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It’s a fundamental principle which has guided much of the research
in complex geometry since the late 20-th century: stable objects in
the algebraic geometry should correspond to extremal objects in the
differential geometry.
This philosophy was motivated by the relations between the slope
stability and the existence of Hermitian-Einstein metric.
The curve case was established by Narasimhan-Seshadri [NS65].

Theorem 1.1
A holomorphic vector bundle E on a compact Riemann surface is
stable if and only if there is an irreducible Hermitian-Einstein metric
on E .
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The further work on this topic is summarized as follows:
• Donaldson gave a new proof of Narasimhan-Seshadri’s result in

[Don83], and then he proved the surface case in [Don85].
• The compact Kähler manifold case was proved by

Uhlenbeck-Yau in [UY86].
• The non-Kähler case was proved by Li-Yau in [LY87].
• The Higgs bundle case was proved by Simpson in [Sim88].
• Yau conjectured that the existence of Kähler-Einstein metric

on Fano manifold should be equivalent to some
algebro-geometric stability conditions, which was solved in
[CDS15a], [CDS15b] and [CDS15c].
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On the other hand, going back to the work of Douglas, and
Thomas-Yau ([TY02]), it has long been conjectured that the
existence of special Lagrangians or solutions of dHYM equation is
equivalent to a purely algebraic notion of stability.
The present version of this folklore conjecture is

Conjecture 1.1

A line bundle L admits a dHYM metric if and only if it is stable in
the sense of Bridgeland as an object in Db(X ).
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• In the first part we will introduce results in [AM16], in which
the authors proposed a conjecture about Bridgeland stability
of line bundle on a smooth projective complex surface S , and
proved some special cases of this conjecture. In general case,
this conjecture is still open.

• In the second part we will give a brief review of backgrounds
about deformed Hermitian-Yang-Mills equation and twisted
ampleness criterion.

• Finally we give a counter-example which shows that
Bridgeland stability of line bundle and the existence of dHYM
metric does not coincide. This counter-example is due to
[CS22] originally, and we point out it’s a general phenomenon.
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Let S be a smooth projective complex surface. Let ω be an ample
R-divisor on S and B be a R-divisor on S . In this talk we focus on
the Bridgeland stability (Bω,B ,Zω,B), where

Zω,B(E) =−
ˆ
X
e−

√
−1ω chB(E)

=− ch2(E) + ch1(E) · B − ch0(E)
2

(B2 − ω2)+
√
−1 (ch1(E) · ω − ch0(E)ω · B)

and Bω,B is given by the torsion pair

Tω,B = {E ∈ Coh(S) | µω,B,min(E) > 0}
Fω,B = {E ∈ Coh(S) | µω,B,max(E) ≤ 0}.
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• For any line bundle L, it’s always stable in the sense of slope
stability.

• Since every line bundle can be regarded as a complex of
sheaves which centered at zero degree, a natural question is, if
it lies in the heart of a Bridgeland stability condition ωω,B ,
does it always stable with respect to σω,B?
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In [AM16], the authors proposes the following conjecture.

Conjecture 1.1

Let σω,B be a Bridgeland stability such that the line bundle L lies
in the heart of σω,B . Then the only objects that could destabilize L
are line bundles of the form L(−C ), where C is a curve of negative
self-intersection.
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The main result of [AM16] shows that Conjecture 1.1 holds true in
the following cases:
• If S does not have any curves of negative self-intersection.

(Theorem 3.1)
• If the Picard rank of S is two and there exists only one

irreducible curve of negative self-intersection. (Theorem 4.1)
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Definition 2.1
Given two objects E ,B ∈ Db(S), with B is Bridgeland stable for at
least one stability condition.
• The numerical wall W (E ,B) is defined as

{σ = (B,Z ) | (ReZ (E))(ImZ (B))−(ReZ (B))(ImZ (E)) = 0}.

• If at some σ ∈ W (E ,B) we have E ⊆ B in B, we say that
W (E ,B) is a weakly destabilizing wall for B.

• If at some σ ∈ W (E ,B) we have E ⊆ B in B and B is
Bridgeland σ-semistable, we say that W (E ,B) is an actually
destabilizing wall for B.
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In order to study the Bridgeland stability of the line bundles on S ,
the following lemma shows it suffices to study the Bridgeland
stability of OS , by the action of tensoring stability condition.

