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1. To readers

1.1. About this lecture. It’s a lecture note of a seminar organized by
myself for learning basic theories of principal bundles and its applications.
This lecture is divided into the following two parts:
(1) In the first part: Firstly we mainly concern the basic theory of princi-

pal bundle, such as what is principal bundle, associated fiber bundle and
the reduction of principal bundle. Then we introduce the heart of this
lecture: the local computations for connections on principal bundle and
curvatures. In the end of this part, we also show how to obtain a con-
nection on associated vector bundle from the one on principal bundle,
and the classical Riemann-Hilbert correspondence.

(2) In the second part we introduce focus on the Chern-Weil theory, which
allows us to construct characteristic classes from curvature and invariant
polynomials. We also give a brief introduction to the classifying space
for principal bundles, and their relations to characteristic classes.

1.2. Acknowledgement. I would like to express my heartfelt gratitude to
Qiliang Luo, Shan Li, Shihao Wang, Zhiyao Xiong, Yifei Cai, Yuxuan Li, and
Zhitong Chen for their attendences and discussions. Also, I’m particularly
indebted to Zhiyao Xiong for his enthusiasm and rigor, without which I
cannot learn so much.
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1.3. Some notations.
1.3.1. On base manifold.
(1) M is used to denote a smooth manifold, and x ∈M denotes its point.
(2) TM and ΩkM are used to denote tangent bundle and bundle of k-forms

over M respectively.
(3) ΩkM (E) is used to denote bundle of k-forms over M valued E.
(4) v is used to denote vector in tangent space.
(5) X is used to denote a vector field on M , and Xx denotes the value of X

at point x ∈M .
(6) α is used to denote a k-form on M , and αx denotes the value of α at

point x ∈M .
(7) For a vector bundle E over M , C∞(E,M) is used to denote its sections.

1.3.2. On principal bundle.
(1) G is used to denote a Lie group, with Lie algebra g.
(2) π : P → M is used to denote a principal G-bundle over M , and p ∈ P

denotes its point.
(3) X̃ is used to denote vector field on principal bundle P , so do α̃ and ṽ.
(4) ω is used to denote connection 1-form on P , with curvature 2-form Ω.
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Part 1. Principal bundle and its geometry
2. Principal bundle

2.1. A glimpse of fiber bundle.

Definition 2.1.1 (fiber bundle). Let F,E,B be topological spaces. A fiber
bundle with fiber F over B is a surjective map π : E → B such that for any
p ∈ B, there exists an open neighborhood U 3 p and a homeomorphism ϕ
such that the following diagram commutes

π−1(U) U × F

U

φ

π
π1

We always use F → E
π−→ B or (E,B, π, F ) to denote this fiber bundle and

(1) B is called base space.
(2) Ex = π−1(x) is called the fiber of E at x.
(3) (U,ϕ) is called a local trivialization at point p, and use E|U to denote

π−1(U).

Example 2.1.1 (trivial bundle). Consider E = B × F and π : E → B is
just the projection onto the first summand.

Example 2.1.2. Consider E = Sn and B = RPn, then natural map π : E →
B is a fiber bundle with Z /2Z. It’s clear that this fiber bundle is not trivial,
since Sn is connected.

Example 2.1.3 (Hopf fibration). Recall that
CPn = {the set of all complex lines through origin in Cn+1}

Consider the canonical open covering {Ui} of CPn, that is
Ui = {[z0 : . . . : zn] | zi 6= 0}

Now view S2n+1 ⊆ R2n+2 = Cn+1 as the set of all (z0, . . . , zn) ∈ Cn+1 with
|z0|2 + · · · + |zn|2 = 1. Then the projection map π : Cn+1−{0} → CPn
restricts to a surjective smooth map

π : S2n+1 → CPn

We claim that it’s a fiber bundle with fiber S1. Indeed, by definition we
have

π−1(Ui) = {(z0, . . . , zn) ∈ S2n+1 | zi 6= 0}
and local trivialization map can be taken as

ϕi : π
−1(Ui)→ Ui × S1

z 7→ ([z0 : . . . : zn],
zi
|zi|

)

It’s also not trivial which can be seen by considering their fundamental
groups.
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Example 2.1.4. The covering space is a fiber bundle with discrete set as
fiber.

2.2. Principal bundle.

2.2.1. Definitions. Briefly speaking, given a Lie group G and a smooth man-
ifold M , a principal G-bundle P is a fiber bundle with fiber G equipped with
a suitable smooth right G-action on it. For a smooth right G-action we mean
a smooth map

P ×G→ P

(p, g) 7→ pg

Definition 2.2.1 (principal G-bundle). A principal G-bundle is a surjective
smooth map π : P →M between smooth manifolds such that:
(1) There is a smooth right G-action on P .
(2) For all x ∈M , π−1(x) is a G-orbit.
(3) For all x ∈ M , there exists an open subset Uα and a G-equivariant

diffeomorphism ϕα, which is called a local trivialization, such that the
following diagram commutes

π−1(Uα) Uα ×G

Uα

φα

π
πUα

Notation 2.2.1. PGM is used to denoted the set of all principal G-bundles
over M up to isomorphism.

Remark 2.2.1. If we write ϕα(p) = (π(p), gα(p)), then ϕα is G-equivariant if
and only if gα(pg) = gα(p)g for any g ∈ G.

Proposition 2.2.1. Let P be a principal G-bundle, then G acts on P freely
and transitively.

Proof. It’s clear from local trivialization. □

Example 2.2.1. Sn → RPn is a Z /2Z-principal bundle, where Z /2Z acts
on Sn via x 7→ −x.

Example 2.2.2. S2n+1 → CPn is a U(1)-principal bundle, where U(1) acts
on S2n+1 via (z0, z1, . . . , zn) 7→ (z0e

iθ, z1e
iθ, . . . , zne

iθ).

Definition 2.2.2 (morphism between principal G-bundle). For two prin-
cipal G-bundles (P,M, π), (P ′,M, π′), a morphism between them is a G-
equivariant smooth map ϕ : P ′ → P making the following diagram commute

P P ′

M

φ

π

π′
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Proposition 2.2.2. A morphism ϕ : P → P ′ between principal G-bundles
over M is an isomorphism.

Proof. All information are encoded in the G-equivariance of ϕ and properties
of principal G-bundle:
(1) ϕ is injective: For any p1, p2 ∈ P , if ϕ(p1) = ϕ(p2), then p1, p2 lie in

same fiber, since above diagram commutes. If p1 = p2g for g ∈ G, then
ϕ(p1) = ϕ(p2)g, which impiles g = e, since G acts on P ′ freely, that is
p1 = p2.

(2) ϕ is surjective: For any p′ ∈ P ′, if π′(p′) = x, then p′ ∈ P ′
x. So choose

an arbitrary element p ∈ Px, there must be some g ∈ G such that
ϕ(pg) = p′, since P ′

x is a G-orbit and ϕ is G-equivariant.
□

Definition 2.2.3 (trivial principal bundle). A principal G-bundle P is
called trivial principal bundle, if there exists a principal G-bundle isomor-
phism ϕ : P →M ×G.

2.2.2. Structure group. Let {Uα, ϕα} be a local trivialization of principal G-
bundle P . If Uαβ := Uα ∩ Uβ 6= ∅, then transition functions gαβ : Uαβ →
Diff G is defined by

ϕαβ := ϕα ◦ ϕ−1
β : Uαβ ×G→ Uαβ ×G

(x, h) 7→ (x, gαβ(x)h)

Note that
(π(p), gα(p)) = ϕα ◦ ϕ−1

β ◦ ϕβ(p)
= ϕαβ(π(p), gβ(p))

This shows
(2.1) gαβ(x)gβ(p) = gα(p)

where p ∈ π−1(x). Fix x ∈ Uαβ , it’s clear
gαβ(x)(h1h2) = gαβ(h1)h2

holds for arbitrary h1, h2 ∈ G, then gαβ(x) must take the form h 7→ gh
for some g ∈ G. This shows the transition functions of principal G-bundle
valued in G, that is

gαβ : Uαβ → G

That is to say, the structure group of a principal G-bundle is G.

2.2.3. Section.

Definition 2.2.4 (global section). A global section of principal G-bundle
π : P →M is a smooth map s : M → P such that π ◦ s = id.

Proposition 2.2.3. A principal G-bundle P over M admits a section if and
only if it is trivial1.

