D 7→ (∇D)p −∇Dp .

Proposition 8.1.1. The p-curvature Ψ∇ is OX -linear, that is,

Ψ∇ : TX →EndOX (E ).

Proof. For sections f ∈OX , s ∈ E and D ∈TX , one has

(∇D)p( f s)=
p∑

i=0

(
p
i

)
D i( f )(∇D)p−i(s)= Dp( f )s+ f (∇D)p(s).

On the other hand, it’s clear ∇Dp ( f s)= Dp( f )s+ f∇Dp (s), and thus

Ψ∇(D)( f s)= fΨ∇(D)(s).

□

Lemma 8.1.1. Let R be a ring with characteristic p > 0. For a,b ∈ R,
(1) (a+b)p = ap +bp +∑p−1

i=1 si(a,b), where si appears8 in

(ad(ta+b))p−1(a)=
p−1∑
i=0

isi(a,b)ti.

(2) If {a(n)}n≥1 are mutually commutative, then

(ab)p = apbp +a(ap−1)(p−1)b,

where
a(n) := (adb)n(a).

Proof. See [Kat70]. □

Proposition 8.1.2. Let (E ,∇) be a k-connection over X . If the curvature
Θ∇ vanishes, then
(1) Ψ∇ : TX →EndOX (E ) is additive.
(2) Ψ∇ : E → (Fabs)∗Ω1

X ⊗E is OX -linear, that is,

Ψ∇( f D)= f pΨ∇(D).
8For example, if p = 1, then s1(a,b)= [b,a].
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(3) Ψ∇∧Ψ∇ : E → (Fabs)∗Ω2
X ⊗E is zero, that is, Ψ∇ is integrable.

Now let’s begin the proof of Proposition 8.1.2.

Proof of Proposition 8.1.2. (1). For sections D1,D2 ∈ TX , by using (1) of
Lemma 8.1.1 one has

(∇D1+D2)p = (∇D1 +∇D2)p

= (∇D1)p + (∇D2)p +∑
i

si(D1,D2)

∇(D1+D2)p =∇(∇p
1+∇

p
2+

∑
i si(D1,D2))

=∇Dp
1
+∇Dp

2
+∑

i
∇si(D1,D2).

Then

Ψ∇(D1 +D2)= (∇D1+D2)p −∇(D1+D2)p =Ψ∇(D1)+Ψ∇(D2).

(2). For any section f ∈OX and D ∈TX , by using (2) of Lemma 8.1.1, one
has

( f D)p = f pDp + f (ad(D))p−1( f p−1)D

= f pDp + f (Dp−1( f p−1))D,

since ad(D)( f p−1)= D ◦ f p−1 − f p−1D = D( f p−1). Thus

∇( f D)p = f p∇Dp + f (Dp−1( f p−1))∇D .

Applying (2) of Lemma 8.1.1 again, one has

(∇ f D)p = ( f∇D)p = f p(∇D)p + f (ad(∇D))p−1( f p−1)∇D

= f p(∇D)p + f (Dp−1( f p−1))∇D .

This completes the proof of (2).
(3). Let {x1, . . . , xn} be a local coordinate9. Then we write D1 =∑

i ai∂i and
D2 =∑

i b j∂ j, where ∂i is the dual of dxi. Note that

Ψ∇(D1)=Ψ∇(
∑

i
ai∂i)=

∑
i

ap
i Ψ∇(∂i)

=∑
i

ap
i

(
(∇∂i )

p −∇∂
p
i

)
=∑

i
ap

i (∇∂i )
p.

9See Appendix B.
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Then

[Ψ∇(D1),Ψ∇(D2)]=
[∑

i
ap

i (∇∂i )
p,

∑
j

bp
j (∇∂ j )

p

]
=∑

i j
ap

i bp
j

[
(∇∂i )

p, (∇∂ j )
p]

= 0,
where the last equality holds since Θ∇ = 0 implies ∇∂i∇∂ j =∇∂ j∇∂i . □

8.2. Cartier descent theorem. In this section, we will prove the Cartier
descent theorem, which is a very basic theorem in characteristic p geome-
try.

Theorem 8.2.1 (Cartier descent theorem). There is a natural equivalence
of categories between the category of quasi-coherent OX (p)-module and the
category of flat k-connections (E ,∇) on X with vanishing p-curvatures. To
be precise, the correspondence is given by
(1) quasi-coherent OX (p)-module E , it corresponds to the k-connection (F∗E ,∇can),

where the canonical connection ∇can : F∗E →Ω1
X ⊗F∗E is defined by

∇can(e⊗ f )= d f ⊗ e.

(2) For flat k-conenction (V ,∇) with vanishing p-curvature, the correspond-
ing quasi-coherent OX (p)-module is V ∇=0 ⊆ V .

Proof. For flat k-conenction (V ,∇) with vanishing p-curvature, the flat part
V ∇=0 is indeed a OX (p)-module. For sections f ∈OX (p) and s ∈ V ∇=0, one has

∇( f · s)=∇( f p · s)

= d( f p) · s+ f p ·∇s
= 0.

Conversely, suppose E is a quasi-coherent sheaf on X (p). Then

(F∗E )∇can=0 ∼=OX (p) ⊗X (p) E ∼= E ,

since ker{d: OX →Ω1
X } = OX (p) . Now it suffices to show ∇can is integrable

with vanishing p-curvature. The problem is local, so we may choose a local
coordinate {x1, . . . , xn}. Then
• ∇can is flat if and only if ∇∂i∇∂ j =∇∂ j∇∂i for all i, j.
• Ψ∇ = 0 if and only if (∇∂i )

p = 0 for all i.
□
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9. DE RHAM DECOMPOSITION THEOREM OF DELIGNE-ILLUSIE

In this section, we assume k is an algebraically closed field with positive
characteristic p.

