SOLUTIONS TO ALGEBRA2-H

BOWEN LIU

Abstract. This note contain solutions to homework of Algebra 2-H (2024Spring), but we will omit proofs which are already shown in the text book or quite trivial.

Contents

1. Homework-1	2
1.1. Solutions to 4.1	2
1.2. Solutions to 4.2	3
1.3. Solutions to 4.3	4
2. Homework-2	5
2.1. Solutions to 4.4	5
2.2. Solutions to 4.5	6
3. Homework-3	7
3.1. Solutions to 4.6	7
4. Homework-4	8
4.1. Solutions to 4.7	8
4.2. Solutions to 4.8	8
5. Homework-5	10
5.1. Solutions to 4.9	10
6. Homework-6	12
6.1. Solutions to 4.9	12
6.2. Solutions to chapter 1 of Atiyah-MacDonald	12
References	17

1. Homework-1

1.1. Solutions to 4.1.

1. It suffices to note that $(u+1)^{-1} = (u^2 - u + 1)/3$.

2. Note that $u^8 + 1 = 0$, and by Eisenstein criterion it's easy to show that $x^8 + 1$ is irreducible.

- 4. It suffices to note that $[F(u):F(u^2)] \leq 2$.
- 5. Omit.

6. Omit.

7. Pick any $0 \neq v \in K \setminus F$, then by the explicit construction of F(u), we may write

$$v = \frac{f(u)}{g(u)},$$

where $f, g \in F[x]$ with $g \neq 0$. In other words, one has f(u) - vg(u) = 0. On the other hand, $f(x) - vg(x) \not\equiv 0$, otherwise it leads to $v \in F$, since coefficients of f, g lie in F. This shows u satisfies a non-trivial polynomial with coefficients in K, and thus it's algebraic over K. 8. Omit.

9. If β is algebraic over F, then by exercise 7 one has $[F(\alpha) : F(\beta)] < \infty$, and thus

$$[F(\alpha):F] = [F(\alpha):F(\beta)][F(\beta):F] < \infty,$$

a contradiction.

10 Since α is algebraic over $F(\beta)$, then there exists a non-trivial polynomial

$$P(x) = x^{n} + a_{n-1}(\beta)x^{n-1} + \dots + a_{0}(\beta) \in F(\beta)[x]$$

such that $P(\alpha) = 0$. On the other hand, it's clear that β is transcendent over F, otherwise

$$[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\beta)][F(\beta):F] < \infty,$$

a contradiction to α is transcendent over F. Thus by the explicit construction of $F(\beta)$, we may write

$$a_i(\beta) = \frac{f_i(\beta)}{g_i(\beta)},$$

where $f_i(x)$ and $g_i(x) \in F[x]$, while $g_i(x) \neq 0$. Now consider the polynomial

$$Q(x,y) = P(x)\prod_{i=1}^{n} g_i(y) \in F[x,y].$$

It's a polynomial satisfying $Q(\alpha, \beta) = 0$, which implies β is algebraic over $F(\alpha)$.

1.2. Solutions to 4.2.

2. It's clear $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. On the other hand, note that $\sqrt{3} - \sqrt{2} = (\sqrt{2} + \sqrt{3})^{-1} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

This shows $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and thus $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Remark 1.2.1. In fact, any finite seperable extension is a simple extension, that is, a field extension generated by one element. This is called primitive element theorem.

3. Suppose there exists $a \in E$ such that g(a) = 0. Since g is irreducible over F, so it's the minimal polynomial of a over F. Thus

$$[F(a):F] = \deg g = k.$$

On the other hand, [E : F] = [E : F(a)][F(a) : F], a contradiction to $k \nmid [E : F]$.

5 Suppose K be a subring of E containing F. For any $0 \neq u \in K$, since E is algebraic over F, there exists a polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ such that f(u) = 0. Thus

$$u^{-1} = -\frac{1}{a_0}(u^{n-1} + a_{n-1}u^{n-2} + \dots + a_1) \in K.$$

6. Omit.

7. It's clear \mathbb{C} is the algebraic closure of \mathbb{R} , since it's algebraic over \mathbb{R} , and it's algebraically closed.

