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1. ALGEBRAIC GEOMETRY ASPECTS

1.1. Bridgeland stability. Let X be a smooth projective complex variety of di-
mension n and ω be an ample divisor on X .

Definition 1.1.1 ([Bri07, Proposition 5.3]). A Bridgeland stability on the derived
category Db Coh(X ) consists of a pair (A , Z), where A is a heart of some t-structure,
and Z : K(A ) → C is an additive group homomorphism called central charge such
that
(1) for any 0 ̸= E ∈A , the complex number Z(E) lies in the strict upper half-plane

{re
p−1πφ | r > 0 and 0<φ≤ 1}⊂C .

(2) Z satisfies the Harder-Narasimhan property with respect to slope function
µ(E) :=−ReZ(E)

ImZ(E) , that is, for any 0 ̸= E ∈A , there exists a Harder-Narasimhan
filtration

0= E0 ⊂ E1 ⊂ ·· · ⊂ En = E
of objects Ei ∈ A such that Gi = Ei/Ei−1 is semistable with respect to µ for all
i = 1, . . . ,n with strictly decreasing slopes.

(3) Z satisfies the support property, that is,

inf
{ |Z(E)|
∥ch(E)∥ | 0 ̸= E ∈A is semistable

}
> 0,

where ∥-∥ is any norm on the numerical Grothendick group1.

Definition 1.1.2. Let A be a heart of some t-structure and Z : K(A ) → C be an
additive group homomorphism.
(1) If (A , Z) only satisfies (1) in Definition 1.1.1, then Z is called a stability func-

tion.
(2) If (A , Z) only satisfies (1) and (2) in Definition 1.1.1, then (A , Z) is called a

stability condition.

The following two propositions are very useful criterions for the existence of
Harder-Narasimhan filtration and support condition.

Proposition 1.1.1. Let A be a heart of some t-structure and Z : K(A ) → C be a
stability function. Assume that
(1) A is Noetherian;
(2) the image of ImZ is discrete in R.
Then Harder-Narasimhan filtration exists in A with respect to Z.

Proposition 1.1.2. A stability condition (A , Z) satisfies the support condition if
and only if there is a quadratic form Q on the numerical Grothendick group Λ
such that

1The numerical Grothendick group is the image of the Chern character map, which is a finitely
generated Z-lattice.
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(1) the kernel of Z is negative definite with respect to Q;
(2) for any E ∈P(φ), we have

Q(ch(E),ch(E))≥ 0.

Proof. If (A , Z) satisfies the support property, then the quadratic form

Q(w,w′) := 1
C2 Z(w)Z(w′)−〈w,w′〉,

satisfies the above properties, where C = inf
{ |Z(E)|
∥ch(E)∥ | 0 ̸= E ∈A is semistable

}
and

〈-, -〉 is an inner product on Λ⊗R. Conversely, if there is a quadratic form Q on Λ
with above properties, we may choose C > 0 such that

1
C2 |Z(w)|2 −Q(w,w)> 0

for all w in the unit ball of Λ⊗R. Then we define

〈w,w′〉 = 1
C2 Z(w)Z(w′)−Q(w,w′).

This gives an inner product on Λ⊗R and for E ∈P(φ), we have

|Z(ch(E))|2 = C2∥ch(E)∥2 +C2Q(ch(E),ch(E))

≥ C2∥ch(E)∥2.

□

Example 1.1.1. Let C be a smooth projective curve and ω be an ample divisor on
C. Then the group homomorphism

Zω =−
ˆ

C
e−

p−1ω

is a Bridgeland stability on the category of coherent sheaves, which is the heart of
the standard t-structure.

Remark 1.1.1. The slope stability on curves is a Bridgeland stability on curves. In
higher dimensional case, the existence of Bridgeland stability condition is not that
clear. Let X be a smooth projective variety of dimension n ≥ 2 and ω be an ample
divisor on X . The group homomorphism

Zω(E)=−ωn−1 ch1(E)+
p
−1ωn ·ch0(E)

is no longer a Bridgeland stability on Coh(X ). Moreover, by [Tod09] there is no
Bridgeland stability on Coh(X ) when n ≥ 2, so it’s necessary to consider hearts
of other t-structures on Db Coh(X ) to construct Bridgeland stability on higher di-
mensional varieties.
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1.2. Bridgeland stability on surface. In this section, let S be a smooth projec-
tive surface over C and the Bω = 〈Fω[1],Tω〉 be tilt heart given by the following
torsion pair

Tω = {E ∈Coh(S) |µω,min(E)> 0}

Fω = {E ∈Coh(S) |µω,max(E)≤ 0}.
The goal of this section is to prove that

Zω =−
ˆ

S
e−

p−1ω ch

is a Bridgeland stability on the tilt heart Bω. The following lemma gives a useful
description for the tilt heart given by torsion pair in general.

