SOLUTIONS TO ALGEBRA2-H

BOWEN LIU

ABSTRACT. This note contain solutions to homework of Algebra2-H
(2024Spring), but we will omit proofs which are already shown in the
textbook or quite trivial.
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1. HOMEWORK-1
1.1. Solutions to 4.1.

1. Tt suffices to note that (u+1)~! = (u? —u +1)/3.

2. Note that u® +1 = 0, and by Eisenstein criterion it’s easy to show that
x® 4+ 1 is irreducible.

4. Tt suffices to note that [F(u) : F(u?)] < 2.

5. Omit.

6. Omit.

7. Pick any 0 # v € K \ F, then by the explicit construction of F'(u), we
may write

_ f(u)

g(u)
where f,g € F[z] with g # 0. In other words, one has f(u) —vg(u) = 0.
On the other hand, f(x) — vg(x) # 0, otherwise it leads to v € F, since
coefficients of f, g lie in F'. This shows u satisfies a non-trivial polynomial
with coeflicients in K, and thus it’s algebraic over K.
8. Omit.
9. If B is algebraic over F, then by exercise 7 one has [F(«a) : F(5)] < oo,
and thus

)

a contradiction.
10 Since « is algebraic over F'(/3), then there exists a non-trivial polynomial

P(z) = 2" + an_1(B)z" ' + -+ ao(B) € F(B)[x]

such that P(a) = 0. On the other hand, it’s clear that § is transcendent
over I, otherwise

a contradiction to « is transcendent over F'. Thus by the explicit construc-
tion of F'(3), we may write

fi(B)
91(5)7

where f;(z) and g;(x) € F[z], while g;(x) # 0. Now consider the polynomial

ai(B) =

n

Q(z,y) = P(z) [ [ 9i(v) € Flz,y).

i=1

It’s a polynomial satisfying Q(«, f) = 0, which implies g is algebraic over
F(a).
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1.2. Solutions to 4.2.
2. Tt’s clear Q(ﬁ + \/§) C Q(\/i \/§) On the other hand, note that

V3—v2=(V2+V3) € Q(V2,V3).
This shows v/2,v/3 € Q(v/2,/3), and thus Q(v2 + v/3) = Q(v/2,V3).

Remark 1.2.1. In fact, any finite seperable extension is a simple extension,
that is, a field extension generated by one element. This is called primitive
element theorem.

3. Suppose there exists a € E such that g(a) = 0. Since g is irreducible
over F', so it’s the minimal polynomial of a over F. Thus

[F(a): F] =degg = k.

On the other hand, [E : F| = [E : F(a)][F(a) : F], a contradiction to
5 Suppose K be a subring of F containing F'. For any 0 # u € K, since F is
algebraic over F, there exists a polynomial f(z) = 2" +a,_ 12" 1 +---+ag
such that f(u) = 0. Thus
1 1

u = ——(u”_1 + ap—1u""
ag

24 tay)EK.

6. Omit.

7. It’s clear C is the algebraic closure of R, since it’s algebraic over R, and

it’s algebraically closed.

(a) An algebraically closed field must contain infinitely many elements,
otherwise if an algebraically closed F is a finite field with |E| = ¢, then
29 — x4 1 has no roots in E.

(b) An example is [C: R] = 2.

8. Firstly we prove that if pi,...,p, and p are distinct prime numbers,

then \/p € Q(\/p1,--.,/Pn) by induction. For n = 1, if \/p € Q(\/p1),
then there exists a,b € Q such that

\/f?za—k\/pT,

and thus a® + b%p; + 2ab,/p1 = p. Since /p1 € Q, it leads to ab = 0. Both
a =0 and b = 0 will lead to contradictions. Now suppose the statement
holds for n = k — 1 and consider the case n = k. By induction hypothsis,
one has