9.1. Introduction. Let X be a smooth variety over k and F : X → X (p)

denote the relative Frobenius map. Then

F∗Ω•
X : F∗OX → F∗Ω1

X → F∗Ω2
X → . . .

is a finite complex of coherent OX (p)-module with OX (p)-linear differential.

Theorem 9.1.1 (Deligne-Illusie). Let X be a smooth variety over k. If X is
W2(k)-liftable and dimk X = n < p. Then there is a quasi-isomorphism

(F∗Ω•
X ,F∗d)∼=

n⊕
i=0

Ωi
X (p)[−i].

Remark 9.1.1.
(1) The condition of W2(k)-liftable (Definition 9.1.2) cannot be removed,

and the first counterexample is given in [Ray78] by showing Kodaira’s
vanishing theorem fails in positive characteristic.

(2) The statement still holds for dimk X = p, but it fails when dimk X > p,
see [Pet23].

9.1.1. Witt vectors of length two.

Definition 9.1.1. The Witt ring W2(k) can be interpreted as the set k×k,
where the multiplication and addition for a = (a0,a1) and b = (b0,b1) are
defined by

ab = (a0a1,b0ap
1 +b1ap

0 ),

and

a+b = (a0 +b0,a1 +b1 −
p−1∑
i=1

p−1

(
p
t

)
ai

0bp−i
0 ).

Remark 9.1.2. In fact, the operations on W2(k) makes the ghost polynomial
Φ(a0,a1)= ap

0 + pa1 a ring homomorphism.

Proposition 9.1.1. If k =Z /pZ, then W2(k)=Z /p2Z.

Proof. Let [ - ] : Z /pZ→Z /p2Z be the Teichmüller lifting, that is,
[0]= 0
[i]≡ i (mod p)
[i]p ≡ [i] (mod p)
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To be precise, if we write

[i]≡ i+ pa (mod p2),

then
a ≡ 1

p
(ip − i) (mod p).

The Teichmüller lifting satisfies [a · b] = [a] · [b], but in general [a+ b] ̸=
[a]+ [b]. Then the following map

α : W2(k)→Z /p2Z

(a0,a1) 7→ [a0]+ p[a1].

gives the desired isomorphism. □

Proposition 9.1.2. The set pW2(k) = {(0,a) | a ∈ k} is a maximal ideal of
W2(k), and the following sequence is exact

0→ pW2(k)→W2(k)→ k → 0.

Proposition 9.1.3. The ring homomorphism FW2(k) : W2(k) → W2(k) given
by (a0,a1) 7→ (ap

0 ,ap
1 ) reduces to the Frobenius map Fk on k modulo p.

Definition 9.1.2. Let X be a smooth variety over k. If there exists a flat
morphism X̃ →W2(k) such that the following diagram commutes

X X̃ ×W2(k) k X̃

k W2(k),

∼=

then X /k is W2(k)-liftable.

Remark 9.1.3. Not every smooth variety X /k is W2(k)-liftable. In fact, there
is an obstruction in ob(α) ∈ H2(X ,TX ) such that ob(α)= 0 if and only if X /k
is W2(k)-liftable.

9.1.2. Cartier inverse operator.

Theorem 9.1.2. Let X be a smooth algebraic variety over k of dimension
n and F : X → X (p) be the relative Frobenius map. Then there is a unique
isomorphism (called Cartier inverse operator) of graded OX (p)-algebra

C−1 :
n⊕

i=0
Ωi

X (p) →
n⊕

i=0
H i(F∗Ω•

X ),

which is determined as follows
(1) On the 0-th degree, the operator C−1 : OX (p) →H 0(F∗Ω•

X ) is defined by
the morphism F∗ : OX (p) −→ F∗OX , as H 0(F∗Ω•

X )⊆ F∗OX .
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(2) On the 1-st degree, there is the following commutative diagram

C−1 : Ω1
X (p) H 1(F∗Ω•

X )

Z 1(F∗Ω•
X )

such that C−1(dx′) = xp−1dx (mod B1), where x ∈ OX and x′ = π∗x ∈
OX (p) .

Proof. The key observation is the global map OX (p) →H 1(F∗Ω•
X ) defined by

sending x to xp−1dx is a derivation, and thus it factors throught Ω1
X (p) by

the universal property, that is, the following diagram commutes

Ω1
X (p) H 1(F∗Ω•

X )

OX (p)

C−1

Now let’s prove this key observation. For arbitrary sections x, y ∈OX , note
that

(x+ y)p = xp + yp + p
p−1∑
i=1

(p
i
)

p
xi yp−i.

Thus

(x+ y)p−1d(x+ y)= xp−1dx+ yp−1dy+d

(
p−1∑
i=1

(p
i
)

p
xi yp−i

)
,

that is,
(x+ y)p−1d(x+ y)≡ xp−1dx+ yp−1dy (mod B1).