Lemma 1.2.1 ([MS17, Lemma 6.3]). Let X be a smooth projective variety and
F ,T be a torsion pair in Coh(X ). Then the tilt heart B = 〈F [1],T 〉 consists of
E ∈ Db Coh(X ) such that H0(E) ∈T , H−1(E) ∈F and Hi(E)= 0 for all i ̸= 0,−1.

1.2.1. Stability function.

Proposition 1.2.1 ([AB13, Corollary 2.1]). The group homomorphism

Zω(E)=−
ˆ

S
e−

p−1ω ch(E)

=
(
−ch2(E)+ ω2

2
ch0(E)

)
+
p
−1ω ·ch1(E)

is a stability function on the tilt heart Bω.

Proof. By definition, each object E ∈Bω fits into an exact triangle

H−1(E)[1]→ E →H0(E)

with H−1(E) ∈Fω and H0(E) ∈Tω. Since Zω is additive, it’s clear to see ImZω(E)≥
0 by the construction of Fω and Tω. Now it suffices to show if ImZω(E) = 0, then
ReZω(E)< 0.

Claim 1.2.1. If ImZω(E) = 0, then H−1(E) is a µω-semistable torsion-free sheaf
with µω(H−1(E))= 0 and H0(E) is a torsion sheaf with zero-dimensional support.

Proof. Since H−1(E) ∈Fω, we have µω,max(H−1(E))≤ 0. If H−1(E) is not µω-semistable,
by considering its Harder-Narasimhan filtration, we have ImZω(H−1(E)) must be
strictly less than zero, a contradiction. This shows H−1(E) is µω-semistable. More-
over, µω(H−1(E))= 0.

Since H0(E) ∈Tω, we have µω,min(H0(E))> 0. If H0(E) is not a torsion sheaf with
zero-dimensional support, then let’s consider the following cases:
(1) If H0(E) is a torsion sheaf with one dimensional support, we have ImZω(H0(E))>

0 since ch1(H0(E)) is effective, a contradiction.
(2) If H0(E) is a torsion-free sheaf, we will also have ImZω(H0(E)) > 0 by the con-

struction of Tω, a contradiction.
This completes the proof of the claim. □
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Since H0(E) is a torsion sheaf with zero-dimensional support, we have

ReZω(H0(E))=−ch2(E)< 0.

On the other hand, since ω · ch1(H−1(E)) = 0, by Hodge index theorem we have
ch2

1(H−1(E))≤ 0. Then by the Bogomolov-Gieseker inequality, we have ch2(H−1(E))≤
0. Hence,

ReZω(H−1(E)[1])=−ReZω(H−1(E))

= ch2(H−1(E))︸ ︷︷ ︸
≤0

− ω2

2
ch0(H−1(E))︸ ︷︷ ︸

>0

< 0.

This completes the proof. □

1.2.2. Existence of Harder-Narasimhan filtration.

Lemma 1.2.2 ([MS17, Lemma 6.17]). The tilt heart Bω is a Noetherian category.

Corollary 1.2.1. (Bω, Zω) is a stability condition.

1.2.3. Support condition. By Proposition 1.1.2, if we want to show (Bω, Zω) satis-
fies the support property, it suffices to find a quadratic form Q with certain prop-
erties. Actually, it turns out such quadratic form comes from some Bogomolov-
Gieseker type inequalities for tilt stability.

Lemma 1.2.3 ([BMT14, Corollary 7.3.3]). There exists a constant Cω ≥ 0 such
that for every effective divisor D on S, we have

Cω(ωD)2 +D2 ≥ 0.

Definition 1.2.1. The ω-discriminant is defined as

∆ω := (ω ·ch1)2 −2ω2 ch0 ch2 .

Definition 1.2.2. The (ω,Cω)-discriminant is defined as

∆C
ω :=∆+Cω(ω ·ch1)2,

where ∆= ch2
1−2ch0 ch2 is the usual discriminant.

Theorem 1.2.1 ([MS17, Theorem 6.13]). If E ∈Bω is νω-semistable, then ∆C
ω(E)≥

0 and ∆ω(E)≥ 0.

Proposition 1.2.2. The (ω,Cω)-discriminant ∆C
ω gives the support condition for

(Bω, Zω).