VPR & Q(Vp1s - - V/Pre-1)-
If \/p € Q(\/DP1,---++/Pk), then
VP = c+dy/pi,
where ¢,d € Q(\/p1, ..., /Pk—1). By the same argument one has cd = 0,

but ¢ # 0, otherwise it contradicts to \/p & Q(y/P1, - - -, /Pk—1). This shows
/P = d\/pi. Repeat above process for d € Q(,/p1,...,/Pk—1), one has

d= dl\/pk—la
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and thus

VP = dn-1y/P1 - Dk,
where d,,_; € Q, a contradiction. This shows E = Q(v/2,V/3,.. ., N/ VA0
is an algebraic extension of infinite degree. Since @ is the algebraic closure

of Q, and FE is algebraic over Q, so @ is also the algebraic closure of E.
9. Omnit.

10. Omit.

1.3. Solutions to 4.3.
1. Omit.

2. It suffices to show that sin 18° is constructable. Suppose § = 18°. Then
sin 260 = sin(7/2 — 30) = cos 36, and thus

2sin f cos @ = 4 cos® § — 3cos 6.
A simple computation yields
cosf(4sin? 0 + 2sinh — 1) = 0.
As a result, one has sinf = (v/5 — 1)/4, which is constructable.
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2. HOMEWORK-2

2.1. Solutions to 4.4.
1. Let &3 be the 3-th unit root. Then

f@)=(@-D+1)(z*+22+1)
= (z—1)(z+1)(z — &)(z + &) (z — &) (z + &).

This shows the splitting field of f(z) over Q is Q(&3).
2. Let & be the 4-th unit root. Then

fl@) = (= V2)(z + V2)(z — V2 x V=1&) (2 + V2 x &V -1).

This shows the splitting field of f(x) over Q is Q(v/2&4, v/—1).
3. Let &3 be the 3-th unit root. Then

f(@) = (z +V2) (& = V2)(x = V3)(x — V3&)(x — V363).
This shows the splitting field of f(z) over Q is Q(v/2, V/3,&3).
4. The splitting field of 23 — 2 over R is C.

5. Suppose there is a field isomorphism ¢: Q(v/3) — Q(v/2) and ¢(V/2) =
a + bV3. Then

2 = p(V2') = p(vV2)? = a® + 36 + 2abV/3.

On the other hand, {1,v/3} gives a basis of Q(v/3) over Q. This shows
2ab = 0 and a® + 3b%> = 0, a contradiction to a,b € Q.

6. Suppose F = F(«). Then the minimal polynomial of « is of degree two,
which can be written as 22 + ax + b with a,b € F. On the other hand,

2 +ax+b=(z—a)(z—a—a).

This shows E is exactly the splitting field of 22 + ax + b over F.
7. Note that

flx)=(z—vV=-3)(z+vV=-3)(x—1—-V=-3)(xz —1+V-3).

This shows the splitting field of f(z) over Q is Q(+/—3). Suppose there is
an automorphism o such that o(v/—3) =1+ +1/—3). Then

3=0(vV=3)=0(vV=3)%=(1+v—3)? = -2 +2/-3,

a contradiction.

8. Note that f(z) is irreducible over Zs[x], then Zsa[z]/(f(z)) contains a
root u of f(x). Furthermore, note that if f(u) = 0, then f(u+1) = 0, thus
Zo[x]/(f(x)) contains all roots of f(x), that is it’s splitting field of f.

9. The same argument shows Zs[z|/(f(x)) is splitting field of f.

10. It’s clear that we must have f is irreducible over Q and its splitting
field is exactly Q[z]/(f(x)), since [Q[z]/(f(z)) : Q] = 3. This is equivalent
to the discriminant v/A of f(z) in Q.

11. In fact, we can prove a stronger result, that is [E : F] | nl. Let’s prove
by induction on degree of f(x). It’s clear for the case deg f(z) = 1. Now
assume deg f(x) = n + 1. Let’s consider the following cases:
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(a) If f is reducible, let p(z) be an irreducible factor of f(x) with degree
k, and L the splitting field of p(z) over F'. Then E is the splitting field
of f/p over L. Note that degree of p(z) and f(z)/p(z) are < n, then
by induction hypothsis one has

[E:F)=[E:L|[L: Fk! x (n+1— k)!|(n+1)!

