
A BRIEF INTRODUCTION TO HODGE THEORY

BOWEN LIU

Abstract. In this talk we give a brief introduction to Hodge theory as
preliminaries for [Fil16], such as (polarized) Hodge structures, variation
of Hodge structures and differential geometry of Hodge bundles.
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1. Hodge structures

1.1. Hodge structures. Let (X,ω) a compact Kähler manifold. The clas-
sical Hodge theory says that there is a decomposition on the k-th cohomology
as follows

Hk(X,C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) is the Dolbeault cohomology. The Hodge structure general-
ized this structure.

1.1.1. Objects.

Definition 1.1.1. An (effective) Z-Hodge structure of weight k consists
of the following data:
1. a finitely generated abelian group VZ;
2. a decomposition

VC = VZ ⊗ C =
⊕

p+q=k

V p,q

such that V p,q = V q,p;
3. V p,q = 0 unless p, q ≥ 0.

Definition 1.1.2. The Deligne torus S is the real algebraic group

S = {
(
a −b
b a

)
| a2 + b2 6= 0}.

Its real point are naturally isomorphic to C∗ and its complex points are
isomorphic to C∗×C∗.

Proposition 1.1.1. A Hodge structure on VZ is the same as an algebraic
representation of the Deligne torus S on VZ.

Definition 1.1.3. Let (VZ, V
p,q) be a Z-Hodge structure of weight k. The

Hodge filtration F p is defined by

F p =
⊕
p′≥p

V p′,q.

It’s a decreasing filtration which satisfies

(1.1) VC = F p ⊕ F k−p+1.

Remark 1.1.1. Let VZ be a finitely generated abelian group and F p be a
filtration satisfies (1.1). Then it determines a Hodge structure by

V p,q = F p ∩ F q.

In other words, a Hodge structure of weight k is equivalent to a filtration
F p satisfying (1.1).

Example 1.1.1. Let V,W be two Hodge structures of weight k and l re-
spectively. Then
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(1) V ∗ is a Hodge structure of weight −k;
(2) V ⊗W is a Hodge structure of weight k + l;
(3) Hom(V,W ) is a Hodge structure of weight −k + l;
(4) V ⊗n, Symn V and

∧n V are Hodge structures of weight nk.
1.1.2. Morphisms.
Definition 1.1.4. Let (VZ, V

p,q), (WZ,W
p,q) be two Hodge structures of

weight k and k + 2r and ϕ : VZ → WZ be a morphism of abelian groups.
Then ϕ is called a morphism of Hodge structure of type (r, r), if its
C-linear extension ϕC satisfies

ϕC(V
p,q) ⊆ W p+r,q+r.

Proposition 1.1.2. Let ϕ be a morphism between Hodge structures. Then
kerϕ, imϕ and cokerϕ are Hodge structures.
Example 1.1.2. Let f : X → Y be a holomorphic map between compact
Kähler manifolds. Then f∗ : Hk(Y,Z) → Hk(X,Z) is a morphism of Hodge
structure of type (0, 0).
Example 1.1.3. Let X,Y be two compact Kähler manifolds such that
dimX = n, dimY = m and m = n+ r. Then

Hk(X,Z) Hk+2r(Y,Z)

H2n−k(X,Z) H2n−k(Y,Z).
f∗

This gives a morphism of Hodge structure of type (r, r), which is called
Gysin pushforward.
1.2. Polarization. Let (X,ω) be a complex Kähler n-manifold. There is
an intersection form Q on Hk(X,R) given by

Q(α, β) = (−1)
k(k−1)

2

ˆ
X
ωn−k ∧ α ∧ β.

The induced Hermitian form H(α, β) := Q(α, β) on Hk(X,C) satisfies the
following properties:
(1) The Hodge decomposition is orthogonal with respect to H.
(2) (

√
−1)p−qH(α, α) > 0 for 0 6= α ∈ Hp,q(X).

