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ABSTRACT. It’s a lecture note for studying the paper [Miy87].
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0. CONVENTIONS

(1) An (algebraic) variety over a field k is an integral seperated scheme of
finite type over k.

(2) A subvariety of a variety is a closed subscheme which is a variety.
(3) A curve, surface or a threefold means a variety of dimension 1,2 or 3.
(4) A point on a scheme will always be a closed point.
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1. PRELIMINARIES

In this section, unless otherwise specified, X always denotes a variety of
dimension n over an algebraically closed field k.

1.1. Torsion-freeness and relexivity.

1.1.1. Torsion-freeness.

Definition 1.1.1. An OX -module F is said to be locally free sheaf if
there is an open covering {Ui} of X such that F |Ui

∼= O⊕r
Ui

holds for every
Ui.

Definition 1.1.2. An OX -module F is said to be coherent sheaf if
(1) F is of finite type.
(2) For every open subset U ⊆ X and every morphism α : O r

U → F |U , the
kernel of α is of finite type.

Definition 1.1.3. A coherent sheaf F on X is torsion-free if a stalk Fx
is a torsion-free OX ,x-module for every x ∈ X .

Definition 1.1.4. A coherent subsheaf F of a torsion-free sheaf E is said
to be saturated if the quotient E /F is again torsion-free.

Proposition 1.1.1. Let X ,Y be two varieties and f : X →Y be a dominant
morphism. Then for any torsion-free OX -module F , the direct image f∗F
is a torsion-free OY -module.

Proof. See Proposition 8.4.5 in [GD71]. □

Proposition 1.1.2. Let X be a normal variety. Then every torsion-free
sheaf is locally free outside a set of codimension two.

Proof. See Proposition 5.1.7 in [Ish14]. □

Corollary 1.1.1. Every torsion-free sheaf on a smooth curve is locally free.

1.1.2. Reflexivity.

Definition 1.1.5. A coherent OX -module F is said to be reflexive if the
canonical homomorphism F →F ∗∗ is an isomorphism.

Proposition 1.1.3. Every locally free sheaf is reflexive, and every reflexive
sheaf is torsion-free.

Proof. It follows from the definitions. □

Proposition 1.1.4. The dual sheaf of any coherent sheaf is reflexive.

Proof. See Proposition 5.5.18 in [Kob87]. □
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1.2. Chow ring.

1.2.1. Cycles.

Definition 1.2.1. A k-cycle on X is a Z-linear combination of irreducible
subvarieties of dimension k.

Notation 1.2.1. The group of all k-cycles on X is denoted by Zk(X ).

Definition 1.2.2. A Weil divisor on X is an (n−1)-cycle.

Definition 1.2.3. A Cartier divisor on X is a global section of quotient
sheaf M ∗

X /O∗
X .

Definition 1.2.4. A k-cycle α on X is defined to be rationally equivalent
to zero if there are finitely many (k+1)-dimensional irreducible subvari-
eties Wi ⊆ X and non-zero rational functions. f i ∈C(Wi) such that

α=∑
i

[divWi ( f i)],

where divWi ( f i) is the divisor of the rational functions1 f i on Wi.

Definition 1.2.5. The group of k-cycles modulo rational equivalences is
defined to be Ak(X ), which is said to be the k-th Chow group.

Example 1.2.1. An−1(X ) is the group of Weil divisors modulo linear equiv-
alence.

Notation 1.2.2. The group of Cartier divisors modulo linear equivalence
is denoted by Pic(X ).

Remark 1.2.1. There is a group homomorphism from Pic(X ) to An−1(X ).
In general it’s neither injective nor surjective, but it’s injective when X is
normal and an isomorphism when X is smooth.

Definition 1.2.6. The group of cycles of codimension k modulo ratio-
nal equivalence is defined to be Ak(X ) := An−k(X ).

1.2.2. The intersection pairing.

Theorem 1.2.1. Let X be a smooth variety. There is a unique intesection
product Ar(X )× As(X ) → Ar+s(X ) for each r, s satisfying the axioms listed
below
(1) The intersection pairing makes makes A∗(X ) into a commutative asso-

ciated graded ring with identity. It’s called the Chow ring of X .
1Note that the subvariety Wi may fail to be normal, so this requires a more general

definition of divWi ( f i) than the usual one.
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(2) For any morphism f : X → Y , f ∗ : A∗(Y ) → A∗(X ) is a ring homomor-
phism. If g : Y → Z is another morphism, then f ∗ ◦ g∗ = (g ◦ f )∗.

(3) If f : X → Y is a proper morphism, f∗ : A∗(X ) → A∗(Y ) is a homomor-
phism of graded groups. If g : Y → Z is another proper morphism, then
g∗ ◦ f∗ = (g ◦ f )∗.

(4) If f : X →Y is a proper morphism, x ∈ A∗(X ) and y ∈ A∗(Y ), then

f∗(x · f ∗y)= f∗(x) · y.

This is said to be the projection formula.
(5) If Y , Z are cycles on X , and if ∆ : X → X × X is the diagonal morphism,

then
Y .Z =∆∗(Y ×Z).

(6) If Y and Z are subvarieties of X which intersec properly (meaning
that every irreducible component of Y ∩ Z has codimension equal to
codimY +codim Z), then

Y .Z =∑
i(Y , Z;Wj)Wj,

where the sum runs over the irreducible components Wj of Y ∩Z, and
where the integer i(Y , Z;Wj) depends only on a neighborhood of the
generic point of Wj on X , which is said to be the local intersection
multiplicity of Y and Z along Wj.