(b) Suppose f is irreducible, then consider L = F[z]|/(f) = F(«), where
a is a root of f. It’s clear [L : F| = n+ 1. Now consider polynomial
f/(x —a) over L, it’s clear that E is the splitting field of it. The same
argument yields the result.

2.2. Solutions to 4.5.

8. Omit.

9. Omit.

10. If F' is a perfect field, then it’s clear every finite extension F of F' is
seperable, since any element of E fits a irreducible polynomial, and every
irreducible polynomial of F is seperable; Conversely, if F' # FP, then there
exists u € F\FP, then P — u is irreducible, but not seperable over F, a
contradiction.
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3. HOMEWORK-3

3.1. Solutions to 4.6.
1. If a is a root of f(x) = 2P —x — ¢, then
Fla+k) = (@+ kP —(a+k)—c
=+ kP —a—-k—-c
=0

for all 1 <k < p— 1. This shows F(«) is the splitting field of f(z).

2. Suppose [E : F] = 2. Then E/F is the splitting field of some polynomial
over F', and thus it’s a normal extension.

3. Q(v~=2)/Q and Q(v/—1)/Q are normal extensions, but Q(6+/7)/Q is
not normal, since the minimal polynomial of /7 over Q is z3 — 7, which
has a root v/7¢3 not lying in Q(5+v/7).

8. Suppose F' is a finite field with characteristic p and E/F is a finite
extension. Then E is also a finite field with |E| = p™, and thus E is the
splitting field of 2™ —x over F,. In particular, £/ F), is a normal extension,
sois E/F.

10. Suppose the minimal subfield of L which contains Ef, ..., E} is K, and
the normal closure of E/F is N. On one hand, it’s clear that K C N,
since 0(N) € N. On the other hand, for any o € E, suppose its minimal
polynomial over F is f(x) and g is another root of f(z). Then o +— 8 may
extend to a automorphism of F which fixes F. As a consequence, one has
8 € K, and thus N C K.
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4. HOMEWORK-4

4.1. Solutions to 4.7.

1. Note that Q(v2 + v3) = Q(v/2,v/3), and it’s the splitting field of
(z2 — 2)(2% — 3) over Q, so Q(v/2,v/3)/Q is a Galois extension with the
Klein four group Ky as its Galois group. By the Galois correspondence,
the subfields of Q(v/2,v/3) are Q, Q(v/2), Q(v/3), Q(v/6) and itself.

2. The splitting field of z* 4+ 1 over Q is Q(eﬁ”/ 4), which is also the
splitting field of % — 1. Then the Galois group is isomorphic to the auto-
morphism group of Cg, which is the Klein four group Kj.

3. Z /AL

4. 7 /5 7.

5. Note that over Z3 one has the following decomposition

242 = (2 + 1) (z + 1)(z —2),

which implies the splitting field of z* + 2 is the same as the one of z2 + 1.
In other words, the splitting field of 2* + 2 over Zs is Z3(y/—1), and the
Galois group is Zso.

6. By the assumption on a we know that f(z) = 2P — x — a is irreducible
over F, and if «v is a root of f(x), then {a +k |k =0,1...,p— 1} are all
roots of f(x). In particular, the Galois group is Z,.

7. Omit.

4.2. Solutions to 4.8.

1. Since the Frobenius map x — P is injective, then it’s also surjective by
the finiteness.

2. Note that £ = Fz]|/(f(x)) is a finite ﬁeld with |E| = ¢". In particular,
every non-zero element is a root of 9" ~! — 1, and thus f(z) | 29 ' — 1.
3. Suppose F' is a infinite field such that F X is an infinite cyclic group.
Let K be the prime subfield of F. Then K* C F* is also an infinite cyclic
subgroup. This shows charK = 0 and thus K = Q, but Q* is not cyclic, a
contradiction.