This gives a polarization.
Definition 1.2.1. Let (VZ, V

p,q) be a Z-Hodge structure. The Weil oper-
ator ∁ associated to VZ acts by (

√
−1)p−q on V p,q.

Definition 1.2.2. A polarized Z-Hodge structure of weight k is Z-
Hodge structure (VZ, V

p,q) of weight k together with a morphism of Hodge
structure Q : VZ ⊗ VZ → Z of type (−k,−k) such that

H : VC ⊗ VC → C

(α, β) 7→ Q(∁α, β)
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is a positive definite Hermitian form.
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2. Variation of Hodge structures

2.1. Local system and flat connection. In this section we always assume
X is a complex manifold.
Definition 2.1.1. A sheaf V on X is called a locally constant sheaf of rank
r valued in C, if for each point x ∈ X, there is an open subset U containing
x such that V|U is constant sheaf Cr.
Remark 2.1.1. In other words, there exists an open covering {Uα} such
that V|Uα is isomorphic to constant sheaf Cr. Then the local system V
is completely determined by the transition functions gαβ : Uαβ → GLn(C),
which are locally constant functions.
Definition 2.1.2. Let E be a locally free sheaf on X. A connection is a
C-linear map

∇ : E → A1
X ⊗ E

satisfying the following condition
∇(φ⊗ e) = dφ⊗ e+ φ∇e

for all sections e of E and φ of OX .
Remark 2.1.2. The definition of ∇ extends to ∇ : Ap

X ⊗ E → Ap+1
X ⊗ E by

defining
∇(ω ⊗ e) = dω ⊗ e+ (−1)pω ∧∇e

for all sections ω of Ap
X and sections e of E .

Remark 2.1.3. Let {eα} be a local frame of E . For any section s = sαeα of
E , one has

∇(sαeα) = dsαeα + sα∇eα.

Thus the connection ∇ is completely determined by
∇eα = ωβ

αeβ ,

where ωβ
α are 1-forms, which forms a (smooth) 1-form valued matrix ω.

Definition 2.1.3. A connection ∇ is integrable if its curvature ∇2 : E →
A2

X ⊗ E vanishes.
Remark 2.1.4. Let {eα} be a local frame of E . For any section s = sαeα of
E , one has

∇2(sαeα) = ∇(dsα ⊗ eα + sαωβ
α ⊗ eβ)

= −dsα ∧ ωβ
α ⊗ eβ + d(sαωβ

α)⊗ eβ − sαωβ
α ∧ ωγ

β ⊗ eγ

= sα(dωβ
α − ωγ

α ∧ ωβ
γ )⊗ eβ ,

∇2(eα) = ∇(ωβ
α ⊗ eβ)

= dωβ
α ⊗ eβ − ωβ

α ∧∇eβ

= dωβ
α ⊗ eβ − ωβ

α ∧ ωγ
β ⊗ eγ

= (dωβ
α − ωγ

α ∧ ωβ
γ )⊗ eβ .
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This shows ∇2 is a global section of A2
X ⊗EndOX

(E), which is locally given
by dω − ω ∧ ω.

Definition 2.1.4. A locally free sheaf together with an integrable connec-
tion is called a flat bundle.

Proposition 2.1.1. Let ∇ be a integrable connection on locally free sheaf
E on X. Then the horizontal section E∇=0 is a local system.

Proposition 2.1.2. Let L be a local system on X. Then the locally free
sheaf E := OX ⊗L together with canonical connection ∇can(f ⊗s) := df ⊗s
is a flat bundle.

Theorem 2.1.1. The functor (E ,∇) 7→ E∇=0 is an equivalence between
category of flat bundles and the category of the complex local system with
quasi-inverse L 7→ (OX ⊗ L,∇can).

Proposition 2.1.3. Let L be a local system on X. Then

H∗(X,L) ∼= H∗(X,A•
X ⊗ L).

