
SOLUTIONS TO ALGEBRA2-H

BOWEN LIU

Abstract. This note contain solutions to homework of Algebra2-H
(2024Spring), but we will omit proofs which are already shown in the
textbook or quite trivial.
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1. Homework-1

1.1. Solutions to 4.1.
1. It suffices to note that (u+ 1)−1 = (u2 − u+ 1)/3.
2. Note that u8 + 1 = 0, and by Eisenstein criterion it’s easy to show that
x8 + 1 is irreducible.
4. It suffices to note that [F (u) : F (u2)] ≤ 2.
5. Omit.
6. Omit.
7. Pick any 0 6= v ∈ K \ F , then by the explicit construction of F (u), we
may write

v =
f(u)

g(u)
,

where f, g ∈ F [x] with g 6= 0. In other words, one has f(u) − vg(u) = 0.
On the other hand, f(x) − vg(x) 6≡ 0, otherwise it leads to v ∈ F , since
coefficients of f, g lie in F . This shows u satisfies a non-trivial polynomial
with coefficients in K, and thus it’s algebraic over K.
8. Omit.
9. If β is algebraic over F , then by exercise 7 one has [F (α) : F (β)] < ∞,
and thus

[F (α) : F ] = [F (α) : F (β)][F (β) : F ] < ∞,

a contradiction.
10 Since α is algebraic over F (β), then there exists a non-trivial polynomial

P (x) = xn + an−1(β)x
n−1 + · · ·+ a0(β) ∈ F (β)[x]

such that P (α) = 0. On the other hand, it’s clear that β is transcendent
over F , otherwise

[F (α, β) : F ] = [F (α, β) : F (β)][F (β) : F ] < ∞,

a contradiction to α is transcendent over F . Thus by the explicit construc-
tion of F (β), we may write

ai(β) =
fi(β)

gi(β)
,

where fi(x) and gi(x) ∈ F [x], while gi(x) 6= 0. Now consider the polynomial

Q(x, y) = P (x)

n∏
i=1

gi(y) ∈ F [x, y].

It’s a polynomial satisfying Q(α, β) = 0, which implies β is algebraic over
F (α).
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1.2. Solutions to 4.2.
2. It’s clear Q(

√
2 +

√
3) ⊆ Q(

√
2,
√
3). On the other hand, note that

√
3−

√
2 = (

√
2 +

√
3)−1 ∈ Q(

√
2,
√
3).

This shows
√
2,
√
3 ∈ Q(

√
2,
√
3), and thus Q(

√
2 +

√
3) = Q(

√
2,
√
3).

Remark 1.2.1. In fact, any finite seperable extension is a simple extension,
that is, a field extension generated by one element. This is called primitive
element theorem.

3. Suppose there exists a ∈ E such that g(a) = 0. Since g is irreducible
over F , so it’s the minimal polynomial of a over F . Thus

[F (a) : F ] = deg g = k.

On the other hand, [E : F ] = [E : F (a)][F (a) : F ], a contradiction to
k ∤ [E : F ].
5 Suppose K be a subring of E containing F . For any 0 6= u ∈ K, since E is
algebraic over F , there exists a polynomial f(x) = xn+an−1x

n−1+ · · ·+a0
such that f(u) = 0. Thus

u−1 = − 1

a0
(un−1 + an−1u

n−2 + · · ·+ a1) ∈ K.

6. Omit.
7. It’s clear C is the algebraic closure of R, since it’s algebraic over R, and
it’s algebraically closed.
(a) An algebraically closed field must contain infinitely many elements,

otherwise if an algebraically closed E is a finite field with |E| = q, then
xq − x+ 1 has no roots in E.

(b) An example is [C : R] = 2.
8. Firstly we prove that if p1, . . . , pn and p are distinct prime numbers,
then √

p 6∈ Q(
√
p1, . . . ,

√
pn) by induction. For n = 1, if √

p ∈ Q(
√
p1),

then there exists a, b ∈ Q such that
√
p = a+

√
p1,

and thus a2 + b2p1 + 2ab
√
p1 = p. Since √

p1 6∈ Q, it leads to ab = 0. Both
a = 0 and b = 0 will lead to contradictions. Now suppose the statement
holds for n = k − 1 and consider the case n = k. By induction hypothsis,
one has √

p,
√
pk 6∈ Q(

√
p1, . . . ,

√
pk−1).