4. Omit.
5. If charF = 2, then F?2 = F, and thus F C F? + F?. If charF = p > 2
and suppose F = {0,a,a?,...,a?"'}, where ¢ = p", then

={0,a%,a*,... a7t}
In particular, |F?| = (¢+1)/2. For any c € F, similarly one has |c — F?| =
(¢ +1)/2, and thus
c—F’NF*+ 0.
6. Omit.
8. Note that Q(\@) 2 Q(\/g)

9. In exercise 2 we have already shown that every irreducible polynomial of
degree p is a divisor of 4" — . On the other hand, Fgr / Fq is the splitting
field of 9" — z, and since p is prime, so there is no intermediate field. In
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other words, every irreducible polynomial that divides 2¢° — 2 must be of
degree p or 1. Since there are ¢ irreducible polynomial of degree 1, so the
number of irreducible polynomial of degree p over Fy is exactly (¢” — q)/p.
10. Omit.
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5. HOMEWORK-5

5.1. Solutions to 4.9.

2. We divide into two parts:

(a) It’s clear E/K is Galois, with Galois group Gal(F/K), which is abelian,
since any subgroup of abelian group is still abelian. So E/K is an
abelian extension;

(b) Note that K/F is Galois if and only if Gal(F/K) is a normal subgroup
of Gal(E/F), and it’s clear any subgroup of abelian group is normal,

thus K/ F is Galois. Furthermore it’s Galois group is Gal(E/F)/ Gal(E/K),

which implies K/F is abelian extension, since any quotient group of
abelian group is still abelian.
3. By the same argument as above.
4. It suffices to show if z is a n-th primitive root of unity, then —z is a
2n-th primitive root of unit, since cyclotomic polynomial is the product of
these roots. Let z = cos(2kw/n) + v/—1sin(2k7/n) is n-th primitive root
of unity, thus (k,n) = 1. Note that

2k 2k
—z= cos(—w +7)+v-1 sin(—7T + )
n n
s 22k 4+ n)m +/Tsin 2(2k + n)Tr‘
2n 2n

Since (k,n) =1 and n > 1 is odd, we have (2k + n,2n) = 1, and thus —z
is a 2n-th primitive root.

5. Since
o’ —1= H Pm(z) = H Ppr (2,
mln 0<k<n
we have
:Cpk -1 pr1 oph—1 (p—1)pk—1
@pk(x):T_lzl-i-x +x +-4x .

P

6. It’s isomorphic to Aut(Zi2), which is the Klein four group.

7. Otherwise, suppose n = pm. Then 2™ — 1 = (2™ — 1)P, which implies
the number of different roots of 2" — 1 is at most m, a contradiction.

8. If ™ — a is reducible, then it’s clear (™)™ — a is also reducible. This
shows if £ — @ is irreducible, then both 2™ — a and " — a are irreducible.
Conversely, suppose both " —a and 2™ — a are irreducible, and « is a root
of 2™ —a. Then o™ is a root of ™ — a. This shows [F(a™) : F| = n, and
similarly we have [F'(a™) : F| = m. Since (m,n) = 1, we have [F(«a) : F| =
mmn, and thus " — a is irreducible.

9. If a € FP, it’s clear that P — a is reducible. Conversely, suppose a ¢ FP
and f(x) is an irreducible factor of 2P — a with degree k, and the constant
term of f(x) is c¢. Let a be a root of 2P — a in the splitting field. Then any
root of P — a is of the form aw, where w is some primitive p-th root. By
Vieta’s theorem we have ¢ = +w’a”. Since (k,p) = 1, there exist s,t such
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that sk + pt = 1, and thus
a = ool = :I:(cw_g)sat,

which implies aw® = +c*a’ € F. Then we have a = o = (aw®*)? € F?, a
contradiction.