(7) If Y is a subvariety of X , and Z is an effective Cartier divisor meeting
Y properly, then Y .Z is just the cycle associated to the Cartier divisor
Y ∩Z on Y , which is defined by restricting the local equation of Z to Y .

Proof. See appendix A.1 in [Har77]. □

Remark 1.2.2. If X is not smooth, the intersection pairing also makes sense
in some subtle setting. For example, for any variety (or scheme), there is
always an intersection pairing

Pic(X )× Ak(X )→ Ak+1(X ).

1.3. Chern classes.

1.3.1. Chern classes of locally free sheaf.

Definition 1.3.1. A locally free sheaf E of rank r on X has Chern classes
ci(E ) ∈ A i(X ) for all 0≤ i ≤ r, which is defined by

r∑
i=0

(−1)iπ∗ci(E )ξr−i = 0

in Ar(P(E )), where ξ ∈ A1(P(E )) be the class of the divisor corresponding to
OP(E )(1) and π : P(E )→ X be the projection.
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Definition 1.3.2. Let E be a locally free sheaf of rank r on X . The total
Chern class is

c(E )= c0(E )+·· ·+ cr(E ) ∈ A∗(X ).

Proposition 1.3.1.
(1) c0(E )= 1 for any E and c1(OX )= 1 for any X .
(2) If f : X → Y is a morphism and E is locally free on Y , then ci( f ∗E ) =

f ∗(ci(E )).
(3) If 0→ E →F →G → 0 is an exact sequence, then c(F )= c(E )c(G ).
(4) ci(E ∨)= (−1)i ci(E ), where E ∨ is the dual of E .
(5) c1(

∧r E )= c1(E ) when E has rank r.
(6) If D is a Cartier divisor on X , then

c1(OX (D))= D.

Proof. See appendix A.3 in [Har77]. □

1.3.2. Chern classes of coherent sheaf. Let F(X ) be the free abelian group
generated by the set of coherent sheaves (up to isomorphisms, otherwise it’s
not a set) on X , that is, an element of F(X ) is a formal linear combination∑

i niFi, where ni ∈Z and Fi is coherent. Let

(E) 0→F ′ →F →F ′′ → 0

be an exact sequence of sheaves, and we associate the element Q(E)=F −
F ′−F ′′ of F(X ) to this exact sequence.

Definition 1.3.3. The group of classes of sheaves K(X ) on X is defined
to be the quotient of F(X ) by the subgroup generated by the Q(E), where E
runs over all short exact sequences.

Definition 1.3.4. Let F1(X ) be the free group generated by the set of lo-
cally free sheaves (up to isomorphisms), and K1(X ) be the quotient of F1(X )
by the subgroup generated by the Q(E), where E runs over all short exact
sequences of locally free sheaves.

Theorem 1.3.1 ([BS58]). Let X be a smooth quasi-projective variety. Then
the homomorphism ϵ : K1(X )→ K(X ) is a bijection.

Corollary 1.3.1. The definition of Chern classes can be extended to arbi-
trary coherent sheaves.

1.4. Cones of divisors and curves.
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1.4.1. The cones of divisors.

Definition 1.4.1. For two Cartier divisors D1,D2 on X , D1 is numerically
equivalent to D2 if D1 ·C = D2 ·C for all irreducible curves C.

Definition 1.4.2. The Néron-Severi group N1(X ) is the quotient group
of Cartier divisors by numerically equivalence, and

N1(X )Q = N1(X )⊗ZQ, N1(X )R = N1(X )⊗ZR .

Theorem 1.4.1. The Néron-Severi group N1(X ) is a free abelian group of
finit rank, and the rank of N1(X ) is said to be the Picard number.

Definition 1.4.3. For two 1-cycles C,C′ on X , C is numerically equiv-
alent to C′ if they have the same intersection number with every Cartier
divisor.

Notation 1.4.1. The quotient group of Z1(X ) by numerically equivalence
is denoted by N1(X ), and

N1(X )Q = N1(X )⊗ZQ, N1(X )R = N1(X )⊗ZR .

Remark 1.4.1. The intersection pairing

N1(X )×N1(X )→Z

is by definition non-degenerate.

Definition 1.4.4. The cone of effective curves NE(X )R ⊆ N1(X )R is the
cone spanned by non-negative linear combinations of curves, and NE(X )R
is the cone of pseudo-effective curves, where N1(X )R is endowed with
its usual topology as a R-vector space.

1.4.2. Nef cones and ample cones.

Definition 1.4.5. A Cartier divisor on X is nef (numerically effective)
if it has non-negative intersection with every irreducible curve on X .

Definition 1.4.6. The ample classes in N1(X )R forms an open cone NA(X )R,
which is said to be ample cone.

Definition 1.4.7. The nef classes in N1(X )R forms a closed cone Nef(X )R,
which is said to be nef cone.

Theorem 1.4.2. Let X be a projective variety.
(1) The closure of the ample cone is the nef cone;
(2) The interior of nef cone is the ample cone.

Proof. See Theorem 1.4.23 in [Laz04]. □
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Theorem 1.4.3. Let X be a projective variety.
(1) The pseudo-effective cone is the closed cone dual to the nef cone, that

is,
NE(X )R = {γ ∈ N1(X )R | D ·γ≥ 0, ∀ D ∈NA(X )R}.