- (a) An algebraically closed field must contain infinitely many elements, otherwise if an algebraically closed E is a finite field with |E| = q, then $x^q x + 1$ has no roots in E.
- (b) An example is $[\mathbb{C} : \mathbb{R}] = 2$.

8. Firstly we prove that if p_1, \ldots, p_n and p are distinct prime numbers, then $\sqrt{p} \notin \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$ by induction. For n = 1, if $\sqrt{p} \in \mathbb{Q}(\sqrt{p_1})$, then there exists $a, b \in \mathbb{Q}$ such that

$$\sqrt{p} = a + \sqrt{p_1},$$

and thus $a^2 + b^2 p_1 + 2ab\sqrt{p_1} = p$. Since $\sqrt{p_1} \notin \mathbb{Q}$, it leads to ab = 0. Both a = 0 and b = 0 will lead to contradictions. Now suppose the statement holds for n = k - 1 and consider the case n = k. By induction hypothesis, one has

$$\sqrt{p}, \sqrt{p_k} \notin \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{k-1}}).$$

If $\sqrt{p} \in \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_k})$, then

$$\sqrt{p} = c + d\sqrt{p_k},$$

where $c, d \in \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_{k-1}})$. By the same argument one has cd = 0, but $c \neq 0$, otherwise it contradicts to $\sqrt{p} \notin \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_{k-1}})$. This shows $\sqrt{p} = d\sqrt{p_k}$. Repeat above process for $d \in \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_{k-1}})$, one has

$$d = d_1 \sqrt{p_{k-1}},$$

and thus

4

$$\sqrt{p} = d_{n-1}\sqrt{p_1\dots p_k},$$

where $d_{n-1} \in \mathbb{Q}$, a contradiction. This shows $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p}, \dots)/\mathbb{Q}$ is an algebraic extension of infinite degree. Since \overline{Q} is the algebraic closure of \mathbb{Q} , and E is algebraic over \mathbb{Q} , so \overline{Q} is also the algebraic closure of E. 9. Omit.

10. Omit.

1.3. Solutions to 4.3.

1. Omit.

2. It suffices to show that $\sin 18^{\circ}$ is constructable. Suppose $\theta = 18^{\circ}$. Then $\sin 2\theta = \sin(\pi/2 - 3\theta) = \cos 3\theta$, and thus

$$2\sin\theta\cos\theta = 4\cos^3\theta - 3\cos\theta.$$

A simple computation yields

$$\cos\theta(4\sin^2\theta + 2\sin\theta - 1) = 0.$$

As a result, one has $\sin \theta = (\sqrt{5} - 1)/4$, which is constructable.

2. Homework-2

2.1. Solutions to 4.4.

1. Let ξ_3 be the 3-th unit root. Then

$$f(x) = (x - 1)(x + 1)(x^4 + x^2 + 1)$$

= $(x - 1)(x + 1)(x - \xi_3)(x + \xi_3)(x - \xi_3^2)(x + \xi_3^2).$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\xi_3)$. 2. Let ξ_4 be the 4-th unit root. Then

$$f(x) = (x - \sqrt[4]{2}\xi_4)(x + \sqrt[4]{2})(x - \sqrt[4]{2} \times \sqrt{-1}\xi_4)(x + \sqrt[4]{2} \times \xi_4 \sqrt{-1}).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{2}\xi_4, \sqrt{-1})$. 3. Let ξ_3 be the 3-th unit root. Then

$$f(x) = (x + \sqrt{2})(x - \sqrt{2})(x - \sqrt[3]{3})(x - \sqrt[3]{3}\xi_3)(x - \sqrt[3]{3}\xi_3^2).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \xi_3)$.

4. The splitting field of $x^3 - 2$ over \mathbb{R} is \mathbb{C} .

5. Suppose there is a field isomorphism $\varphi \colon \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{2})$ and $\varphi(\sqrt{2}) = a + b\sqrt{3}$. Then

$$2 = \varphi(\sqrt{2}^2) = \varphi(\sqrt{2})^2 = a^2 + 3b^2 + 2ab\sqrt{3}.$$

On the other hand, $\{1, \sqrt{3}\}$ gives a basis of $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} . This shows 2ab = 0 and $a^2 + 3b^2 = 0$, a contradiction to $a, b \in \mathbb{Q}$.