10. Omit.
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6. HOMEWORK-6

6.1. Solutions to 4.9.

1. Prove the Galois groups of these polynomials are all S5.

2. Consider —z" + 102° — 152 + 5, which only has 5 real roots.
3. Consider Cayley’s theorem.

4. Omit.

5. Let ' = Q(t1,...,tn). Then prove Gal(E/F(0)) is trivial.

6.2. Solutions to chapter 1 of Atiyah-MacDonald.

Exercise 6.2.1. Let x be a nilpotent element of a ring A. Show that 14z
is a unit of A. Deduce that the sum of a nilpotent element and a unit is a
unit.

Proof. If x is a nilpotent element, then = € 91 C R. By property of Jacobson
ideal, we have 1 — zy is unit for any y € A. Take y = —1 we obtain 1 + x is
a unit. If 3 is unit, then we have x +y = y~*(y "'z + 1). Since y~ 'z is also
nilpotent, we have y !z + 1 is unit, thus = + y is unit. O

Exercise 6.2.2. Let A be aring and let A[x] be the ring of polynomials in an

indeterminate x, with coefficients in A. Let f = ag+a1z+---+a,a™ € Alz].

Prove that

(1) fis a unit in A[z] < ap is a unit in A and ay, ..., a, are nilpotent.

(2) f is nilpotent < ag, a1, ...,a, are nilpotent.

(3) f is a zero-divisor < there exists a # 0 in A such that af = 0.

(4) f is said to be primitive if (ag,a1,...,a,) = (1). Prove that if f,g €
Alzx], then fg is primitive < f and g are primitive.

Proof. For (1). Use g = > bz’ to denote the inverse of f. Since fg =1
and if we use ¢ to denote Zm =k amby, then we have

60:1
c, =0, k>0

But ¢y = agbg, thus ag is unit. Now let’s prove aﬁ“bm_r = 0 by induction
on r: r = 0 is trivial, since anby = cpym = 0. If we have already proven
this for & < r. Then consider ¢n4n—r, Wwe have
0= cmin—r = anbm—r + an_1bpm—ry1 + ...
. N .
and multiply a], we obtain
1 —1
0= a2+ bm—rt+an—1 a:me—r-l—l +an—2an CL; bm—ri2 +...
by induction this term is 0 by induction this term is 0

which completes the proof of claim. Take r = m, we obtain a”*1by = 0. But
bp is unit, thus a, is nilpotent and a,x" is a nilpotent element in A[z]. By
Exercise 6.2.1, we know that f —a,z" is unit, then we can prove a,_1,a,_o
is also nilpotent by induction on degree of f. Conversely, if ag is unit and
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ai,...,an is nilpotent. We can imagine that if you power f enough times,
then we will obtain unit. Or you can see > . a;z" is nilpotent, then unit
plus nilpotent is also unit.

For (2)'. If ag,...,a, are nilpotent, then clearly f is. Conversely, if f is
nilpotent, then clearly a,, is nilpotent, and we have f — a,z"™ is nilpotent,
then by induction on degree of f to conclude.

For (3). af =0 for a # 0 implies f is a zero-divisor is clear. Conversely
choose a g = Y 1" b;x® of least degree m such that fg = 0, then we have
anbm = 0, hence a,g = 0, since a,gf = 0 and has degree less than m. Then
consider

0=fg—anx"g=(f—anz")g
Then f — anx™ is a zero-divisor with degree n — 1, so we can conclude by
induction on degree of f.

