
ON CHERN INEQUALITIES

BOWEN LIU

ABSTRACT. It’s a lecture note for talks given in the course "topics
in algebraic geometry" (spring 2024), organized by Mao Sheng.

The first part of this lecture note contains the classical theory
about slope stability and Bogomolov-Gieseker inequality over C. We
also give a brief introduction to the generic semipositive positive of
Miyaoka and some results in [Miy87].

The second part contains some results in positive characteristic
([Lan04], [Lan15]), especially the Bogomolov-Gieseker inequality of
Higgs bundles in positive characteristic.
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0. PREFACE

0.1. Conventions.
(1) An (algebraic) variety over a field k is an integral seperated scheme

of finite type over k.
(2) A subvariety of a variety is a closed subscheme which is a variety.
(3) A curve, surface or a threefold means a variety of dimension 1,2 or

3.
(4) A point on a scheme will always be a closed point.

0.2. Notations.
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1. PRELIMINARIES

In this section, unless otherwise specified, X always denotes a vari-
ety of dimension n over an algebraically closed field k.

1.1. Torsion-freeness and relexivity.

1.1.1. Torsion-freeness.

Definition 1.1.1. An OX -module F is said to be locally free sheaf
if there is an open covering {Ui} of X such that F |Ui

∼= O⊕r
Ui

holds for
every Ui.

Definition 1.1.2. An OX -module F is said to be coherent sheaf if
(1) F is of finite type.
(2) For every open subset U ⊆ X and every morphism α : O r

U → F |U ,
the kernel of α is of finite type.

Definition 1.1.3. A coherent sheaf F on X is torsion-free if a stalk
Fx is a torsion-free OX ,x-module for every x ∈ X .

Definition 1.1.4. A coherent subsheaf F of a torsion-free sheaf E is
said to be saturated if the quotient E /F is again torsion-free.

Proposition 1.1.1 ([GD71, Proposition 8.4.5]). Let X ,Y be two vari-
eties and f : X → Y be a dominant morphism. Then for any torsion-
free OX -module F , the direct image f∗F is a torsion-free OY -module.

Proposition 1.1.2 ([Ish14, Proposition 5.1.7]). Let X be a normal va-
riety. Then every torsion-free sheaf is locally free outside a set of codi-
mension two.

Corollary 1.1.1. Every torsion-free sheaf on a smooth curve is locally
free.

1.1.2. Reflexivity.

Definition 1.1.5. A coherent OX -module F is said to be reflexive if
the canonical homomorphism F →F ∗∗ is an isomorphism.

Proposition 1.1.3. Every locally free sheaf is reflexive, and every re-
flexive sheaf is torsion-free.

Proof. It follows from the definitions. □

Proposition 1.1.4 ([Kob87, Proposition 5.5.18]). The dual sheaf of any
coherent sheaf is reflexive.

1.2. Chow ring.
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1.2.1. Cycles.

Definition 1.2.1. A k-cycle on X is a Z-linear combination of irre-
ducible subvarieties of dimension k.

Notation 1.2.1. The group of all k-cycles on X is denoted by Zk(X ).

Definition 1.2.2. A Weil divisor on X is an (n−1)-cycle.

Definition 1.2.3. A Cartier divisor on X is a global section of quo-
tient sheaf M ∗

X /O∗
X .

Definition 1.2.4. A k-cycle α on X is defined to be rationally equiv-
alent to zero if there are finitely many (k+1)-dimensional irreducible
subvarieties Wi ⊆ X and non-zero rational functions. f i ∈ C(Wi) such
that

α=∑
i

[divWi ( f i)],

where divWi ( f i) is the divisor of the rational functions f i on Wi.

Definition 1.2.5. The group of k-cycles modulo rational equivalences
is defined to be Ak(X ), which is said to be the k-th Chow group.

Example 1.2.1. An−1(X ) is the group of Weil divisors modulo linear
equivalence.

Notation 1.2.2. The group of Cartier divisors modulo linear equiva-
lence is denoted by Pic(X ).

Remark 1.2.1. There is a group homomorphism from Pic(X ) to An−1(X ).
In general it’s neither injective nor surjective, but it’s injective when
X is normal and an isomorphism when X is smooth.

Definition 1.2.6. The group of cycles of codimension k modulo
rational equivalence is defined to be Ak(X ) := An−k(X ).

1.2.2. The intersection pairing.

Theorem 1.2.1 ([Har77, Appendix A.1]). Let X be a smooth variety.
There is a unique intesection product Ar(X )× As(X ) → Ar+s(X ) for
each r, s satisfying the axioms listed below
(1) The intersection pairing makes makes A∗(X ) into a commutative

associated graded ring with identity. It’s called the Chow ring of
X .

(2) For any morphism f : X → Y , f ∗ : A∗(Y ) → A∗(X ) is a ring homo-
morphism. If g : Y → Z is another morphism, then f ∗◦g∗ = (g◦ f )∗.

(3) If f : X → Y is a proper morphism, f∗ : A∗(X ) → A∗(Y ) is a homo-
morphism of graded groups. If g : Y → Z is another proper mor-
phism, then g∗ ◦ f∗ = (g ◦ f )∗.



ON CHERN INEQUALITIES 5

(4) If f : X →Y is a proper morphism, x ∈ A∗(X ) and y ∈ A∗(Y ), then

f∗(x · f ∗y)= f∗(x) · y.

This is said to be the projection formula.
(5) If Y , Z are cycles on X , and if ∆ : X → X × X is the diagonal mor-

phism, then
Y ·Z =∆∗(Y ×Z).