Proof. Note that ∆C
ω is the composition of

K(X ) ch−→ H0(X ,R)⊕NS(X )R⊕H2(X ,R)
Qω−→R,

where ch is the Chern character map and the quadratic form Qω is given by

(r, c,d) 7→ Cω(ωc)2 + c2 −2rd.
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By Theorem 1.2.1, for any νω-semistable E ∈ Bω, one has Qω(ch(E)) ≥ 0. Then
by Proposition 1.1.2, it suffices to show the kernel of Zω is negative definite with
respect to Qω. If Zω(E) = 0, then ω2 ch0(E) = 2ch2(E) and ω · ch1(E) = 0. By Hodge
index theorem one has ch2

1(E)≤ 0, and thus if ch(E) ̸= 0, one has

Qω(ch(E))= ch2
1(E)−2ch0(E)ch2(E)

= ch2
1(E)−ω2 ch2

0(E)< 0.

This completes the proof. □

Corollary 1.2.2. (Bω, Zω) is a Bridgeland stability.

1.3. Bridgeland stability of line bundles on surface.

1.3.1. Introduction. Let S be a smooth projective complex surface and ω be an
ample R-divisor on S. Let B be a R-divisor on S. Then (Bω,B, Zω,B) is a Bridgeland
stability on Db(S), where

Zω,B(E)=−ch2(E)+ch1(E) ·B− ch0(E)
2

(B2 −ω2)+
p
−1(ch1(E) ·ω−ch0(E)ω ·B)

and Bω,B is given by the torsion pair

Tω,B = {E ∈Coh(S) |µω,B,min(E)> 0}

Fω,B = {E ∈Coh(S) |µω,B,max(E)≤ 0}.

One of the features that makes stability conditions well suited to compututations
is its decomposition into well behaved 3-slices. For convenience we rescale ω such
that ω2 = 1 and choose an R-divisor G with G ·ω= 0. Then define the 3-slice

Sω,G = {σtω, sω+uG | t, s,u ∈R, t > 0}.

It’s clear that for any Bridgeland stability σ, one can find a 3-slice Sω,G such that
σ ∈ Sω,G . In [AM16], it studies the Bridgeland stability of the line bundle L and
proposes the following conjecture.

Conjecture 1.3.1. Let σω,B be a Bridgeland stability stated as above. Then the
only objects that could destabilize a line bundle L are line bundles of the form
L(−C), where C is a curve of negative self-intersection.

The main result of [AM16] shows that Conjecture 1.3.1 holds true in the follow-
ing cases:

(1) If S does not have any curves of negative self-intersection. (Theorem 1.3.1)
(2) If the Picard rank of S is two and there exists only one irreducible curve of

negative self-intersection. (Theorem 1.3.2)
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1.3.2. Preliminaries on the stabilities of OS. In order to study the Bridgeland sta-
bility of the line bundles on a smooth projective complex surface S, the following
lemma shows it suffices to study the Bridgeland stability of OS, by the action of
tensoring stability condition.

Lemma 1.3.1 ([AM16, Lemma 3.1]). Let L =OS(D1) be a line bundle and σω,D
be a Bridgeland stability condition. Then E destabilizes L at σω,D if and only if
OS(−D1)⊗E destabilizes OS at σω,D−D1

In order to study the Bridgeland stability of structure sheaf OS, let’s study the
subojects of OS and their walls.

Definition 1.3.1.

Definition 1.3.2. Given two objects E ,B ∈ Db(S), with B is Bridgeland stable for
at least one stability condition.
(1) The numerical wall W (E ,B) is defined as

{σ= (B, Z) | (ReZ(E))(ImZ(B))− (ReZ(B))(ImZ(E))= 0}.

(2) If at some σ ∈ W (E ,B) we have E ⊆ B in B, we say that W (E ,B) is a weakly
destabilizing wall for B.

(3) If at some σ ∈W (E ,B) we have E ⊆B in B and B is Bridgeland σ-semistable,
we say that W (E ,B) is an actually destabilizing wall for B.

Lemma 1.3.2 ([AM16, Lemma 4.1]). Let σ ∈ Stab(X ) be a Bridgeland stability
condition and 0 → E →OS →Q→ 0 be a short exact sequence in heart of σ. Then
E is a torsion-free sheaf and H0(Q) is a quotient of OS of rank zero. In particular,
the kernel of the map OS →H0(Q) is an idea sheaf IZ(−C) for some effective curve
C and some zero-dimensional subvariety Z (with C or Z possibly zero).

Proof. Consider the long exact sequence in cohomology associated to the short ex-
act sequence

0→H−1(E)→ 0→H−1(Q)→ E →OS →H0(Q)→ 0.

This shows H−1(E) = 0 and thus E must be a sheaf. Since OS → H0(Q) → 0 is
exact, we must have the kernel of this map is trivial or an idea sheaf of the form
IZ(−C), where C is an effective curve and Z is a zero-dimensional subvariety.