1This is in sharp contrast with vector bundles, which always admit sections.
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Proof. If s : M → P is a smooth section, consider
ϕ : P →M ×G

p 7→ (π(p), g(p))

where g(p) ∈ G such that p = s(π(p))g(p), it always exsits since the right
action of G is transitive on each fiber and it is unique since the action is free
on each fiber. Clearly, it’s G-equivariant, since

ϕ(ph) = (π(ph), g(ph)) = (π(p), g(p)h)

and the last equality holds since
ph = s(π(ph))g(ph) = s(π(p))g(ph) = pg−1(p)g(ph) =⇒ h = g−1(p)g(ph)

Thus ϕ : P →M×G is a morphism between principal G-bundles over M , so
by Proposition 2.2.2, P is isomorphic to M ×G, that is P is trivial principal
G-bundle. □
Example 2.2.3. Although P may not admit global section, it always admits
local section σα over local trivialization {Uα, ϕα}, which is given by

σα : Uα → π−1(Uα)

x 7→ ϕ−1
α (x, e)

Proposition 2.2.4.
σβ(x) = σα(x)gαβ(x)

where x ∈ Uαβ .

Proof. Direct computation shows
ϕβ(σα(x)gαβ(x)) = ϕβ ◦ ϕ−1

α (x, e)gαβ(x)

= (x, gβα(x)gαβ(x))

= (x, e)

that is σα(x)gαβ(x) = ϕ−1
β (x, e) = σβ(x). □

2.3. Associated fiber bundle. Given a principal G-bundle π : P → M
and a smooth manifold F admitting a smooth left G-action on it, that is
there is a group homomorphism ρ : G→ Diff(F ).

Proposition 2.1. The set P ×ρ F := P × F/∼, where (p, f) ∼ (p′, f ′) if
and only if p′ = pg, f ′ = g−1f , admits a fiber bundle structure over M with
fiber F .

Proof. Consider the map taking an equivalence class [p, f ] to π(p). To see the
local structure, since we already have the local structure of principal bundle
P , i.e. for any x ∈M , there exists open Uα 3 x and ϕα : π−1(Uα)→ Uα×G.
Now we define the local trivialization of P ×G V as

ϕFα : (P ×ρ F )|Uα → Uα × F
(p, f) 7→ (π(p), gα(p)f)
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First note that this is well-defined, since
(pg, g−1f) 7→ (π(pg), gα(pg)g

−1f) = (π(p), gα(p)gg
−1f) = (π(p), gα(p)f)

And this map gives a diffeomorphism, since gα is smooth and taking inverse
is a smooth operation of Lie groups. □

Remark 2.3.1 (transition function of associated bundle). Though we’ve found
the local trivialization of P ×ρ F , it’s also necessary to see what does the
transition functions look like. Let (Uα, ϕα), (Uβ , ϕβ) be local trivializations,
with transition functions

ϕα ◦ ϕ−1
β : Uαβ ×G→ Uαβ ×G

(x, g) 7→ (x, gαβ(x)g)

then we can compute the transition functions of associated vector bundles
as follows

ϕFα ◦ (ϕFβ )−1 : Uαβ × F → Uαβ × F
(x, f) 7→ (x, gα(p)(gβ(p))

−1f)

Then by equation (2.1), it’s clear to see transition functions of associated
fiber bundle is exactly {ρ(gαβ)}.

Example 2.3.1 (associated vector bundle). Now let’s consider a special
case, that is associated vector bundles. Given a representation of G, that
is a group homomorphism ρ : G → GL(V ), thus you can construct a vec-
tor bundle P ×ρ V . However, there is a more simple way to construct in
transition functions viewpoint: By Remark 2.3.1, we can see the transi-
tion function of this associated vector bundle is {ρ(gαβ)}, where {gαβ} is
transition function of P .

Remark 2.3.2 (relations between vector bundle and principal bundle). For
real vector bundles endowed with Riemannian metric, consider

Φ: PO(n)M → VectRnM

P 7→ P ×ρ Rn

where ρ : O(n) → GL(n,R) is trivial representation, that is inclusion. Φ
is bijective with inverse Ψ is given by considering frame bundle of vector
bundle. thus we have the following one to one correspondence up to isomor-
phism

PO(n)M ←→ VectRnM

Similarly we also have
PU(n)M ←→ VectCnM

In this viewpoint, principal G-bundles generalize the conception of vector
bundles.

Example 2.3.2. There are two important examples of associated bundles
that we will use later.
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(1) The associated bundle obtained from conjugate action Conj of G acting
on G, denoted by P ×Conj G.

(2) The associated vector bundle obtained from adjoint action Ad of G
acting on g, denoted by P ×Ad g.

Remark 2.3.3. For a principal G-bundle, you can obtain a vector bundle
from a representation of G. However, there are too many representations of
G, so special representations may correspond to special vector bundles.

Proposition 2.3.1. There is a one to one correspondence

C∞(M,P ×ρ F )
1−1←→ {f : P → F | f is smooth and f(xg) = g−1f(x)}

Proof. For a G-equivariant smooth function f : P → F , consider sf ∈
C∞(M,P ×ρ F ) given by

sf (x) = {(p, f(p)) | π(p) = x}

where x ∈ M . It’s well-defined, since if we choose pg instead of p for some
g ∈ G, then sf (x) = (pg, f(pg)) = (pg, g−1f(p)) ∼ (p, f(p)) ∈ P ×ρ F .
Conversely, given s ∈ C∞(M,P ×ρ F ), then for any p ∈ P , we consider
π(p) = x ∈ M and write s(x) = [(p, v)], then we define f(p) = v. It’s clear
f(pg) = g−1f(p), since [(p, v)] = [(pg, g−1v)]. □

Remark 2.3.4. In fact, this proposition is not a coincidence, and it’s a quite
important motivation which shows why we introduce principal G-bundles.
If π : P →M is a principal G-bundle, and E is a vector bundle over M such
that E is an associated vector bundle of P , then if we use π to pull E back
to P , we claim that the vector bundle π∗E is the trivial bundle P × V over
P . Indeed, we define the following bundle map

ψ : P × V → P ×G V
(p, v) 7→ [p, v]

and consider the following diagram
P × V P

E = P ×G V M

ψ π

Clearly P×V satisfies the universal property of pullback, thus by uniqueness
we obtain π∗E ∼= P × V .

In general case, we can use π to pull (P×GV )⊗E′ back to P , and prove it’s
(P × V )⊗ π∗E′ by the same method. The cases we will encounter are E′ =

T ∗M or E′ =
∧k T ∗M . We use ΩkM (P ×GV ) to denote (P ×GV )⊗

∧k T ∗M ,
the generalization tells that we have the one to one correspondence between
sections of ΩkM (P×GV ) and sections of (P×V )⊗π∗

∧k T ∗M with equivariant
conditions, we will call such forms basic forms, a conception we will define
in section 4.2.
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2.4. Reduction of principal bundle. Given a principal G-bundle π : P →
M and a H-principal bundle π′ : P ′ →M . Furthermore, there is a Lie group
homomorphism α : H → G.

Definition 2.4.1 (reduction). If there exists a smooth map ϕ : P ′ → P
such that the following diagram commutes

P ′ P

M

φ

πF
πE

and ϕ is H-equivariant, that is for any p ∈ F, h ∈ H

ϕ(ph) = ϕ(p)α(h)

Then P is called an extension of P ′ from H to G and P ′ is called an reduction
of P from G to H.

Remark 2.4.1. Here are two cases we’re concern about:
(1) H < G is a subgroup, α is an inclusion.
(2) α : H → G is surjective, for example, H is universal covering of G.

Extension of principal bundle always exists, and it’s unique, according to
the following proposition.

Proposition 2.4.1. Given a Lie group homomorphism α : H → G and a
H-principal bundle P ′, there exists a unique extension of P ′ from H to G.

Proof. Existence: Note that α : H → G gives a smooth left H-action on G,
then consider associated fiber bundle P ′ ×H G, it’s a principal G-bundle,
and if we define

ϕ : P ′ → P ′ ×H G

p′ 7→ [p′, 1]

Then ϕ is desired equivariant map which makes diagram commutes.
Uniqueness: If there is another extension ϕ′ : P ′ → P , in order to make

the following diagram commutes

P ′ ×H G

P ′

P

ψ

φ

φ′

we define ψ by ψ([p, 1]) = ϕ′(p). Thus principal G-bundles P ′ ×H G and P
are isomorphic to each other. □

However, reduction may not exist.
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Lemma 2.4.1. Let α : H → G be a Lie group homomorphism, P is a
principal G-bundle with transition functions ψαβ : Uαβ → G. The following
statements are equivalent:
(1) There exists reduction of P from G to H.
(2) There exists ϕαβ : Uαβ → H such that α ◦ ϕαβ = ψαβ .

Corollary 2.4.1. Let P be a principal G-bundle and H is a Lie subgroup
of G, then there exists a reduction of P from G to H if and only if there
exists transition functions of P valued in H.

Example 2.4.1. If E → M is a complex vector bundle with a hermitian
inner product, then a local trivialization

ϕα : π
−1(Uα)→ Uα × Cn

gives a hermitian inner product on Cn. Thus a transition function must
preserve the inner product, thus

Uα ∩ Uβ GLn(C)

U(n)

This gives a reduction of GLn(C)-principal bundle to a U(n)-principal bun-
dle.