(6) If Y and Z are subvarieties of X which intersec properly (meaning
that every irreducible component of Y ∩ Z has codimension equal
to codimY +codim Z), then

Y ·Z =∑
i(Y , Z;Wj)Wj,

where the sum runs over the irreducible components Wj of Y ∩Z,
and where the integer i(Y , Z;Wj) depends only on a neighborhood
of the generic point of Wj on X , which is said to be the local inter-
section multiplicity of Y and Z along Wj.

(7) If Y is a subvariety of X , and Z is an effective Cartier divisor meet-
ing Y properly, then Y ·Z is just the cycle associated to the Cartier
divisor Y ∩Z on Y , which is defined by restricting the local equa-
tion of Z to Y .

Remark 1.2.2. If X is not smooth, the intersection pairing also makes
sense in some settings, see [Ful98] for more details. For example, on
any variety (or scheme), there is always an intersection pairing

Pic(X )× Ak(X )→ Ak+1(X ).

1.3. Chern classes.

1.3.1. Chern classes of locally free sheaf.

Definition 1.3.1. A locally free sheaf E of rank r on X has Chern
classes ci(E ) ∈ A i(X ) for all 0≤ i ≤ r, which is defined by

r∑
i=0

(−1)iπ∗ci(E )ξr−i = 0

in Ar(P(E )), where ξ ∈ A1(P(E )) be the class of the divisor correspond-
ing to c1(OP(E )(1)) and π : P(E )→ X be the projection.

Definition 1.3.2. Let E be a locally free sheaf of rank r on X . The
total Chern class is

c(E )= c0(E )+·· ·+ cr(E ) ∈ A∗(X ).

Proposition 1.3.1 ([Har77, Appendix A.3]).
(1) c0(E )= 1 for any E and c1(OX )= 1 for any X .
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(2) If f : X →Y is a morphism and E is locally free on Y , then ci( f ∗E )=
f ∗(ci(E )).

(3) If 0→ E →F →G → 0 is an exact sequence, then c(F )= c(E )c(G ).
(4) ci(E ∨)= (−1)i ci(E ), where E ∨ is the dual of E .
(5) c1(

∧r E )= c1(E ) when E has rank r.
(6) If D is a Cartier divisor on X , then

c1(OX (D))= D.

1.3.2. Chern classes of coherent sheaf. Let F(X ) be the free abelian
group generated by the set of coherent sheaves (up to isomorphisms,
otherwise it’s not a set) on X , that is, an element of F(X ) is a formal
linear combination

∑
i niFi, where ni ∈Z and Fi is coherent. Let

(E) 0→F ′ →F →F ′′ → 0

be an exact sequence of sheaves, and we associate the element Q(E)=
F −F ′−F ′′ of F(X ) to this exact sequence.

Definition 1.3.3. The group of classes of sheaves K(X ) on X is
defined to be the quotient of F(X ) by the subgroup generated by the
Q(E), where E runs over all short exact sequences.

Definition 1.3.4. Let F1(X ) be the free group generated by the set of
locally free sheaves (up to isomorphisms), and K1(X ) be the quotient
of F1(X ) by the subgroup generated by the Q(E), where E runs over
all short exact sequences of locally free sheaves.

Theorem 1.3.1 ([BS58]). Let X be a smooth quasi-projective variety.
Then the homomorphism ϵ : K1(X )→ K(X ) is a bijection.

Corollary 1.3.1. The definition of Chern classes can be extended to
arbitrary coherent sheaves.

1.4. Cones of divisors and curves.

1.4.1. The cones of divisors.

Definition 1.4.1. For two Cartier divisors D1,D2 on X , D1 is numer-
ically equivalent to D2 if D1 ·C = D2 ·C for all irreducible curves C.

Definition 1.4.2. The Néron-Severi group N1(X )Z is the quotient
group of Pic(X ) by numerically equivalence, and

N1(X )Q = N1(X )Z⊗ZQ, N1(X )R = N1(X )Z⊗ZR .

Theorem 1.4.1. The Néron-Severi group N1(X )Z is a free abelian
group of finite rank, and its rank is said to be the Picard number.
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Definition 1.4.3. For two 1-cycles C,C′ on X , C is numerically equiv-
alent to C′ if they have the same intersection number with every
Cartier divisor.

Notation 1.4.1. The quotient group of Z1(X ) by numerically equiva-
lence is denoted by N1(X )Z, and

N1(X )Q = N1(X )Z⊗ZQ, N1(X )R = N1(X )⊗ZR .

Remark 1.4.1. The intersection pairing

N1(X )Z×N1(X )Z→Z

is by definition non-degenerate.

Definition 1.4.4. The cone of effective curves NE(X )R ⊆ N1(X )R is
the cone spanned by non-negative linear combinations of curves, and
NE(X )R is the cone of pseudo-effective curves, where N1(X )R is
endowed with its usual topology as a R-vector space.

1.4.2. Nef cones and ample cones.

Definition 1.4.5. A Cartier divisor on X is nef (numerically effec-
tive) if it has non-negative intersection with every irreducible curve
on X .

Definition 1.4.6. The ample classes in N1(X )R forms an open cone
NA(X )R, which is said to be ample cone.

Definition 1.4.7. The nef classes in N1(X )R forms a closed cone Nef(X )R,
which is said to be nef cone.

Theorem 1.4.2 ([Laz04, Theorem 1.4.23]). Let X be a projective vari-
ety.

(1) The closure of the ample cone is the nef cone;
(2) The interior of nef cone is the ample cone.