6. Suppose $E = F(\alpha)$. Then the minimal polynomial of α is of degree two, which can be written as $x^2 + ax + b$ with $a, b \in F$. On the other hand,

$$x^{2} + ax + b = (x - \alpha)(x - \alpha - a).$$

This shows E is exactly the splitting field of $x^2 + ax + b$ over F. 7. Note that

$$f(x) = (x - \sqrt{-3})(x + \sqrt{-3})(x - 1 - \sqrt{-3})(x - 1 + \sqrt{-3}).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{-3})$. Suppose there is an automorphism σ such that $\sigma(\sqrt{-3}) = 1 + \sqrt{-3}$. Then

$$-3 = \sigma(\sqrt{-3}^2) = \sigma(\sqrt{-3})^2 = (1 + \sqrt{-3})^2 = -2 + 2\sqrt{-3},$$

a contradiction.

Note that f(x) is irreducible over Z₂[x], then Z₂[x]/(f(x)) contains a root u of f(x). Furthermore, note that if f(u) = 0, then f(u+1) = 0, thus Z₂[x]/(f(x)) contains all roots of f(x), that is it's splitting field of f.
The same argument shows Z₃[x]/(f(x)) is splitting field of f.

10. It's clear that we must have f is irreducible over \mathbb{Q} and its splitting field is exactly $\mathbb{Q}[x]/(f(x))$, since $[\mathbb{Q}[x]/(f(x)) : \mathbb{Q}] = 3$. This is equivalent to the discriminant $\sqrt{\Delta}$ of f(x) in \mathbb{Q} .

11. In fact, we can prove a stronger result, that is $[E:F] \mid n!$. Let's prove by induction on degree of f(x). It's clear for the case deg f(x) = 1. Now assume deg f(x) = n + 1. Let's consider the following cases:

(a) If f is reducible, let p(x) be an irreducible factor of f(x) with degree k, and L the splitting field of p(x) over F. Then E is the splitting field of f/p over L. Note that degree of p(x) and f(x)/p(x) are $\leq n$, then by induction hypothesis one has

 $[E:F] = [E:L][L:F]|k! \times (n+1-k)!|(n+1)!$

(b) Suppose f is irreducible, then consider $L = F[x]/(f) \cong F(\alpha)$, where α is a root of f. It's clear [L:F] = n + 1. Now consider polynomial $f/(x-\alpha)$ over L, it's clear that E is the splitting field of it. The same argument yields the result.

2.2. Solutions to 4.5.

8. Omit.

9. Omit.

10. If F is a perfect field, then it's clear every finite extension E of F is seperable, since any element of E fits a irreducible polynomial, and every irreducible polynomial of F is seperable; Conversely, if $F \neq F^p$, then there exists $u \in F \setminus F^p$, then $x^p - u$ is irreducible, but not seperable over F, a contradiction.

6

3. Homework-3

3.1. Solutions to 4.6.

1. If α is a root of $f(x) = x^p - x - c$, then

$$f(\alpha + k) = (\alpha + k)^p - (\alpha + k) - c$$
$$= \alpha^p + k^p - \alpha - k - c$$
$$= 0$$

for all $1 \le k \le p - 1$. This shows $F(\alpha)$ is the splitting field of f(x). 2. Suppose [E:F] = 2. Then E/F is the splitting field of some polynomial over F, and thus it's a normal extension.

3. $\mathbb{Q}(\sqrt{-2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{-1})/\mathbb{Q}$ are normal extensions, but $\mathbb{Q}(6\sqrt[3]{7})/\mathbb{Q}$ is not normal, since the minimal polynomial of $\sqrt[3]{7}$ over \mathbb{Q} is $x^3 - 7$, which has a root $\sqrt[3]{7}\xi_3$ not lying in $\mathbb{Q}(5\sqrt[3]{7})$.

8. Suppose F is a finite field with characteristic p and E/F is a finite extension. Then E is also a finite field with $|E| = p^m$, and thus E is the splitting field of $x^{p^m} - x$ over \mathbb{F}_p . In particular, E/\mathbb{F}_p is a normal extension, so is E/F.