Proof. Note the following complex of sheaves

0 → L → A•
X ⊗ L

gives a resolution of L by coherent sheaves. □

2.2. Abstract variation of Hodge structures. In this section we always
assume S is a complex manifold.

Definition 2.2.1. A variation of Hodge structure of weight k on S
consists of the following data:
(1) a local system VZ of finitely generated abelian groups on S;
(2) a finite decreasing filtration {Fp} of the holomorphic vector bundle V :=

VZ ⊗OX by holomorphic subbundles (the Hodge filtration).
These data should satisfy the following conditions:
(a) for each s ∈ S the filtration {Fp(s)} of Vs ' VZ,s ⊗Z C defines a Hodge

structure of weight k on the finitely generated abelian group VZ,s;
(b) the Gauss-Manin connection ∇GM : V → Ω1

S ⊗ V whose sheaf of hori-
zontal sections is VC satisfies the Griffiths’ transversality condition

∇GM (Fp) ⊆ Ω1
S ⊗Fp−1.

The notion of a morphism of variations of Hodge structure is defined
in the obvious way.

Example 2.2.1. Given two variations V,V′ of Hodge structure over S of
weights k and k′, there is an obvious structure of variation of Hodge structure
on the underlying local systems of V⊗V′ and Hom(V,V′) of weights k+ k′

and k − k′ respectively.
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Definition 2.2.2. A polarized variation of Hodge structure of weight
k is a variation of Hodge structures V of weight k together with a bilinear
pairing I(-, -) satisfying
(1) The pairing is flat, that is, preserved by the Gauss-Manin connection ∇.
(2) On each fiber of V, the pairing induces a polarization of the Hodge

structure.

Remark 2.2.1. The intersection pairing I(-, -) on a polarization variation
of Hodge structure is flat for the Gauss-Manin connection, but the Hodge
metric Q(-, -) may not. Since the Hodge metric Q is expressed in terms of
I and the Weil operator ∁, the compatiblity with the Weil operator implies
the compatiblity with the Hodge metric.

2.3. Variation of Hodge structures coming from smooth families.
In this section we will explain the motivation of variation of Hodge structures
and the Griffiths transversality condition is inspired by the geometric case
naturally.

Let f : X → S be a family1 of compact Kähler manifolds. Then Rkf∗C
is a local system on S such that for each point s ∈ S, one has (Rkf∗C)s ∼=
Hk(Xs,C). The flat bundle corresponding to the local system Rkf∗C is the
relative de Rham cohomology

Hk
dR(X/S) := OS ⊗Rkf∗C

together with the Gauss-Manin connection ∇GM .

Proposition 2.3.1 ([Del70]). Let f : X → S be a family of complex man-
ifolds and V be a local system of complex vector spaces on X. There is a
natural isomorphism

OS ⊗Rkf∗V ∼= Rkf∗(Ω
•
X/S ⊗ V),

where Ω•
X/S = Ω•

X/f∗Ω•
S is the relative de Rham complex.

Corollary 2.3.1. Let f : X → S be a family of complex manifolds. Then
Hk

dR(X/S) ∼= Rkf∗Ω
•
X/S .

Remark 2.3.1. In this viewpoint, the Hodge filtration on Rkf∗Ω
•
X/S is de-

scribed as follows
Fp := Im

{
Rkf∗σ

≥pΩ•
X/S → Rkf∗Ω

•
X/S

}
,

where σ≥p is the stupid filtration.

Proposition 2.3.2. Let f : X → S be a family of compact Kähler mani-
folds. The Gauss-Manin connection ∇GM satisfies the Griffiths transversal-
ity, that is,

∇GM (Fp) ⊆ Ω1
S ⊗Fp−1.

1In other words, f is a proper holomorphic submersion between complex manifolds
such that every fiber of f a compact Kähler manifold.
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Proof. See Corollary 10.31 in [PS08]. □
Corollary 2.3.2. Let f : X → S be a family of compact Kähler manifolds.
Then the local system Rkf∗C underlies a variation of Hodge structures of
weight k.
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3. Differential geometry of Hodge bundles

3.1. General setting. In this section, we consider a speical connection on
a holomorphic vector bundle E on a complex manifold X equipped with a
Hermitian metric. Recall that we can define connection for any (smooth)
vector bundle over X, which is a C-linear map between (smooth) sections
satisfying the Leibniz rules.