If the kernel is trivial, that is, H0(Q) ∼=OS, then we would have H−1(Q) ∼= E .
However, H−1(Q) ∈F ,E ∈T and F∩T = {0}. Therefore, in this case, both H−1(Q)
and E would have to be zero.

This shows the kernel of OS →H0(Q) must be of the form IZ(−C). Since E is
an extension of torsion-free sheaves IZ(−C) and H−1(Q), it’s also a torsion-free
sheaf. □

In other words, in the case of Bridgeland stability, the subojects of OS is a sheaf
but may a priori have arbitrary high rank. Now let’s fix a 3-slice Sω,G and study
which forms the wall W (E ,OS) can take in Sω,G .
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Let E be a torsion-free sheaf and set ch(E)= (r,ch1(E), c). We may write

ch1(E)= dhω+dgG+α,

where α ·ω=α ·G = 0,dh = ch1(E) ·ω and dg =−ch1(E) ·G.
Let σtω, sω+uG be a Bridgeland stability condition in the 3-slice Sω,G . For conve-

nience we denote the heart of σtω, sω+uG by Bt,s,u, and denote the slope function of
σtω, sω+uG by βt,s,u.

Lemma 1.3.3 ([AM16, Remark 4.6]). The short exact sequence 0 → E → OS →
Q→ 0 in Bt,s,u if and only if

µω(J)< s <µω(K),

where
(1)

0= E0 ⊆ E1 ⊆ ·· · ⊆ En = E
is the Harder-Narasimhan filtration of E for slope stability and K = E /En−1.

(2)
0=F0 ⊆F1 ⊆ ·· · ⊆Fm =H−1(Q)

is the Harder-Narasimhan filtration of H−1(Q) for slope stability and J =F1.
Moreover, we must have µω(J)<µω(K)< 0.

Proof. For E to be an object of Bt,s,u, we must have s < µω(K) and for H−1(Q)
to be an objects of Bt,s,u, we must have s ≥ µω(J). The last condition µω(K) < 0
originates from the fact µω(K)≤µω(E)< 0, where µω(E)< 0 since E is an extension
of IZ(−C) by H−1(Q) for some effective curve C and zero-dimensional subvariety
Z and µω(H−1(Q))≤µω(J)< 0. □

Lemma 1.3.4 ([AM16, Lemma 4.7]).
(1) If W (E ,OS)∩∏

u0 intersects the line s = µω(K) for t > 0, then β(En−1) > β(E) at
σ0 with En−1 ⊆OS in B

(2) If W (E ,OS)∩∏
u0 intersects the line s = µω(J) for t > 0, then β(E /J) > β(E) at

σ0 with E /J ⊆OS in B

Now let’s E ⊆OS be a suboject and consider the walls W (E ,OS). A direct com-
pututation shows

Zt,s,u(E)=
(
−c+ sdh −udg − r

2
(s2 −u2 − t2)

)
+
p
−1(thd − rst)

and the equation of the wall W (E ,OS) is
t
2

(−dh(s2 + t2 +u2)+2dgsu+2cs)
)= 0,

which is equivalent to (−dh(s2 + t2 +u2)+2dgsu+2cs)
)= 0

as t ̸= 0.
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At each fixed u, Maciocia showed in [Mac14] that all walls for OS in the plane∏
u are nested semicircles centered on the s-aixs. Thus, given two subojects E1 and

E2 and a fixed value u, we have W (E1,OS) and W (E2,OS) are both semicircles,
with one of them inside the other one, unless they are equal.

Now we may think Sω,G spaces as being extended to the t = 0 plane, and we
study these quadrics by studying their intersection with t = 0:

(1.1) −dh(s2 +u2)+2dgsu+2cs = 0.

Since the walls are semicircles in
∏

u for any u, knowing where the wall is at t = 0
would tell us where the wall is at any t > 0. The discriminant of (1.1) is

∆= 4(d2
g −d2

h)

and (1.1) can be written as

−dh(s+ dg

dh
u)2 + ∆

4dh
u2 +2cs = 0.

Note that E ⊆ OS in Bt,s,u implies s < 0 and by proof in Lemma 1.3.3 we have
dh =µω(E)< 0. Thus
(1) For ∆= 0, the parabola case, it can only be a weakly destabilizing wall if c ≥ 0.
(2) For ∆< 0, the ellipse case, it can only be a weakly destabilizing wall if c > 0.
(3) For ∆ > 0, the hyperbola case, there are three cases given by c = 0, c > 0 and

c < 0.

1.3.3. Subojects of OS of rank one. Let σtω, sω+uG be a Bridgeland stability in the
3-slice Sω,G . If a suboject E ⊆OS in Bt,s,u is of rank one, then by Lemma 1.3.2
E must be equal to IZ(−C) for some effective curve C and some zero-dimensional
scheme Z with C or Z possibly 0.