Theorem 1.4.3 ([Laz04, Theorem 1.4.28 and Theorem 1.4.29]). Let X
be a projective variety.

(1) The pseudo-effective cone is the closed cone dual to the nef cone,
that is,

NE(X )R = {γ ∈ N1(X )R | D ·γ≥ 0, ∀ D ∈NA(X )R}.

(2)
NA(X )R = {γ ∈ N1(X )R | D ·γ> 0, ∀ D ∈NE(X )R− {0}}.
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1.5. Asymptotic Riemann-Roch.

Theorem 1.5.1 ([Laz04, Theorem 1.1.24]). Let X be a projective vari-
ety of dimension n and D be a Cartier divisor on X . Then

χ(X ,O(mD))= Dn

n!
mn +O(mn−1).

More generally, for any coherent sheaf F on X ,

χ(X ,F ⊗OX (mD))= rkF · Dn

n!
mn +O(mn−1).
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2. TECHNIQUES

2.1. Semistable sheaves. Let X be a normal projective variety of di-
mension n over an algebraically closed field k of arbitrary characteris-
tic.

Definition 2.1.1. The average first Chern class of a torsion-free
sheaf E is

δ(E )= c1(E )
rkE

∈ A1(X )Q.

Definition 2.1.2. For a given (n−1)-tuple A= (H1, . . . ,Hn−1) ∈NA(X )n−1
Q

,
the average degree with respect to A is the rational number δA(E )=
δ(E )H1 . . .Hn−1.

Definition 2.1.3. A torsion-free sheaf E is said to be semistable if

δA(F )≤ δA(E )

for every non-zero subsheaf F of E .

Notation 2.1. If A= ([H], . . . , [H]), we use the terminology H-semistable
instead of A-semistable.

Theorem 2.1.1 ([HN75]). Let E be a torsion-free sheaf on X and A ∈
NA(X )n−1

Q
. Then there exists a unique filtration ΣA,

0= E0 ⊊ E1 ⊊ · · ·⊊ Es = E ,

which is called the Harder-Narasimhan filtration, such that

(1) Gri(ΣA)= Ei/Ei+1 is a torsion-free A-semistable sheaf;
(2) δA(Gri(ΣA)) is a strictly decreasing function in i.

Sketch. Here we only give a sketch of proof of the existence. Put
δmax
A

(E ) := sup{δA(F ) | 0 ̸=F ⊆ E a coherent subsheaf}. Then we need
to prove that

(1) δmax
A

(E )<∞;
(2) There exists a saturated subsheaf F1 ⊆ E with maximal slope.

After that, suppose both F1 and F2 coherent subsheaves of rank r1
and r2 with maximal slope. By the following exact sequence

0→F1 ∩F2 →F1 ⊕F2 →F1 +F2 → 0,

one has
c1(F1 +F2)= c1(F1)+ c1(F2)− c1(F1 ∩F2)
rk(F1 +F2)= rk(F1)+rk(F2)−rk(F1 ∩F2).
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Then

rk(F1 +F2)δA(F1 +F2)= r1δA(F1)+ r2δA(F2)−rk(F1 ∩F2)δA(F1 ∩F2)

≥ (r1 + r2)δmax
A (E )−rk(F1 ∩F2)δmax

A (E )

= rk(F1 +F2)δmax
A (E ).

This shows F1 +F2 also has the maximal slope. By adding all these
subsheaves together, this gives the maximal A-destabilizing sub-
sheaf E1. We repeat above process to obtain the maximal A-destabilizing
subsheaf of E /E1, and consider its preimage to obtain E2, that is, E2/E1 =
(E /E1)1. It remains to show δA(E1) > δA(E2/E1). Indeed, otherwise we
would have δA(E1)≤ δA(E2), a contradiction. □

Remark 2.1.1. The maximal A-destabilizing subsheaf of E is charac-
terized by the following properties:

(1) δA(E1)≥ δA(F ) for every coherent subsheaf F of E ;
(2) If δA(E1)= δA(F ) for F ⊂ E , then F ⊂ E1.

Remark 2.1.2. The A-semistable filtration of the dual sheaf E ∗ is es-
sentially the same as that of E , with each entry substituted by the
duals of the quotient E /Es−i.

Theorem 2.1.2. Let E A
1 ⊂ E denote the maximal A-destabilizing sub-

sheaf for A ∈NA(X )n−1
Q

.

(1) Let L be a closed affine segment joining A ∈ NA(X )n−1
Q

and C ∈
NA(X )n−1

R
and B = (1− t)A+ tC be a Q-rational point on L. Then

δA(E B
1 )= δA(E A

1 ) whenever 0< t < ϵ, where ϵ is a positive constant
depends continously on C provided E and A is fixed.

(2) Let K ⊂ NA(X )n−1
R

be a compact subset and A ∈ NA(X )n−1
Q

is away
from K . Let A♯K stands the union of the segments joining A and
K . Then there exists an open neighborhood U ⊂ N1(X )R of A such
that δA(E B

1 )= δA(E A
1 ) for every B ∈U ∩ (A♯K)∩NA(X )n−1

Q
.

(3) If A ∈NA(X )n−1
Q

, then there exists an open neighborhood U ⊂NA(X )n−1
Q

of A such that δA(E B
1 )= δA(E A

1 ) for every B ∈U .

Proof. For simplicity, we show the case n = 2 only, as the proof is quite
similar for higher dimensions, and we denote C= H ∈NA(X )Q.

(1). At first we prove that δC(E B
1 )≤ c for some constant c depending

on E , and on C continously.