Example 2.4.2. If E → M is a real vector bundle, by the same argument
we can always reduce its frame bundle P , that is from a GLn(R)-principal
bundle, to a O(n)-principal bundle. Furthermore,
(1) P can be reduced to a SO(n)-principal bundle if and only if E is ori-

entable.
(2) P can be reduced to a {e}-principal bundle if and only if E is trivial.

Example 2.4.3. Let (M, g) be an oriented Riemannian manifold, then
TM is a SO(n)-principal bundle. Consider universal covering2 Spin(n)

2:1−→
SO(n). If there exists a reduction from SO(n) to Spin(n), then we say M
admits a spin structure.

2See section ?? for more details about spin groups and this universal covering.
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3. Connection of principal bundle

3.1. Forms valued in vector space. In this section, let M be a smooth
manifold, V a vector space with basis {eα} and G a Lie group with Lie
algebra g. A k-form valued in vector space V can be written as

ω = ωαeα

where ωα are k-forms.

Notation 3.1.1. ΩkM (V ) denotes the bundle of k-forms valued in V .

ΩkM (V ) is an easy generalization of differential forms, just by replacing R
with a general vector space, and properties of k-forms also hold for k-forms
value in V .

Definition 3.1.1 (exterior derivative). Let ω = ωαeα be a k-form valued
in V , then its exterior derivative is defined as

dω = dωαeα

Proposition 3.1.1 (Cartan’s formula). Let ω = ωαeα be a k-form valued
in V , then

(dω)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xiω(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

where Xi are vector fields.

Definition 3.1.2 (wedge product). Let ω1, ω2 be forms valued in V with
degree k and l respectively, then

(ω1 ∧ ω2)(X1, . . . , Xk+l) :=
1

k!× l!
∑

σ∈Sk+l

(−1)|σ|ω1(Xσ(1), . . . , Xσ(k))⊗ ω2(Xσ(k+1), . . . , Xσ(k+l))

where Xi are vector fields.

Proposition 3.1.2. Let ωi, where i = 1, 2, 3, be forms valued in V , then
(1) (ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).
(2) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)degω1ω1 ∧ dω2.

Definition 3.1.3. Let T : V → W be a linear map between vector spaces,
and ω is a k-form valued in V , then Tω is a k-form valued in W , which is
defined as

Tω(X1, . . . , Xk) := T (ω(X1, . . . , Xk))

where Xi are vector fields.

Example 3.1.1. Let ω1, ω2 be forms with degree k and l respectively, then
by our definition one has ω1∧ω2 ∈ Ωk+lM (R⊗R). It’s a little bit different from
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standard definition of wedge product, since ω1∧ω2 should be a (k+ l)-form.
If we consider

T : R⊗R→ R
a⊗ b 7→ ab

Then T (ω1 ∧ ω2) is a (k+ l)-form, coincides with standard definition, so we
just denote T (ω1 ∧ ω2) by ω1 ∧ ω2 for convenience.

Example 3.1.2. Let ω1 be a k-form valued in g, and ω2 a l-form valued
in V . Given a representation ρ : G→ GL(V ), it induces a representation of
Lie algebra, that is ρ∗ : g→ gl(V ). If we consider

T : g⊗ V → V

ξ ⊗ v 7→ ρ∗(ξ)v

Then we have T (ω1 ∧ω2) is a (k+ l)-form valued in V , we just denote it by
ω1 ∧ ω2 for convenience.

Example 3.1.3. Let ω1, ω2 be forms valued in g with degree k and l re-
spectively, by our definition ω1 ∧ ω2 is a (k + l)-form valued in g. If we
consider

T : g⊗ g→ g

ξ ⊗ η 7→ [ξ, η]

Then we have T (ω1 ∧ ω2) is a (k + l)-form valued in g, we just denote it by
ω1 ∧ ω2 for convenience.

Remark 3.1.1. If Lie group G = GL(n,R), then g = gl(n,R) consists of
matrix. Thus in this case for any ξ, η ∈ g, we can define T as multiplying
them together to obtain an element in gl(n,R). However, these two notations
may cause some misunderstandings.

Example 3.1.4. Let ω be a 1-form valued in g, then for vector fields X,Y ,
one has

ω ∧ ω(X,Y ) = T ((ω ∧ ω)(X,Y ))

= T (
1

1!× 1!
(ω(X)⊗ ω(Y )− ω(Y )⊗ ω(X)))

= [ω(X), ω(Y )]− [ω(Y ), ω(X)]

= 2[ω(X), ω(Y )]

Remark 3.1.2. If T is choose as in Remark 3.1.1, then in this case we have

ω ∧ ω(X,Y ) = [ω(X), ω(Y )]

So be careful about which wedge product you’re using.

Proposition 3.1.3. Let ω be a 1-form valued in g, then

(ω ∧ ω) ∧ ω = ω ∧ (ω ∧ ω) = 0
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Proof. For arbitrary vector fields X,Y and Z, one has

(ω ∧ ω) ∧ ω(X,Y, Z) = 1

2!× 1!
{[ω ∧ ω(X,Y ), ω(Z)] + [ω ∧ ω(Y, Z), ω(X)] + [ω ∧ ω(Z,X), ω(Y )]

−[ω ∧ ω(Y,X), ω(Z)] + [ω ∧ ω(Z, Y ), ω(X)] + [ω ∧ ω(X,Z), ω(Y )]}

=
2

2!× 1!
{[[ω(X), ω(Y )], ω(Z)] + [[ω(Y ), ω(Z)], ω(X)] + [[ω(Z), ω(X)], ω(Y )]

−[[ω(Y ), ω(X)], ω(Z)] + [[ω(Z), ω(Y )], ω(X)] + [[ω(X), ω(Z)], ω(Y )]}
This equals to zero according to Jacobi identity of Lie bracket. □
Proposition 3.1.4. Let ω1, ω2 be forms valued in g with degree k and l
respectively, then

ω1 ∧ ω2 = (−1)kl+1ω2 ∧ ω1

Proof. Note that for a k-form ω1 and a l-form ω2, we have
ω1 ∧ ω2 = (−1)klω2 ∧ ω1

But in this case, there is one more −1 coming from Lie bracket. □

3.2. Maurer-Cartan form.

Definition 3.2.1 (Maurer-Cartan form). The Maurer-Cartan form θ is a
g-valued 1-form on G, defined by

θg := (Lg−1)∗

where g ∈ G.

Remark 3.2.1. For arbitrary vector v ∈ TgG which is given by d
dt

∣∣
t=0

getX ,
where X ∈ g. Direct computation shows

θg(v) = (Lg−1)∗v

=
d

dt

∣∣∣∣
t=0

g−1getX

= X ∈ g

This shows Maurer-Cartan form is a g-valued 1-form.

Proposition 3.2.1. Let G ⊆ GL(n,R) be a matrix Lie group, and g : M →
G is a smooth map, where M is a smooth manifold. Then g∗θ = g−1dg,
where θ is Maurer-Cartan form on G and g−1dg is the multiplication of
matrices.

Proof. For v ∈ TxM , direct computation shows
(g∗θ)xv = θg(x)((dg)xv)

= (Lg(x)−1)∗(dg)xv

Note that
Lg(x)−1 : GL(n,R)→ GL(n,R)

A 7→ g(x)−1A
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is a linear transformation, which impiles (Lg(x)−1)∗ = Lg(x)−1 . Thus

(g∗θ)xv = g(x)−1(dg)xv

which impiles g∗θ = g−1dg. □

Corollary 3.2.1. Let G ⊆ GL(n,R) be a matrix Lie group. Then Maurer-
Cartan form on G is given by g−1dg, where g : G → G is identity map and
g−1dg is the multiplication of matrices.

3.3. Motivation for connection on principal bundle. All in all, our
motivation is that connection of principal G-bundles can be used as a tool
to study connection of vector bundle E, if E is an associated vector bundle
of P . Recall a connection on vector bundle E is defined as the following
R-linear operator

∇ : C∞(M,E)→ C∞(M,Ω1
M (E))

satisfying Leibniz rule.
Suppose E is associated to principal G-bundle π : P → M , written as

P ×ρ V , then from Proposition 2.3.1, there is an one to one correspondence
between sections of E with G-equivariant maps from P to V . Given a section
s of E, if we use sP to denote the G-equivariant map obtained from one to
one correspondence, it’s easy to take derivatives of sP to obtain a 1-form
on P valued in V , that is a G-equivariant fiber-wise linear map from TP
to V . However, this 1-form does not by itself define a covariant derivative
of s. Indeed, by definition of connection, ∇s ∈ C∞(M,Ω1

M (E)), then by
Remark 2.3.4, a covariant derivative appears upstairs on P is supposed to
be a G-equivariant section over (P × V ) ⊗ π∗T ∗M , that is a G-equivariant
fiber-wise linear map from π∗TM to V .