(2)
NA(X )R = {γ ∈ N1(X )R | D ·γ> 0, ∀ D ∈NE(X )R− {0}}.

Proof. See Theorem 1.4.28 and Theorem 1.4.29 in [Laz04]. □

1.5. Asymptotic Riemann-Roch.

Theorem 1.5.1. Let X be a projective variety of dimension n and D be a
Cartier divisor on X . Then

χ(X ,O(mD))= Dn

n!
mn +O(mn−1).

More generally, for any coherent sheaf F on X ,

χ(X ,F ⊗OX (mD))= rankF · Dn

n!
mn +O(mn−1).

Proof. See Theorem 1.1.24 in [Laz04]. □
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2. TECHNIQUES

2.1. Semistable sheaves. Let X be a normal projective variety of dimen-
sion n over an algebraically closed field k of arbitrary characteristic.

Definition 2.1.1. The average first Chern class of a torsion-free sheaf
E is

δ(E )= c1(E )
rankE

∈ A1(X )Q.

Definition 2.1.2. For a given (n−1)-tuple A = (H1, . . . ,Hn−1) ∈ NA(X )n−1
Q

,
the average degree (or slope) with respect to A is the rational number
δA(E )= δ(E )H1 . . .Hn−1.

Definition 2.1.3. A torsion-free sheaf E is said to be semistable if

δA(F )≤ δA(E )

for every non-zero subsheaf F of E .

Notation 2.1. If A = ([H], . . . , [H]), we use the terminology H-semistable
instead of A-semistable.

Theorem 2.1.1 ([HN75]). Let E be a torsion-free sheaf on X and A ∈
NA(X )n−1

Q
. Then there exists a unique filtration ΣA,

0= E0 ⊊ E1 ⊊ · · ·⊊ Es = E ,

which is called the Harder-Narasimhan filtration, such that

(1) Gri(ΣA)= Ei/Ei+1 is a torsion-free A-semistable sheaf;
(2) δA(Gri(ΣA)) is a strictly decreasing function in i.

Sketch. Here we only give a sketch of proof of the existence. Put δmax
A

(E ) :=
sup{δA(F ) | 0 ̸=F ⊆ E a coherent subsheaf}. Then we need to prove that

(1) δmax
A

(E )<∞;
(2) There exists a saturated subsheaf F1 ⊆ E with maximal slope.

After that, suppose both F1 and F2 coherent subsheaves of rank r1 and r2
with maximal slope. By the following exact sequence

0→F1 ∩F2 →F1 ⊕F2 →F1 +F2 → 0,

one has
c1(F1 +F2)= c1(F1)+ c1(F2)− c1(F1 ∩F2)

rank(F1 +F2)= rank(F1)+rank(F2)−rank(F1 ∩F2).
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Then
rank(F1 +F2)δA(F1 +F2)= r1δA(F1)+ r2δA(F2)−rank(F1 ∩F2)δA(F1 ∩F2)

≥ (r1 + r2)δmax
A (E )−rank(F1 ∩F2)δmax

A (E )

= rank(F1 +F2)δmax
A (E ).

This shows F1 +F2 also has maximal slope. By adding all these sub-
sheaves together, this gives the maximal A-destabilizing subsheaf E1.
We repeat above process to obtain the maximal A-destabilizing subsheaf
of E /E1, and consider its preimage to obtain E2, that is, E2/E1 = (E /E1)1.
It remains to show δA(E1) > δA(E2/E1). Indeed, otherwise we would have
δA(E1)≤ δA(E2), a contradiction. □

Remark 2.1.1. The maximal A-destabilizing subsheaf of E is characterized
by the following properties:
(1) δA(E1)≥ δA(F ) for every coherent subsheaf F of E ;
(2) If δA(E1)= δA(F ) for F ⊂ E , then F ⊂ E1.

Remark 2.1.2. The A-semistable filtration of the dual sheaf E ∗ is essen-
tially the same as that of E , with each entry substituted by the duals of the
quotient E /Es−i.

Theorem 2.1.2. Let E A
1 ⊂ E denote the maximal A-destabilizing subsheaf

for A ∈NA(X )n−1
Q

.

(1) Let L be a closed affine segment joining A,C ∈ NA(X )n−1
Q

and B = (1−
t)A+ tC be a rational point on L. Then δA(E B

1 ) = δA(E A
1 ) whenever 0 <

t < ϵ, where ϵ is a positive constant depends continously on C provided
E and A is fixed.

(2) Let K ⊂NA(X )n−1
Q be a compact subset and A ∈NA(X )n−1

Q
is away from

K . Let A♯K stands the union of the segments joining A and K . Then
there exists an open neighborhood U ⊂ N1(X )Q of A such that δA(E B

1 )=
δA(E A

1 ) for every B ∈U ∩ (A♯K)∩NA(X )n−1
Q

.
(3) If A ∈NA(X )n−1

Q
, then there exists an open neighborhood U ⊂NA(X )n−1

Q

of A such that δA(E B
1 )= δA(E A

1 ) for every B ∈U .

Proof. For simplicity, we show the case n = 2 only, and the proof is quite
similar for higher dimensions.