(a) If E ∗(H) is globally generated, that is, there exists a surjective
morphism O⊕N

X → E ∗(H) for some integer N. By taking dual we
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have an injective morphism E →O⊕N
X (H), and thus

δC(E B
1 )≤ c,

where c is a constant depending on E , and on C continously.
(b) If H is ample, then there exists some integer m such that mH

is globally generated, and thus in this case δC(E B
1 ) ≤ c for some

constant c depending on E , and on C continously.
(c) If H ∈NA(X )Q, the same result still holds, as a nef divisor is a limit

of ample divisors.

Furthermore, we put c′ = δC(E A
1 ). By the definition of the maximal

destabilizing sheaves, we get

δB(E A
1 )≤ δB(E B

1 ).

As δB is a linear function in B= (1− t)A+ tC, this inequality is rewrit-
ten as

(1− t)δA(E A
1 )+ tδC(E A

1 )≤ (1− t)δA(E B
1 )+ tδC(E B

1 ).

Hence

δA(E B
1 )≤ δA(E A

1 )≤ δA(E B
1 )+ t

1− t
(δC(E B

1 )−δC(E A
1 ))

≤ δA(E B
1 )+ t

1− t
(c− c′).

Note that δ(E A
1 ),δ(E B

1 ) ∈ (1/r!)A1(X )Z and A ∈ (1/m)N1(X )Z for some
positive integer m. Therefore, if

t
1− t

(c− c′)< 1
r!m

,

then δA(E A
1 )= δA(E B

1 ).
(2). Let U be the open ball centered at A with radius r = infC∈K ϵ(E ,A,C)d(A,C),

where d stands for Euclidean metric.
(3). Let K ⊂NA(X )n−1

R
be a sphere centered at A and apply (2). □

Corollary 2.1.1. Given a compact subset K ⊂NA(X )n−1
R

and A ∈NA(X )n−1
Q

is away from K , the B-semistable filtration is a refinement of A-semistable
filtration for all B ∈ (A♯K)Q sufficiently near A.

Proof. By (2) of above theorem, we have E B
1 ⊆ E A

1 for all B ∈ (A♯K)Q
sufficiently near A. If E is semistable, it’s clear that the B-semistable
filtration of E is a refinement of A-semistable filtration of E , and the
general case is obtained by repeating above process for each semistable
grade Ei/Ei+1. □
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Corollary 2.1.2. Let E be a torsion-free sheaf on X . Then the function
δA(E A

1 ) is a continous, piecewise multilinear function on NA(X )n−1
Q

,

and continous on any Q-rational segment of NA(X )n−1
Q

.

Proof. Note that if both A and B in NA(X )n−1
Q

, then there exists some
open neighborhood of A containing B, and there also exists some open
neighborhood of B containing A. By the symmetry we have E B

1 =
E A

1 , and thus δA(E A
1 ) is continous on NA(X )n−1

Q
. The same arguement

shows δA(E A
1 ) is also continous in any rational segment of NA(X )n−1

Q
.

□

2.2. A numerical criterion for semistability on curves. Throught
this section, the ground field k is always an algebraically closed field
with characteristic 0 except Lemma 2.2.1, and C is a smooth complete
curve.

2.2.1. Projective bundle on curves. Let E be a locally free sheaf of rank
r on C and π : P(E ) → C the associated projective bundle with tauto-
logical line bundle OP(E )(1).

Definition 2.2.1. The normalized hyperplane class λE is the nu-
merical class of c1(OP(E )(1))−π∗δ(E ) ∈ N1(P(E ))Q.

Remark 2.2.1. The normalized hyperplane class λE is uniquely deter-
mined by two properties:
(1) λr

E = 0.
(2) λE on each fiber is numerically equivalent to the hyperplane.

Proposition 2.2.1. The class of relative anti-canonical divisor −KP(E )+
π∗KC equals rλE .

Proof. It follows from the relative Euler sequence, that is,

0→Ω1
P(E )/C →OP(E )(−1)⊗π∗E ∗ →→OP(E ) → 0.

□

Proposition 2.2.2 ([Har77, Exercise III 8.4]).
(1) π∗(OP(E )(ℓ))=S ℓE for ℓ≥ 0 and π∗(OP(E )(ℓ))= 0 for ℓ< 0.
(2) R iπ∗(OP(E )(ℓ))= 0 for 0< i < n.
(3) Rnπ∗(OP(E )(ℓ))= 0 for ℓ>−n−1.

Proposition 2.2.3 ([Har77, Proposition V 2.3]). The Néron-Severi group
of P(E ) is

N1(P(E ))=RλE ⊕π∗N1(X ),
and the group of numerically equivalent 1-cycles is

N1(P(E ))=λr−2
E N1(P(E )).
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2.2.2. Criterion.

Lemma 2.2.1. Let f be a seperable surjective k-morphism of a smooth
complete curve C′ onto C. Then a locally free sheaf E is semistable if
and only if f ∗E is semistable.

Proof. Firstly let’s prove if part. Let G ⊆ E be a non-zero subsheaf.
Then δ( f ∗G )≤ δ( f ∗E ) as f ∗E is semistable, and thus δ(G )≤ δ(F ).