If √p ∈ Q(
√
p1, . . . ,

√
pk), then

√
p = c+ d

√
pk,

where c, d ∈ Q(
√
p1, . . . ,

√
pk−1). By the same argument one has cd = 0,

but c 6= 0, otherwise it contradicts to √
p 6∈ Q(

√
p1, . . . ,

√
pk−1). This shows√

p = d
√
pk. Repeat above process for d ∈ Q(

√
p1, . . . ,

√
pk−1), one has

d = d1
√
pk−1,



4 BOWEN LIU

and thus √
p = dn−1

√
p1 . . . pk,

where dn−1 ∈ Q, a contradiction. This shows E = Q(
√
2,
√
3, . . . ,

√
p, . . . )/Q

is an algebraic extension of infinite degree. Since Q is the algebraic closure
of Q, and E is algebraic over Q, so Q is also the algebraic closure of E.
9. Omit.
10. Omit.

1.3. Solutions to 4.3.
1. Omit.
2. It suffices to show that sin 18◦ is constructable. Suppose θ = 18◦. Then
sin 2θ = sin(π/2− 3θ) = cos 3θ, and thus

2 sin θ cos θ = 4 cos3 θ − 3 cos θ.

A simple computation yields
cos θ(4 sin2 θ + 2 sin θ − 1) = 0.

As a result, one has sin θ = (
√
5− 1)/4, which is constructable.
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2. Homework-2

2.1. Solutions to 4.4.
1. Let ξ3 be the 3-th unit root. Then

f(x) = (x− 1)(x+ 1)(x4 + x2 + 1)

= (x− 1)(x+ 1)(x− ξ3)(x+ ξ3)(x− ξ23)(x+ ξ23).

This shows the splitting field of f(x) over Q is Q(ξ3).
2. Let ξ4 be the 4-th unit root. Then

f(x) = (x− 4
√
2ξ4)(x+

4
√
2)(x− 4

√
2×

√
−1ξ4)(x+

4
√
2× ξ4

√
−1).

This shows the splitting field of f(x) over Q is Q( 4
√
2ξ4,

√
−1).

3. Let ξ3 be the 3-th unit root. Then
f(x) = (x+

√
2)(x−

√
2)(x− 3

√
3)(x− 3

√
3ξ3)(x− 3

√
3ξ23).

This shows the splitting field of f(x) over Q is Q(
√
2, 3

√
3, ξ3).

4. The splitting field of x3 − 2 over R is C.
5. Suppose there is a field isomorphism φ : Q(

√
3) → Q(

√
2) and φ(

√
2) =

a+ b
√
3. Then

2 = φ(
√
2
2
) = φ(

√
2)2 = a2 + 3b2 + 2ab

√
3.

On the other hand, {1,
√
3} gives a basis of Q(

√
3) over Q. This shows

2ab = 0 and a2 + 3b2 = 0, a contradiction to a, b ∈ Q.
6. Suppose E = F (α). Then the minimal polynomial of α is of degree two,
which can be written as x2 + ax+ b with a, b ∈ F . On the other hand,

x2 + ax+ b = (x− α)(x− α− a).

This shows E is exactly the splitting field of x2 + ax+ b over F .
7. Note that

f(x) = (x−
√
−3)(x+

√
−3)(x− 1−

√
−3)(x− 1 +

√
−3).

This shows the splitting field of f(x) over Q is Q(
√
−3). Suppose there is

an automorphism σ such that σ(
√
−3) = 1 +

√
−3). Then

−3 = σ(
√
−3

2
) = σ(

√
−3)2 = (1 +

√
−3)2 = −2 + 2

√
−3,

a contradiction.
8. Note that f(x) is irreducible over Z2[x], then Z2[x]/(f(x)) contains a
root u of f(x). Furthermore, note that if f(u) = 0, then f(u+1) = 0, thus
Z2[x]/(f(x)) contains all roots of f(x), that is it’s splitting field of f .
9. The same argument shows Z3[x]/(f(x)) is splitting field of f .
10. It’s clear that we must have f is irreducible over Q and its splitting
field is exactly Q[x]/(f(x)), since [Q[x]/(f(x)) : Q] = 3. This is equivalent
to the discriminant

√
∆ of f(x) in Q.