(1). Suppose C = H ∈ NA(X )Q. If E ∗(H) is globally generated, that is,
there exists a surjective morphism O⊕N

X → E ∗(H) for some integer N. By
taking dual we have an injective morphism E →O⊕N

X (H), and thus

δC(E B
1 )≤ c,
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where c is a constant depending on E , and on C continously. If H is ample,
then there exists some integer m such that mH is globally generated, and
thus in this case δC(E B

1 )≤ c for some constant c depending on E , and on C

continously. Finally if H ∈ NA(X )Q, we also have the same result, as it’s a
limit of ample divisors. Furthermore, we put c′ = δC(E A

1 ). By the definition
of the maximal destabilizing sheaves, we get

δB(E A
1 )≤ δB(E B

1 ).

As δB is a linear function in B = (1− t)A+ tC, this inequality is rewritten
as

(1− t)δA(E A
1 )+ tδC(E A

1 )≤ (1− t)δA(E B
1 )+ tδC(E B

1 ).
Hence

δA(E B
1 )≤ δA(E A

1 )≤ δA(E B
1 )+ t

1− t
(δC(E B

1 )−δC(E A
1 ))

≤ δA(E B
1 )+ t

1− t
(c− c′).

Note that δ(E A
1 ),δ(E B

1 ) ∈ (1/r!)A1(X )Z and A ∈ (1/m)N1(X )Z for some posi-
tive integer m. Therefore, if

t
1− t

(c− c′)< 1
r!m

,

then δA(E A
1 )= δA(E B

1 ).
(2). Let U be the open ball centered at A with radius r, where r =

infC∈K ϵ(E ,A,C)d(A,C), d standing for Euclidean metric.
(3). Let K ⊂NA(X )n−1

Q
be a sphere centered at A and apply (2). □

Corollary 2.1.1. Given a compact subset K ⊂NA(X )n−1
Q

and A ∈NA(X )n−1
Q

is away from K , the B-semistable filtration is a refinement of A-semistable
filtration for all B ∈A♯K sufficiently near A.

Proof. By (2) of above theorem, we have E B
1 ⊆ E A

1 for all B ∈ A♯K suffi-
ciently near A. If E is semistable, it’s clear that the B-semistable filtration
of E is a refinement of A-semistable filtration of E , and the general case is
obtained by repeating above process for each semistable grade Ei/Ei+1. □

Corollary 2.1.2. Let E be a torsion-free sheaf on X . Then the function
δA(E A

1 ) is continous on NA(X )n−1
Q

, and is continous on any rational segment

of NA(X )n−1
Q

.

Proof. Note that if both A and B in NA(X )n−1
Q

, then there exists some open
neighborhood of A containing B, and there also exists some open neigh-
borhood of B containing A. By the symmetry we have E B

1 = E A
1 , and thus



12 BOWEN LIU

δA(E A
1 ) is continous on NA(X )n−1

Q
. The same arguement shows δA(E A

1 ) is

also continous in any rational segment of NA(X )n−1
Q

. □

2.2. A numerical criterion for semistability on curves. Throught this
section, the ground field k is always an algebraically closed field with char-
acteristic 0 except Lemma 2.2.1, and C is a smooth complete curve.

2.2.1. Projective bundle on curves. Let E be a locally free sheaf of rank r
on C and π : P(E ) → C the associated projective bundle with tautological
line bundle OP(E )(1).

Definition 2.2.1. The normalized hyperplane class λE is the numerical
class of c1(OP(E )(1))−π∗δ(E ) ∈ N1(P(E ))Q.

Remark 2.2.1. The normalized hyperplane class λE is uniquely determined
by two properties:

(1) λr
E = 0.

(2) λE on each fiber is numerically equivalent to the hyperplane.

Proposition 2.2.1. The class of relative anti-canonical divisor −KP(E ) +
π∗KC equals rλE .

Proof. It follows from the relative Euler sequence, that is,

0→Ω1
P(E )/C →OP(E )(−1)⊗π∗E ∗ →→OP(E ) → 0.

□

Proposition 2.2.2.
(1) π∗(OP(E )(ℓ))=S ℓE for ℓ≥ 0 and π∗(OP(E )(ℓ))= 0 for ℓ< 0.
(2) R iπ∗(OP(E )(ℓ))= 0 for 0< i < n.
(3) Rnπ∗(OP(E )(ℓ))= 0 for ℓ>−n−1.

Proof. See Exercise III 8.4 in [Har77]. □

Proposition 2.2.3. The Néron-Severi group of P(E ) is

N1(P(E ))=RλE ⊕π∗N1(X ),

and the group of numerically equivalent 1-cycles is

N1(P(E ))=λr−2
E N1(P(E )).

Proof. See Proposition V 2.3 in [Har77]. □
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2.2.2. Criterion.

Lemma 2.2.1. Let f be a seperable surjective k-morphism of a smooth
complete curve C′ onto C. Then a locally free sheaf E is semistable if and
only if f ∗E is semistable.

Proof. Firstly let’s prove “if" part. Let G ⊆ E be a non-zero subsheaf. Then
δ( f ∗G )≤ δ( f ∗E ) as f ∗E is semistable, and thus δ(G )≤ δ(F ).