There is a canonical connection, called Chern connection, on Hermitian
vector bundle E, which is uniquely defined by the following two conditions:
(1) It’s compatible with the Hermitian metric.
(2) It’s compatible with the holomorphic structure.

3.1.1. Hermitian vector bundle.

Definition 3.1.1. Let E be a complex vector bundle. A Hermitian met-
ric h on E is a smooth section of E∗ ⊗ E

∗.

Remark 3.1.1. Let {eα} be a local frame of E. Then a (positive definite)
Hermitian metric is determined by a (positive definite) Hermitian matrix
(hαβ), that is

h = hαβe
α ⊗ eβ ,

where hαβ = h(eα, eβ).

Definition 3.1.2. A complex vector bundle E together with a Hermitian
metric h is called a Hermitian vector bundle (E, h).

Remark 3.1.2. Let L be a Hermitian line bundle. A Hermitian metric h is
locally given by e−2φ, where φ is a smooth function, which is called metric
weight. Suppose {gαβ} is the transition function of L with respect to open
covering {Uα}. Then h is given by a collection {hα ∈ C∞(Uα)} such that
hα = |gαβ |−2hβ. In other words, a Hermitian metric is a collection of metric
weights {φα ∈ C∞(Uα)} such that

φα = φβ + log |gαβ |.

Definition 3.1.3. For a Hermitian vector bundle (E, h) over complex man-
ifold X, there is a sesquilinear map

Ap
X(E)×Aq

X(E) → Ap+q
X

(s, t) 7→ {s, t},
which is locally given by

{sαeα, tβeβ} = hαβs
α ∧ tβ .

Definition 3.1.4. A connection ∇ on a Hermitian vector bundle (E, h) is
compatible with the metric, if

d〈s, t〉 = {∇s, t}+ {s,∇t},
where s, t are smooth sections of E.
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Remark 3.1.3. If {eα} is a local frame of E, then
dhαβ = d〈eα, eβ〉

= {∇eα, eβ}+ {eα,∇eβ}

= ωγ
αhγβ + ωγ

βhαγ .

In the matrix notation, we have

dh = ωh+ hωT .

3.1.2. Compatiblity with complex structure. Let E → X be a complex vector
bundle with connection ∇. Then we can decompose ∇ = ∇1,0 + ∇0,1 by
composing the projection as follows

A1,0
X (E)

A0
X(E) A1

X(E)

A0,1
X (E)

∇

For convenience, we use ∇0,1 to denote the composition A0
X(E)

∇−→ A1
X(E) →

A0,1
X (E). On the other hand, there is a natural operator ∂E : A0

X(E) →
A0,1

X (E), which is locally defined by

∂E(s
α ⊗ eα) = ∂sα ⊗ eα.

Definition 3.1.5. A connection ∇ on a holomorphic vector bundle E over a
complex manifold X is said to be compatible with holomorphic struc-
ture if ∇0,1 = ∂E .

Remark 3.1.4. Let {eα} be a holomorphic local form of E and denote

∇eα = (Γβ
iαdz

i + Γβ

iα
dzi)⊗ eβ .

Then
0 = ∇0,1eα = Γβ

iα
dzi ⊗ eβ .

This shows ∇ is compatible with holomorphic structure if and only if Γβ

iα
=

0.

Remark 3.1.5. Let E be a holomorphic vector bundle and ∇ be a connection
which is compatible with the holomorphic structure. Then

∇ : E → Ω1
X ⊗ E ,

where E is the locally free sheaf given by the holomorphic section of E and
Ω1
X is the locally free sheaf of holomorphic 1-forms.
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3.1.3. Chern connection.