10. Suppose the minimal subfield of L which contains E'_1, \ldots, E'_n is K, and the normal closure of E/F is N. On one hand, it's clear that $K \subseteq N$, since $\sigma(N) \subseteq N$. On the other hand, for any $\alpha \in E$, suppose its minimal polynomial over F is f(x) and β is another root of f(x). Then $\alpha \mapsto \beta$ may extend to a automorphism of E which fixes F. As a consequence, one has $\beta \in K$, and thus $N \subseteq K$.

4. Homework-4

4.1. Solutions to 4.7.

1. Note that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and it's the splitting field of $(x^2 - 2)(x^2 - 3)$ over \mathbb{Q} , so $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension with the Klein four group K_4 as its Galois group. By the Galois correspondence, the subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ are $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6})$ and itself.

2. The splitting field of $x^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(e^{\sqrt{-1}\pi/4})$, which is also the splitting field of $x^8 - 1$. Then the Galois group is isomorphic to the automorphism group of C_8 , which is the Klein four group K_4 .

3. $\mathbb{Z}/4\mathbb{Z}$.

4. $\mathbb{Z}/5\mathbb{Z}$.

5. Note that over \mathbb{Z}_3 one has the following decomposition

$$x^{4} + 2 = (x^{2} + 1)(x + 1)(x - 2)$$

which implies the splitting field of $x^4 + 2$ is the same as the one of $x^2 + 1$. In other words, the splitting field of $x^4 + 2$ over \mathbb{Z}_3 is $\mathbb{Z}_3(\sqrt{-1})$, and the Galois group is \mathbb{Z}_2 .

6. By the assumption on a we know that $f(x) = x^p - x - a$ is irreducible over F, and if α is a root of f(x), then $\{\alpha + k \mid k = 0, 1, \dots, p-1\}$ are all roots of f(x). In particular, the Galois group is \mathbb{Z}_p . 7. Omit.

4.2. Solutions to 4.8.

1. Since the Frobenius map $x \mapsto x^p$ is injective, then it's also surjective by the finiteness.

2. Note that E = F[x]/(f(x)) is a finite field with $|E| = q^n$. In particular, every non-zero element is a root of $x^{q^n-1} - 1$, and thus $f(x) \mid x^{q^n-1} - 1$.

3. Suppose F is a infinite field such that F^{\times} is an infinite cyclic group. Let K be the prime subfield of F. Then $K^{\times} \subseteq F^{\times}$ is also an infinite cyclic subgroup. This shows charK = 0 and thus $K = \mathbb{Q}$, but \mathbb{Q}^{\times} is not cyclic, a contradiction.

4. Omit.

5. If char F = 2, then $F^2 = F$, and thus $F \subseteq F^2 + F^2$. If char F = p > 2 and suppose $F = \{0, a, a^2, \dots, a^{q-1}\}$, where $q = p^n$, then

$$F^2 = \{0, a^2, a^4, \dots, a^{q-1}\}.$$

In particular, $|F^2| = (q+1)/2$. For any $c \in F$, similarly one has $|c - F^2| = (q+1)/2$, and thus

$$c - F^2 \cap F^2 \neq \emptyset.$$

6. Omit.

8. Note that $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.

9. In exercise 2 we have already shown that every irreducible polynomial of degree p is a divisor of $x^{q^p} - x$. On the other hand, $\mathbb{F}_{q^p} / \mathbb{F}_q$ is the splitting field of $x^{q^p} - x$, and since p is prime, so there is no intermediate field. In

other words, every irreducible polynomial that divides $x^{q^p} - x$ must be of degree p or 1. Since there are q irreducible polynomial of degree 1, so the number of irreducible polynomial of degree p over \mathbb{F}_q is exactly $(q^p - q)/p$. 10. Omit.

5. Homework-5

5.1. Solutions to 4.9.

- 2. We divide into two parts:
- (a) It's clear E/K is Galois, with Galois group $\operatorname{Gal}(E/K)$, which is abelian, since any subgroup of abelian group is still abelian. So E/K is an abelian extension;
- (b) Note that K/F is Galois if and only if $\operatorname{Gal}(E/K)$ is a normal subgroup of $\operatorname{Gal}(E/F)$, and it's clear any subgroup of abelian group is normal, thus K/F is Galois. Furthermore it's Galois group is $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$, which implies K/F is abelian extension, since any quotient group of abelian group is still abelian.
- 3. By the same argument as above.