11. In fact, we can prove a stronger result, that is [E : F ] | n!. Let’s prove
by induction on degree of f(x). It’s clear for the case deg f(x) = 1. Now
assume deg f(x) = n+ 1. Let’s consider the following cases:
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(a) If f is reducible, let p(x) be an irreducible factor of f(x) with degree
k, and L the splitting field of p(x) over F . Then E is the splitting field
of f/p over L. Note that degree of p(x) and f(x)/p(x) are ≤ n, then
by induction hypothsis one has

[E : F ] = [E : L][L : F ]|k!× (n+ 1− k)!|(n+ 1)!

(b) Suppose f is irreducible, then consider L = F [x]/(f) ∼= F (α), where
α is a root of f . It’s clear [L : F ] = n + 1. Now consider polynomial
f/(x−α) over L, it’s clear that E is the splitting field of it. The same
argument yields the result.

2.2. Solutions to 4.5.
8. Omit.
9. Omit.
10. If F is a perfect field, then it’s clear every finite extension E of F is
seperable, since any element of E fits a irreducible polynomial, and every
irreducible polynomial of F is seperable; Conversely, if F 6= F p, then there
exists u ∈ F\F p, then xp − u is irreducible, but not seperable over F , a
contradiction.
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3. Homework-3

3.1. Solutions to 4.6.
1. If α is a root of f(x) = xp − x− c, then

f(α+ k) = (α+ k)p − (α+ k)− c

= αp + kp − α− k − c

= 0

for all 1 ≤ k ≤ p− 1. This shows F (α) is the splitting field of f(x).
2. Suppose [E : F ] = 2. Then E/F is the splitting field of some polynomial
over F , and thus it’s a normal extension.
3. Q(

√
−2)/Q and Q(

√
−1)/Q are normal extensions, but Q(6 3

√
7)/Q is

not normal, since the minimal polynomial of 3
√
7 over Q is x3 − 7, which

has a root 3
√
7ξ3 not lying in Q(5 3

√
7).

8. Suppose F is a finite field with characteristic p and E/F is a finite
extension. Then E is also a finite field with |E| = pm, and thus E is the
splitting field of xpm−x over Fp. In particular, E/Fp is a normal extension,
so is E/F .
10. Suppose the minimal subfield of L which contains E′

1, . . . , E
′
n is K, and

the normal closure of E/F is N . On one hand, it’s clear that K ⊆ N ,
since σ(N) ⊆ N . On the other hand, for any α ∈ E, suppose its minimal
polynomial over F is f(x) and β is another root of f(x). Then α 7→ β may
extend to a automorphism of E which fixes F . As a consequence, one has
β ∈ K, and thus N ⊆ K.
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4. Homework-4

4.1. Solutions to 4.7.
1. Note that Q(

√
2 +

√
3) = Q(

√
2,
√
3), and it’s the splitting field of

(x2 − 2)(x2 − 3) over Q, so Q(
√
2,
√
3)/Q is a Galois extension with the

Klein four group K4 as its Galois group. By the Galois correspondence,
the subfields of Q(

√
2,
√
3) are Q,Q(

√
2),Q(

√
3),Q(

√
6) and itself.

2. The splitting field of x4 + 1 over Q is Q(e
√
−1π/4), which is also the

splitting field of x8 − 1. Then the Galois group is isomorphic to the auto-
morphism group of C8, which is the Klein four group K4.
3. Z /4Z.
4. Z /5Z.
5. Note that over Z3 one has the following decomposition

x4 + 2 = (x2 + 1)(x+ 1)(x− 2),

which implies the splitting field of x4 + 2 is the same as the one of x2 + 1.
In other words, the splitting field of x4 + 2 over Z3 is Z3(

√
−1), and the

Galois group is Z2.
6. By the assumption on a we know that f(x) = xp − x − a is irreducible
over F , and if α is a root of f(x), then {α + k | k = 0, 1 . . . , p − 1} are all
roots of f(x). In particular, the Galois group is Zp.
7. Omit.