To see what is missing, it is important to keep in mind that TP has some
properties that arise from the fact that P is a principal bundle over M . In
fact, we have the following exact sequence
(3.1) 0→ kerπ∗ → TP → π∗TM → 0

This exact sequence is quite important, let’s make following remarks:

Remark 3.3.1. The map from kerπ∗ is clearly an inclusion. And the surjec-
tive map from TP to π∗TM is characterized as follows

TP → π∗TM ⊆ P × TM
v 7→ (p, π∗v)

where v ∈ TpP .

Remark 3.3.2. kerπ∗ is isomorphic to trivial bundle P × g. Indeed, we have
the following bundle isomorphism

ψ : P × g→ kerπ∗

(p,X) 7→ σ(X)
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where σ(X)p := d
dt

∣∣
t=0

petX is called fundamental vector field of X. It’s
clear σ(X) ∈ kerπ∗, since for each p ∈ P ,

π∗(σ(X)p) =
d

dt

∣∣∣∣
t=0

π(petX)

=
d

dt

∣∣∣∣
t=0

π(p)

= 0

Remark 3.3.3 (G-equivariance of exact sequence). The action of G on P can
be lifted to the exact sequence (3.1). Let Rg : P → P denote the action of
g ∈ G on P , given by p 7→ pg.
(1) The G action on TP is given by (Rg)∗ : TP → TP , and it descends to

kerπ∗ since if v ∈ kerπ∗, then
π∗((Rg)∗v) = (π ◦Rg)∗(v)

= π∗(v)

= 0

(2) The G action on π∗TM is given by sending defined by sending a pair
(p, v) ∈ P × TM to the pair (pg, v). It’s well-defined, that is (pg, v) ∈
π∗TM , since π(pg) = π(p) = π(v).

Furthermore, we claim the exact sequence (3.1) is equivariant with respect
to the lifts.
(1) It automatically holds for inclusion map from kerπ∗ to TP , since G

action on kerπ∗ is obtain from descending the one on TP .
(2) It holds for the map from TP to π∗TM , since for v ∈ TP we have (Rg)∗v

is sent to (pg, π∗(Rg)∗v), that is exactly (pg, π∗v), since π ◦Rg = π.
If we want to identify kerπ∗ as P × g, we need to choose an appropriate

G-action on g properly such that the isomorphism ψ is G-equivariant. It
turns out to be adjoint representation. Indeed, direct computation shows

(Rg)∗ψ(p,X) = (Rg)∗

(
d

dt

∣∣∣∣
t=0

p exp(tX)

)
=

d

dt

∣∣∣∣
t=0

p exp(tX)g

=
d

dt

∣∣∣∣
t=0

(pg)
(
g−1 exp(tX)g

)
= ψ(pg,Ad(g−1)X)

3.4. Connection on principal bundle. So if we want to obtain a fiber-
wise linear map π∗TM → V from a fiber-wise linear map TP → V , one way
is to desire exact sequence (3.1) splitting. In other words, we desire there
exists a G-equivariant ω : TP → P × g, such that ω|P×g is identity. Such ω
is called a connection on principal G-bundle P .
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Definition 3.4.1 (connection on principal G-bundle). Let π : P → M be
a principal G-bundle. ω ∈ C∞(P,Ω1

P (g)) is called a connection on P , if it
satisfies

(1) For any X ∈ g, ω(σ(X)) = X.
(2) For any g ∈ G, (Rg)∗ω = Ad(g−1)ω, that is

ω((Rg)∗X) = Ad(g−1)ω(X)

holds for all X ∈ C∞(T, TP ).

Notation 3.4.1. A(P ) denotes the set of all connections on P .

Remark 3.4.1 (horizontal distribution viewpoint). If we define H = kerω,
then

TP = H ⊕ (P × g)

such that (Rg)∗Hp = Hpg. H is called a horizontal distribution and P × g is
called vertical distribution. Conversely, give a horizontal distribution, one
can also construct a connection.

Example 3.4.1 (connection on trivial principal G-bundle). Consider trivial
principal G-bundle P = M × G. Recall we have a Maurer-Cartan form θ,
which is a 1-form valued in g. Then we can use πG : M × G → G to pull
it back to P to obtain a 1-form on P valued in g, which is called Maurer-
Cartan form on trivial principal G-bundle, and it’s denoted ωmc. Now let’s
check ωmc gives a connection on trivial principal bundle.

(1) For any X ∈ g, we have

ωmc(σ(X)) = π∗Gθ(
d

dt

∣∣∣∣
t=0

(x, g)etX)

= θ(
d

dt

∣∣∣∣
t=0

getX)

= (Lg−1)∗(
d

dt

∣∣∣∣
t=0

getX)

=
d

dt

∣∣∣∣
t=0

etX

= X

(2) It suffices to check (Rg)
∗θ = Ad(g−1)θ holds for g ∈ G. At point h ∈ G,

and v ∈ ThG given by d
dt

∣∣
t=0

hetX , where X ∈ g. Direct computation
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shows
(Rg)

∗θh(v) = θhg(
d

dt

∣∣∣∣
t=0

hetXg)

=
d

dt

∣∣∣∣
t=0

(hg)−1hetXg

=
d

dt

∣∣∣∣
t=0

g−1etXg

= Ad(g−1)θh(v)

Remark 3.4.2. It’s clear to see kerωmc = π∗TM , since ωmc is pullback from
a 1-form on G, thus in this case

TP ∼= TM ⊕ TG
that’s exactly canonical splitting of TP .

3.5. Gauge group.

Definition 3.5.1 (gauge transformation). For a principal G-bundle π : P →
M , the gauge transformation is a G-equivariant diffeomorphism Φ: P → P
such that π = π ◦ Φ.

Notation 3.5.1. G(P ) denotes the set of all gauge transformation of P ,
which forms a group, called gauge group.

Remark 3.5.1 (terminologies). Here we make some clarifications about ter-
minologies. A local gauge is a physicist’s terminology for the choice of local
trivialization, and the change of local trivialization, that is transition func-
tions, are called gauge transformation. For physicists gauge group is exactly
structure group, and gauge group we defined here is sometimes called global
gauge group.

Remark 3.5.2 (local expression of gauge transformation). For a gauge trans-
formation Φ, its action on local trivialization ϕα : π−1(Uα)→ Uα×G, given
by ϕα(Φ(p)) = (π(p), gα(Φ(p))), induces a map φ̃α : π−1(Uα)→ G by

φ̃α(p) = gα(Φ(p))gα(p)
−1

By the G-equivariance of gα and Φ one has φ̃ is G-invariant, which impiles φ̃α
can descend to Uα, that is one can define φα : Uα → G via φ̃α(p) = φα(π(p)).
If we consider on the overlaps x ∈ Uαβ with p = π−1(x), then

φα(x) = gα(Φ(p))gα(p)
−1

= gα(Φ(p))gβ(Φ(p))
−1gβ(Φ(p))gβ(p)

−1gβ(p)gα(p)
−1

= gαβ(x)φβ(x)gαβ(x)
−1

This shows {φα} defines a global section of associated bundle obtained from
G acts on G by conjugation, that is P ×ConjG defined in Example 2.3.2. In
fact, we have the following one to one correspondence.
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Proposition 3.5.1. There is one to one correspondence between the group
G(P ) and C∞(M,P ×Conj G).

Proof. We have already seen that a gauge transformation can give an ele-
ment in C∞(M,P ×ConjG). Conversely, by Proposition 2.3.1, there is a one
to one correspondence between C∞(M,P ×Conj G) and smooth functions
f : P → G which is G-equivariant. For such f , consider Φf : P → P given
by Φf (p) = pf(p).
(1) π ◦ Φf = π, since π ◦ Φf (p) = π(pf(p)) = π(p)
(2) It’s G-equivariant since

Φf (pg) = pgf(pg)

= pgg−1f(p)g

= pf(p)g

= Φf (p)g

The two maps we constructed are clearly inverse to each other, giving the
desired correspondence. □

Now we’re going to show G(P ) acts on A(P ).

Lemma 3.5.1. For any X ∈ g and Φ ∈ G(P ), then

Φ∗(σ(X)) = σ(X)

Proof. Direct computation shows

Φ∗σ(X) = Φ∗(
d

dt

∣∣∣∣
t=0

petX)

=
d

dt

∣∣∣∣
t=0

Φ(petX)

=
d

dt

∣∣∣∣
t=0

Φ(p)etX

= σ(X)

□

Proposition 3.5.2. G(P ) acts on A(P ) via pullback.

Proof. For ω ∈ A(P ) and Φ ∈ G(P ), let’s check Φ∗ω ∈ A(P ).
(1) For any X ∈ g, we have

Φ∗ω(σ(X)) = ω(Φ∗σ(X))

= ω(σ(X))

= X
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(2) Note that (Rg)
∗Φ∗ = (Rg ◦ Φ)∗ = (Φ ◦ Rg)∗, since Φ is G-equivariant,

thus
(Rg)

∗(Φ∗ω) = Φ∗((Rg)
∗ω)

= Φ∗(Ad(g−1)ω)

= Ad(g−1)Φ∗ω

□
Remark 3.5.3. Gauge theory concerns about “space” of orbit of G(P ), that
is A(P )/G(P ).