Lemma 1.3.5. IZ does not destabilize OS.

Proof. Let i : Z → X be a zero-dimensional scheme of length ℓ(Z). Then the Chern
character of IZ is

ch(IZ)= (0,0,−ℓ(Z)),

and thus we have

βt,s,u(IZ)= −2ℓ(Z)+ s2 −u2 − t2

−2st
.

On the other hand, we have

βt,s,u(OS)= s2 −u2 − t2

−2st
.

Therefore, when OS ∈Bt,s,u, we have s < 0 and βt,s,u(IZ)<βt,s,u(OS). This means
that IZ does not destabilize OS whenever OS ∈Bt,s,u. □

Proposition 1.3.1 ([AM16, Proposition 5.1]). If C2 ≥ 0, then IZ(−C) does not
weakly destabilize OS.
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Proof. Suppose C = chω+ cGG+αC with αC ·ω=αC ·G = 0. Then C2 = c2
h− c2

g+α2
C,

and α2
C ≤ 0 by the Hodge index theorem. Theorefore, if C2 ≥ 0, then c2

h − c2
g ≥ 0.

Note that Chern character of IZ(−C) is

ch(IZ(−C))= (1,−C,
1
2

C2 −ℓ(Z)).

Then the equation for the wall W (IZ(−C),OS) simplifies to

ch(s2 + t2 +u2)−2cgsu+ (c2
h − c2

g)s+α2
Cs−2ℓ(Z)s = 0.

(1) If c2
h − c2

g > 0, then the wall at t = 0 is an ellipse going through (0,0) and

PW = C2 −2ℓ(Z)
c2

g − c2
h

(ch, cg),

where these are the two points where the tangent line is vertical. Therefore,
the s-value of any point on the ellipse is between 0 and the s-value of PW ,
which is

C2 −2ℓ(Z)
c2

g − c2
h

ch =
c2

h − c2
g +α2

C −2ℓ(Z)

c2
g − c2

h
ch =−ch +

α2
C −2ℓ(Z)

c2
g − c2

h
ch ≥−ch.

But IZ(C) ∈Bt,s,u, we have that s <−ch and therefore IZ(−C) cannot weakly
destabilize OS.

(2) If c2
h − c2

g = 0, then C2 ≥ 0 implies C2 = 0 and ch2(IZ(−C))) =−ℓ(Z) < 0. As we
list all possible weakly destabilizing wall for OS, this wall cannot be a weakly
destabilizing wall.

□

1.3.4. Bridgeland stability of OS on surface without negative self-intersection curve.

Theorem 1.3.1 ([AM16, Proposition 5.4]). Let S be a smooth projective complex
surface and ω,B as before. If S does not contain any curves of negative self-
intersection and σω,B is a Bridgeland stability condition such that OS ∈ Bω,B,
then OS is stable with respect to σω,B.

Proof. We prove the following statement by induction on the rank of E : If E ⊆OS
is a proper suboject in Bω,B for some σω,B, then β(E)<β(OS) at σω,B.

If E has rank one, then it follows from Proposition 1.3.1. Assume now that E
has rank r > 1 and that the result holds true for any proper suboject of rank less
than r and any stability condition for which the object is indeed a suboject of OS.
Choose G such that σ □

1.3.5. Bridgeland stability of OS on surface of Picard rank two.

Theorem 1.3.2 ([AM16, Proposition 5.12]). Let S be a smooth projective complex
surface of Picard rank two. Assume that the effective cone of S is generated by C1
and C2 such that C1 ·G > 0 and C1 is the only irreducible curve in S of negative
self-intersection. Then OS is only destabilized by OS(−C1).
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2. DIFFERENTIAL GEOMETRY ASPECTS

2.1. Backgrounds on deformed Hermitian-Yang-Mills metrics. Let X be a
smooth projective complex variety and ω be an ample R-divisor on X .

2.1.1. Introduction.

Definition 2.1.1. Let α be a real (1,1)-form on X . The deformed Hermitian-Yang-
Mills (dHYM) equation seeks a function φ : X → R such that αφ = α+p−1∂∂φ,
which satisfies

Im(e−
p−1θ̂(ω+

p
−1αφ)n)= 0,

where ˆ
X

(ω+
p
−1αφ)n ∈R>0 e

p−1θ̂.

Remark 2.1.1. If we fix a point p ∈ X and choose a holomorphic coordinate {zi}
centered at p such that

ω=
p
−1

∑
i

dzi ∧dzi, αφ =
p
−1

∑
i
λidzi ∧dzi,

then the dHYM equation can be written as

Θω(αφ)= θ̂ (mod 2π),

where Θω(αφ)=∑
i arctan(λi) is called the Lagrangian phase operator.