Conversely, suppose E is semistable. Without lose of generality we
may assume f is a Galois morphism with Galois group G, which acts
on f ∗E . If f ∗E is not semistable and F1 be the maximal destabilizing
subbundle of f ∗E . For any g ∈G, we have g∗F1 =F1 as the maximal
destabilizing subsheaf is unique. Hence there exists a subbundle E1
of E such that f ∗E1 = F1, and by if part E1 is semistable. On the
other hand, by semistability we have E1 = E , and thus F1 = f ∗E . This
completes the proof. □

Theorem 2.2.1. The following conditions are equivalent:
(1) E is semistable;
(2) λE is nef;
(3) NA(P(E ))=R+λE ⊕R+π∗d, where d is a positive generator of N1(C)Z ∼=

Z;
(4) NE(P(E ))=R+λr−1

E ⊕R+λr−2
E π∗d;

(5) Every effective divisor on P(E ) is nef.

Proof. (1) to (2). If λE is not nef, then there exists an irreducible curve
C′ ⊂P(E ) with C′λE < 0. It’s clear1 that C′ is mapped surjectively onto
C. Let C′′ be the normalization of C′ and f : C′′ → C be the composi-
tion of C′′ → C′ → C. Then by the base change f : C′′ → C, the multi-
section C′ becomes a union of cross sections C′′

i on the projective bundle
P( f ∗E ) over C′′, and C′′

i λ f ∗E is evidently negative since C′λE < 0. For
a section s : C′′ → C′′

i ⊂ P( f ∗E ), it gives a line bundle L = s∗OP( f ∗E )(1)
on C′′, which has degree C′′

i c1(OP( f ∗E )(1)) = C′′
i λ f ∗E +δ( f ∗E ) < δ( f ∗E ).

On the other hand, there is a surjective morphism f ∗E ↠L and thus
f ∗E is unstable. Then by Lemma 2.2.1 one has E is unstable.

C′′

C′′×C C′ C′

C′′ C
f

1Otherwise we have C′λE > 0.



14 BOWEN LIU

(2) to (4). If λr−2
E (aλE +bπ∗d) is pseudo-effective and λE is nef, then

b =λr−1
E (aλE +bπ∗d)≥ 0.

On the other hand, since π∗d is semiample, we have π∗d is also nef.
Thus

a =π∗d(aλr−1
E +bλr−2

E π∗d)≥ 0.

The equivalent between (3) and (4) is straightforward since the nef
cone is the closed cone dual to the pseudo-effective cone (Theorem
1.4.3).

(3) and (4) to (5). By (3), we have λE + ϵπ∗d is ample for any posi-
tive real number ϵ, since it lies in the interior of the nef cone. Assume
aλE +bπ∗d is an effective divisor. Then the 1-cycles (aλE +bπ∗d)(λE +
ϵπ∗d)r−2 is also effective, and thus their limit (aλE + bπ∗d)λr−2

E is
pseudo-effective. Then by (4) one has a,b ≥ 0, and thus aλE + bπ∗d
is nef by (3).

(5) to (1). Suppose that E is unstable and let E1 be the maximal
destabilizing subbundle. Let α be a rational number with δ(E1) > α >
δ(E ). Then by the Riemann-Roch theorem,

H0(C,S NE1(−Nαd))⊆H0(C,S NE (−Nαd))
∼= H0(P(E ),OP(E )(N)⊗π∗OC(−Nαd)))

is non-trivial for sufficiently large N. Then N{λE + (δ(E )−α)π∗d} is
effective but clearly not nef. □

2.2.3. Semipositive and semistability.

Definition 2.2.2. Let D be a Q-Cartier divisor on C. A Q-torsion-free
sheaf F = E (D) is said to be ample or semipositive if ξ+π∗D is
ample or nef, where ξ= c1(OP(E )(1)).

Definition 2.2.3. A Q-torsion-free sheaf F is said to be negative or
seminegative if F ∗ is ample or semipositive.

Proposition 2.2.4. The direct sums, tensor products, symmetric prod-
ucts and exterior products of ample (or semipositive) Q-torsion-free
sheaves are all ample (or semipositive).

Theorem 2.2.2. Let E be a vector bundle on C. Then E is semistable
if and only if E (−δ(E )) is semipositive.

Proof. It follows from Theorem 2.2.1. □

Corollary 2.2.1. Let E be a vector bundle on C. Then E is semistable
if and only if E (−δ(E )) is seminegative.
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Proof. It suffices to note that E is semistable if and only if E ∗ is semistable.
□

Corollary 2.2.2.
(1) The Q-vector bundle E (−D) is seminegative if and only if degD ≥

degδ(E1), where E1 is the maximal destabilizing subsheaf of E .
(2) TheQ-vector bundle E (−D) is negative if and only if degD > degδ(E1),

where E1 is the maximal destabilizing subsheaf of E .
(3) The Q-vector bundleE (D) is semipositive if and only if degD ≥

degδ((E ∗)1).
(4) TheQ-vector bundleE (D) is positive if and only if degD > degδ((E ∗)1).

Proof. For simplicity we only prove the first statement, and the proof
is quite similar for others.

Let E1 ⊂ ·· · ⊂ Es = E be the semistable filtration of E . Since Gi =
Ei/Ei−1 is semistable and degδ(Gi) is decreasing in i, one has Gi(−δ(E1))
is seminegative for all i, and thus E (−δ(E1)) is seminegative. If degD ≥
degδ(E1), then E (−D) is also seminegative.

Conversely, if degD is smaller than degδ(E1) for a Q-divisor D, then
E (−D), containing an ample Q-vector bundle E1(−D), is never sem-
inegative. □

Corollary 2.2.3. A semistable vector bundle E on C is ample (resp.
semipositive, seminegative, negative) if and only if its degree is posi-
tive (resp. semipositive, seminegative, negative).