3.6. Local expression of connection. Instead of considering connection
1-form living on P , we want to convert it into the one living on base manifold
M , since we want to use it to study connection of vector bundle over M . To
do this, we divide the process into three steps:
(1) Given a connection on trivial principal G-bundle, correspond it to a

1-form on M valued g.
(2) Figure out how does this correspondence transform under gauge trans-

formation.
(3) Since a principal G-bundle admits local trivializations, and transition

functions can be regarded as gauge transformations, then we reduce the
case to the first two steps.

3.6.1. Baby case. Fix a trivial principal G-bundle P =M×G and following
notations:
(1) π : P →M is natural projection, given by p = (x, g) 7→ x ∈M .
(2) i : M → P is natural inclusion, given by x 7→ (x, e) ∈ P .

Lemma 3.6.1. For any A ∈ C∞(M,Ω1
M (g)), there exists a unique Ã ∈

C∞(P,Ω1
P (g)) such that

(1) i∗Ã = A.
(2) Ã(σ(X)) = 0, where X ∈ g.
(3) (Rg)

∗Ã = Ad(g−1)Ã.

Proof. It suffices to construct Ã pointwisely.
(a) For p = (x, e) ∈M ×G, we have

TpP = TxM ⊕ g

Then Ã is uniquely determined at this point according to (1) and (2).
(b) At point p′ = (x, g) ∈ M × G, it’s clear p′ = pg and (Rg)∗ : TpP →

Tp′P is an isomorphism, then for arbitrary v ∈ Tp′P , we may assume
v = (Rg)∗w for some w ∈ TpP , then

Ãp′(v) = Ãpg((Rg)∗w)

= ((Rg)
∗Ã)p(w)

= Ad(g−1)Ã(w)
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□

Proposition 3.6.1. i∗ : A(P ) → C∞(M,Ω1
M (g)) is bijective, that is the

following diagram commutes

C∞(P,Ω1
P (g)) C∞(M,Ω1

M (g))

A(P )

i∗

1−1

Proof. For any A ∈ C∞(M,Ω1
M (g)), by Lemma 3.6.1 we have ωmc + Ã is

also a connection on P , thus we consider

τ : C∞(M,Ω1
M (g))→ A(P )

A 7→ ωmc + Ã

It’s clear τ is surjective, since for any ω ∈ A(P ), we have

τ(i∗(ω − ωmc)) = ωmc + ω − ωmc = ω

Now it suffices to show i∗τ = id, which impiles τ is injective thus bijective.
Indeed, for A ∈ C∞(M,Ω1

M (g)),

i∗τ(A) = i∗(ωmc + Ã) = i∗Ã = A

since i∗ωmc = 0. □

3.6.2. How to glue. Any gauge transformation Φ on trivial principal G-
bundle P =M ×G can be written as

Φ(x, g) = (x, φ(x)g)

where φ : M → G is smooth map.

Proposition 3.6.2. For ω ∈ A(P )

i∗Φ∗ω = Ad(φ−1)i∗ω + φ∗θ

where θ is Maurer-Cartan form.

Proof. For any ω ∈ A(P ), it can be written as ω = ωmc + Ã according to
Proposition 3.6.1. Then

i∗Φ∗ω = i∗Φ∗(ωmc + Ã)

(1)
= i∗Φ∗π∗Gθ + i∗Φ∗Ã

(2)
= φ∗θ + i∗Φ∗Ã

where
(1) holds from definition of Maurer-Cartan form.
(2) holds from πG ◦Φ◦ i(x) = πG ◦Φ(x, e) = πG(x, φ(x)) = φ(x) for x ∈M .
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Now it suffices to compute i∗Φ∗Ã. For v ∈ TxM , one has

(i∗Φ∗Ã)x(v) = Φ∗Ã(x,e)(v, 0)

= Ã(x,ϕ(x))(v, 0)

= (Rϕ(x))
∗Ã(x,e)(v, 0)

= Ad(φ−1(x))(i∗Ã)x(v)

Thus we have
i∗(Φ∗ω) = φ∗θ +Ad(φ−1)i∗Ã

(3)
= φ∗θ +Ad(φ−1)i∗ω

where (3) holds from i∗ωmc = 0 and ω = ωmc + Ã. □

3.6.3. General case. Let π : P → M be a principal G-bundle with local
trivializations {Uα, ϕα}, and iα : Uα → Uα × G sends x to (x, e). For a
connection ω ∈ A(P ), we define ωα := (ϕ−1

α )∗ωπ−1(Uα), which is a g-valued
1-form on Uα ×G, and

Aα := i∗αωα ∈ C∞(Uα,Ω
1
Uα

(g))

Remark 3.6.1. In Example 2.2.3 we introduce local section σα with respect
to local trivialization {Uα, ϕα}, it’s clear to see Aα = σ∗α(ω|π−1(Uα)).

Proposition 3.6.3.

A(P ) 1−1←→ {(Aα) ∈
∏
α

C∞(Uα,Ω
1
M (g)) | Aβ = Ad(g−1

αβ )Aα + g−1
αβdgαβ}

Proof. Note that
Φ: Uαβ ×G→ Uαβ ×G

(x, h) 7→ (x, gαβ(x)h)

gives a gauge transformation of trivial principal G-bundle Uαβ × G. Then
for ω ∈ A(P ), one has

i∗βΦ
∗ωα

(1)
= Ad(g−1

αβ )(i
∗
αωα) + g∗αβθ

(2)
= Ad(g−1

αβ )Aα + g−1
αβdgαβ

where gαβ : Uαβ → G are transition functions, and
(1) holds from Proposition 3.6.2.
(2) holds from Proposition 3.2.1.

Note that
ωα = (ϕ−1

α )∗ω|π−1(Uα)

= (ϕ−1
α )(ϕβ)

∗(ϕ−1
β )∗ω|π−1(Uα)

= (ϕβ ◦ ϕ−1
α )∗ωβ

= (Φ−1)∗ωβ
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This shows
i∗βΦ

∗ωα = i∗βωβ = Aβ

Conversely, suppose {Aα} is a set of g-valued 1-form satisfying
Aβ = Ad(g−1

αβ )Aα + g−1
αβdgαβ

By Lemma 3.6.1 there exists a g-valued 1-form Ãα on π−1(Uα) such that
(1) (σα)

∗Ãα = Aα.
(2) Ãα(σ(X)) = 0 for X ∈ g.
(3) (Rg)

∗Ãα = Ad(g−1)Ãα.
Direct computation shows {Ãα} gives a g-valued 1-form Ã defined on P ,
and then Ã + ωmc gives a connection ω on P . Furthermore, these two
constructions are inverse to each other, which completes the proof. □
Corollary 3.6.1. A(P ) is an affine space modelled on C∞(M,Ω1

M (P ×Ad

g)).
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4. Curvature of principal bundle

4.1. Definition.
Definition 4.1.1 (curvature). Let P be a principalG-bundle and ω ∈ A(P ).
Curvature of ω is defined as

Ω := dω +
1

2
ω ∧ ω ∈ C∞(P,Ω2

P (g))

Proposition 4.1.1.
(Rg)

∗Ω = Ad(g−1)Ω

where g ∈ G.
Proof. It follows from pullback commutes with exterior derivative and wedge
product. □
Proposition 4.1.2. Let P =M×G be trivial principal G-bundle equipped
with connection ωmc, then Ω = 0.
Proof. It suffices to check Maurer-Cartan form θ ∈ C∞(G,Ω1

G(g)) satisfying

dθ +
1

2
θ ∧ θ = 0

which is called Maurer-Cartan equation. Firstly we suppose X,Y are left-
invariant vector fields, then

θ(X) = (Lg−1)∗Xg = (Lg−1)∗(Lg)∗Xe = Xe

is constant. Thus

dθ(X,Y ) = −θ([X,Y ]) = −1

2
θ ∧ θ(X,Y )

since X(θ(Y )) = Y (θ(X)) = 0. But left-invariant vector fields span the
tangent space at any point, thus Maurer-Cartan equation holds for arbitrary
vector fields X,Y . □
Theorem 4.1.1 (Bianchi identity).

dΩ + ω ∧ Ω = 0

Proof.
dΩ = d(dω +

1

2
ω ∧ ω)

=
1

2
dω ∧ ω − 1

2
ω ∧ dω

= −ω ∧ dω

= −ω ∧ (Ω− 1

2
ω ∧ ω)

= −ω ∧ Ω

□
Definition 4.1.2 (horizontal form). Let α be a k-form on P valued in vector
space V , it’s called horizontal if ισ(X)α = 0 for arbitrary X ∈ g.
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Lemma 4.1.1. For X ∈ g, the flow of σ(X) is given by
φt(p) = petX

where p ∈ P .
Proposition 4.1.3. Ω is a horizontal 2-form.
Proof. Direct computation shows
(1) For X,Y ∈ g, one has
dω(σ(X), σ(Y )) = σ(X)(ω(σ(Y )))− σ(Y )(ω(σ(X)))− ω([σ(X), σ(Y )])

(1)
= −[ω(σ(X)), ω(σ(Y ))]

(2)
= −1

2
ω ∧ ω(σ(X), σ(Y ))

where
(1) holds from ω(σ(Y )) and ω(σ(X)) are constant functions valued Y
and X respectively.
(2) holds from Example 3.1.3.