On the other hand, a direct computation shows

(xy)p−1d(xy)≡ xp(yp−1dy)+ yp(xp−1dx) (mod B1)

This completes the proof of the observation. Now let’s check C−1 is an
isomorphism, we may assume X is affine, with local coordinate {z1, . . . , zn}.
For simplicity we firstly assume n = 2, then

F∗OX =OX (p){zi1
1 zi2

2 | 0≤ i1 ≤ p−1,0≤ i2 ≤ p−1}

F∗Ω1
X =OX (p){zi1

1 zi2
2 | . . . }⊗dz1 ⊕OX (p){zi1

1 zi2
2 | . . . }⊗dz2

F∗Ω2
X =OX (p){zi1

1 zi2
2 }⊗dz1 ∧dz2.
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In this case C−1 is given by

C−1 : Ω1
X (p) →H 1(F∗Ω•

X )

dzi 7→ zp−1
i dzi,

which is clearly an isomorphism. □

9.2. Explicit quasi-isomorphism. Let F : X → X (p) be the relative Frobe-
nius map for convenience.

9.2.1. Simple case. Firstly let’s consider the case that the relative Frobe-
nius map lifts over W2(k). In other words, there exists a morphism F̃ : X̃ →
X̃ (p) such that the following diagram commutes

X (p) X̃ (p)

X X̃

k W2(k),

F F̃

where X̃ (p) is the base change of X̃ given by the Frobenius map of W2(k),
that is, (a0,a1) 7→ (ap

0 ,ap
1 ).

Consider the O X̃ -linear morphism dF̃ : F̃∗Ω1
X̃ (p)/W2(k)

→Ω1
X̃ /W2(k)

. Then for

any local section x of O X̃ (p) , we may write F̃∗(x)= xp+pa, since F̃ is a lifting
of F and F∗(x)= xp. Therefore,

dF̃(dx)= d(F̃∗x)

= d(xp + pa)

= p(xp−1dx+da).

This shows dF̃(F̃∗Ω1
X̃ (p)/W2(k)

) ⊆ pΩ1
X̃ /W2(k)

, and thus one has the following
commutative diagram

pF̃∗Ω1
X̃ (p)/W2(k)

F̃∗Ω1
X̃ (p)/W2(k)

pΩ1
X̃ /W2(k)

F∗Ω1
X (p) Ω1

X .

(mod p)

dF̃

1
[p] ×p
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Thus we have construct the first order derivation of F̃ along p, that is,

dF̃
[p]

: F∗Ω1
X (p) →Ω1

X .

Proposition 9.2.1. The morphism F̃ induces a morphism of complexes

ϕ :
n⊕

i=0
Ωi

X (p) → F∗Ω•
X

such that it induces the Cartier isomorphism on the cohomology sheaf. In
particular, ϕ is a quasi-isomorphism.

Proof. Consider the following diagram

OX (p) Ω1
X (p) . . . Ωn

X (p)

F∗OX F∗Ω1
X . . . F∗Ωn

X .

0

ϕ0=F

0

ϕ1= dF̃
[p]

0

ϕn

F∗d F∗d

For any i ≥ 1, we define

Ωi
X (p) F∗Ωi

X

∧iΩ1
X (p)

∧iΩ1
X ′

∼= ∼=∧iϕ1

□

Remark 9.2.1. However, the Frobenius map seldom lifts. For example, let
X /k be a smooth projective curve of genus ≥ 2, then for any W2(k)-lifting
X̃ of X , there is no W2(k)-lifting of F : X → X (p). Now let’s explain why
there is no such a lifting. Note that the operator dF̃/[p] induces a non-zero
morphism

F∗Ω1
X (p) →Ω1

X .

Thus it gives a non-zero global section of (F∗ΩX (p))∨⊗Ω1
X . On the other

hand,
deg((F∗ΩX (p))∨⊗Ω1

X )=−pdegΩ1
X (p) +degΩ1

X

= (2g−2)(1− p).

This shows the degree of (F∗ΩX (p))∨⊗Ω1
X is non-positive when genus of X

is ≥ 2, and thus it cannot admit a non-zero global section.
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On the other hand, by Theorem C.1, the obstruction of the lifting F̃
is given by a class ob(F) ∈ Ext1(g∗

0Ω
1
X̃ (p)/W2(k)

, pO X̃ ) ∼= Ext1(F∗ΩX (p) ,OX ) ∼=
H1(X (p),F∗TX (p)).

X (p) X̃ (p)

X X̃

k W2(k).

F g0

F̃

9.2.2. General case. Now let’s prove the Deligne-Illusie’s decomposition the-
orem.

Theorem 9.2.1 (Deligne-Illusie). Let X /k be a smooth variety over k such
that X is W2(k)-liftable and dimk X = n < p. Then there exists an affine
open covering U of X , and an explicit a quasi-isomorphism

ϕ :
n⊕

i=0
Ωi

X (p)[−i]→ C•(U,F∗Ω•
X ),

where C•(U,F∗Ω•
X ) is the total complex associated to the Čech double com-

plex (C•(U,F∗Ω•
X ),δ,F∗d).

Proof. Let U= {Ui} be an affine open covering of X . Then by Remark 9.2.1,
over each Ui, we may choose a Frobenius lifting F̃i : Ũi → Ũ (p)

i ,→ X̃ (p). By
the proof of Theorem C.1, we get the following commutative diagram by
restricting both F̃i and F̃ j to Ui ∩U j.

Ω1
X (p) F∗Ω1

Ui j

OX (p) F∗OUi j ,

ξi−ξ j

hi j
d

1
[p] (F∗

i −F∗
j )

F∗d

where ξi = dF̃i
[p] and {hi j} is a Čech 1-cocycle representing the class ob(F) ∈

H1(X ,F∗TX (p)). For convenience, we collect the above diagram as follows

(9.1)


hi j : F∗Ω1

X (p) →OUi j

dhi j = ξi −ξ j

hik = hi j +h jk.