Lemma 2.1 ([AM16, Lemma 3.1])

Let L = OS(D1) be a line bundle and σω,D be a Bridgeland
stability condition. Then E destabilizes L at σω,D if and only if
OS(−D1)⊗ E destabilizes OS at σω,D−D1
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In order to study the Bridgeland stability of structure sheaf OS ,
firstly let’s study the possible subojects of OS , which is completely
different from the case of slope stability.

Lemma 2.2 ([AM16, Lemma 4.1])

Let σ be a Bridgeland stability condition and
0 → E → OS → Q → 0 be a short exact sequence in heart of σ.
Then E is a torsion-free sheaf and H0(Q) is a quotient of OS of
rank zero. In particular, the kernel of the map OS → H0(Q) is an
idea sheaf IZ (−C ) for some effective curve C and some
zero-dimensional subvariety Z (with C or Z possibly zero).
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Proof.
Consider the long exact sequence in cohomology associated to the
short exact sequence

0 → H−1(E) → 0 → H−1(Q) → E → OS → H0(Q) → 0.

This shows H−1(E) = 0 and thus E must be a sheaf. Since
OS → H0(Q) → 0 is exact, we must have the kernel of this map is
trivial or an idea sheaf of the form IZ (−C ), where C is an effective
curve and Z is a zero-dimensional subvariety.
If the kernel is trivial, that is, H0(Q) ∼= OS , then we would have
H−1(Q) ∼= E . However, H−1(Q) ∈ F , E ∈ T and F ∩ T = {0}.
Therefore, in this case, both H−1(Q) and E would have to be zero.
This shows the kernel of ker

{
OS → H0(Q)

}
= IZ (−C ). Since E

is an extension of torsion-free sheaves IZ (−C ) and H−1(Q), it’s
also a torsion-free sheaf.
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• Now let’s compute the numerical walls of OS .
• One of the features that makes stability conditions well suited

to compututations is its decomposition into well behaved
3-slices. For convenience we rescale ω such that ω2 = 1 and
choose an R-divisor G with G · ω = 0. We define the 3-slice as
follows

Sω,G = {σtω,sω+uG | t, s, u ∈ R, t > 0}.

• For σtω,sω+uG ∈ Sω,G , we denote the heart of σtω,sω+uG by
Bt,s,u, and denote the slope function of σtω,sω+uG by βt,s,u
for convenience.
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Lemma 2.3 ([AM16, Remark 4.6])

The short exact sequence 0 → E → OS → Q → 0 in Bt,s,u if and
only if

µω(J) < s < µω(K ) < 0,

where
•

0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E

is the Harder-Narasimhan filtration of E for slope stability and
K = E/En−1.

•
0 = F0 ⊆ F1 ⊆ · · · ⊆ Fm = H−1(Q)

is the Harder-Narasimhan filtration of H−1(Q) for slope
stability and J = F1.
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Proof.
First of all, if OS lies in Bt,s,u, we have

µtω,sω+uG (OS) > 0,

which is equivalent to s < 0.
For E to be an object of Bt,s,u, we must have s < µω(K ) and for
H−1(Q) to be an objects of Bt,s,u, we must have s ≥ µω(J).
The last condition µω(K ) < 0 originates from the fact

µω(K ) ≤ µω(E) < 0,

where µω(E) < 0 since E is an extension of IZ (−C ) by H−1(Q)
for some effective curve C and zero-dimensional subvariety Z and
µω(H−1(Q)) ≤ µω(J) ≤ s < 0.
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• Let E be a torsion-free sheaf with ch(E) = (r , ch1(E), c). We
may write

ch1(E) = dhω + dgG + α,

where α · ω = α · G = 0.
• For Bridgeland stability σtω,sω+uG , we have

Zt,s,u(E) =(−c + sdh − udg − r2

2
(s2 − u2 − t2))

+
√
−1(tdh − rst).

• The equation of the numerical wall W (E ,OS) is

−dh(s
2 + t2 + u2) + 2dg su + 2cs = 0.
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• At each fixed u, Maciocia showed in [Mac14] that all walls for
OS in the plane

∏
u are nested semicircles centered on the

s-aixs.
• Thus, given two subojects E1 and E2 and a fixed value u, we

have W (E1,OS) and W (E2,OS) are both semicircles, with
one of them inside the other one, unless they are equal.