4.2. Solutions to 4.8.
1. Since the Frobenius map x 7→ xp is injective, then it’s also surjective by
the finiteness.
2. Note that E = F [x]/(f(x)) is a finite field with |E| = qn. In particular,
every non-zero element is a root of xqn−1 − 1, and thus f(x) | xqn−1 − 1.
3. Suppose F is a infinite field such that F× is an infinite cyclic group.
Let K be the prime subfield of F . Then K× ⊆ F× is also an infinite cyclic
subgroup. This shows charK = 0 and thus K = Q, but Q× is not cyclic, a
contradiction.
4. Omit.
5. If charF = 2, then F 2 = F , and thus F ⊆ F 2 + F 2. If charF = p > 2
and suppose F = {0, a, a2, . . . , aq−1}, where q = pn, then

F 2 = {0, a2, a4, . . . , aq−1}.

In particular, |F 2| = (q+1)/2. For any c ∈ F , similarly one has |c−F 2| =
(q + 1)/2, and thus

c− F 2 ∩ F 2 6= ∅.

6. Omit.
8. Note that Q(

√
2) 6∼= Q(

√
3).

9. In exercise 2 we have already shown that every irreducible polynomial of
degree p is a divisor of xqp − x. On the other hand, Fqp /Fq is the splitting
field of xqp − x, and since p is prime, so there is no intermediate field. In
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other words, every irreducible polynomial that divides xq
p − x must be of

degree p or 1. Since there are q irreducible polynomial of degree 1, so the
number of irreducible polynomial of degree p over Fq is exactly (qp − q)/p.
10. Omit.
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5. Homework-5

5.1. Solutions to 4.9.
2. We divide into two parts:
(a) It’s clear E/K is Galois, with Galois group Gal(E/K), which is abelian,

since any subgroup of abelian group is still abelian. So E/K is an
abelian extension;

(b) Note that K/F is Galois if and only if Gal(E/K) is a normal subgroup
of Gal(E/F ), and it’s clear any subgroup of abelian group is normal,
thus K/F is Galois. Furthermore it’s Galois group is Gal(E/F )/Gal(E/K),
which implies K/F is abelian extension, since any quotient group of
abelian group is still abelian.

3. By the same argument as above.
4. It suffices to show if z is a n-th primitive root of unity, then −z is a
2n-th primitive root of unit, since cyclotomic polynomial is the product of
these roots. Let z = cos(2kπ/n) +

√
−1 sin(2kπ/n) is n-th primitive root

of unity, thus (k, n) = 1. Note that

−z = cos(
2kπ

n
+ π) +

√
−1 sin(

2kπ

n
+ π)

= cos
2(2k + n)π

2n
+
√
−1 sin

2(2k + n)π

2n
.

Since (k, n) = 1 and n > 1 is odd, we have (2k + n, 2n) = 1, and thus −z
is a 2n-th primitive root.
5. Since

xp
n − 1 =

∏
m|n

φm(x) =
∏

0≤k≤n

φpk(x),

we have

φpk(x) =
xp

k − 1

xpk−1 − 1
= 1 + xp

k−1
+ x2p

k−1
+ · · ·+ x(p−1)pk−1

.

6. It’s isomorphic to Aut(Z12), which is the Klein four group.
7. Otherwise, suppose n = pm. Then xn − 1 = (xm − 1)p, which implies
the number of different roots of xn − 1 is at most m, a contradiction.
8. If xm − a is reducible, then it’s clear (xn)m − a is also reducible. This
shows if xmn−a is irreducible, then both xn−a and xm−a are irreducible.
Conversely, suppose both xm−a and xn−a are irreducible, and α is a root
of xmn − a. Then αm is a root of xn − a. This shows [F (αm) : F ] = n, and
similarly we have [F (αn) : F ] = m. Since (m,n) = 1, we have [F (α) : F ] =
mn, and thus xmn − a is irreducible.
9. If a ∈ F p, it’s clear that xp− a is reducible. Conversely, suppose a 6∈ F p

and f(x) is an irreducible factor of xp − a with degree k, and the constant
term of f(x) is c. Let α be a root of xp − a in the splitting field. Then any
root of xp − a is of the form αω, where ω is some primitive p-th root. By
Vieta’s theorem we have c = ±ωℓαk. Since (k, p) = 1, there exist s, t such
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that sk + pt = 1, and thus
α = αskαpt = ±(cω−ℓ)sat,

which implies αωsℓ = ±csat ∈ F . Then we have a = αp = (αωsℓ)p ∈ F p, a
contradiction.
10. Omit.
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6. Homework-6