Conversely, suppose E is semistable. Without lose of generality we may
assume f is a Galois morphism with Galois group G, which acts on f ∗E .
If f ∗E is not semistable and F1 be the maximal destabilizing subbundle
of f ∗E . For any g ∈ G, we have g∗F1 = F1 as the maximal destabiliz-
ing subsheaf is unique. Hence there exists a subbundle E1 of E such that
f ∗E1 =F1, and by “if" part E1 is semistable. On the other hand, by semista-
bility we have E1 = E , and thus F1 = f ∗E . This completes the proof. □

Theorem 2.2.1. The following conditions are equivalent:
(1) E is semistable;
(2) λE is nef;
(3) NA(P(E ))=R+λE ⊕R+π∗d, where d is a positive generator of N1(C)Z ∼=

Z;
(4) NE(P(E ))=R+λr−1

E ⊕R+λr−2
E π∗d;

(5) Every effective divisor on P(E ) is nef.

Proof. (1) to (2). If λE is not nef, then there exists an irreducible curve
C′ ⊂ P(E ) with C′λE < 0. It’s clear2 that C′ is mapped surjectively onto
C. Let C′′ be the normalization of C′ and f : C′′ → C be the composition
of C′′ → C′ → C. Then by the base change f : C′′ → C, the multi-section C′
becomes a union of cross sections C′′

i on the projective bundle P( f ∗E ) over
C′′, and C′′

i λP( f ∗E ) is evidently negative since C′λE < 0. For a section s : C →
C′′

i ⊂P( f ∗E ), it gives a line bundle L = s∗OP( f ∗E )(1) on C, which has degree
C′′

i c1(OP( f ∗E )(1)) = C′′
i λ f ∗E +δ( f ∗E ) < δ( f ∗E ), so that f ∗E is unstable, and

thus E is unstable by Lemma 2.2.1.

C′′

C′′×C C′ C′

C′′ C
f

2Otherwise we have C′λE > 0.
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(2) to (4). If λr−2
E (aλE +bπ∗d) is pseudo-effective and λE is nef, then

b =λr−1
E (aλE +bπ∗d)≥ 0.

On the other hand, λr−1
E is pseudo-effective since λE is nef, and thus a ≥ 0.

The equivalent between (3) and (4) is straightforward since the nef cone
is the closed cone dual to the pseudo-effective cone (Theorem 1.4.3).

(3) and (4) to (5). Since λE is nef, λE + ϵπ∗d is ample for any positive
real number ϵ. Assume aλE + bπ∗d is an effective divisor. Then the 1-
cycles (aλE + bπ∗d)(λE + ϵπ∗d)r−2 is effective, and thus their limit (aλE +
bπ∗d)λr−2

E is pseudo-effective. Then by (4) one has a,b ≥ 0, and thus aλE +
bπ∗d is nef by (3).

(5) to (1). Suppose that E is unstable and let E1 be the maximal destabi-
lizing subbundle. Let α be a rational number with δ(E1) > α > δ(E ). Then
by the Riemann-Roch theorem,

H0(C,S NE1(−Nαd))⊆H0(C,S NE (−Nαd))
∼= H0(P(E ),OP(E )(N)⊗π∗OC(−Nαd)))

is non-trivial for sufficiently large N. Then N{λE +(δ(E )−α)π∗d} is effective
but clearly not nef. □

2.2.3. Semipositive and semistability.

Definition 2.2.2. Let D be a Q-Cartier divisor on C. A Q-torsion-free sheaf
F = E (D) is said to be ample or semipositive if ξ+π∗D is ample or nef,
where ξ= c1(OP(E )(1)).

Definition 2.2.3. A Q-torsion-free sheaf F is said to be negative or sem-
inegative if F ∗ is ample or semipositive.

Proposition 2.2.4. The direct sums, tensor products, symmetric products
and exterior products of ample (or semipositive) Q-torsion-free sheaves are
all ample (or semipositive).

Theorem 2.2.2. Let E be a vector bundle on C. Then E is semistable if
and only if E (−δ(E)) is semipositive.

Proof. It follows from Theorem 2.2.1. □

Corollary 2.2.1. Let E be a vector bundle on C. Then E is semistable if
and only if E (−δ(E)) is seminegative.

Proof. It suffices to note that E is semistable if and only if E ∗ is semistable.
□

Corollary 2.2.2.
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(1) TheQ-vector bundle E (−D) is seminegative if and only if degD ≥ degδ(E1),
where E1 is the maximal destabilizing subsheaf of E .

(2) The Q-vector bundle E (−D) is negative if and only if degD > degδ(E1),
where E1 is the maximal destabilizing subsheaf of E .

(3) TheQ-vector bundle E (D) is semipositive if and only if degD ≥ degδ((E ∗)1).
(4) The Q-vector bundle E (D) is positive if and only if degD > degδ((E ∗)1).

Proof. For simplicity we only prove the first statement, and the proof is
quite similar for others.

Let E1 ⊂ ·· · ⊂ Es = E be the semistable filtration of E . Since Gi = Ei/Ei−1 is
semistable and degδ(Gi) is decreasing in i, one has Gi(−δ(E1)) is seminega-
tive for all i, and thus E (−δ(E1)) is seminegative. If degD ≥ degδ(E1), then
E (−D) is also seminegative.

Conversely, if degD is smaller than degδ(E1) for a Q-divisor D, then
E (−D), containing an ample Q-vector bundle E1(−D), is never seminega-
tive. □

Corollary 2.2.3. A semistable vector bundle E on C is ample (resp. semi-
positive, seminegative, negative) if and only if its degree is positive (resp.
semipositive, seminegative, negative).

Proof. Take D = 0 in Corollary 2.2.2. □

Corollary 2.2.4. Let E and F be semistable bundles on C. Then E ⊗F
and Hom (E ,F ) are also semistable.