(2) If X ∈ g and Y is a horizontal vector field, note that
1

2
ω ∧ ω(σ(X), Y ) = 0

since ω(Y ) = 0, and direct computation shows
dω(σ(X), Y ) = σ(X)(ω(Y ))− Y ω(σ(X))− ω([σ(X), Y ])

(3)
= −ω([σ(X), Y ])

(4)
= −ω(Lσ(X)Y )

where
(3) holds from ω(Y ) = 0 and ω(σ(X)) is a constant function valued X.
(4) holds from property of Lie derivative.

By definition one has

(Lσ(X)Y )p = lim
t→0

(φ−t)∗Yϕt(p) − Yp
t

where φt is the flow generated by σ(X) and p ∈ P . Thus

ωp((Lσ(X)Y )p)
(5)
= ωp(lim

t→0

(φ−t)∗Yϕt(p) − Yp
t

)

(6)
= lim

t→0

1

t

{
ωp((φ−t)∗Yϕt(p))− ωp(Yp)

}
(7)
= lim

t→0

1

t

{
((Re−tX )∗ωp)(YpetX )− ωp(Yp)

}
= lim

t→0

1

t

{
Ad(etX)ωpetX (YpetX )− ωp(Yp)

}
= 0

where
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(5) holds from definition of Lie derivative.
(6) holds from ω is a smooth form.
(7) holds from Lemma 4.1.1.

□

Remark 4.1.1 (curvature vanishes and integrability). Given a horizontal dis-
tribution H ⊆ TP , we define the horizontal projection h : TP → TP to be
the projection onto the horizontal distribution along the vertical distribu-
tion. Since both vertical and horizontal distribution are invariant under the
action of G, so is h. Then Ω = h∗dω. Indeed, it suffices to show for vector
fields X,Y , one has

dω(hX, hY ) = dω(X,Y ) +
1

2
ω ∧ ω(X,Y )

Consider the following cases:
(1) Let X,Y be horizontal. In this case there is nothing to prove, since

ω(X) = ω(Y ) = 0 and hX = X,hY = Y .
(2) If one of X,Y is vertical, then it’s clear both sides are zero, since both

Ω and h∗dω are horizontal.
As a consequence one has

Ω(X,Y ) = dω(hX, hY )

= −ω([hX, hY ])

where X,Y are two vector fields on P . This shows Ω(X,Y ) = 0 if and only
if [hX, hY ] is horizontal. In other words, the curvature of the connection
measures the failure of integrability of the horizontal distribution H ⊆ TP .

4.2. Local expression of curvature and basic form. Let π : P → M
be a principal G-bundle with local trivializations {Uα, ϕα}. If we define

Θα = σ∗α(Ω|π−1(Uα)) ∈ C
∞(Uα,Ω

2
Uα

(g))

By definition one has

Θα = dAα +
1

2
Aα ∧Aα

Lemma 4.2.1. For x ∈ Uαβ and v ∈ TxM

(σβ)∗(v) = (Rgαβ(x))∗((σα)∗v) + (σα(x))∗((gαβ)∗v)

where (σ(x))∗ is the differential of the following map

G→ P

h 7→ σα(x)h
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Proof. Let γ(t) be a curve with γ(0) = x and γ′(0) = v. Direct computation
shows

(σβ)∗(v) =
d

dt

∣∣∣∣
t=0

σβ(γ(t))

(1)
=

d

dt

∣∣∣∣
t=0

σα(γ(t))gαβ(γ(t))

=
d

dt

∣∣∣∣
t=0

σα(γ(t))gαβ(x) +
d

dt

∣∣∣∣
t=0

σα(x)gαβ(γ(t))

= (Rgαβ(x))∗((σα)∗v) + (σα(x))∗((gαβ)∗v)

where (1) follows from Proposition 2.2.4. □
Remark 4.2.1. From above proof it’s clear to see (σα(x))∗((gαβ)∗v) is a ver-
tical vector, which is a crucial property.
Proposition 4.2.1.

Θβ = Ad(g−1
αβ )Θα

where gαβ : Uαβ → G is transition function.
Proof. For x ∈ Uαβ and v, w ∈ TxM , direct computation shows

(Θβ)x(v, w) = Ωσβ(x)((σβ)∗v, (σβ)∗w)

(1)
= Ωσβ(x)((Rgαβ(x))∗(σα)∗v, (Rgαβ(x))∗(σα)∗w)

= ((Rgαβ(x)
)∗Ω)σα(x)((σα)∗v, (σα)∗w)

(2)
= Ad(gαβ(x)

−1)Ωσα(x)((σα)∗v, (σα)∗w)

= Ad(gαβ(x)
−1)(Θα)x(v, w)

where
(1) holds from Ω is horizontal and remark of Lemma 4.2.1.
(2) holds from Ω is Proposition 4.1.1.

□
Definition 4.2.1 (basic form). Let ρ : G → GL(V ) be a representation of
G, a k-form α on P valued in V is called a basic form, if it satisfies
(1) α is horizontal.
(2) It’s ρ-equivariant, that is

(Rg)
∗α = ρ(g−1)α

where g ∈ G.
Notation 4.2.1. The set of all basic k-forms on P valued V is denoted by
C∞(P,ΩkP (V ))basic.
Theorem 4.2.1. Let ρ : G → GL(V ) be a linear representation, and E =
P ×ρ V . Then

C∞(M,ΩkM (E))
1−1←→ C∞(P,ΩkP (V ))basic
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Example 4.2.1. For k = 0, one has
C∞(P,Ω0

P (V ))basic = {f : P → V | f(xg) = ρ(g−1)f(x)}
Thus Theorem 4.2.1 recovers Proposition 2.3.1.
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5. From connection on principal to connection on vector
bundle

5.1. Connection on vector bundle. Let π : E →M be a vector bundle of
rank n, and {Uα, ϕα} is a local trivialization of E with transition functions
{gαβ}. If {ei} is the standard basis of Rn consisting of row vectors3, then
there is a local frame over Uα given by

eαi := ϕ−1
α ((x, ei))

Direct computation shows

eβi = ϕ−1
α ◦ ϕα ◦ ϕ−1

β ((x, ei))

= ϕ−1
α ((x, gαβei))

= (gαβ)
j
ie
α
j

where j is row index and i is column index of (gαβ)ji . Let ∇ be a connection
on E, which is locally given by {Aα} ∈

∏
C∞(Uα,Ω

1
M (gl(n,R))), that is

∇eαi = (Aα)
j
i ⊗ e

α
j

Direct computation shows

∇eβi = ∇((gαβ)jie
α
j )

= d(gαβ)
j
i ⊗ e

α
j + (gαβ)

j
i (Aα)

k
j ⊗ eαk

= (d(gαβ)
k
i + (gαβ)

j
i (Aα)

k
j )⊗ eαk

On the other hand, one has

∇eβi = (Aβ)
j
i ⊗ e

β
j

= (Aβ)
j
i (gαβ)

k
j ⊗ eαk

This shows
(Aβ)

j
i (gαβ)

k
j = d(gαβ)

k
i + (gαβ)

j
i (Aα)

k
j

and in matrix notation one has

(5.1) Aβ = g−1
αβAαgαβ + g−1

αβdgαβ

That is to say, if we want to give a connection on E, it suffices to gives
{Aα} ∈

∏
C∞(Uα,Ω

1
M (gl(n,R))) satisfying relation (5.1).

5.2. Connection on associated vector bundle. In this section we will
show if E is an associated vector bundle of principal G-bunlde P over M ,
then connection ω on P gives a connection on E.

3To be explicit, ei = (0, . . . , 1︸︷︷︸
i-th

, . . . , 0).
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5.2.1. Baby version. Let E be a vector bundle over M , and it’s realized as
an associated vector bundle of principal GL(n,R)-bundle P by trivial repre-
sentation. Let {Uα} be a local trivialization of P with transition functions
{gαβ}. For connection ω ∈ A(P ), by Proposition 3.6.3 one has a set of
gl(n,R)-valued 1-forms {Aα} with

Aβ = Ad(g−1
αβ )Aα + g−1

αβdgαβ

Note that Aα is a 1-form valued gl(n,R), and in matrix group adjoint rep-
resentation can be expressed explicitly, that is

Ad(g−1
αβ )Aα = g−1

αβAαgαβ

This shows {Aα} which is obtained from ω satisfies relation (5.1), and thus
it gives a connection on E.