□
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9.3. Applications of de Rham decomposition.

9.3.1. E1-degeneration. Let k be an algebraically closed field with char-
acteristic p > 0. In this section we will show that the decomposition of
Deligne-Illusie implies the E1-degeneration in characteristic p.

Theorem 9.3.1. Let X /k be a smooth proper variety which is W2(k)-liftable
and of dimk X = n < p. Then the Hodge to de Rham spectral sequence
degenerates at E1-page.

Proof. Firstly, it’s clear dimk H j(X ,Ωi
X ) < ∞ since X is proper. Note that

the relative Frobenius F : X → X (p) is an identity topologically. Then apply
the Leray spectral sequence to it, one has

Hn(X ,Ω•
X )∼=Hn(X (p),Ω•

X (p)).

Let Ω•
X → I • be an injective resolution. Then F∗Ω•

X → F∗I • is still an
injective resolution since F is an isomorphism as sheaves of abelian groups.
Thus

H∗(X (p),F∗Ω•
X )= H∗(Γ(X (p),F∗I •))

= H∗(Γ(X ,I •))
=H∗(X ,Ω•

X ).
On the other hand, by the decomposition theorem of Deligne-Illusie, one
has

H∗(X (p),F∗Ω•
X )=H∗(X (p),

n⊕
i=0

Ωi
X (p)[−i])

=
n⊕

i=0
H∗−i(X (p),Ωi

X (p)).

Thus

dimkH
∗(X ,Ω•

X )=
n∑

i=0
dimk H∗−i(X (p),Ωi

X (p))

=
n∑

i=0
dimk H∗−i(X ,Ωi

X ),

where the last equality holds since π : X (p) → X is a flat base change, and
thus π∗Ωi

X
∼=Ωi

X (p) . This completes the proof. □

9.3.2. Kodaira-Akizuki-Nakano theorem.

Theorem 9.1. Let X /k be a smooth projective variety such that X /k is
W2(k)-liftable and dimk X = n < p. Then for any ample line bundle L on X ,
one has

H j(X ,Ωi
X ⊗L )= 0
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for all i+ j > n.

Proof given by M.Raynaud. Note that F∗L −1 = (L −1)p, then

L −p ∇−→L −p ⊗ΩX
∇−→ . . . .

Then we project it

F∗L −p F∗∇−→ F∗(L −p ⊗Ωp
X )→ . . . .

By the projection formula one has

F∗L −p =L −1 ⊗F∗OX

F∗(L −p ⊗Ωp
X )=L −1 ⊗F∗Ω1

X .

One can find that F∗∇= id⊗F∗d, and thus above complex is (F∗ΩX ,F∗d)⊗
L −1. By Deligne-Illusie’s decomposition one has

n⊕
i=0

Ωi
X [−i]⊗L −1.

Then
dimkH

∗(
⊕

Ωi
X [−i]⊗L −1)= dimkH

∗(X ,F∗(L −p ⊗ΩX ))

= dimkH
∗(X ,L −p ⊗ΩX )

≤ ∑
i+ j=∗

dimk H j(X ,L −p ⊗Ωi
X )

≤ ∑
i+ j=∗

dimk H j(X ,L −N p ⊗Ωi
X )

Then by Serre vanishing one has

H j(X ,Ωi
X ⊗L −1)= 0

for all i+ j < n. □

9.4. From characteristic p to characteristic 0. In this section, we’re
going to show the following theorem.

Theorem 9.4.1. Let k be a field of characteristic zero and X is a smooth
proper k-scheme. Then the Hodge to de Rham spectral sequence degener-
ates at E1-page.

There’re two methods to prove this, one is using the transcendental
methods over C, and the other is using the characteristic p method. But
before doing anything, we must “lower" the defining field of X and even ob-
tain an integral method of it. The following are some necessary algebraic
lemmas.
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Lemma 9.4.1. Let {A i}i∈I be a direct system with direct limit A.
(1) If E is a A-module of finite presented, then there exists i0 ∈ I and E i0

is a A i0-module of finite presented such that

E i0 ⊗A i0
A ∼= E.

Moreover, for α : E → F, an A-module morphism between finite pre-
sented A-modules, there exists a finite presented A i0-module morphism
αi0 : E i0 → Fi0 such that αi0 ⊗A i0

A ∼=α.
(2) Let f : X → S = Spec A is a finite presented morphism10. Then there

exists i0 ∈ I and f i0 : X i0 → SpecSi0 = Spec A i0 such that the following
diagram is Cartisian

X X i0

S Si0 .

f f i0

Moreover, if f is smooth/proper/projective, then there exists i0 ∈ I, and
f i0 : X i0 → Si0 such that f i0 is smooth/proper/projective.

Proof. See [Gro66b]. □

Now by above lemma, we may get a Cartisian diagram

X X

S Speck,

f fk

where X/S is smooth and proper, and S = Spec A for some finite generated
Z-subalgebra A ⊆ k. Therefore we can take an embedding A ,→ C, and
consider

Xξ X

SpecC S.

fC f

Exercise 9.4.1. Let X /C be a smooth and proper variety. Then use Chow’s
lemma and the E1-degeneration theorem for smooth projective C-varieties
to show the Hodge to de Rham spectral sequence attached to Ω•

X /C degen-
erates at E1-page.