4. It suffices to show if z is a n-th primitive root of unity, then -z is a 2n-th primitive root of unit, since cyclotomic polynomial is the product of these roots. Let $z = \cos(2k\pi/n) + \sqrt{-1}\sin(2k\pi/n)$ is n-th primitive root of unity, thus (k, n) = 1. Note that

$$-z = \cos(\frac{2k\pi}{n} + \pi) + \sqrt{-1}\sin(\frac{2k\pi}{n} + \pi)$$
$$= \cos\frac{2(2k+n)\pi}{2n} + \sqrt{-1}\sin\frac{2(2k+n)\pi}{2n}$$

Since (k, n) = 1 and n > 1 is odd, we have (2k + n, 2n) = 1, and thus -z is a 2*n*-th primitive root.

5. Since

$$x^{p^n} - 1 = \prod_{m|n} \varphi_m(x) = \prod_{0 \le k \le n} \varphi_{p^k}(x),$$

we have

$$\varphi_{p^k}(x) = \frac{x^{p^k} - 1}{x^{p^{k-1}} - 1} = 1 + x^{p^{k-1}} + x^{2p^{k-1}} + \dots + x^{(p-1)p^{k-1}}.$$

6. It's isomorphic to $Aut(\mathbb{Z}_{12})$, which is the Klein four group.

7. Otherwise, suppose n = pm. Then $x^n - 1 = (x^m - 1)^p$, which implies the number of different roots of $x^n - 1$ is at most m, a contradiction.

8. If $x^m - a$ is reducible, then it's clear $(x^n)^m - a$ is also reducible. This shows if $x^{mn} - a$ is irreducible, then both $x^n - a$ and $x^m - a$ are irreducible. Conversely, suppose both $x^m - a$ and $x^n - a$ are irreducible, and α is a root of $x^{mn} - a$. Then α^m is a root of $x^n - a$. This shows $[F(\alpha^m) : F] = n$, and similarly we have $[F(\alpha^n) : F] = m$. Since (m, n) = 1, we have $[F(\alpha) : F] = mn$, and thus $x^{mn} - a$ is irreducible.

9. If $a \in F^p$, it's clear that $x^p - a$ is reducible. Conversely, suppose $a \notin F^p$ and f(x) is an irreducible factor of $x^p - a$ with degree k, and the constant term of f(x) is c. Let α be a root of $x^p - a$ in the splitting field. Then any root of $x^p - a$ is of the form $\alpha \omega$, where ω is some primitive p-th root. By Vieta's theorem we have $c = \pm \omega^{\ell} \alpha^k$. Since (k, p) = 1, there exist s, t such that sk + pt = 1, and thus

$$\alpha = \alpha^{sk} \alpha^{pt} = \pm (c\omega^{-\ell})^s a^t,$$

which implies $\alpha \omega^{s\ell} = \pm c^s a^t \in F$. Then we have $a = \alpha^p = (\alpha \omega^{s\ell})^p \in F^p$, a contradiction.

10. Omit.

6. Homework-6

6.1. Solutions to 4.9.

- 1. Prove the Galois groups of these polynomials are all S_5 .
- 2. Consider $-x^7 + 10x^5 15x + 5$, which only has 5 real roots.
- 3. Consider Cayley's theorem.
- 4. Omit.
- 5. Let $F = \mathbb{Q}(t_1, \ldots, t_n)$. Then prove $\operatorname{Gal}(E/F(\theta))$ is trivial.

6.2. Solutions to chapter 1 of Atiyah-MacDonald.

Exercise 6.2.1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. If x is a nilpotent element, then $x \in \mathfrak{N} \subseteq \mathfrak{R}$. By property of Jacobson ideal, we have 1 - xy is unit for any $y \in A$. Take y = -1 we obtain 1 + x is a unit. If y is unit, then we have $x + y = y^{-1}(y^{-1}x + 1)$. Since $y^{-1}x$ is also nilpotent, we have $y^{-1}x + 1$ is unit, thus x + y is unit. \Box

Exercise 6.2.2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- (1) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent.
- (2) f is nilpotent $\Leftrightarrow a_0, a_1, \ldots, a_n$ are nilpotent.
- (3) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0.
- (4) f is said to be primitive if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive.