Definition 2.1.2. Let L→ (X ,ω) be a line bundle. A Hermitian metric h on L is
called a dHYM metric with respect to ω if the Chern curvature Θh satisfies

Im
(
e−

p−1θ̂
(
ω− Θh

2π

)n)
= 0,

where ˆ
X

(
ω− Θh

2π

)n
∈R>0 e

p−1θ̂.

Remark 2.1.2.
(1) The dHYM metric on a line bundl L is a special case of the dHYM equation. If

we choose real (1,1)-form α= ch1(L), then a solution of dHYM equation gives
a dHYM metric on L.

(2) Given a R-divisor B on X , which is called a B-field in literature, a dHYM metric
with respect to ω and B is a solution of dHYM equation defined by real (1,1)-
class chB

1 (L), where chB
1 (L)= e−B ch1(L) is the twisted Chern character.

(3) The higher rank version of dHYM equation was proposed by Collins-Yau in
[CY18, &8.1]. For a holomorphic vector bundle E → (X ,ω), a Hermitian metric
h is called a dHYM metric if the Chern curvature Θh satisfies

Im
(
e−

p−1θ̂
(
ω⊗ idE −Θh

2π

)n)
= 0,
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where ˆ
X

trh

(
ω⊗ idE −Θh

2π

)n
∈R>0 e

p−1θ̂

and the imaginary part is defined2 using the metric h. There are many funda-
mental results about dHYM metric for the line bundle, such as [JY17, CY18,
CJY20], but the existence of the solution to the higher rank version is still in
mystery.

2.1.2. Twisted ampleness criterion. In [CJY20], the authors proved a Nakai-Moishezon
type criterion for the existence of dHYM metric of line bundles on Kähler surface3

as follows, which is also called twisted ampleness criterion in [CLSY23].

Theorem 2.1.1 ([CJY20]). Let (X ,ω) be a Kähler surface and L be a line bundle
on X such that ω ·ch1(L)> 0. Then L admits a dHYM metric (with respect to ω) if
and only if for every curve C ⊆ X we have

Im
(

ZC(L)
ZX (L)

)
> 0,

where ZC(L)=−´C e−
p−1ω ch(L) and ZX (L)=−´X e−

p−1ω ch(L).

In [FYZ23], the authors showed the solution to dHYM equation on a compact
Kähler surface (X ,ω) always exists on the complement of a finite number of curves
of negative self-intersection. In particular, the twisted ampleness criterion is satis-
fied automatically if there is no negative self-intersection curve on X . It motivates
us to consider

Question 2.1.1. Whether it suffices to test negative self-intersection curves in twisted
ampleness criterion or not.

In some cases, Question 2.1.1 can be checked directly, such as Hirzebruch sur-
face, which also serves as an important example later. Let’s give a brief review of
cone structures and intersection form on Hirzebruch surface.

Proposition 2.1.1. Let X =Hr be the Hirzebruch surface and {D1,D2,D3,D4} be
the generators of torus-invariant divisors on X . Then
(1) ([CLS11, Example 4.1.8]) The Picard group is generated by {D1,D2,D3,D4}

with relations
0∼ div(χe1)=−D1 +D3

0∼ div(χe2)= rD1 +D2 −D4.
2To be precisely, via the Hermitian metric, or rather the induced metric on End(E), one can define

the adjoint of any section of End(E), and then give a decomposition of any such a section into self
adjoint and anti-self adjoint part. For example, given a complex matrix A, one can decompose it as

A = 1
2

(A+ A∗)+
p
−1× 1

2
p−1

(A− A∗),

where 1
2
p−1

(A− A∗) is called the imaginary part.
3The higher dimensional case was proved in [CLT24].
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(2) ([CLS11, Proposition 4.3.3]) The effective cone of X is given by

Eff(X )= {aD1 +bD2 | a,b ≥ 0}.

(3) ([CLS11, Example 6.1.17]) The ample cone of X is given by

Amp(X )= {αD1 +βD4 |α,β> 0}.

(4) ([CLS11, Example 6.3.6]) The intersection matrix of D1 and D2 is given by(
0 1
1 −r

)
.

Proposition 2.1.2. Let X =Hr be Hirzebruch surface. Then for the twisted am-
pleness criterion on X , it suffices to test the only negative self-intersection curve.

Proof. Let ω=αD1 +βD4 be an ample R-divisor on X and L= kD3 +ℓD4 be a line
bundle such that ω · ch1(L) > 0. For curve C ⊆ X , the twisted ampleness criterion
for C can be rewritten as

(2.1) (C ·ch1(L)) (ω ·ch1(L))>
(
ch2(L)− 1

2
ω2

)
(C ·ω) .