Now let’s prove the key theorem for this section.
10A morphism of schemes f : X → S is said to be finite presented, if it’s locally finite

presented, quasi-compact and quasi-seperated.
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Proof of Theorem 9.4.1. As Speck is affine, we have

R j( fk)∗Ωi
X
∼= H j(X ,Ωi

X ).

By finiteness theorem of Serre, one has dimk H i(X ,Ω j
X ) <∞. Then by the

spectral sequence, one has

dimkH
n(X ,Ω•

X )≤ ∑
i+ j=n

dimk H j(X ,Ωi
X )<∞.

Likewise, by the properness of f , both R j f∗Ωi
X/S □
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Part 4. Appendix

APPENDIX A. RESOLUTIONS OF SHEAVES

A.1. The ayclic sheaf. In practice it may be difficult for us to choose an
injective resolution, so we usual other resolutions to compute sheaf coho-
mology.

Definition A.1.1. A sheaf F is acyclic if H i(X ,F )= 0 for all i > 0.

Example A.1.1. Every injective sheaf is acyclic.

Definition A.1.2. Let F be a sheaf. An acyclic resolution of F is an
exact sequence

0→F →A 0 →A 1 →A 2 → . . . ,
where A i is acyclic for all i.

Proposition A.1.1. The cohomology of sheaf can be computed by using
acyclic resolution.

In fact, it’s a quite homological techniques, called dimension shifting, so
we will state this technique in language of homological algebra. Let’s see a
baby version of it.

Example A.1.2. Let F be a left exact functor and 0 → A → M1 → B → 0
be an exact sequence with M1 is F -acyclic. Then R i+1F (A) ∼= R iF (B) for
i > 0, and R1F (A) is the cokernel of F (M1)→F (B).

Proof. By considering the long exact sequence induced by 0 → A → M1 →
B → 0, one has

R iF (M1)→ R iF (B)→ R i+1F (A)→ R i+1F (M1).

(1) If i > 0, then R iF (M1) = R i+1F (M1) = 0 since M1 is F -acyclic, and
thus R i+1F (A)∼= R iF (B) for i > 0.

(2) If i = 0, then

0→F (M1)→F (B)→ R1F (A)→ 0

implies R1F (A)= coker{F (M1)→F (B)}.
□

Now let’s prove dimension shifting in a general setting.

Lemma A.1.1 (dimension shifting). If

0→ A → M1 → M2 →···→ Mm → B → 0

is exact with M i is F -acyclic, then R i+mF (A) ∼= R iF (B) for i > 0, and
RmF (A) is the cokernel of F (Mm)→F (B).
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Proof. Prove it by induction on m. For m = 1, we already see it in Example
A.1.2. Assume it holds for m < k, then for m = k, let’s split 0 → A → M1 →
M2 →···→ Mk dk−→ B → 0 into two exact sequences

0→ A → M1 → M2 →···→ Mk−1 → kerdk → 0

0→ kerdk → Mk dk−→ B → 0.

Then by induction hypothesis, for i > 0 we have

R i+k−1F (A)∼= R iF (kerdk)

R i+1F (kerdk)∼= R iF (B).

Combine these two isomorphisms together we obtain R i+kF (A) ∼= R iF (B)
for i > 0, as desired. For i = 0, it suffices to let i = 1 in R i+k−1F (A) ∼=
R iF (kerdk), then we obtain

RkF (A)= R1F (kerdk)= coker{F (Mk)→F (B)}.

This completes the proof. □

Corollary A.1.1. If 0 → A → M• is a F -acyclic resolution, then R iF (A) =
H i(F (M•)).

Proof. Truncate the resolution as

0→ A → M0 → M1 → . . . M i−1 → B → 0

0→ B → M i → M i+1 → . . .

Since we already have R iF (A) = coker{F (M i−1) → F (B)}, and F is left
exact, one has

F (B)= ker{F (M i)→F (M i+1)}.
Thus we obtain

R iF (A)= coker{F (M i−1)→ ker{F (M i)→F (M i+1)}}= H i(F (M•)).

□

A.2. The flabby sheaf. The first kind of acyclic sheaf we’re going to intro-
duce is flabby sheaf11.

Definition A.2.1. A sheaf F is flabby if for all open U ⊆V , the restriction
map F (V )→F (U) is surjective.

Example A.2.1. A constant sheaf on an irreducible topological space is
flabby.

11Some authors also call this flasque sheaf.



ALGEBRAIC DE RHAM COHOMOLOGY 59

Proof. Note that the constant presheaf on a irreducible topological space is
a sheaf in fact, and it’s easy to see constant presheaf is flabby. □

In particular, we have

Example A.2.2. Let X be an algebraic variety. Then constant sheaf ZX is
flabby.

Example A.2.3. If F is a flabby sheaf on X , and f : X →Y is a continuous
map, then f∗F is a flabby sheaf on Y .

Proof. For V ⊆ W in Y , it suffices to show f∗F (W) → f∗F (V ) is surjective,
and that’s exactly

F ( f −1W)→F ( f −1V ).
Then it’s surjective since F is flabby. □

Example A.2.4. An injective sheaf is flabby.

Proof. Let I be an injective sheaf and V ⊆ U be open subsets. Now we
define sheaf ZU on X by

ZU :=
{
Z(W), W ⊆U
0, otherwise

where Z is constant sheaf valued in Z, and similarly we define sheaf ZV .
By construction one has ZU (W) = ZV (W) unless W ⊆ U and W ̸⊆ V . Thus
we obtain an exact sequence

0→ZV →ZU .