Theorem 3.1.1. Let X be a complex manifold and (E, h) a Hermitian
holomorphic vector bundle. Then there exists a unique connection called
Chern connection such that it’s compatible with holomorphic structure
and metric.

Proof. If metric connection ∇ is compatible with holomorphic structure,
then the following three equations are equivalent

dh = ωh+ hωt

∂h = ωh

∂h = hωt,

since ω is a (1, 0)-valued matrix. This shows the Chern connection is deter-
mined by ω = (∂h)h−1 uniquely. □

Corollary 3.1.1. Let E be a complex vector bundle on a complex manifold
X and h, h′ are two Hermitian metrics on E which are same up to a sign.
Then the Chern connection of (E, h) is the same as the one of (E, h′).

Remark 3.1.6. The Chern connection is locally determined by
∂hαβ
∂zi

= Γγ
iαhγβ .

Definition 3.1.6. Let X be a complex manifold and (E, h) be a Hermitian
holomorphic vector bundle. The Chern curvature Θh of (E, h) is defined
as the curvature of Chern connection with respect to h.

Corollary 3.1.2. Let X be a complex manifold and (E, h) a Hermitian
vector bundle equipped with Chern connection ∇ locally given by ω. Then
(1) ∂ω = ω ∧ ω.
(2) Θh = ∂ω.
(3) ∂Θh = 0.

Proof. For (1). Since ω = (∂h)h−1, then directly computation shows

∂ω = −∂h ∧ ∂(h−1)

= −∂h ∧ (−h−1∂hh−1)

= (∂h)h−1 ∧ (∂h)h−1

= ω ∧ ω.

For (2). The Chern curvature Θh locally looks like

Θh = dω − ω ∧ ω = dω − ∂ω = ∂ω.

For (3). It follows from (2) directly. □
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Remark 3.1.7. The Chern curvature can be expressed in terms of Christoffel
symbol as follows

Θh = Θγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ ,

where Θγ

ijα
= −∂Γγ

iα/∂z
j . In other type one has

Θijαβ = hγβΘ
γ

ijα

= −hγβ∂j(h
γδ ∂hαδ

∂zi
)

= −
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

.

3.1.4. Second variation formula.

Lemma 3.1.1. Let (E, h) be a Hermitian holomorphic vector bundle and
∇ be the Chern connection with Chern curvature Θ. Suppose ϕ is a holo-
morphic section of E. Then we have the formula

∂∂ log ‖ϕ‖2 = 〈Θϕ, ϕ〉
‖ϕ2‖

+
〈∇ϕ, ϕ〉〈ϕ,∇ϕ〉 − ‖ϕ‖2〈∇ϕ,∇ϕ〉

‖ϕ‖4
.

Proof. Firstly note that ∂‖ϕ‖2 is the (1, 0)-part of d‖ϕ‖2, but on the other
hand, by the compatiblity with the metric, one has

d〈ϕ, ϕ〉 = 〈∇ϕ, ϕ〉+ 〈ϕ,∇ϕ〉.

Then

∂ log ‖ϕ‖2 = ∂‖ϕ‖2

‖ϕ‖2
=

〈∇ϕ, ϕ〉
‖ϕ‖2

.

Next, we apply the chain rule

∂(∂ log ‖ϕ‖2) =
(
∂

1

‖ϕ‖2

)
〈∇ϕ, ϕ〉︸ ︷︷ ︸

part I

+
1

‖ϕ‖2
∂〈∇ϕ, ϕ〉︸ ︷︷ ︸

part II

.

For part I, one has

part I = −1

‖ϕ‖4
∂‖ϕ‖2 = −〈ϕ,∇ϕ〉

‖ϕ‖4
.

For part II, note that ∂〈∇ϕ, ϕ〉 is the (1, 1)-part of d〈∇ϕ, ϕ〉. By the com-
patiblity with the metric, we have

d〈∇ϕ, ϕ〉 = 〈Θϕ, ϕ〉 − 〈∇ϕ,∇ϕ〉.