Proof. It follows from the semipositive bundle tensor with semipositive
bundle is still semipositive. □

Corollary 2.2.5. Let E and F be two vector bundles. Then Hom (E ,F )
is negative if and only if degδ(F1)+degδ((E ∗)1) < 0. As a consequence,
Hom (E1,E /E1) is negative.

Proof. For the first part, note that Hom (E ,F )= E ∗⊗F and take D = 0 in
Corollary 2.2.2. For the half part, it suffices to note (E /E1)1 = E2/E1. □

Corollary 2.2.6. A vector bundle is semistable if and only if S nE is semistable,
where n ≥ 2.

Proposition 2.2.5. Let E be a vector bundle on C. The following conditions
are equivalent:
(1) E is semistable;
(2) E (−D) is negative with D is a Q-divisor of degree δ(E )+ (1/2r!).

Proof. The implication (1) to (2) follows from Corollary 2.2.1.
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Conversely, assume (2) and let E1 be the maximal destabilizing subsheaf.
Then by Corollary 2.2.2 we have E (−D) is negative if and only if degD >
degδ(E1) so that

δ(E )≤ δ(E1)< δ(E )+ 1
2r!

.

On the other hand, both degδ(E1) and degδ(E ) sit in (1/r!)Z. Hence we
have degδ(E1)= degδ(E ), and thus E1

∼= E . □

Corollary 2.2.7. Let C → T be a proper smooth family of irreducible curves,
where C and T are k-varieties. Let E be a vector bundle on C . Then the
set

S(T)= {t ∈ T | E is semistable on Ct}

is a Zariski open subset of T.

2.3. Mumford-Mehta-Ramanathan’s theorem.

Theorem 2.3.1 ([MR82]). Let X be a complex normal projective variety
of dimension n and E be a torsion-free sheaf. Let H1, . . . ,Hn−1 be ample
Cartier divisors. Then for sufficiently large integers m1, . . . ,mn−1, the max-
imal destabilizing subsheaf F of E |C extends to a saturated subsheaf of
E on X if C is a general complete intersection curve of |miHi|’s. (Such
an extension of F is necessarily the maximal (H1, . . . ,Hn−1)-destabilizing
subsheaf of E and hence unique.)

2.4. The Bogomolov-Gieseker inequality for semistable sheaves. In
this section, the ground field k is always algebraically closed of character-
istic zero.

Lemma 2.4.1. Let X be a normal projective variety of dimension n and
A ∈ NA(X )n−1. Let E be an A-semistable torsion-free sheaf on X , with its
first Chern class being a Q-Cartier divisor. Let D be a non-zero effective
Cartier divisor on X . Then

H0(X ,S rtE (−tc1(E )−D))= 0

for every positive integer t such that tc1(E ) is an integral Cartier divisor.

Proof. For a generic curve C in X , by Theorem 2.3.1 one has S rtE (−tc1(E ))|C
is semistable since S rtE is semistable. If

H0(X ,S rtE (−tc1(E )−D)) ̸= 0,

then there is an inclusion OC(D)→S rtE (−tc1(E ))|C. But degδ(OC(D))> 0
since D is effective and S rtE (−tc1(E ))=S rt{E (−δ(E ))} has degree zero on
every curve. This contradicts to S rtE (−tc1(E ))|C is semistable. □
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Corollary 2.4.1. Let things be as Lemma 2.4.1 and L be a fixed Cartier di-
visor. Then h0(X ,S rtE (−tc1(E )+L)) is bounded by a polynomial of degree
r−1 in t.

Proof. For simplicity of the notation, put F t =S rtE (−tc1(E )). The proof is
by induction on the dimension n of X . If n = 1, let D be a reduced effective
divisor of degree d > degL. Then there is a natural exact sequence

H0(X ,F t(−D))→ H0(X ,F t(L))→ H0(D,F t(L))

of which the first term vanishes by Lemma 2.4.1, where the last term is a
k-vector space of dimension d

(rt+r−1
rt

)= d
(rt+r−1

r−1

)
. This completes the proof

of n = 1.
For n ≥ 2, let A = (H1, . . . ,Hn) in NA(X )n−1, where Hi is integral and

ample. Let Y be a general hyperplane section in |mHi| for sufficiently
large m such that E |Y is (H1, . . . ,Hn−2)-semistable on Y and Y −L is ample
(Note that such a number m, though possible very large, is independent of
t). Consider the exact sequence

H0(X ,F t(L−Y ))→ H0(X ,F t(L))→ H0(Y ,F t(L)).

The first term vanishes by Lemma 2.4.1 and the dimension of the last term
is bounded by a polynomial of degree r−1 by the induction hypothesis. This
completes the proof. □

Theorem 2.4.1 (The Bogomolov-Gieseker inequality). Let S be a smooth
projective surface over k. If E is an H-semistable torsion-free sheaf of rank
r on S, where H is an ample divisor, then

(r−1)c2
1(E )≤ 2rc2(E ).

Proof. From Corollary 2.4.1, it follows that neither h0(S,S rtE (−tc1(E )))
nor h2(S,S rtE (−tc1(E ))= h0(S,S rtE ∗(−tc1(E ∗))+KS) grows like tr+1. Hence
we obtain the inequality

χ(S,S rtE (−tc1(E )))≤ polynomial of degree r in t.