• Now we may think Sω,G spaces as being extended to the t = 0
plane, and we study these quadrics by studying their
intersection with t = 0:

− dh(s
2 + u2) + 2dg su + 2cs = 0. (2.1)

Bowen Liu Mathematics Department of Tsinghua University

Bridgeland stability and dHYM metric of line bundles on surfaces 25 / 67



Overview Algebraic geoemtry aspects Differential geometry aspects Counter-examples

Since the walls are semicircles in
∏

u for any u, knowing where the
wall is at t = 0 would tell us where the wall is at any t > 0. The
discriminant of (2.1) is

∆ = 4(d2
g − d2

h )

and (2.1) can be written as

−dh(s +
dg
dh

u)2 +
∆

4dh
u2 + 2cs = 0.
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Note that E ⊆ OS in Bt,s,u implies s < 0 and by proof in Lemma
2.3 we have dh = µω(E) < 0. Thus the all possible case of weakly
destabilizing walls of OS are listed as follows:
• For ∆ = 0, the parabola case, it can only be a weakly

destabilizing wall if c ≥ 0.
• For ∆ < 0, the ellipse case, it can only be a weakly

destabilizing wall if c > 0.
• For ∆ > 0, the hyperbola case, there are three cases given by

c = 0, c > 0 and c < 0.
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In this section we prove part of the following theorem to show the
basic ideas of the more general case.

Theorem 3.1 ([AM16, Proposition 5.4])

Let S be a smooth projective complex surface and ω,B as before.
If S does not contain any curves of negative self-intersection and
σω,B is a Bridgeland stability condition such that OS ∈ Bω,B , then
OS is stable with respect to σω,B .
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• Let σtω,sω+uG be a Bridgeland stability in the 3-slice Sω,G .
• If a suboject E ⊆ OS in Bt,s,u is of rank one, then by Lemma

2.2 we have E must be equal to IZ (−C ) for some effective
curve C and some zero-dimensional scheme Z with C or Z
possibly 0.

• In this section we prove that if C = 0 or C 2 ≥ 0, then
OS(−C ) does not weakly destabilize OS . This is a special
case of Theorem 3.1.
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Proposition 3.1

IZ does not weakly destabilize OS .

Proof.
Let i : Z → X be a zero-dimensional scheme of length ℓ(Z ). Then
the Chern character of IZ is

ch(IZ ) = (1, 0,−ℓ(Z )),

and thus we have

βt,s,u(IZ ) =
−2ℓ(Z ) + s2 − u2 − t2

−2st
.
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Continuation.
On the other hand, we have

βt,s,u(OS) =
s2 − u2 − t2

−2st
.

Therefore, when OS ∈ Bt,s,u, we have s < 0 and

βt,s,u(IZ ) < βt,s,u(OS).

This means that IZ does not weakly destabilize OS whenever
OS ∈ Bt,s,u.
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Proposition 3.2 ([AM16, Proposition 5.1])

If C 2 ≥ 0, then IZ (−C ) does not weakly destabilize OS .

Proof.
Suppose C = chω + cGG + αC with αC · ω = αC · G = 0. Then
C 2 = c2

h − c2
g + α2

C , and α2
C ≤ 0 by the Hodge index theorem.

Theorefore, if C 2 ≥ 0, then c2
h − c2

g ≥ 0. Note that Chern
character of IZ (−C ) is

ch(IZ (−C )) = (1,−C ,
1
2
C 2 − ℓ(Z )).

Then the equation for the wall W (IZ (−C ),OS) simplifies to

ch(s
2 + t2 + u2)− 2cg su + (c2

h − c2
g )s + α2

C s − 2ℓ(Z )s = 0.
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Continuation.

• If c2
h − c2

g > 0, then the wall at t = 0 is an ellipse going
through (0, 0) and

PW =
C 2 − 2ℓ(Z )
c2
g − c2

h

(ch, cg ),

where these are the two points where the tangent line is
vertical. Therefore, the s-value of any point on the ellipse is
between 0 and the s-value of PW , which is

C 2 − 2ℓ(Z )
c2
g − c2

h

ch = −ch +
α2
C − 2ℓ(Z )
c2
g − c2

h

ch ≥ −ch.

But IZ (−C ) ∈ Bt,s,u, we have that s < −ch and therefore
IZ (−C ) cannot weakly destabilize OS .
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Continuation.
This can be seen as follows (Figure 9 in [AM16])
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Continuation.

• If c2
h − c2

g = 0, then C 2 ≥ 0 implies C 2 = 0 and
ch2(IZ (−C ))) = −ℓ(Z ) < 0. As we list all possible weakly
destabilizing wall for OS , this wall cannot be a weakly
destabilizing wall.
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Theorem 4.1 ([AM16, Proposition 5.12])

Let S be a smooth projective complex surface of Picard rank two.
Assume that the effective cone of S is generated by C1 and C2 such
that C1 ·G > 0 and C1 is the only irreducible curve in S of negative
self-intersection. Then OS is only destabilized by OS(−C1).
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Let X be a smooth projective complex variety and ω be an ample
R-divisor on X .