5.2.2. General case. Let P be a principal G-bundle with local trivializa-
tions {Uα} and transition functions {gαβ}, and suppose E = P ×ρ Rn is
an associated vector bundle given by representation ρ : G → GL(n,R). For
connection ω ∈ A(P ), by Proposition 3.6.3 one has a set of g-valued 1-forms
{Aα} with

Aα = Ad(g−1
αβ )Aβ + g−1

αβdgαβ

Let ρ∗ : g → gl(n,R) be the differential of ρ, and note that the following
diagram commutes

G Aut(g)

GL(n,R) gl(n,R)

Ad

ρ ρ∗

Ad

Then {ρ∗(Aα)} is a set of gl(n,R)-valued 1-forms satisfying
ρ∗(Aα) = ρ∗(Ad(g

−1
αβ )Aβ) + ρ∗(g

−1
αβdgαβ)

= ρ(gαβ)
−1ρ∗(Aβ)ρ(gαβ) + ρ∗(g

−1
αβdgαβ)

= ρ(gαβ)
−1ρ∗(Aβ)ρ(gαβ) + ρ(gαβ)

−1dρ(gαβ)

This shows {ρ∗(Aα)} gives a connection on E, since the transition function4

of E is {ρ(gαβ)}.

4See Remark 2.3.1.
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6. Flat connection and holonomy

6.1. Lifting of curves. Let π : P → M be a principal G-bundle equipped
with connection ω, consider smooth curve γ : [0, 1] → M and a point p ∈
π−1(γ(0)), we claim there exists a unique smooth map γ̃ : [0, 1] → P such
that
(1) The following diagram commutes:

P

[0, 1] M

π

γ

γ̃

(2) γ̃′(t) is horizontal.
(3) γ̃(0) = p.
Proof. For convenience we assume G is a matrix group, and without lose of
generality, we may assume P is trivial principal G-bundle M ×G, since it’s
a local problem. In this case we write γ̃ = (γ(t), g(t)), it’s clear π ◦ γ̃ = γ.
For conditions (2) and (3), it’s an ODE with initial value in fact: Note that
we can write connection ω = ωmc + Ã, so γ̃′(t) is horizontal if and only if

(ωmc + Ã)(γ̃′(t)) = (ωmc + Ã)((γ′(t), g′(t))

= g−1(t)g′(t) + Ã((γ′(t), g′(t)))

= g−1(t)g′(t) + Ad(g−1(t))Aγ(t)(γ
′(t))

= g−1(t)g′(t) + g−1(t)Aγ(t)(γ
′(t))g(t)

= 0

This completes the proof. □
6.2. Flat connection.
Definition 6.2.1 (flat connection). Let P be a principal G-bundle, a con-
nection ω ∈ A(P ) is called flat, if its curvature form Ω = 0.
Theorem 6.2.1. The following statements are equivalent:
(1) ω is flat.
(2) There exists a local trivialization {Uα, ϕα} such that ω|π−1(Uα) = (ϕα)

∗ωmc.
Hint. The curvature vanishes if and only if horizontal distribution is inte-
grable. □
Corollary 6.2.1. The following statements are equivalent:
(1) There is a flat connection on P .
(2) There is a local trivializations {Uα, ϕα} such that transition functions
{gαβ : Uα ∩ Uβ → G} are locally constant functions.

Proof. From (2) to (1). By Proposition 3.6.3 a connection ω ∈ A(P ) is given
by {Aα} such that

Aβ = Ad(g−1
αβ )Aα + g−1

αβdgαβ
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If gαβ are locally constant functions, then dgαβ = 0, and thus Aα = 0 gives
a flat connection.

From (1) to (2). If ω is a flat connection, by Theorem 6.2.1 there exists
a local trivialization {Uα, ϕα} of P such that ω|π−1(Uα) are (ϕα)

∗ωmc. Then
with respect to this local trivialization, one has

Aα = (σα)
∗(ϕα)

∗ωmc = 0

for all α. This shows g−1
αβdgαβ = 0 for all α, β, that is gαβ are locally constant

functions. □
Corollary 6.2.2. The flat connection is equivalent to R-valued local sys-
tems.
6.3. Holonomy and Riemann-Hilbert correspondence. Let γ : [0, 1]→
M be a smooth closed curve with lifting γ̃ : [0, 1] → P starting at γ̃(0) ∈
π−1(γ(0)). Note that

γ̃(1) ∈ π−1(γ(1)) = π−1(γ(0))

So there exists g ∈ G such that γ̃(1) = γ̃(0)g, since fiber is an orbit of G.
The element g is called holonomy, which is denoted by Hol(γ, p), since it
only depends on γ and p.
Proposition 6.3.1.
(1) For p, pg ∈ P , where g ∈ G, one has

Hol(γ, pg) = g−1Hol(γ, p)g

(2) Let γ1, γ2 be two smooth closed curves, then
Hol(γ1γ2, p) = Hol(γ1, p)Hol(γ2, p)

Proof. It’s clear. □
From (2) of above proposition, Hol can be regarded as a group homomor-

phism to some extend, so if we want to give a homomorphism
Hol : π1(M)→ G

It suffices to check when Hol(γ, p) is independent of homotopy class. Con-
sider the following homotopy

γs : (−ε, ε)× [0, 1]→M

such that γ0 = γ. If we write its lifting on local trivialization as γ̃s(t) =
(γs(t), gs(t)), then the following equation holds

∂gs
∂t

(t) +Aγ(t)(
∂gs
∂t

(t))gs(t) = 0

So if ω is a flat connection, then it reduces to for arbitrary s ∈ (−ε, ε), one
has ∂gs

∂t (t) = 0. This shows it’s independent of s.
Theorem 6.3.1 (Riemann-Hilbert correspondence).

{flat connections on P}/isomorphism 1−1←→ Hom(π1(M), G)/conjugate
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Part 2. Chern-Weil theory
7. Chern-Weil homomorphism

7.1. Invariant polynomial.

7.1.1. General theory. Let V be a vector space over R and Symk V ∗ the space
of symmetric k-linear mappings f from V × · · · × V to R, and SymV ∗ =⊕∞

k=0 Sym
k V ∗ is a commutative algebra over R, where the multiplication

is given by

fg(x1, . . . , xk+l) =
1

(k + l)!

∑
σ∈Sk+l

f(xσ(1), . . . , xσ(k))g(xσ(k+1), . . . , xσ(k+l))

where f ∈ Symk V ∗, g ∈ Syml V ∗ and xi ∈ V . Let P k(V ) denote the space
of homogeneous polynomial functions of degree k on V . Then P (V ) =⊕∞

k=0 P
k(V ) is the algebra of polynomial functions on V .

Proposition 7.1.1. The mapping ϕ : SymV ∗ → P (V ) defined by
(ϕf)(t) := f(t, . . . , t)

for f ∈ Symk(V ) and t ∈ V is an isomorphism.

Proof. See Proposition 2.1 in [KN96]. □
Proposition 7.1.2. Given a group of linear transformation of V , let SymG V

∗

and PG(V ) be the subalgebra of SymV ∗ and P (V ), respectively, consisting
of G-invariant elements. Then isomorphism in Proposition 7.1.1 gives an
isomorphism from SymG V

∗ to PG(V ).

Proof. The proof is straightforward and is left to the reader. □

7.1.2. G-invariant polynomial. Let G be a Lie group with Lie algebra g and
Symk g∗ be the symmetric k-linear functionals, that is,

Symk g∗ = {f : g× · · · × g︸ ︷︷ ︸
k times

→ R | f is k-linear and symmetric}

Furthermore, G acts on Symk g∗ as follows
gf(x1, . . . , xk) := f(Ad(g)x1, . . . ,Ad(g)xk)

where f ∈ Symk g∗ and x1, . . . , xk ∈ g.

Definition 7.1.1 (G-invariant polynomial). The set of G-invariant polyno-
mials of degree k is

Ik(g) := {f ∈ Symk g∗ | gf = f, ∀g ∈ G}
and

I(g) :=
⊕
k≥0

Ik(g)

which is a commutative algebra over R.
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Proposition 7.1.3. The algebra I(g) may be identified with the algebra of
Ad(G)-invariant polynomial functions on g.

7.2. Chern-Weil homomorphism. Let π : P → M be a principal G-
bundle, and ω is a connection on P with curvature Ω.

Lemma 7.2.1. Let α̃ be a k-form on P such that
(1) R∗

g(α̃) = α̃.
(2) α̃ is horizontal.
Then there exists a unique k-form α on M such that α̃ = π∗α.