Proof. Take D = 0 in Corollary 2.2.2. □

Corollary 2.2.4. Let E and F be semistable bundles on C. Then
E ⊗F and Hom (E ,F ) are also semistable.

Proof. It follows from the semipositive bundle tensor with semipositive
bundle is still semipositive. □

Corollary 2.2.5. Let E and F be two vector bundles. Then Hom (E ,F )
is negative if and only if degδ(F1)+degδ((E ∗)1)< 0. As a consequence,
Hom (E1,E /E1) is negative.

Proof. For the first part, note that Hom (E ,F )= E ∗⊗F and take D =
0 in Corollary 2.2.2. For the half part, it suffices to note (E /E1)1 =
E2/E1. □

Corollary 2.2.6. A vector bundle is semistable if and only if S nE is
semistable, where n ≥ 2.

Proposition 2.2.5. Let E be a vector bundle on C. The following con-
ditions are equivalent:
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(1) E is semistable;
(2) E (−D) is negative with D is a Q-divisor of degree δ(E )+ (1/2r!).

Proof. The implication (1) to (2) follows from Corollary 2.2.1.
Conversely, assume (2) and let E1 be the maximal destabilizing sub-

sheaf. Then by Corollary 2.2.2 we have E (−D) is negative if and only
if degD > degδ(E1) so that

δ(E )≤ δ(E1)< δ(E )+ 1
2r!

.

On the other hand, both degδ(E1) and degδ(E ) sit in (1/r!)Z. Hence we
have degδ(E1)= degδ(E ), and thus E1

∼= E . □

Corollary 2.2.7. Let C → T be a proper smooth family of irreducible
curves, where C and T are k-varieties. Let E be a vector bundle on C .
Then the set

S(T)= {t ∈ T | E is semistable on Ct}
is a Zariski open subset of T.

2.3. Mumford-Mehta-Ramanathan’s thmsub.

Theorem 2.3.1 ([MR82]). Let X be a complex normal projective vari-
ety of dimension n and E be a torsion-free sheaf. Let H1, . . . ,Hn−1 be
ample Cartier divisors. Then for sufficiently large integers m1, . . . ,mn−1,
the maximal destabilizing subsheaf F of E |C extends to a saturated
subsheaf2 of E on X if C is a general complete intersection curve of
|miHi|’s.

2.4. The Bogomolov-Gieseker inequality for semistable sheaves.
In this section, the ground field k is always algebraically closed of char-
acteristic zero.

Lemma 2.4.1. Let X be a normal projective variety of dimension n
and A ∈ NA(X )n−1

R
. Let E be an A-semistable torsion-free sheaf on X ,

with its first Chern class being a Q-Cartier divisor. Let D be a non-zero
effective Cartier divisor on X . Then

H0(X ,S rtE (−tc1(E )−D))= 0

for every positive integer t such that tc1(E ) is an integral Cartier divi-
sor.

Proof. For a generic curve C in X , by Theorem 2.3.1 one has S rtE (−tc1(E ))|C
is semistable since S rtE is semistable. If

H0(X ,S rtE (−tc1(E )−D)) ̸= 0,
2Such an extension of F is necessarily the maximal (H1, . . . ,Hn−1)-destabilizing

subsheaf of E and hence unique.
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then there is an inclusion OC(D)→S rtE (−tc1(E ))|C. But degδ(OC(D))>
0 since D is effective and S rtE (−tc1(E )) = S rt{E (−δ(E ))} has degree
zero on every curve. This contradicts to S rtE (−tc1(E ))|C is semistable.

□

Corollary 2.4.1. Let things be as Lemma 2.4.1 and L be a fixed Cartier
divisor. Then h0(X ,S rtE (−tc1(E )+L)) is bounded by a polynomial of
degree r−1 in t.

Proof. For simplicity of the notation, put F t = S rtE (−tc1(E )). The
proof is by induction on the dimension n of X . If n = 1, let D be a
divisor of degree d such that D−L is effective. Then there is a natural
exact sequence

H0(X ,F t(L−D))→ H0(X ,F t(L))→ H0(D,F t(L))

of which the first term vanishes by Lemma 2.4.1, where the last term
is a k-vector space of dimension d

(rt+r−1
rt

) = d
(rt+r−1

r−1

)
. This completes

the proof of n = 1.
For n ≥ 2, let A≡ (H1, . . . ,Hn−1) (mod (Q×+)n−1), where Hi is integral

and ample. Let Y be a general hyperplane section in |mHn−1| for suf-
ficiently large m such that E |Y is (H1, . . . ,Hn−2)-semistable on Y and
Y−L is ample. Note that such a number m, though possible very large,
is independent of t. Consider the exact sequence

H0(X ,F t(L−Y ))→ H0(X ,F t(L))→ H0(Y ,F t(L)).

The first term vanishes by Lemma 2.4.1 and the dimension of the last
term is bounded by a polynomial of degree r−1 by the induction hy-
pothesis. This completes the proof. □

Theorem 2.4.1 (The Bogomolov-Gieseker inequality). Let S be a smooth
projective surface over k. If E is an H-semistable torsion-free sheaf of
rank r on S, where H is an ample divisor, then

(r−1)c2
1(E )≤ 2rc2(E ).

Proof. From Corollary 2.4.1, it follows that neither h0(S,S rtE (−tc1(E )))
nor h2(S,S rtE (−tc1(E )))= h0(S,S rtE ∗(−tc1(E ∗))+KS) grows like tr+1.
Hence we obtain the inequality

χ(S,S rtE (−tc1(E )))≤ polynomial of degree r in t.
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On the other hand, we have

χ(S,S rtE (−tc1(E ))) (1)= χ(P(E ),OP(E )(rt)⊗π∗OS(−tc1(E )))

(2)= tr+1

(r+1)!
{
rc1(OP(E )(1))−π∗c1(E )

}r+1 +O(tr)

(3)= (rt)r+1

(r+1)!