Applying the functor Hom(−,I ), which is exact, we obtain an exact se-
quence

Hom(ZU ,I )→Hom(ZV ,I )→ 0.
Now let’s explain why we need such a weird sheaf ZU . In fact, we will prove
Hom(ZU ,I ) = I (U). Indeed since ϕ : ZU → I is a sheaf morphism. Then
if W ̸⊆U , then ϕ(U) must be zero. If W =U , then the group of sections of
ZU (U) over any connected component is simply Z and hence ϕ(U) on this
connected component is determined by the image of 1 ∈ Z. Thus ϕ(U) can
be thought of an element of I (U). Now on any proper open subset of U , ϕ
is determined by restriction maps. Hence Hom(ZU ,I ) =I (U), as desired.
The same argument shows Hom(ZU ,I ) = I (V ), and thus we obtain an
exact sequence

I (U)→I (V )→ 0,
which shows I is flabby. □
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Our goal is to prove a flabby sheaf is acyclic, but we still need some
property of flabby sheaves.

Proposition A.2.1. If 0 → F ′ φ−→ F
ψ−→ F ′′ → 0 is an exact sequence of

sheaves, and F ′ is flabby, then for any open subset U , the sequence

0→F ′(U)
φ(U)−→ F (U)

ψ(U)−→ F ′′(U)→ 0

is exact.

Proof. It suffices to show F (U)→F ′′(U)→ 0 is exact. Here we only gives a
sketch of the proof. Since we have exact sequence on stalks for each p ∈U
as follows

0→F ′
p

φp−→Fp
ψp−→F ′′

p → 0

Then for each s ∈ F ′′(U), there exists tp ∈ Fp such that ψp(tp) = s|p, so
there exists open subset Vp ⊆U containing p and t ∈F (Vp) such that ψ(t)=
s|Vp . If we can glue these t together then we get a section in F (U) and is
mapped to s, which completes the proof. However, they may not equal on
the intersection. But things are not too bad, consider another point q and
t′ ∈F (Vq) such that ψ(t′)= s|Vq , (t′−t)|Vp∩Vq ∈ kerψ(Vp∩Vq)= imφ(Vp∩Vq).
So there exists t′′ ∈F ′(Vp ∩Vq) such that

φ(t′′)= (t′− t)|Vp∩Vq

Now since F ′ is flabby, then there exists t′′′ ∈F (Vp) such that t′′′|Vp∩Vq = t′′.
And consider t+φ(t′′′) ∈F (Vp), which will coincide with t′ on Vp∩Vq. After
above corrections, we can glue t after correction together. □

Proposition A.2.2. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves, and if F ′ and F are flabby, then F ′′ is flabby.

Proof. Take V ⊆U and consider the following diagram

0 F ′(U) F (U) F ′′(U) 0

0 F ′(V ) F (V ) F ′′(V ) 0

Then the desired result follows from five lemma. □

Proposition A.2.3. A flabby sheaf is acyclic.

Proof. Let F be a flabby sheaf. Since there are enough injective objects in
the category of sheaf of abelian groups, there is an exact sequence

0→F →I →Q → 0
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with I is injective. By Example A.2.4 we have I is flabby, and thus by
Proposition A.2.2 we have Q is flabby. Consider the long exact sequence
induced from above short exact sequence

F (X )→I (X )→Q(X )→ H1(X ,F )→ H1(X ,I )→ . . .

Note that H1(X ,I )= 0 since I is injective, and thus acyclic. Then H1(X ,F )=
coker{I (X ) → Q(X )}. But Proposition A.2.1 shows that I (X ) → Q(X ) is
surjective since F is flabby, so H1(X ,F )= 0.

Now let’s prove Hk(X ,F ) = 0 for k > 0 by induction on k, and above ar-
gument shows it’s true for k = 1. Assume this holds for k < n, and consider

· · ·→ Hn−1(X ,Q)→ Hn(X ,F )→ Hn(X ,I )→ Hn(X ,Q)→ . . .

By induction hypothesis, we can reduce above sequence to

· · ·→ 0→ Hn(X ,F )→ 0→ Hn(X ,Q)→ . . .

which implies Hn(X ,F )= 0. This completes the proof. □

A.3. The soft sheaf. The second kind of acyclic sheaves is called soft sheaves,
which is quit similar to flabby.

Definition A.3.1. A sheaf F over X is soft if for any closed subset S ⊆ X
the restriction map F (X )→F (S) is surjective.

Remark A.3.1. For closed subset S, the section over it is defined by

F (S) := lim−−→
S⊆U

F (U)

Parallel to Proposition A.2.1 and Proposition A.2.2, soft sheaf has the
following properties:

Proposition A.3.1. If 0 → F ′ φ−→ F
ψ−→ F ′′ → 0 is an exact sequence of

sheaves, and F ′ is soft, then the following sequence

0→F ′(X )
φ(X )−→ F (X )

ψ(X )−→ F ′′(X )→ 0

is exact.

Proposition A.3.2. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves, and if F ′ and F are soft, then F ′′ is soft.

Proposition A.3.3. A soft sheaf is acyclic.

So you may wonder, what’s the difference between flabby and soft since
the definitions are quite similar, and both of them are acyclic. Clearly by
definition of sections over a closed subset, we know that every flabby sheaf
is soft, but converse fails
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Example A.3.1. The sheaf of smooth functions on a smooth manifold is
soft but not flabby.

Lemma A.3.1. If M is a sheaf of modules over a soft sheaf of rings R, then
M is a soft sheaf.