On the other hand, we have

χ(S,S rtE (−tc1(E ))) (1)= χ(P(E ),OP(E )(rt)⊗π∗OS(−tc1(E )))

(2)= tr+1

(r+1)!
{
rc1(OP(E )(1))−π∗c1(E )

}r+1 +O(tr)

(3)= (rt)r+1

(r+1)!

{
−c2(E )+ r−1

2r
c2

1(E )
}
+O(tr),

where
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(1) holds from the projection formula;
(2) holds from by the asymptotic Riemann-Roch theorem (Theorem 1.5.1);
(3) holds from the following standard computation{
ξ− π∗c1(E )

r

}r+1
=

{
ξr −π∗c1(E )ξr−1 + r−1

2r
π∗c2

1(E )ξr−2
}{

ξ− π∗c1(E )
r

}
=

{
π∗c2(E )ξr−2 + r−1

2r
π∗c2

1(E )ξr−2
}{

ξ− π∗c1(E )
r

}
=

{
−c2(E )+ r−1

2r
c2

1(E )
}

,

where ξ= c1(OP(E )(1)).

This completes the proof. □

Corollary 2.4.2. Let E be a locally free sheaf of rank r on a smooth surface
S. Let L be an ample integral divisor on S such that E (−δ(E )+L) is ample
and E (−δ(E )−L) is negative (as Q-vector bundles). Assume the inequality
2rc2(E )< (r−1)c2

1(E ) and put

α= (r−1)c2
1(E )−2rc2(E )

6r2(r+1)L2 ∈Q .

Then

(1) Either S tE (−tδ(E )) or S tE ∗(−tδ(E ∗)) contains the ample line bundle
OS(tαL), where t is any very large integer such that tδ(E ) and tα are
integral.

(2) For any nef divisor D, the maximal D-destabilizing subsheaf E D
1 has

normalized degree not less that

δD(E )+ αLD
r

with respect to D.

Proof. (1). For simplicity, we put F = E (−δ(E )). By the standard computa-
tion we have

χ(S,S tF )= 1
(r+1)!

{
−c2(E )+ r−1

2r
c2

1(E )
}
+O(tr).

Hence, by the Serre duality, we infer that h0(S,S tF ) or h0(S,S tF ∗+KS)
is

≥ 1
4(r+1)!r

{
(r−1)c2

1(E )−2rc2(E )
}+O(tr).



CHERN INEQUALITIES 19

Assume the first case and consider the following natural exact sequences

0→ H0(S,S tF (−tαL))→ H0(S,S tF )→ H0(C,S tF ),

0→ H0(C,S tF (−tL))→ H0(C,S tF )→ H0(D,S tF ),

where C is a general curve linearly equavalent to tαL and D is a 0-cycle of
degree t2αL2. The first term of the second sequence vanishes as F (−tL) is
negative. Hence h0(C,S tF ) is bounded by

t2α(rankS tF )L2 ≡ αtr+1

(r−1)!
L2

≡ tr+1

6(r+1)!r
{
(r−1)c2

1(E )−2rc2(E )
}

(mod O(tr)).

This shows H0(S,S tF (−tαL)) is non-zero whenever t is very large in
view of the first exact sequence, and thus such a non-zero global section
gives the inclusion OS(tαL) ,→ S tF . Similarly, the second case will yield
H0(S,S tF ∗(−tαL)) ̸= 0.

(2). It suffices to consider the following cases:

(a) If S tF contains OS(tαL), then

δD(E D
1 )−δD(E )≥αLD.

(b) If S tF ∗ contains OS(tαL), then

δD(E D
1 )−δD(E )≥ 1

r

{
δD((E ∗)D

1 )−δD(E ∗)
}
≥ αLD

r
.

This completes the proof. □

Corollary 2.4.3. Let E be a torsion-free sheaf of rank r on a normal projec-
tive variety X of dimension n and H1, . . . ,Hn−2 be ample Cartier divisors.
Let D be a nef Cartier divisor on X . Assume that H1 . . .Hn−2D is not nu-
merically trivial. If E is (H1, . . . ,Hn−2,D)-semistable, then

(r−1)c2
1(E )H1 . . .Hn−2 ≤ 2rc2(E )H1 . . .Hn−2.

Proof. Suppose the contrary. We may assume that E is a vector bundle in
codimension 2 by taking double dual. Fix an ample divisor H0 such that
E (−δ+H0) and E ∗(−δ(E )+H0) are both ample. Let H be an arbitrary am-
ple divisor. Then there exist positive integer m1, . . . ,mn−2 depending on H
such that H|S-semistable filtration of E |S coincides with the restriction of
(H1, . . . ,Hn−2,H)-semistable filtration of E to a generic complete intersec-
tion surface S = (m1H1) . . . (mn−2Hn−2).
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By Corollary 2.4.3, we have

δ(E (B,H)
1 )SH−δ(E (B,H))SH = δH((E |S)H

1 )−δH((E |S)H)

≥ c
{
(r−1)c2

1(E |S)−2rc2(E |S)
}
(H,H0)S/(H2

0)S

= c
{
(r−1)c2

1(E )−2rc2(E )
}

HH0S/H2
0S,

where B = (H1, . . . ,Hn−2) and c is a constant. Therefore, by dividing out
both sides by m1 . . .mn−2, we obtain the inequality

δ(B,H)(E
(B,H)
1 )≥ δ(B,H)(E )+ cHH0H1 . . .Hn−2.