{
−c2(E )+ r−1

2r
c2

1(E )
}
+O(tr),

where

(1) holds from the projection formula;
(2) holds from by the asymptotic Riemann-Roch theorem (Theorem
1.5.1);
(3) holds from the following standard computation{
ξ− π∗c1(E )

r

}r+1
=

{
ξr −π∗c1(E )ξr−1 + r−1

2r
π∗c2

1(E )ξr−2
}{

ξ− π∗c1(E )
r

}
=

{
π∗c2(E )ξr−2 + r−1

2r
π∗c2

1(E )ξr−2
}{

ξ− π∗c1(E )
r

}
=

{
−c2(E )+ r−1

2r
c2

1(E )
}

,

where ξ= c1(OP(E )(1)).

This completes the proof. □

Corollary 2.4.2. Let E be a locally free sheaf of rank r on a smooth
projective surface S. Let L be an ample integral divisor on S such
that E (−δ(E )+L) is ample and E (−δ(E )−L) is negative (as Q-vector
bundles). Assume the inequality 2rc2(E )< (r−1)c2

1(E ) and put

α= (r−1)c2
1(E )−2rc2(E )

6r2(r+1)L2 ∈Q .

Then

(1) Either S tE (−tδ(E )) or S tE ∗(−tδ(E ∗)) contains the ample line bun-
dle OS(tαL), where t is any very large integer such that tδ(E ) and
tα are integral.

(2) For any nef divisor D, the maximal D-destabilizing subsheaf E D
1

has normalized degree not less that

δD(E )+ αLD
r

with respect to D.
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Proof. (1). For simplicity, we put F = E (−δ(E )). By the standard com-
putation we have

χ(S,S tF )= tr+1

(r+1)!

{
−c2(E )+ r−1

2r
c2

1(E )
}
+O(tr).

Hence, by the Serre duality, we infer that h0(S,S tF ) or h0(S,S tF ∗)
is

≥ tr+1

4r(r+1)!
{
(r−1)c2

1(E )−2rc2(E )
}+O(tr).

Assume the first case and consider the following natural exact se-
quences

0→ H0(S,S tF (−tαL))→ H0(S,S tF )→ H0(C,S tF ),

0→ H0(C,S tF (−tL))→ H0(C,S tF )→ H0(D,S tF ),

where C is a general curve linearly equavalent to tαL and D is a 0-
cycle of degree t2αL2. The first term of the second sequence vanishes
as S tF (−tL)=S t{F (−L)} is negative. Hence h0(C,S tF ) is bounded
by

t2α(rkS tF )L2 ≡ αtr+1

(r−1)!
L2

≡ tr+1

6(r+1)!r
{
(r−1)c2

1(E )−2rc2(E )
}

(mod O(tr)).

This shows H0(S,S tF (−tαL)) is non-zero whenever t is very large
in view of the first exact sequence, and thus such a non-zero global
section gives the inclusion OS(tαL) ,→ S tF . Similarly, the second
case will yield H0(S,S tF ∗(−tαL)) ̸= 0.

(2). It suffices to consider the following cases:
(a) If S tF contains OS(tαL), then

δD(E D
1 )−δD(E )≥αLD.

(b) If S tF ∗ contains OS(tαL), then

δD(E D
1 )−δD(E )≥ 1

r

{
δD((E ∗)D

1 )−δD(E ∗)
}
≥ αLD

r
.

This completes the proof. □

Corollary 2.4.3. Let E be a torsion-free sheaf of rank r on a nor-
mal projective variety X of dimension n and H1, . . . ,Hn−2 be ample
Cartier divisors. Let D be a nef Cartier divisor on X . Assume that
H1 . . .Hn−2D is not numerically trivial. If E is (H1, . . . ,Hn−2,D)-semistable,
then

(r−1)c2
1(E )H1 . . .Hn−2 ≤ 2rc2(E )H1 . . .Hn−2.
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Proof. Suppose the contrary. We may assume that E is a vector bundle
in codimension 2 by taking double dual. Fix an ample divisor H0 such
that E (−δ(E )+H0) and E ∗(δ(E )+H0) are both ample. Let H be an ar-
bitrary ample divisor. Then by Theorem 2.3.1 there exist positive inte-
gers m1, . . . ,mn−2 depending on H such that H|S-semistable filtration
of E |S coincides with the restriction of (H1, . . . ,Hn−2,H)-semistable fil-
tration of E to a generic complete intersection surface S = (m1H1) . . . (mn−2Hn−2).

By Corollary 2.4.3, we have

δ(E (B,H)
1 )SH−δ(E (B,H))SH = δH((E |S)H

1 )−δH(E |S)

≥ c
{
(r−1)c2

1(E |S)−2rc2(E |S)
}
(H,H0)S/(H2

0)S

= c
[
{(r−1)c2

1(E )−2rc2(E )}S
]
HH0S/H2

0S,

where B = (H1, . . . ,Hn−2) and c is a positive constant. Therefore, by
dividing out both sides by m1 . . .mn−2, we obtain the inequality

δ(B,H)(E
(B,H)
1 )≥ δ(B,H)(E )+ cHH0H1 . . .Hn−2.