For (4). Note that (ag,...,a,) = 1 is equivalent to there is no maximal
ideal m contains ag, ..., ay, it’s an equivalent description for primitive poly-
nomials. For f € A[x], f is primitive if and only if for all maximal ideal m,
we have f & m[z]. Note that we have the following isomorphism

Alz]/m[z] = (A/m)[z]
Indeed, consider the following homomorphism
p: Alz] — (A/m)z]

n n
Z a;x’ — Z(ai + m)z’
=0 1=0

Clearly ker ¢ = m[z] and use the first isomorphism theorem. So in other
words, f € A[x] is primitive if and only if f # 0 € (A/m)[z] for any maximal
ideal m. Since A/m is a field, then (A/m)[z] is an integral domain by (3), so
fg#0¢€ (A/m)[x] if and only if f # 0 € (A/m)[z],g # 0 € (A/m)[x]. This
completes the proof. O

Exercise 6.2.3. Generalize the results of Exercise 6.2.2 to a polynomial
ring Alx1,...,z,] in several indeterminate.

Proof. Tt suffices to consider the case of A[x,y], since we can do induction
on r to conclude general case. Consider A[z,y] = Alz|[y] = Bly|, where
B = Alz]. For f € Bly|, we write it as

f = Zaijﬂfiyj = Z bkyk, bk = Zaikl‘i €B
(] k i

For (1). f is a unit in B[y] if and only if by is a unit in B and by is
nilpotent for £ > 0, if and only if agp is a unit, and a;; is nilpotent for
otherwise.

1 An alternative proof of (2). Note that

N(Alz]) = (Vple] = (p)lz] = N(A)[z]
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For (2). f is a nilpotent in B[y| if and only if by is nilpotent for all k, if
and only if a;; is nilpotent for all 4, j.

For (3). f is a zero divisor in Bly] if and only if there exists a € A such
that af = 0. Indeed, if f is a zero divisor in B[y|, then there exists b € B
such that bf = 0, then bby = 0 for all k, then for each k there exists a; such
that agby, = 0, then consider a =[], ax, then af = 0.

For (4). fg is primitive if and only if f and g are primitive. Indeed, proof
in Exercise 6.2.2 still holds in this case. O

Exercise 6.2.4. In the ring A[z], the Jacobson radical is equal to the nil-
radical

Proof. Since we already have 91 C ‘R, it suffices to show for any f € ‘R, it’s
nilpotent. Note that by property of Jacobson ideal, we have 1 — fg is unit
for any g € A[z]. Choose g to be z, then by (1) of Exercise 1.8.1 we know
that all coefficients of f is nilpotent in A, and by (2) of Exercise 6.2.1, f is
nilpotent. This completes the proof. U

Exercise 6.2.5. Let A be a ring and let A[[z]] be the ring of formal power

series [ = > 7 japa™ with coefficients in A. Show that

(1) f is a unit in A[[z]] < ap is a unit in A.

(2) If f is nilpotent, then a, is nilpotent for all n > 0. Is the converse true?

(3) f belongs to the Jacobson radical of A[[x]] < ag belongs to the Jacobson
radical of A.

(4) The contraction of a maximal ideal m of A[[z]] is a maximal ideal of A,
and m is generated by m¢ and z.

(5) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. For (1). Let g = Z(;; bjz’ be the inverse of f. Since fg = 1, then
clearly we have agbg = 1, thus ag is a unit. Conversely, if ag is a unit, then
consider the Taylor expansion of 1/f at x = 0 to conclude.

For (2). If f = 3"°, a;x" is nilpotent, then ag must be nilpotent, so f —ag
is also nilpotent. Consider (f — ag)/x which is also nilpotent, we will obtain
a1 is nilpotent. Repeat what we have done to conclude ag,a,as,... are
nilpotent. The converse holds when A is a Noetherian ring.

For (3). f € R(A[[z]]) if and only if 1 — fg is unit for all g € A[[z]]. Note
that the zero term of 1 — fg is 1 — agbg, so by (1) we obtain 1 — fg is unit if
and only if 1 —agbp is unit for all by € A, and that’s equivalent to ag € R(A).