6.1. Solutions to 4.9.
1. Prove the Galois groups of these polynomials are all S5.
2. Consider −x7 + 10x5 − 15x+ 5, which only has 5 real roots.
3. Consider Cayley’s theorem.
4. Omit.
5. Let F = Q(t1, . . . , tn). Then prove Gal(E/F (θ)) is trivial.

6.2. Solutions to chapter 1 of Atiyah-MacDonald.

Exercise 6.2.1. Let x be a nilpotent element of a ring A. Show that 1+ x
is a unit of A. Deduce that the sum of a nilpotent element and a unit is a
unit.

Proof. If x is a nilpotent element, then x ∈ N ⊆ R. By property of Jacobson
ideal, we have 1− xy is unit for any y ∈ A. Take y = −1 we obtain 1 + x is
a unit. If y is unit, then we have x+ y = y−1(y−1x+ 1). Since y−1x is also
nilpotent, we have y−1x+ 1 is unit, thus x+ y is unit. □
Exercise 6.2.2. Let A be a ring and let A[x] be the ring of polynomials in an
indeterminate x, with coefficients in A. Let f = a0+a1x+ · · ·+anx

n ∈ A[x].
Prove that
(1) f is a unit in A[x] ⇔ a0 is a unit in A and a1, . . . , an are nilpotent.
(2) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.
(3) f is a zero-divisor ⇔ there exists a 6= 0 in A such that af = 0.
(4) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈

A[x], then fg is primitive ⇔ f and g are primitive.

Proof. For (1). Use g =
∑m

i=0 bix
i to denote the inverse of f . Since fg = 1

and if we use ck to denote
∑

m+n=k ambn, then we have{
c0 = 1

ck = 0, k > 0

But c0 = a0b0, thus a0 is unit. Now let’s prove ar+1
n bm−r = 0 by induction

on r: r = 0 is trivial, since anbm = cn+m = 0. If we have already proven
this for k < r. Then consider cm+n−r, we have

0 = cm+n−r = anbm−r + an−1bm−r+1 + . . .

and multiply arn we obtain
0 = ar+1

n bm−r+an−1 arnbm−r+1︸ ︷︷ ︸
by induction this term is 0

+an−2an ar−1
n bm−r+2︸ ︷︷ ︸

by induction this term is 0

+ . . .

which completes the proof of claim. Take r = m, we obtain am+1
n b0 = 0. But

b0 is unit, thus an is nilpotent and anx
n is a nilpotent element in A[x]. By

Exercise 6.2.1, we know that f − anx
n is unit, then we can prove an−1, an−2

is also nilpotent by induction on degree of f . Conversely, if a0 is unit and
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a1, . . . , an is nilpotent. We can imagine that if you power f enough times,
then we will obtain unit. Or you can see

∑n
i=1 aix

i is nilpotent, then unit
plus nilpotent is also unit.

For (2)1. If a0, . . . , an are nilpotent, then clearly f is. Conversely, if f is
nilpotent, then clearly an is nilpotent, and we have f − anx

n is nilpotent,
then by induction on degree of f to conclude.

For (3). af = 0 for a 6= 0 implies f is a zero-divisor is clear. Conversely
choose a g =

∑m
i=0 bix

i of least degree m such that fg = 0, then we have
anbm = 0, hence ang = 0, since angf = 0 and has degree less than m. Then
consider

0 = fg − anx
ng = (f − anx

n)g

Then f − anx
n is a zero-divisor with degree n − 1, so we can conclude by

induction on degree of f .
For (4). Note that (a0, . . . , an) = 1 is equivalent to there is no maximal

ideal m contains a0, . . . , an, it’s an equivalent description for primitive poly-
nomials. For f ∈ A[x], f is primitive if and only if for all maximal ideal m,
we have f 6∈ m[x]. Note that we have the following isomorphism