Proof. Let s ∈M (K) for some closed subset K ⊆ X . Then s extends to some
open neighborhood U of K . Let ρ ∈R(K ∪ (X \U)) be defined by

ρ =
{

1, on K
0, on X \U

Since R is soft, then ρ extends to a section over X , then ρ ◦ s is the desired
extension of s. □

A.4. The fine sheaf. Another important kind of acyclic sheaves, which
behaves like sheaf of differential forms Ωk

X is called fine sheaf. Recall what
is a partition of unity: Let U = {Ui}i∈I be a locally finite open covering of
topological space X . A partition of unity subordinate to U is a collection of
continuous functions f i : Ui → [0,1] for each i ∈ I such that its support lies
in Ui, and for any x ∈ X ∑

i∈I
f i(x)= 1.

Definition A.4.1. A fine sheaf F on X is a sheaf of A -modules, where A

is a sheaf of rings such that for every locally finite open covering {Ui}i∈I of
X , there is a partition of unity ∑

i∈I
ρ i = 1

where ρ i ∈A (X ) and supp(ρ i)⊆Ui.

Remark A.4.1. For a sheaf F on X and a section s ∈ F (X ), its support is
defined as

supp(s) := {x ∈ X : s|x ̸= 0}.

Proposition A.4.1. A fine sheaf is acyclic.

Proof. Let F be a sheaf of A -modules and a fine sheaf. And choose a injec-
tive resolution

0→F
d−→I 0 d−→I 0 d−→I 1 d−→ . . .

such that I i are injective sheaves of A -modules. Let s ∈I p(X ) such that
ds = 0. Then by exactness of injective resolution we have X is covered by
open subsets Ui such that for each i there is an element ti ∈I p−1(Ui) such
that dti = s|Ui . By passing to a refinement we may assume that the cover
{Ui} is locally finite. Let {ρ i} be a partition of unity subordinate to {Ui}.
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Then we have t = ∑
ρ i ti ∈ I p−1(X ) such that dt = s. This completes the

proof. □

Example A.4.1. Let M be a smooth manifold and π : E → M be a vector
bundle. Then the sheaf of smooth sections of E is a C∞(M)-module sheaf,
which is a fine sheaf. In particular, the sheaf of tangent bundle, sheaf of
differential forms ΩM and k-forms Ωk

M are fine sheaves.

Remark A.4.2. As a consequence, it’s meaningless to compute cohomology
of sheaf of differential k-forms, or any other vector bundle over a smooth
manifold. But in complex version, something interesting happens. Let
(X ,OX ) be a complex manifold and π : E → X be a holomorphic vector bun-
dle. Then the sheaf of holomorphic sections of E is not a fine sheaf since
there is no partition of unity may not be holomorphic, so the cohomology of
holomorphic vector bundle is not trivial, and that’s what Dolbeault coho-
mology computes.

Lemma A.4.1. Any fine sheaf is soft.

Proof. Let F be a fine sheaf, S ⊆ X closed and s ∈F (S). Let {Ui} be an open
covering of S and si ∈F (Ui) such that

si|S∩Ui = s|S∩Ui .

Let U0 = X − S, and s0 = 0. Then {Ui}
∐

{U0} is an open covering of X .
Without lose of generality, we assume this open covering is locally finite
and choose a partition of unity {ρ i} subordinate to it. Then

s :=∑
i
ρ i(si)

is a section in F (X ) which extends s. □

Remark A.4.3. Until now, we have shown that soft, fine and flabby sheaves
are acyclic. Lemma A.4.1 shows fine sheaf is soft, and by definition a flabby
sheaf is soft. The Example A.3.1 shows that soft sheaf may not be flabby,
and constant sheaf on an irreducible space is flabby but not fine. In a
summary, we have the following relations:
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Acyclic

Soft

Fine

Flabby



ALGEBRAIC DE RHAM COHOMOLOGY 65

APPENDIX B. LOCAL COORDINATES ON ALGEBRAIC VARIETY

B.1. Smooth, unramified and étale morphism.

B.1.1. Smooth morphism.

Definition B.1.1. Let f : X → Y be a morphism of schemes. It’s said to
be locally finite presented if for all x ∈ X , there exists an affine open
neighborhood x ∈Spec A ⊆ X , and affine open neighborhood f (x) ∈SpecB ⊆
Y such that f (x) ∈V with the following property

X Y

Spec A SpecB

SpecB[t1, . . . , tn],

f

where I = ker(B[t1, . . . , tn]→ A) is finitely generated.

Definition B.1.2. A closed immersion i : T → T̃ between schemes is said
to be a first order thickening if the ideal I of T in T̃ satisfies I 2 = 0.

Definition B.1.3. A first order thickening T ,→ T̃ is said to be affine first
order thickening if both T and T̃ are affine.

Example B.1.1. Let R be a ring and R[ϵ]= R[x]/(x2). Then X1 = SpecR[ϵ]
is an affine first order thickening of X = SpecR, where the closed immer-
sion X ,→ X1 is induced by the R-algebra morphism

R[ϵ]→ R
ϵ 7→ 0.

Definition B.1.4. Let f : X → S be a morphism of schemes. Then f is said
to be smooth if
(1) f is locally finite presented;
(2) For every diagram

X

T T̃ S,

f

where T → T̃ is an affine first order thickening, there exists a morphism
T̃ → X such that the following diagram commutes
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X

T T̃ S.

f

Remark B.1.1. A morphism is smooth is equivalent to say HomS(T̃, X ) →
HomS(T, X ) is surjective for any affine thickening T ,→ T̃.