Combining the above result, this completes the proof. □
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3.1.5. Second fundamental form. Let (E, h) be a Hermitian holomorphic
vector bundle over complex manifold X with rank r and S be a holomorphic
subbundle of E with rank s. Then there is an exact sequence of holomorphic
vector bundles

0 → S → E → Q → 0,

where Q is the holomorphic quotient bundle, which is isomorphic to S⊥ as
complex vector bundle.

Suppose ∇E is the Chern connection on E and define ∇S := πS ◦ ∇E ,
where πS : E → S is the orthogonal projection.
(1) It’s clear ∇S is compatible with holomorphic structure of S since ∇E is

the Chern connection of E, and S is a holomorphic subbundle of E.
(2) For sections s, t of S, one has

dh(s, t) = h(∇Es, t) + h(s,∇Et)

(a)
= h(πS ◦ ∇Es, t) + h(s, πS ◦ ∇Et)

= h(∇Ss, t) + h(s,∇St),

where (a) holds from πS is orthogonal projection.
This shows that ∇S is the Chern connection of S with respect to Hermitian
metric induced by the one on E.
Definition 3.1.7. The second fundamental form of the subbundle S of
E is defined as

B = ∇E −∇S : A0(S) → A1,0(Q).

In other words, the second fundamental form B ∈ A1,0(Hom(S,Q)).
Proposition 3.1.1.

SΘ = EΘ|S +B∗ ∧B.

Proof. It suffices to check pointwisely. For p ∈ X, suppose {eα}1≤α≤r is a
holomorphic local frame of E such that {eα}1≤α≤s is a holomorphic local
frame of S, and assume hαβ(p) = δαβ. By the formula (3.1.6) of Chern
connection, for 1 ≤ α ≤ s, one has

∇Eeα(p) =
r∑

β=1

hαβ
∂zi

(p)dzi ⊗ eβ

∇Seα(p) =

s∑
β=1

hαβ
∂zi

(p)dzi ⊗ eβ ,

and thus
Beα(p) =

r∑
β=s+1

hαβ
∂zi

(p)dzi ⊗ eβ .

This shows
B(p) =

s∑
α=1

r∑
β=s+1

hαβ
∂zi

(p)dzi ⊗ eα ⊗ eβ ,
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and thus its conjugate transpose is

B∗(p) =
r∑

β=s+1

s∑
α=1

hβα
∂zj

(p)dzj ⊗ eβ ⊗ eα.

Then

B∗ ∧Beα(p) = B∗(

r∑
γ=s+1

hαγ
∂zi

(p)dzi ⊗ eγ)

= −
s∑

β=1

r∑
γ=s+1

hαγ
∂zi

hγβ
∂zj

(p)dzi ∧ dzj ⊗ eβ ,

which implies

B∗ ∧B(p) = −
s∑

α,β=1


r∑

γ=s+1

∂hαγ
∂zi

∂hγβ
∂zj

(p)

 dzi ∧ dzj ⊗ eα ⊗ eβ .

On the other hand, by using formula (3.1.7), a direct computation shows

EΘ|S(p)− SΘ(p) =

s∑
α,β=1


r∑

γ=s+1

∂hαγ
∂zi

∂hγβ
∂zj

(p)

 dzi ∧ dzj ⊗ eα ⊗ eβ .

This shows
SΘ = EΘ|S +B∗ ∧B.

□

Proposition 3.1.2.
QΘ = EΘ|Q +B ∧B∗.

3.1.6. Positivity.

Definition 3.1.8. A real (1, 1)-form ω =
√
−1hijdz

i ∧ dzj is positive if
the Hermitian matrix hij is positive definite.

Definition 3.1.9. Let (E, h) be a Hermitian holomorphic vector bundle on
X. A form Θ ∈ A1,1

X ⊗ End(E) is positive if for any non-zero section e of
E, one has h(Θe, e) is positive.

Proposition 3.1.3. Let (E, h) be a Hermitian holomorphic vector bundle
and S ⊆ E be a holomorphic subbundle. Then B∧B∗ is positive and B∗∧B
is negative, where B is the second fundamental form.