For (4). For maximal ideal m € A[[z]], we have (z) C m, since by (3) we
have x € R(A[[z]]). Then m® = m — (z), that is m = m®+ (z). Furthermore,
note that

Al[z]]/m = A[[z]]/(m® + (z)) = A/m*
implies m¢ is maximal. The last isomorphism holds since for a ring A and
two ideals b C a, we have

Aja = (A/b)/(a/b)

just by considering A/a — A/b and use first isomorphism theorem.
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For (5). Let p be a prime ideal in A. Consider the ideal g which is
generated by p and z. Clearly q° = p and q is prime since

Alle]]/a= A/p
O

Exercise 6.2.6. A ring A is such that every ideal not contained in the
nilradical contains a nonzero idempotent (that is, an element e such that
e? = e #0 ). Prove that the nilradical and Jacobson radical of A are equal.

Proof. Take x € R which is not in M. Then (x) is an ideal not contained
in M. Thus there exists a nonzero idempotent e = zy € (z). Note that an
important property of idempotent is that an idempotent is a zero-divisor,
since ¢(1 —e) = 0. Thus 1 — e = 1 — xy is not a unit. So by property of
Jacobson ideal, we have x ¢ R, a contradiction. U

Exercise 6.2.7. Let A be a ring in which every element x satisfies 2™ = x
for some n > 1 (depending on x). Show that every prime ideal in A is
maximal.

Proof. The proof is quite similar to above Exercise: Note that every prime
ideal is maximal if and only if nilradical and Jacobson radical are equal. If
not, take € 9 which is not in 91, then from 2" = x we know that 1 — 2!
is not a unit, a contradiction to x € fR. O

Exercise 6.2.8. Let A be a ring # 0. Show that the set of prime ideals of
A has minimal elements with respect to inclusion.

Proof. Let Spec A denote the set of all prime ideals of A. Clearly it’s not
empty, since there exists a maximal ideal. We order Spec A by reverse
inclusion, that is p, < pp if pp C p,. By Zorn lemma, it suffices to show
every chain in Spec A has a upper bound in Spec A.

For a chain {p; };cs, it’s natural to consider the intersection of all p;, denote
by p. It’s an ideal clearly. Now it suffices to show it’s prime. Suppose zy € p
and z,y & p. Then there exists p;, p; such that x & p;,y € p;. Without lose
of generality we may assume p; C p;. Then z,y € p;. But zy € p implies
xy € p;, a contradiction to the fact p; is prime. This completes the proof.

Remark 6.2.1. At first I want to check the nilradical is a prime ideal to
complete the proof. However, this statement fails in general. And it’s easy to
explain why: If there exists at least two minimal prime ideals, then nilradical
can not be prime. Indeed, the intersections of distinct minimal prime ideal
can not be prime, since if py,...,p, is minimal and if p =p; N ---Np, is
prime, then we must have p = p; for some 4, which implies p; is contained in
other p;,i # j, a contradiction to minimality. Furthermore, as you can see,
nilradical of a ring A is prime if and only if A only has one minimal prime
ideal.

O
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Exercise 6.2.9. Let a be an ideal # (1) in aring A. Show that a = r(a) < a
is an intersection of prime ideals.

Proof. One direction is clear, since r(a) is the intersection of all prime ideal
containing a. Conversely, if a is an intersection of prime ideals, denoted by
a=();pi- If 2" € a, then 2™ € p; for each 7, then by property of prime
ideal we obtain x € p; for each ¢, which implies € a. This completes the
proof. O

Exercise 6.2.10. Let A be a ring, 91 its nilradical. Show that the following
statements are equivalent.

(1) A has exactly one prime ideal.
(2) every element of A is either a unit or nilpotent.
(3) A/N is a field.

Proof. (1) to (3): Since A has exactly one prime ideal, it must be a maximal
ideal, in this case A is a local ring and clearly A/M is a field.

(3) to (2): If A/ is a field, thus if an element in A is not a nilpotent,
then it must be a unit.

(2) to (1): Consider the set of all nilpotent elements in A, it’s clear it’s
an ideal, and thusd A/ is a local ring. O
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