A[x]/m[x] ∼= (A/m)[x]

Indeed, consider the following homomorphism
φ : A[x] → (A/m)[x]
n∑

i=0

aix
i 7→

n∑
i=0

(ai +m)xi

Clearly kerφ = m[x] and use the first isomorphism theorem. So in other
words, f ∈ A[x] is primitive if and only if f 6= 0 ∈ (A/m)[x] for any maximal
ideal m. Since A/m is a field, then (A/m)[x] is an integral domain by (3), so
fg 6= 0 ∈ (A/m)[x] if and only if f 6= 0 ∈ (A/m)[x], g 6= 0 ∈ (A/m)[x]. This
completes the proof. □
Exercise 6.2.3. Generalize the results of Exercise 6.2.2 to a polynomial
ring A[x1, . . . , xr] in several indeterminate.
Proof. It suffices to consider the case of A[x, y], since we can do induction
on r to conclude general case. Consider A[x, y] = A[x][y] = B[y], where
B = A[x]. For f ∈ B[y], we write it as

f =
∑
ij

aijx
iyj =

∑
k

bky
k, bk =

∑
i

aikx
i ∈ B

For (1). f is a unit in B[y] if and only if b0 is a unit in B and bk is
nilpotent for k > 0, if and only if a00 is a unit, and aij is nilpotent for
otherwise.

1An alternative proof of (2). Note that

N(A[x]) =
∩

p[x] = (
∩

p)[x] = N(A)[x]
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For (2). f is a nilpotent in B[y] if and only if bk is nilpotent for all k, if
and only if aij is nilpotent for all i, j.

For (3). f is a zero divisor in B[y] if and only if there exists a ∈ A such
that af = 0. Indeed, if f is a zero divisor in B[y], then there exists b ∈ B
such that bf = 0, then bbk = 0 for all k, then for each k there exists ak such
that akbk = 0, then consider a =

∏
k ak, then af = 0.

For (4). fg is primitive if and only if f and g are primitive. Indeed, proof
in Exercise 6.2.2 still holds in this case. □
Exercise 6.2.4. In the ring A[x], the Jacobson radical is equal to the nil-
radical

Proof. Since we already have N ⊆ R, it suffices to show for any f ∈ R, it’s
nilpotent. Note that by property of Jacobson ideal, we have 1 − fg is unit
for any g ∈ A[x]. Choose g to be x, then by (1) of Exercise 1.8.1 we know
that all coefficients of f is nilpotent in A, and by (2) of Exercise 6.2.1, f is
nilpotent. This completes the proof. □
Exercise 6.2.5. Let A be a ring and let A[[x]] be the ring of formal power
series f =

∑∞
n=0 anx

n with coefficients in A. Show that
(1) f is a unit in A[[x]] ⇔ a0 is a unit in A.
(2) If f is nilpotent, then an is nilpotent for all n ⩾ 0. Is the converse true?
(3) f belongs to the Jacobson radical of A[[x]] ⇔ a0 belongs to the Jacobson

radical of A.
(4) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A,

and m is generated by mc and x.
(5) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. For (1). Let g =
∑∞

j=1 bjx
j be the inverse of f . Since fg = 1, then

clearly we have a0b0 = 1, thus a0 is a unit. Conversely, if a0 is a unit, then
consider the Taylor expansion of 1/f at x = 0 to conclude.

For (2). If f =
∑∞

i=0 aix
i is nilpotent, then a0 must be nilpotent, so f−a0

is also nilpotent. Consider (f −a0)/x which is also nilpotent, we will obtain
a1 is nilpotent. Repeat what we have done to conclude a0, a1, a2, . . . are
nilpotent. The converse holds when A is a Noetherian ring.

For (3). f ∈ R(A[[x]]) if and only if 1− fg is unit for all g ∈ A[[x]]. Note
that the zero term of 1− fg is 1− a0b0, so by (1) we obtain 1− fg is unit if
and only if 1−a0b0 is unit for all b0 ∈ A, and that’s equivalent to a0 ∈ R(A).