Take C = D1, equation (2.1) gives

ℓ(αℓ+βk+ rβℓ)> 1
2

(2kℓ+ rℓ2 −2αβ− rβ2)β,

which is equivalent to

(2.2) αℓ2 +αβ2 + 1
2

(rβℓ2 + rβ3)> 0.

It’s clear that equation (2.2) holds for arbitrary k,ℓ ∈ Z since α,β > 0. This com-
pletes the proof since the twisted ampleness criterion is linear with respect to the
intersection with C. □
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3. RELATIONS BETWEEN ALGEBRAIC GEOMETRY AND DIFFERENTIAL
GEOMETRY ASPECTS

3.1. History and conjectures. It’s a fundamental principle which has guided
much of the research in complex geometry since the late 20-th century: stable
objects in algebraic geometry should correspond to extremal objects in differential
geometry. This philosophy can be traced back to study of the relations between
the slope stability and the existence of Hermitian-Einstein metric. The curve case
was established by Narasimhan-Seshadri.

Theorem 3.1.1 ([NS65]). A holomorphic vector bundle E on a compact Riemann
surface is stable if and only if there is an irreducible Hermitian-Einstein metric
on E .

The further work on this topic is summarized as follows:
(1) Donaldson gave a new proof of Narasimhan-Seshadri’s result in [Don83], and

then he proved the surface case in [Don85].
(2) Uhlenbeck-Yau generalized this to compact Kähler manifold in [UY86].
(3) The non-Kähler case was proved in [LY87].
(4) For Higgs bundles, Simpson showed that every stable Higgs bundle has a

Hermitian-Yang-Mills metric in [Sim88].
(5) Yau conjectured that the existence of Kähler-Einstein metric on Fano manifold

should be equivalent to some algebro-geometric stability conditions, which was
solved in [CDS15a], [CDS15b] and [CDS15c].

On the other hand, going back to the work of Douglas, and Thomas-Yau ([TY02]),
it has long been conjectured that the existence of special Lagrangians (or solutions
of dHYM equation) is equivalent to a purely algebraic notion of stability. This pro-
posal is based on the idea that, in certain limits, a special Lagrangian should be
mirror to a holomorphic bundle E with Hermitian-Yang-Mills connection, and by
the Donaldson-Uhlenbeck-Yau Theorem, this is equivalent to E being slope stable.

Lemma 3.1.1. Let L→ (X ,ω) be a line bundle over a compact Kähler n-manifold.
In the large volume region k ≫ 0, the leading order condition4 for L to admit a
dHYM metric is given by the Hermitian-Einstein equation.

On the other hand, the large volume limit of Bridgeland stability is related to
the slope stability.

Lemma 3.1.2 ([MS17, Lemma 6.18]). Let X be a smooth projective complex va-
riety and ω, B ∈ N1(X ) with ω is ample. Let Bω,B be the tilt heart given by the
torsion-free pair 〈Tω,B[1],Tω,B〉. If E ∈ Bω,B is σαω,B-semistable for all α ≫ 0,
then it satisfies one of the following conditions:

4To be precise, the dHYM equation for kω takes the form

Ckn−1ωn +O(kn−3)= nkn−1ωn−1 ∧ c1(L)+O(kn−3)

for some topological constant C determined by θ.
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(1) H−1(E)= 0 and H0(E) is a µω,B-semistable torsion-free sheaf.
(2) H−1(E)= 0 and H0(E) is a torsion sheaf.
(3) H−1(E) is a µω,B-semistable torsion-free sheaf and H0(E) is either 0 or a torsion

sheaf supported in dimension zero.

Proof. Let νω,B denote the slope function given by the Bridgeland stability condi-
tion σω,B. Since the stability won’t change with scalling a constant, one can com-
pute σαω,B-stability with 2ναω,B/α instead of ναω,B. It’s convenient in the present
argument because

lim
α→∞

2ναω,B

α
(E)=−µ−1

ω,B(E).

By definition of the tilt heart Bω,B, the object E is an extension 0 →F [1] → E →
T → 0, where F ∈Fω,B and T ∈Tω,B. Moreover, Bω,B =Bαω,B for all α> 0.