Corollary 3.1.3. The curvature decreases in holomorphic subbundles and
increases in holomorphic quotient bundles.
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3.2. Curvature of Hodge bundles. Consider a variation of polarized
Hodge structures of weight k over some fixed complex manifold. This data
consists of a flat bundle HC together with the Gauss-Manin connection ∇GM ,
and there is a filtration by holomorphic subbundles

· · · ⊂ Fp ⊂ Fp−1 ⊂ · · · ⊂ HC.

Denote the quotient subbundle by
Hp,q := Fp/Fp+1,

where p + q = k. The polarization provides the indefinite forms I(-, -) on
HC, and a definite metric

Q(-, -) := I(∁-, -),
where ∁ is the Weil operator. In particular, restricted to Hp,q, the definite
and indefinite metrics agree up to sign.

Note that ∇GM is the Chern connection on HC equipped with the in-
definite metric I(-, -). On the other hand, viewing HC as the direct sum
of the holomorphic bundles Hp,q, each equipped with the definite metric
Q(-, -), there is also a Hodge connection ∇Hg, which is defined as the Chern
connection of

⊕
Hp,q equipped with the definite metric.

Consider the second fundamental form (for the indefinite metric)

σp : Fp → HC/Fp ⊗A1,0
X .

The Griffiths transversality condition implies it must in fact map subspaces
as follows

σp : Hp,q → Hp−1,q+1 ⊗A1,0
X .

Proposition 3.2.1.
∇GM = ∇Hg + σ• + σ∗

•,

where σ• denotes
⊕

p σp and similarly for σ∗
•.

Proof. See Proposition 13.1.1 of [CMSP17]. □

Proposition 3.2.2.
ΘHp,q = σ∗

p ∧ σp + σp+1 ∧ σ∗
p+1.

Proof. Note that the definite and indefinite metrics agree up to sign on Hp,q,
by Corollary 3.1.1 it suffices to prove the curvature for the indefinite metric.
From the exact sequence

0 → Fp → HC → HC/Fp → 0,

we find using Proposition 3.1.1
ΘFp = σ∗

p ∧ σp.

Next, consider the exact sequence
0 → Fp+1 → Fp → Hp,q → 0.
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Again Proposition 3.1.1 yields
ΘHp,q = ΘFp + σp+1 ∧ σ∗

p+1

= σ∗
p ∧ σp + σp+1 ∧ σ∗

p+1.

This completes the proof. □
Proposition 3.2.3. Suppose e, e′ are two smooth sections of Hp,q. Then

Q(ΘHp,qe, e′) = Q(σpe, σpe
′) +Q(σ∗

p+1e, σ
∗
p+1e

′).

Proof. Note that on Hp,q, we have
I(-, -) = (

√
−1)p−qQ(-, -) = (

√
−1)−k × (−1)pQ(-, -).

Then
(
√
−1)−kQ(ΘHp,qe, e′) = (−1)pI(ΘHp,qe, e′)

= (−1)p
(
I(σ∗

p ∧ σpe, e
′)+ I(σp+1 ∧ σ∗

p+1e, e
′))

= (−1)p+1
(
I(σpe, σpe

′)+ I(σ∗
p+1e, σ

∗
p+1e

′))

= (
√
−1)−k × (−1)p+1

(
(−1)p−1Q(σpe, σpe

′)+ (−1)p+1Q(σ∗
p+1e, σ

∗
p+1e

′))

= (
√
−1)−kQ(σpe, σpe

′) + (
√
−1)−kQ(σ∗

p+1e, σ
∗
p+1e

′).

This completes the proof. □
Corollary 3.2.1. The bundle H0,k has negative curvature (with respect to
definite metric).

Proof. In this case, the second fundamental form σ0 vanishes, so
Q(ΘH0,ke, e′) = Q(σ∗

1e, σ
∗
1e

′),

which is negative. □
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