By the continuity of the function δA(E A
1 ) on a segment joining (B,D) and

(B,H), we have

δ(B,D)(E
(B,D)
1 )≥ δ(B,H)(E )+ cDH0H1 . . .Hn−2 > δ(B,D)(E ),

a contradiction. □

Corollary 2.4.4. Let E be a torsion-free sheaf of rank r on a normal projec-
tive variety X of dimension n and H1, . . . ,Hn−2 be ample Cartier divisors.
If

{(r−1)c2
1(E )−2rc2(E )}H1 . . .Hn−2 > 0,

then E is (H1, . . . ,Hn−2,D)-unstable for any non-zero nef divisor D.

2.5. Semistability in positive and mixed characteristic.

2.5.1. Semistability in positive characteristic. Let C be a smooth complete
curve over an algebraically closed field k of characteristic p > 0.

Definition 2.5.1. A vector bundle E on C is said to be strongly semistable
if, for every positive integer s, (F s)∗E is semistable.

Remark 2.5.1. If C is an elliptic curve, it’s known that every semistable
bundle is strongly semistable, but that is not the case when g(C)≥ 2.

Proposition 2.5.1. If E is strongly semistable on C, then f ∗E is semistable
for any surjective k-morphism f : C′ → C.

Proof. Let C′′ be a smooth model of the seperable closure of C. The natu-
ral projection C′ → C′′ is pure inseparable and hence C′ = F−sC′′ for some
non-negative integer s (Proposition IV 2.5 of [Har77]). Thus we get the
commutative diagram

C′ C′′

F−sC C

Fs

g h

Fs
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Since E is strongly semistable, we have (F s)∗ is semistable on F−sC, and
thus f ∗E = g∗(F s)∗E is also semistable by Lemma 2.2.1 as g is seperable.

□

Remark 2.5.2. The Theorem 2.2.1 and its corollaries still hold in positive
characteristic if the “semistability" is subsituted by “strong semistability”.

2.5.2. Semistability in mixed characteristic. Let X be a smooth projective
variety over a noetherian integral domain R of characteristic zero and E
be a torsion-free sheaf on X . Fix A ∈ NA(X /R)n−1

Q
, where n is the relative

dimension of X . Then the set of geometric points t ∈SpecR such that Et/X t
is A-semistable forms an open subset.

On the contrary, we know very little about the strong semistability of the
reductions of a semistable sheaves.

Question 2.5.1. Let C be an irreducible smooth projective curve over a
noetherian integral domain R of characteristic zero. Assume that a locally
free sheaf E on C is A-semistable on the generic fibre C∗. Let S be the
set of primes of positive characteristic on SpecR such that E is strongly
semistable. Is S a dense subset of SpecR?

2.6. Generic semipositive theorem for cotangent bundle. From now
on, all varieties are defined over an algebraically closed field k of charac-
teristic 0. Let X be a normal projective variety of dimension n.

Definition 2.6.1. Let B ∈NA(X )n−2
Q

.
(1) A torsion-free sheaf E on X is said to be generically B-seminegative

if, for every numerically effective Q-Cartier divisor D on X , its maximal
(B,D)-destabilizing subsheaf E1 satisfies δ(B,D)(E1)< 0.

(2) A torsion-free sheaf E on X is said to be generically B-semipositive
if E ∗ is generically B-seminegative.

Lemma 2.6.1. Let E be a torsion-free sheaf on X and

0= E0 ⊆ E1 ⊂ ·· · ⊂ Es = E

be the (B,D)-semistable filtration of E and put αi = δ(B,D)(Ei/Ei−1). Then
α1 > ·· · >αs ≥ 0 for every D ∈NA(X )Q if E is generically B-semipositive.

Proof. It follows from the definition. □

Theorem 2.6.1. Let B= (H1, . . . ,Hn−2) ∈NA(X )n−2
Q

and E be a generically
B-semipositive torsion-free sheaf on X . Then

c2(E )H1 . . .Hn−2 ≥ 0

holds.
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Theorem 2.6.2. Let B = (H1, . . . ,Hn−2) ∈ NA(X )n−2
Q

. Then the torsion-
free sheaf ρ∗Ω1

X ′ is generically B-semipositive unless X is uniruled, where
ρ : X ′ → X denotes an arbitrary resolution.
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3. RESULTS

3.1. Semipositivity of 3c2 − c2
1.

Proposition 3.1.1. Let X be a non-uniruled, normal projective variety of
dimension n with Q-Cartier canonical divisor KX which is nef. Let B ∈
NA(X )n−2

Q
such that K2

X |B| is positive. Then

{3c2(E )− c1(E )2}|B| ≥ 0,

where E = ρ∗Ω1
X ′ and ρ : X ′ → X is an arbitrary resolution.

3.2. Non-negativity of the Kodaira dimension of minimal threefolds.

3.2.1. The Gorenstein case.

Theorem 3.2.1. Let X be a normal projective Gorenstein threefold with
only canonical singularities (X is Gorenstein if and only if KX is a Cartier
divisor). Assume KX is nef. Then the Euler characteristic χ(X ,OX ) is non-
negative. In particular, either h0(X ,OX (KX )) or h1(X ,OX ) is non-zero, and
thus κ(X )≥ 0.

3.2.2. The K2
X is numerically non-trivial case.

Theorem 3.2.2. Let X be a normal projective Gorenstein threefold with
only isolated singularities. Assume the Q-Cartier divisor KX is nef and K2

X
is numerically non-trivial. Then κ(X )≥ 0.
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