By the continuity of the function δA(E A
1 ) on a segment joining (B,D)

and (B,H), we have

δ(B,D)(E
(B,D)
1 )≥ δ(B,H)(E )+ cDH0H1 . . .Hn−2 > δ(B,D)(E ),

a contradiction. □

Corollary 2.4.4. Let E be a torsion-free sheaf of rank r on a normal
projective variety X of dimension n and H1, . . . ,Hn−2 be ample Cartier
divisors. If

{(r−1)c2
1(E )−2rc2(E )}H1 . . .Hn−2 > 0,

then E is (H1, . . . ,Hn−2,D)-unstable for any non-zero nef divisor D.

2.5. Semistability in positive and mixed characteristic.

2.5.1. Semistability in positive characteristic. Let C be a smooth com-
plete curve over an algebraically closed field k of characteristic p > 0
and F : C → C be the absolute Frobenius morphism.

Definition 2.5.1. A vector bundle E on C is said to be strongly semistable
if, for every positive integer s, (F s)∗E is semistable.

Remark 2.5.1. If C is an elliptic curve, it’s known that every semistable
bundle is strongly semistable, but that is not the case when g(C)≥ 2.

Proposition 2.5.1. If E is strongly semistable on C, then f ∗E is semistable
for any surjective k-morphism f : C′ → C.
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Proof. Let C′′ be a smooth model of the seperable closure of C. The
natural projection C′ → C′′ is pure inseparable and hence C′ = F−sC′′
for some non-negative integer s (Proposition IV 2.5 of [Har77]). Thus
we get the commutative diagram

C′ C′′

F−sC C

Fs

g h

Fs

Since E is strongly semistable, we have (F s)∗ is semistable on F−sC,
and thus f ∗E = g∗(F s)∗E is also semistable by Lemma 2.2.1 as g is
seperable. □

Remark 2.5.2. The Theorem 2.2.1 and its corollariesstill hold in posi-
tive characteristic if the “semistability" is subsituted by “strong semista-
bility”.

2.5.2. Semistability in mixed characteristic. Let X be a smooth projec-
tive variety over a noetherian integral domain R of characteristic zero
and E be a torsion-free sheaf on X . Fix A ∈ NA(X /R)n−1

Q
, where n is

the relative dimension of X . Then the set of geometric points t ∈SpecR
such that Et/X t is A-semistable forms an open subset.

On the contrary, we know very little about the strong semistability
of the reductions of a semistable sheaves.

Question 2.5.1. Let C be an irreducible smooth projective curve over
a noetherian integral domain R of characteristic zero. Assume that a
locally free sheaf E on C is A-semistable on the generic fibre C∗. Let S
be the set of primes of positive characteristic on SpecR such that E is
strongly semistable. Is S a dense subset of SpecR?

2.6. Generic semipositive theorem for cotangent bundle. From
now on, all varieties are defined over an algebraically closed field k of
characteristic 0. Let X be a normal projective variety of dimension n.

Definition 2.6.1. Let B ∈NA(X )n−2
Q

.

(1) A torsion-free sheaf E on X is said to be generically B-seminegative
if, for every numerically effective Q-Cartier divisor D on X , its
maximal (B,D)-destabilizing subsheaf E1 satisfies δ(B,D)(E1)< 0.

(2) A torsion-free sheaf E on X is said to be genericallyB-semipositive
if E ∗ is generically B-seminegative.

Lemma 2.6.1. Let E be a torsion-free sheaf on X and

0= E0 ⊆ E1 ⊂ ·· · ⊂ Es = E
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be the (B,D)-semistable filtration of E and put αi = δ(B,D)(Ei/Ei−1).
Then α1 > ·· · > αs ≥ 0 for every D ∈ NA(X )Q if E is generically B-
semipositive.

Proof. It follows from the definition. □

Theorem 2.6.1. Let B= (H1, . . . ,Hn−2) ∈ NA(X )n−2
Q

and E be a gener-
ically B-semipositive torsion-free sheaf on X . Then

c2(E )H1 . . .Hn−2 ≥ 0

holds.

Theorem 2.6.2. Suppose B = (H1, . . . ,Hn−2) ∈ NA(X )n−2
Q

. Then the
torsion-free sheaf ρ∗Ω1

X ′ is generically B-semipositive unless X is unir-
uled, where ρ : X ′ → X denotes an arbitrary resolution.
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3. RESULTS

3.1. Semipositivity of 3c2 − c2
1.

Proposition 3.1.1. Let X be a non-uniruled, normal projective variety
of dimension n with Q-Cartier canonical divisor KX which is nef. Let
B ∈NA(X )n−2

Q
such that K2

X |B| is positive. Then

{3c2(E )− c1(E )2}|B| ≥ 0,

where E = ρ∗Ω1
X ′ and ρ : X ′ → X is an arbitrary resolution.

3.2. Non-negativity of the Kodaira dimension of minimal three-
folds.

3.2.1. The Gorenstein case.

Theorem 3.2.1. Let X be a normal projective Gorenstein threefold
with only canonical singularities (X is Gorenstein if and only if KX
is a Cartier divisor). Assume KX is nef. Then the Euler character-
istic χ(X ,OX ) is non-negative. In particular, either h0(X ,OX (KX )) or
h1(X ,OX ) is non-zero, and thus κ(X )≥ 0.

3.2.2. The K2
X is numerically non-trivial case.

Theorem 3.2.2. Let X be a normal projective Gorenstein threefold
with only isolated singularities. Assume the Q-Cartier divisor KX is
nef and K2

X is numerically non-trivial. Then κ(X )≥ 0.
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