Definition 1.1
Let α be a real (1, 1)-form on X . The deformed
Hermitian-Yang-Mills (dHYM) equation seeks a function ϕ : X → R
such that αϕ = α+

√
−1∂∂ϕ, which satisfies

Im(e−
√
−1θ̂(ω +

√
−1αϕ)

n) = 0,

where ˆ
X
(ω +

√
−1αϕ)

n ∈ R>0 e
√
−1θ̂.
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Remark 1.1
If we fix a point p ∈ X and choose a holomorphic coordinate {z i}
centered at p such that

ω =
√
−1

∑
i

dz i ∧ dz i , αϕ =
√
−1

∑
i

λidz i ∧ dz i ,

then the dHYM equation can be written as

Θω(αϕ) = θ̂ (mod 2π),

where Θω(αϕ) =
∑

i arctan(λi ) is called the Lagrangian phase
operator.
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Definition 1.2
Let L → (X , ω) be a line bundle. A Hermitian metric h on L is
called a dHYM metric with respect to ω if the Chern curvature Θh

satisfies

Im
(
e−

√
−1θ̂

(
ω − Θh

2π

)n)
= 0,

where ˆ
X

(
ω − Θh

2π

)n

∈ R>0 e
√
−1θ̂.
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• The dHYM metric on a line bundl L is a special case of the
dHYM equation. If we choose real (1, 1)-form α = ch1(L),
then a solution of dHYM equation gives a dHYM metric on L.

• Given a R-divisor B on X , which is called a B-field in
literature, a dHYM metric with respect to ω and B is a
solution of dHYM equation defined by real (1, 1)-class chB1 (L),
where chB1 (L) = e−B ch1(L) is the twisted Chern character.
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• The higher rank version of dHYM equation was proposed by
Collins-Yau in [CY18, &8.1]. For a holomorphic vector bundle
E → (X , ω), a Hermitian metric h is called a dHYM metric if
the Chern curvature Θh satisfies

Im
(
e−

√
−1θ̂

(
ω ⊗ idE −

Θh

2π

)n)
= 0,

where ˆ
X
trh

(
ω ⊗ idE −

Θh

2π

)n

∈ R>0 e
√
−1θ̂

and the imaginary part is defined using the metric h.
• There are many fundamental results about dHYM metric for

the line bundle, such as [JY17, CY18, CJY20], but the
existence of the solution to the higher rank version is still in
mystery.
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In [CJY20], the authors proved a Nakai-Moishezon type criterion
for the existence of dHYM metric of line bundles on Kähler surface,
which is also called twisted ampleness criterion in [CLSY23].

Theorem 2.1
Let (X , ω) be a Kähler surface and L be a line bundle on X such
that ω · ch1(L) > 0. Then L admits a dHYM metric (with respect
to ω) if and only if for every curve C ⊆ X we have

Im
(
ZC (L)
ZX (L)

)
> 0,

where
ZC (L) = −

ˆ
C
e−

√
−1ω ch(L),

ZX (L) = −
ˆ
X
e−

√
−1ω ch(L).
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• In [FYZ23], the authors showed the solution to dHYM
equation on a compact Kähler surface (X , ω) always exists on
the complement of a finite number of curves of negative
self-intersection.

• In particular, the twisted ampleness criterion is satisfied
automatically if there is no negative self-intersection curve on
X .
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It motivates us to consider Question 2.1. In some special cases, this
can be checked directly, such as Hirzebruch surface, which also
serves as an important example later.

Question 2.1

Whether it suffices to test negative self-intersection curves in
twisted ampleness criterion or not.
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Proposition 2.1

Let X = Hr be the Hirzebruch surface and {D1,D2,D3,D4} be the
generators of torus-invariant divisors on X . Then

• ([CLS11, Example 4.1.8]) The Picard group is generated by
{D1,D2,D3,D4} with relations

0 ∼ div(χe1) = −D1 + D3

0 ∼ div(χe2) = rD1 + D2 − D4.