Proof. For (1). Use $g = \sum_{i=0}^{m} b_i x^i$ to denote the inverse of f. Since fg = 1 and if we use c_k to denote $\sum_{m+n=k}^{m} a_m b_n$, then we have

$$\begin{cases} c_0 = 1 \\ c_k = 0, \quad k > 0 \end{cases}$$

But $c_0 = a_0 b_0$, thus a_0 is unit. Now let's prove $a_n^{r+1} b_{m-r} = 0$ by induction on r: r = 0 is trivial, since $a_n b_m = c_{n+m} = 0$. If we have already proven this for k < r. Then consider c_{m+n-r} , we have

$$0 = c_{m+n-r} = a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots$$

and multiply a_n^r we obtain

$$0 = a_n^{r+1}b_{m-r} + a_{n-1} \underbrace{a_n^r b_{m-r+1}}_{\text{by induction this term is } 0} + a_{n-2}a_n \underbrace{a_n^{r-1} b_{m-r+2}}_{\text{by induction this term is } 0} + \dots$$

which completes the proof of claim. Take r = m, we obtain $a_n^{m+1}b_0 = 0$. But b_0 is unit, thus a_n is nilpotent and $a_n x^n$ is a nilpotent element in A[x]. By Exercise 6.2.1, we know that $f - a_n x^n$ is unit, then we can prove a_{n-1}, a_{n-2} is also nilpotent by induction on degree of f. Conversely, if a_0 is unit and

 a_1, \ldots, a_n is nilpotent. We can imagine that if you power f enough times, then we will obtain unit. Or you can see $\sum_{i=1}^n a_i x^i$ is nilpotent, then unit plus nilpotent is also unit.

For $(2)^1$. If a_0, \ldots, a_n are nilpotent, then clearly f is. Conversely, if f is nilpotent, then clearly a_n is nilpotent, and we have $f - a_n x^n$ is nilpotent, then by induction on degree of f to conclude.

For (3). af = 0 for $a \neq 0$ implies f is a zero-divisor is clear. Conversely choose a $g = \sum_{i=0}^{m} b_i x^i$ of least degree m such that fg = 0, then we have $a_n b_m = 0$, hence $a_n g = 0$, since $a_n g f = 0$ and has degree less than m. Then consider

$$0 = fg - a_n x^n g = (f - a_n x^n)g$$

Then $f - a_n x^n$ is a zero-divisor with degree n - 1, so we can conclude by induction on degree of f.

For (4). Note that $(a_0, \ldots, a_n) = 1$ is equivalent to there is no maximal ideal \mathfrak{m} contains a_0, \ldots, a_n , it's an equivalent description for primitive polynomials. For $f \in A[x]$, f is primitive if and only if for all maximal ideal \mathfrak{m} , we have $f \notin \mathfrak{m}[x]$. Note that we have the following isomorphism

$$A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$$

Indeed, consider the following homomorphism

$$\varphi \colon A[x] \to (A/\mathfrak{m})[x]$$
$$\sum_{i=0}^{n} a_{i}x^{i} \mapsto \sum_{i=0}^{n} (a_{i} + \mathfrak{m})x^{i}$$

Clearly ker $\varphi = \mathfrak{m}[x]$ and use the first isomorphism theorem. So in other words, $f \in A[x]$ is primitive if and only if $\overline{f} \neq 0 \in (A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} . Since A/\mathfrak{m} is a field, then $(A/\mathfrak{m})[x]$ is an integral domain by (3), so $\overline{fg} \neq 0 \in (A/\mathfrak{m})[x]$ if and only if $\overline{f} \neq 0 \in (A/\mathfrak{m})[x], \overline{g} \neq 0 \in (A/\mathfrak{m})[x]$. This completes the proof.

Exercise 6.2.3. Generalize the results of Exercise 6.2.2 to a polynomial ring $A[x_1, \ldots, x_r]$ in several indeterminate.

Proof. It suffices to consider the case of A[x, y], since we can do induction on r to conclude general case. Consider A[x, y] = A[x][y] = B[y], where B = A[x]. For $f \in B[y]$, we write it as

$$f = \sum_{ij} a_{ij} x^i y^j = \sum_k b_k y^k, \quad b_k = \sum_i a_{ik} x^i \in B$$

For (1). f is a unit in B[y] if and only if b_0 is a unit in B and b_k is nilpotent for k > 0, if and only if a_{00} is a unit, and a_{ij} is nilpotent for otherwise.