Definition B.1.5. A S-scheme X → S is said to be smooth, if the mor-
phism X → S is smooth.

Proposition B.1.1.
(1) The smoothness is a local property.
(2) The smoothness is preserved by base change.

Example B.1.2. The projective space Pn
S is a smooth S-scheme.

Example B.1.3. Let X be an affine plane curve over a field k defined by
f ∈ k[x, y], that is, X =Speck[x, y]/( f ). Consider the following diagram

X

Speck Speck[ϵ] Speck.

p

θ

Note that p = (a,b) corresponding to a point in k2 such that f (a,b) = 0.
Then a lifting θ of p corresponds to a k-morphism

θ∗ : k[x, y]/( f )→ k[ϵ]

such that θ∗(x)= a+uϵ,θ∗(y)= b+vϵ with u,v ∈ k2 satisfying

f (a+uϵ,b+vϵ)= 0.

Since ϵ2 = 0, we conclude from the Taylor‘s formula that

f (a+uϵ,b+vϵ)=
(
∂ f
∂x

(a,b)u+ ∂ f
∂y

(a,b)v
)
ϵ.

Thus, a lifting θ of p = (a,b) corresponds to a pair (u,v) ∈ k2 such that
∂ f
∂x

(a,b)u+ ∂ f
∂y

(a,b)= 0.

Intuitively, it’s a tangent vectors of X at p.

Remark B.1.2. Incidentally, if a morphism Speck[ϵ] → S is to be seen as
tangent vectors of S, then smoothness of a morphism X → S implies every
tangent vector of S can be lifted to X , and that’s how a “submersion" is
defined in differential geometry.
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Theorem B.1.1. If X is smooth S-scheme, then Ω1
X /S is a locally free sheaf

on X .

Proof. See 17.2.3 of [Gro66b]. □

Theorem B.1.2. Let ϕ : X → Y is a S-morphism between S-schemes. If ϕ
is smooth, then

0→ϕ∗Ω1
Y /S →Ω1

Y /S →Ω1
X /Y → 0

is exact and locally split.

Proof. See 17.2.3 of [Gro66b]. □

B.1.2. Étale morphism.

Definition B.1.6. Let f : X → S be a morphism of schemes. Then f is said
to be unramified if

(1) f is locally finite presented;
(2) For every diagram

X

T T̃ S,

f

where T → T̃ is an affine first order thickening, there exists at most
one morphism T̃ → X such that the following diagram commutes

X

T T̃ S.

f

Definition B.1.7. A morphism f : X → S is said to be étale if it’s smooth
and unramified.

Proposition B.1.2. Let ϕ : X → Y be a morphism of S-schemes locally of
finite presentation and assume X is smooth over S. Then ϕ is étale if and
only if ϕ∗Ω1

Y /S →Ω1
X /S is an isomorphism.

Proposition B.1.3. Let π : X → S be an étale morphism and p ∈ X such
that κπ(p)

∼= κp. Then the morphism of local rings OS,π(p) →OX ,p induces an
isomorphism

ÔS,π(p)
∼= ÔX ,p.
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B.2. Local coordinates on algebraic variety.

Definition B.2.1. Let X be an S-scheme and p ∈ X . An étale S-chart of
X at p is a family (x1, . . . , xn) of sections of OX in a neighborhood U of p
such that the induced S-morphism

x = (x1, . . . , xn) : U →An
S

is étale.

Theorem B.2.1. Let X be a smooth S-scheme and p ∈ X . If (x1, . . . , xn) is a
family of sections of OX in a neighborhood U of p, then
(1) (x1, . . . , xn) defines an étale S-chart at p;
(2) (dx1, . . . ,dxn) trivializes Ω1

X /S in a neighborhood p.

Corollary B.2.1. An S-scheme X is smooth if and only if every point of X
admits an étale S-chart.
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APPENDIX C. DEFORMATION THEORY

Let i : T → T̃ be a first order thickening and I be an ideal of T in T̃.

Theorem C.1. Let f : X → S be a smooth morphism and g0 : T → X be a
morphism such that the following diagram commutes

X

T T̃ S.

f

g0

i

Then
(1) There exists an element ob(g0) ∈ Ext1(g∗

0Ω
1
X /S,I ) such that ob(g0) = 0

if and only if there exists a S-morphism g : T̃ → X such that g ◦ i = g0.
(2) If ob(g0) = 0, then the set of all liftings g of g0 is an affine space under

Hom(g∗
0Ω

1
X /S,I ), which is called torsor.

Theorem C.2. Let f : X → T be a smooth morphism. Then
(1) There exists an obstruction ob( f ) ∈Ext2(Ω1

X /Y , f ∗I ) such that ob( f )= 0
if and only if there exists a smooth lifting X̃ of X over T̃, that is, the
right part of following commutative diagram is Cartisian, and α is an
isomorphism.

X X̃ ×T̃ T X̃

T T̃.

α

f

i

Remark C.1. The isomorphism α is also part of data of the lifting, and
two lifting X̃1 and X̃2 of X over T̃ are said to be isomorphism if there is
a T̃-isomorphism between X̃1 and X̃2 which is identity on T

(2) Suppose ob( f )= 0. Then

{[X̃ ] | X̃ is a lifting of X over T̃}

is an affine space over Ext1(Ω1
X /Y ,I ).

(3) Fix a lifting X̃ . Then

Aut(X̃ )∼=Hom(Ω1
X /Y , f ∗I ).
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