• ([CLS11, Proposition 4.3.3]) The effective cone of X is given
by

Eff(X ) = {aD1 + bD2 | a, b ≥ 0}.
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Proposition 2.2

Let X = Hr be the Hirzebruch surface and {D1,D2,D3,D4} be the
generators of torus-invariant divisors on X . Then

• ([CLS11, Example 6.1.17]) The ample cone of X is given by

Amp(X ) = {αD1 + βD4 | α, β > 0}.

• ([CLS11, Example 6.3.6]) The intersection matrix of D1 and
D2 is given by (

0 1
1 −r

)
.
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Proposition 2.3

Let X = Hr be Hirzebruch surface. Then for the twisted ampleness
criterion on X , it suffices to test the only negative self-intersection
curve.

Proof.
Let ω = αD1 + βD4 be an ample R-divisor on X and
L = kD3 + ℓD4 be a line bundle such that ω · ch1(L) > 0. For curve
C ⊆ X , the twisted ampleness criterion for C can be rewritten as

(C · ch1(L)) (ω · ch1(L)) >
(
ch2(L)−

1
2
ω2

)
(C · ω) . (3.1)
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Continuation.
Take C = D1, equation (3.1) gives

ℓ(αℓ+ βk + rβℓ) >
1
2
(2kℓ+ rℓ2 − 2αβ − rβ2)β,

which is equivalent to

αℓ2 + αβ2 +
1
2
(rβℓ2 + rβ3) > 0. (3.2)

It’s clear that equation (3.2) holds for arbitrary k, ℓ ∈ Z since
α, β > 0. This completes the proof since the twisted ampleness
criterion is linear with respect to the intersection with C .

Bowen Liu Mathematics Department of Tsinghua University

Bridgeland stability and dHYM metric of line bundles on surfaces 53 / 67



Overview Algebraic geoemtry aspects Differential geometry aspects Counter-examples

1 Overview

2 Algebraic geoemtry aspects

3 Differential geometry aspects

4 Counter-examples

Bowen Liu Mathematics Department of Tsinghua University

Bridgeland stability and dHYM metric of line bundles on surfaces 54 / 67



Overview Algebraic geoemtry aspects Differential geometry aspects Counter-examples

This counter-example is due to [CS22] originally.

Proposition 4.1

Let X = H1 = Blp P2 and ω be an ample R-divisor on X . Let L be
a line bundle on X with ω · ch1(L) > 0. If L admits a dHYM
metric with respect to ω, then L is Bridgeland stable at σω,0. The
converse statement is not true.
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Proof.
A line bundle L ∈ Bω,0 if and only if ω · ch1(L) > 0, and by
Theorem 4.1 it’s Bridgeland stable at σω,0 if and only if

β(L(−C )) < β(L), (4.1)

where ρ is the slope function given by σω,0. A direct computation
shows that (4.1) is equivalent to(

C · ch1(L)−
1
2
C 2

)
(ω · ch1(L)) >

(
ch2(L)−

1
2
ω2

)
(C · ω) ,

(4.2)
where C ⊆ X is the only curve which has negative
self-intersection.

Bowen Liu Mathematics Department of Tsinghua University

Bridgeland stability and dHYM metric of line bundles on surfaces 56 / 67



Overview Algebraic geoemtry aspects Differential geometry aspects Counter-examples

Continuation.
On the other hand, the twisted ampleness criterion (Theorem 2.1)
shows that L admits a solution to dHYM equation if and only if

(C · ch1(L)) (ω · ch1(L)) >
(
ch2(L)−

1
2
ω2

)
(C · ω) , (4.3)

for all curves C ⊆ X . As a consequence, (4.3) implies (4.2), that is,
every line bundle admitting a dHYM metric is Bridgeland stable
with respect to σω,0.
Conversely, if we denote the torus-invariant divisors on Blp P2 = Hr

by {D1, . . . ,D4}, then C = D2 is the only curve which has negative
self-intersection.
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Continuation.
Let ω = 1√

3
(D1 + D4) and L = OX (2D4). Then

C · ch1(L) = 0,
1
2
C 2 = −1

2
,

ω · ch1(L) =
4√
3
,

ch2(L) = 2,
1
2
ω2 =

1
3
,

C · ω =
1√
3
.

This shows L is Bridgeland stable with respect to σω,0, but does
not admit a dHYM metric with respect to ω.
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• A natural question is this counter-example an coincidence or a
common phenomenon?

• In [LW24], we prove that it’s not an coincidence at not.
• To be precise, for any ample R-divisor ω on Hirzebruch surface

Hr , there always exists a line bundle which is Bridgeland
stable with respect to σω,0, but does not admit a dHYM
metric with respect to ω.
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Thanks!
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