For (4). For maximal ideal m ∈ A[[x]], we have (x) ⊆ m, since by (3) we
have x ∈ R(A[[x]]). Then mc = m− (x), that is m = mc+(x). Furthermore,
note that

A[[x]]/m = A[[x]]/(mc + (x)) ∼= A/mc

implies mc is maximal. The last isomorphism holds since for a ring A and
two ideals b ⊆ a, we have

A/a ∼= (A/b)/(a/b)

just by considering A/a → A/b and use first isomorphism theorem.
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For (5). Let p be a prime ideal in A. Consider the ideal q which is
generated by p and x. Clearly qc = p and q is prime since

A[[x]]/q ∼= A/p

□
Exercise 6.2.6. A ring A is such that every ideal not contained in the
nilradical contains a nonzero idempotent (that is, an element e such that
e2 = e 6= 0 ). Prove that the nilradical and Jacobson radical of A are equal.

Proof. Take x ∈ R which is not in N. Then (x) is an ideal not contained
in N. Thus there exists a nonzero idempotent e = xy ∈ (x). Note that an
important property of idempotent is that an idempotent is a zero-divisor,
since e(1 − e) = 0. Thus 1 − e = 1 − xy is not a unit. So by property of
Jacobson ideal, we have x 6∈ R, a contradiction. □
Exercise 6.2.7. Let A be a ring in which every element x satisfies xn = x
for some n > 1 (depending on x). Show that every prime ideal in A is
maximal.

Proof. The proof is quite similar to above Exercise: Note that every prime
ideal is maximal if and only if nilradical and Jacobson radical are equal. If
not, take x ∈ R which is not in N, then from xn = x we know that 1−xn−1

is not a unit, a contradiction to x ∈ R. □
Exercise 6.2.8. Let A be a ring 6= 0. Show that the set of prime ideals of
A has minimal elements with respect to inclusion.

Proof. Let SpecA denote the set of all prime ideals of A. Clearly it’s not
empty, since there exists a maximal ideal. We order SpecA by reverse
inclusion, that is pa ≤ pb if pb ⊆ pa. By Zorn lemma, it suffices to show
every chain in SpecA has a upper bound in SpecA.

For a chain {pi}i∈I , it’s natural to consider the intersection of all pi, denote
by p. It’s an ideal clearly. Now it suffices to show it’s prime. Suppose xy ∈ p
and x, y 6∈ p. Then there exists pi, pj such that x 6∈ pi, y 6∈ pj . Without lose
of generality we may assume pi ⊂ pj . Then x, y 6∈ pi. But xy ∈ p implies
xy ∈ pi, a contradiction to the fact pi is prime. This completes the proof.

Remark 6.2.1. At first I want to check the nilradical is a prime ideal to
complete the proof. However, this statement fails in general. And it’s easy to
explain why: If there exists at least two minimal prime ideals, then nilradical
can not be prime. Indeed, the intersections of distinct minimal prime ideal
can not be prime, since if p1, . . . , pn is minimal and if p = p1 ∩ · · · ∩ pn is
prime, then we must have p = pi for some i, which implies pi is contained in
other pj , i 6= j, a contradiction to minimality. Furthermore, as you can see,
nilradical of a ring A is prime if and only if A only has one minimal prime
ideal.

□
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Exercise 6.2.9. Let a be an ideal 6= (1) in a ring A. Show that a = r(a) ⇔ a
is an intersection of prime ideals.

Proof. One direction is clear, since r(a) is the intersection of all prime ideal
containing a. Conversely, if a is an intersection of prime ideals, denoted by
a =

⋂
i pi. If xn ∈ a, then xn ∈ pi for each i, then by property of prime

ideal we obtain x ∈ pi for each i, which implies x ∈ a. This completes the
proof. □
Exercise 6.2.10. Let A be a ring, N its nilradical. Show that the following
statements are equivalent.
(1) A has exactly one prime ideal.
(2) every element of A is either a unit or nilpotent.
(3) A/N is a field.

Proof. (1) to (3): Since A has exactly one prime ideal, it must be a maximal
ideal, in this case A is a local ring and clearly A/N is a field.

(3) to (2): If A/N is a field, thus if an element in A is not a nilpotent,
then it must be a unit.

(2) to (1): Consider the set of all nilpotent elements in A, it’s clear it’s
an ideal, and thusd A/N is a local ring. □
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