Suppose ω ·chB
1 (E)= 0. Then both ω ·chB

1 (F )= 0 and ω ·chB
1 (T )= 0. By definition

of Fω,B and Tω,B this means T is 0 or has be supported in dimension 0 and F is
0 or a µω,B-semistable torsion free sheaf with µω,B(F ) = 0. Therefore, for the rest
of the proof we can assume ω ·chB

1 (E)> 0.
Suppose that chB

0 (E)≥ 0. Then the inequality ω·chB
1 (E)> 0 implies −µ−1

ω,B(E)< 0.
By definition we have −µ−1

ω,B(F [1]) ≥ 0, and since E is σαω,B-semistable for α≫ 0,
we get F = 0 and E ∈ Tω,B is a sheaf. If E is torsion, we are in case (2). Assume
E is neither torsion nor slope semistable. Then by definition of Tω,B there is an
exact sequence

0→A→ E →B→ 0

in Tω,B such that µω,B(A)>µω,B(E)> 0. But then −µ−1
ω,B(A)> −µ−1

ω,B(E) contradicts
the fact that E is σαω,B-semistable for α≫ 0.

Suppose that chB
0 (E)< 0. If ω·chB

1 (T )> 0, then −µ−1
ω,B(T )< 0 and the assumption

chB
0 (E)< 0 implies −µ−1

ω,B(E)> 0. Then the fact that E is σαω,B-semistable for α≫ 0
gives a contradiction.

Now we assume ω ·chB
1 (T )= 0. Then T ∈Tω,B implies chB

0 (T )= 0 and µω,B(E)=
µω,B(F ). It remains to show F is µω,B-semistable. If not, there is an exact se-
quence

0→A→F →B→ 0

in Fω,B such that µω,B(A)>µω,B(F ). Therefore, there is an injective map A[1] ,→
E in Bω,B such that −µ−1

ω,B(A[1]) > −µ−1
ω,B(F ) = −µ−1

ω,B(E) in contradiction to the
fact that E is σαω,B-semistable for α≫ 0. □

The present version of this folklore conjecture is

Conjecture 3.1.1. A line bundle L admits a dHYM metric if and only if it is stable
in the sense of Bridgeland as an object in Db(X ).
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3.2. Known results. Until now, even for surface case, the relations between Bridge-
land stability and the existence of dHYM metric are still in mystery in general.
Before we summarize some known results, we firstly set up our settings: Let X be
a smooth projective complex surface with ample R-divisor ω and B be a R-divisor
on X . Let σω,B = (Zω,B,Bω,B) be the Bridgeland stability with the central charge
Zω,B given by

Zω,B =−
ˆ

X
e−

p−1ω chB

and Bω,B = 〈Fω,B[1],Tω,B〉 be tilt heart given by the following torsion pair

Tω,B = {E ∈Coh(X ) |µω,B,min(E)> 0}

Fω,B = {E ∈Coh(X ) |µω,B,max(E)≤ 0},

where µω,B(E)= chB
1 (E)/ch0(E).

3.2.1. Surface without negative self-intersection curve. Let X be a smooth projec-
tive complex surface without negative self-intersection curve. For any ample R-
divisor and R-divisor B on X , by results in [FYZ23], every line bundle on X admits
a dHYM metric with respect to ω and B. On the other hand, by results in [AM16]
shows that any line bundle L is also Bridgeland stable with respect to σω,B. In
particular, the Conjecture 3.1.1 holds trivially.

3.2.2. Counter-examples with zero B-field. The main techniques for counter-example
in [CS22] are twisted ampleness criterion and results in [AM16].

Proposition 3.2.1. Let X =H1 =BlpP
2 and ω be an ample R-divisor on X . Let L

be a line bundle on X with ω ·ch1(L)> 0. If L admits a dHYM metric with respect
to ω, then L is Bridgeland stable at σω,0. The converse statement is not true.

Proof. A line bundle L ∈Bω,0 if and only if ω ·ch1(L)> 0, and by Theorem 1.3.2 it’s
Bridgeland stable at σω,0 if and only if

(3.1) β(L(−C))<β(L),

where ρ is the slope function given by σω,0. A direct computation shows that (3.1)
is equivalent to

(3.2)
(
C ·ch1(L)− 1

2
C2

)
(ω ·ch1(L))>

(
ch2(L)− 1

2
ω2

)
(C ·ω) ,

where C ⊆ X is the only curve which has negative self-intersection.
On the other hand, the twisted ampleness criterion (Theorem 2.1.1) shows that

L admits a solution to dHYM equation if and only if

(3.3) (C ·ch1(L)) (ω ·ch1(L))>
(
ch2(L)− 1

2
ω2

)
(C ·ω) ,

for all curves C ⊆ X . As a consequence, (3.3) implies (3.2), that is, every line bundle
admitting a dHYM metric is Bridgeland stable with respect to σω,0.
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Conversely, let ω= 1p
3
(D1 +D4) and L=OX (2D4). A direct computation shows

L is Bridgeland stable with respect to σω,0, but does not admit a dHYM metric
with respect to ω. □
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