¹An alternative proof of (2). Note that

$$\mathfrak{N}(A[x]) = \bigcap \mathfrak{p}[x] = (\bigcap \mathfrak{p})[x] = \mathfrak{N}(A)[x]$$

For (2). f is a nilpotent in B[y] if and only if b_k is nilpotent for all k, if and only if a_{ij} is nilpotent for all i, j.

For (3). f is a zero divisor in B[y] if and only if there exists $a \in A$ such that af = 0. Indeed, if f is a zero divisor in B[y], then there exists $b \in B$ such that bf = 0, then $bb_k = 0$ for all k, then for each k there exists a_k such that $a_k b_k = 0$, then consider $a = \prod_k a_k$, then af = 0.

For (4). fg is primitive if and only if f and g are primitive. Indeed, proof in Exercise 6.2.2 still holds in this case.

Exercise 6.2.4. In the ring A[x], the Jacobson radical is equal to the nilradical

Proof. Since we already have $\mathfrak{N} \subseteq \mathfrak{R}$, it suffices to show for any $f \in \mathfrak{R}$, it's nilpotent. Note that by property of Jacobson ideal, we have 1 - fg is unit for any $g \in A[x]$. Choose g to be x, then by (1) of Exercise 1.8.1 we know that all coefficients of f is nilpotent in A, and by (2) of Exercise 6.2.1, f is nilpotent. This completes the proof.

Exercise 6.2.5. Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that

- (1) f is a unit in $A[[x]] \Leftrightarrow a_0$ is a unit in A.
- (2) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true?
- (3) f belongs to the Jacobson radical of $A[[x]] \Leftrightarrow a_0$ belongs to the Jacobson radical of A.
- (4) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and m is generated by m^c and x.
- (5) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. For (1). Let $g = \sum_{j=1}^{\infty} b_j x^j$ be the inverse of f. Since fg = 1, then clearly we have $a_0b_0 = 1$, thus a_0 is a unit. Conversely, if a_0 is a unit, then consider the Taylor expansion of 1/f at x = 0 to conclude.

For (2). If $f = \sum_{i=0}^{\infty} a_i x^i$ is nilpotent, then a_0 must be nilpotent, so $f - a_0$ is also nilpotent. Consider $(f - a_0)/x$ which is also nilpotent, we will obtain a_1 is nilpotent. Repeat what we have done to conclude a_0, a_1, a_2, \ldots are nilpotent. The converse holds when A is a Noetherian ring.

For (3). $f \in \mathfrak{R}(A[[x]])$ if and only if 1 - fg is unit for all $g \in A[[x]]$. Note that the zero term of 1 - fg is $1 - a_0b_0$, so by (1) we obtain 1 - fg is unit if and only if $1 - a_0b_0$ is unit for all $b_0 \in A$, and that's equivalent to $a_0 \in \mathfrak{R}(A)$.

For (4). For maximal ideal $\mathfrak{m} \in A[[x]]$, we have $(x) \subseteq \mathfrak{m}$, since by (3) we have $x \in \mathfrak{R}(A[[x]])$. Then $\mathfrak{m}^c = \mathfrak{m} - (x)$, that is $\mathfrak{m} = \mathfrak{m}^c + (x)$. Furthermore, note that

 $A[[x]]/\mathfrak{m} = A[[x]]/(\mathfrak{m}^c + (x)) \cong A/\mathfrak{m}^c$

implies \mathfrak{m}^c is maximal. The last isomorphism holds since for a ring A and two ideals $\mathfrak{b} \subseteq \mathfrak{a}$, we have

$$A/\mathfrak{a} \cong (A/\mathfrak{b})/(\mathfrak{a}/\mathfrak{b})$$

just by considering $A/\mathfrak{a} \to A/\mathfrak{b}$ and use first isomorphism theorem.

14

For (5). Let \mathfrak{p} be a prime ideal in A. Consider the ideal \mathfrak{q} which is generated by \mathfrak{p} and x. Clearly $\mathfrak{q}^c = \mathfrak{p}$ and \mathfrak{q} is prime since

$$A[[x]]/\mathfrak{q} \cong A/\mathfrak{p}$$

Exercise 6.2.6. A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.

Proof. Take $x \in \mathfrak{R}$ which is not in \mathfrak{N} . Then (x) is an ideal not contained in \mathfrak{N} . Thus there exists a nonzero idempotent $e = xy \in (x)$. Note that an important property of idempotent is that an idempotent is a zero-divisor, since e(1-e) = 0. Thus 1-e = 1-xy is not a unit. So by property of Jacobson ideal, we have $x \notin \mathfrak{R}$, a contradiction. \Box

Exercise 6.2.7. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Proof. The proof is quite similar to above Exercise: Note that every prime ideal is maximal if and only if nilradical and Jacobson radical are equal. If not, take $x \in \mathfrak{R}$ which is not in \mathfrak{N} , then from $x^n = x$ we know that $1 - x^{n-1}$ is not a unit, a contradiction to $x \in \mathfrak{R}$.

Exercise 6.2.8. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Proof. Let Spec A denote the set of all prime ideals of A. Clearly it's not empty, since there exists a maximal ideal. We order Spec A by reverse inclusion, that is $\mathfrak{p}_a \leq \mathfrak{p}_b$ if $\mathfrak{p}_b \subseteq \mathfrak{p}_a$. By Zorn lemma, it suffices to show every chain in Spec A has a upper bound in Spec A.

For a chain $\{\mathfrak{p}_i\}_{i\in I}$, it's natural to consider the intersection of all \mathfrak{p}_i , denote by \mathfrak{p} . It's an ideal clearly. Now it suffices to show it's prime. Suppose $xy \in \mathfrak{p}$ and $x, y \notin \mathfrak{p}$. Then there exists $\mathfrak{p}_i, \mathfrak{p}_j$ such that $x \notin \mathfrak{p}_i, y \notin \mathfrak{p}_j$. Without lose of generality we may assume $\mathfrak{p}_i \subset \mathfrak{p}_j$. Then $x, y \notin \mathfrak{p}_i$. But $xy \in \mathfrak{p}$ implies $xy \in \mathfrak{p}_i$, a contradiction to the fact \mathfrak{p}_i is prime. This completes the proof.

Remark 6.2.1. At first I want to check the nilradical is a prime ideal to complete the proof. However, this statement fails in general. And it's easy to explain why: If there exists at least two minimal prime ideals, then nilradical can not be prime. Indeed, the intersections of distinct minimal prime ideal can not be prime, since if $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ is minimal and if $\mathfrak{p} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n$ is prime, then we must have $\mathfrak{p} = \mathfrak{p}_i$ for some i, which implies \mathfrak{p}_i is contained in other $\mathfrak{p}_j, i \neq j$, a contradiction to minimality. Furthermore, as you can see, nilradical of a ring A is prime if and only if A only has one minimal prime ideal.

Exercise 6.2.9. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \Leftrightarrow \mathfrak{a}$ is an intersection of prime ideals.

Proof. One direction is clear, since $r(\mathfrak{a})$ is the intersection of all prime ideal containing \mathfrak{a} . Conversely, if \mathfrak{a} is an intersection of prime ideals, denoted by $\mathfrak{a} = \bigcap_i \mathfrak{p}_i$. If $x^n \in \mathfrak{a}$, then $x^n \in \mathfrak{p}_i$ for each i, then by property of prime ideal we obtain $x \in \mathfrak{p}_i$ for each i, which implies $x \in \mathfrak{a}$. This completes the proof.

Exercise 6.2.10. Let A be a ring, \mathfrak{N} its nilradical. Show that the following statements are equivalent.

- (1) A has exactly one prime ideal.
- (2) every element of A is either a unit or nilpotent.
- (3) A/\mathfrak{N} is a field.

Proof. (1) to (3): Since A has exactly one prime ideal, it must be a maximal ideal, in this case A is a local ring and clearly A/\mathfrak{N} is a field.

(3) to (2): If A/\mathfrak{N} is a field, thus if an element in A is not a nilpotent, then it must be a unit.

(2) to (1): Consider the set of all nilpotent elements in A, it's clear it's an ideal, and thusd A/\mathfrak{N} is a local ring.

References

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P.R. China,

 ${\it Email\ address:\ \tt liubw22@mails.tsinghua.edu.cn}$