Proof. For any vector fields X1, . . . , Xk on M , there are Rg-invariant vector
fields X̃1, . . . , X̃k such that π∗(X̃i = Xi, where i = 1, . . . , k. Given α̃ as
above, we define

α(X1, . . . , Xk) = α̃(X̃1, . . . , X̃k)

It suffices to check it’s well-defined, that is it’s independent of the choice
of X̃1, . . . , X̃k. Indeed, suppose X̃ ′

1, . . . , X̃
′
k are another Rg-invariant vector

fields with π∗(X̃
′
i) = Xi, where i = 1, . . . , k. Then

α̃(X̃1, . . . , X̃k)− α̃(X̃ ′
1, . . . , X̃

′
k) = α̃(X̃1 − X̃ ′

1, . . . , X̃k − X̃ ′
k)

= 0

since X̃i − X̃ ′
i is horizontal for i = 1, . . . , k. The uniqueness follows from π

is a submersion. □
Proposition 7.2.1. For f ∈ Ik(g), one has

f(Ω) := f(Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
k times

)

is a 2k-form5 on P , and
(1) f(Ω) is horizontal, G-invariant and closed.
(2) there exists a unique 2k-form f(Θ) on M such that π∗(f(Θ)) = f(Ω)

and df(Θ) = 0.
(3) [f(Θ)] ∈ H2k(M,R) is independent of the choice of connection ω.

Proof. For (1). f(Ω) is horizontal since Ω is, and it’s G-invariant since
(Rg)

∗(f(Ω)) = f((Rg)
∗Ω)

(a)
= f(Ad(g−1)Ω)

(b)
= f(Ω)

where
(a) holds from Ω is G-equivariant.
(b) holds from f is G-invariant.

5Here we regard Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
k times

as a
⊗k

i=1 g valued 2k-form on P , so f(Ω) is well-defined.
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To see it’s closed, direct computation shows

df(Ω) = f(dΩ ∧ · · · ∧ Ω) + · · ·+ f(Ω ∧ · · · ∧ dΩ)

(c)
= f(−ω ∧ Ω ∧ · · · ∧ Ω) + · · ·+ f(Ω ∧ · · · ∧ −ω ∧ dΩ)

where (c) holds from Bianchi identity. Since kerω is horizontal distribution,
it suffices to show df(Ω) is horizontal to conclude df(Ω) = 0. Let X be a
vertical vector field, by proof of Proposition 4.1.3 one has LXf(Ω) = 0 since
f(Ω) is horizontal. Then by Cartan formula one has

0 = LXf(Ω)
= d ◦ ιXf(Ω) + ιX ◦ df(Ω)
= ιXdf(Ω)

This completes the proof of (1).
For (2). The unique existence of f(Θ) follows from Lemma 7.2.1, and it’s

closed since
π∗(df(Θ)) = d(π∗(f(Θ))) = df(Ω) = 0

For (3). Suppose ω′ is another connection on P . Let P ×R be a principal
G-bundle over M × R, and ω̃ = (1 − t)ω + tω′ is a connection on it with
curvature Ω̃. Then f(Ω̃) gives a unique 2k-form Θ̃ on M ×R. If we use i0, i1
to denote maps from M to M × {0} and M × {1} respectively, then

f(Θ) = i∗0f(Θ̃)

f(Θ′) = i∗1f(Θ̃)

Since i0 is homotopic to i1, the homotopy invariance of de Rham cohomology
impiles i∗0, i∗1 : H2k(M × R,R) → H2k(M,R) coincide, and thus [f(Θ)] =
[f(Θ′)]. □

Theorem 7.2.1 (Chern-Weil homomorphism). There is a ring homomor-
phism

W (P, -) : I(g)→ H∗(M,R)
f 7→ [f(Θ)]

Proof. For f ∈ Ik(g), g ∈ I l(g), it suffices to show

fg(Θ) = f(Θ) ∧ g(Θ)

Note that π∗ is injective, so it suffices to check

fg(Ω) = f(Ω) ∧ g(Ω)

which is clear. □

Remark 7.2.1.
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7.3. Transgression. In this section we will show for a given principal G-
bundle P and a connection ω on it with curvature Ω, [f(Ω)] = 0 ∈ H2k(P,R),
where f ∈ Ik(g), k ≥ 1. To see this, let’s introduce the funtorial Chern-Weil
homomorphism. Given the following homomorphism between principal G-
bundles

P ′ P

M ′ M

π′ π

φ

where P ′ = ϕ∗P .

Proposition 7.3.1 (funtorial). For all f ∈ I(g), we have

W (ϕ∗P, f) = ϕ∗W (P, f)

Proof. Given a connection ω ∈ A(P ) with curvature Ω, and use ω′ to denote
the pullback connection ϕ̃∗ω ∈ A(P ′) with curvature Ω′. For any f ∈ I(g),
it’s clear

f(Ω′) = ϕ̃∗f(Ω)

Then
(π′)∗(f(Θ′)) = ϕ̃∗π∗f(Θ) = (π′)∗ϕ∗f(Θ′)

which impiles f(Θ′) = ϕ∗f(Θ), since (π′)∗ is injective. □

Example 7.3.1. Let P =M ×G be trivial principal G-bundle, consider
M ×G G

M {pt}
π′ π

φ

So for any f ∈ Ik(g), k ≥ 1, we have

W (P, f) = ϕ∗W (G, f) = 0

since W (G, f) ∈ H2k({pt}) = 0 if k ≥ 1.

Remark 7.3.1. This example shows if P is a trivial principal G-bundle, then
the Chern-Weil homomorphism W (P, -) is trivial.

Now let’s consider the following case
f∗P P

P M

π′ π

φ

where ϕ = π. In fact we can write f∗P down as
ϕ∗P = {(x′, x) ∈ P × P | ϕ(x′) = π(x)}

= {(x′, x) ∈ P × P | π(x′) = π(x)}
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It’s clear it has global section, given by
s : P → ϕ∗P

x 7→ (x, x)

so ϕ∗P is trivial principal bundle. Thus for any f ∈ Ik(g), k ≥ 1, we have
W (ϕ∗P, f) = 0 ∈ H2k(P )

However, funtorial impiles
W (ϕ∗P, f) = ϕ∗W (P, f)

= ϕ∗[f(Θ)]

= π∗[f(Θ)]

= [f(Ω)]

This shows [f(Ω)] = 0 in H2k(P,R).
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8. Characteristic class

8.1. Chern class.
8.1.1. Chern-Weil viewpoint.
Proposition 8.1.1. Let G = U(n) with Lie algebra g = u(n). For any
X ∈ g, consider

det(I − t

2π
√
−1

X) =
n∑
k=0

ck(X)tk

Then
(1) For each 1 ≤ k ≤ n, ck ∈ I(g).
(2) I(g) is generated by c1, . . . , cn.
Proof. For (1). For arbitrary g ∈ G, note that

det(I − t

2π
√
−1

Ad(g)X) = det(I − t

2π
√
−1

gXg−1)

= det(I − t

2π
√
−1

X)

which impiles ck ∈ I(g).
For (2). Note that any X ∈ g is diagonalizable, so without lose of general-

ity we may assume X = diag{λ1, . . . , λn}. Then I(g) consists of symmetric
polynomial of λ1, . . . , λn. Then the proof follows since any symmetric func-
tion can be expressed in terms of elementary symmetric functions and

c1 = −
1

2π
λ1 + · · ·+ λn

...

cn = (
1

2π
)nλ1 . . . λn

□
Let E be a complex vector bundle of rank n over M equipped with a

hermitian metric. If we consider its frame bundle we obtain a U(n)-principal
bundle π : P →M , then arbitrary connection ω on P with curvature Ω gives
a unique 2k-form ck(Θ) on M such that π∗(ck(Θ)) = ck(Ω) by Chern-Weil
theory.
Definition 8.1.1 (Chern class). The k-th Chern class of E is defined as

ck := [ck(Θ)] ∈ H2k(M,C)
Definition 8.1.2 (Total Chern class). The total Chern class of E is defined
as c(E) :=

∑∞
i=1 ci(E).

Definition 8.1.3 (Chern polynomial). The Chern polynomial is defined as

c(t) = det(I − t

2π
√
−1

Θ) =
n∑
k=0

ckt
k
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Proposition 8.1.2.
ck ∈ H2k(M,R)

Proof. Note that u(n) consists of skew-symmetric matrices, so for arbitrary
X ∈ u(n), one has

det(I − t

2π
√
−1

X) = det(I +
t

2π
√
−1

X
t
)

= det(I − t

2π
√
−1

X)

=

n∑
k=0

ckt
k

which impiles ck = ck. □
Proposition 8.1.3. Let E be the complex vector bundle obtained from E
by taking conjugate. Then ck(E) = (−1)kck(E).

Proposition 8.1.4 (Whitney sum formula). Let E,F be two complex vec-
tor bundles. Then

c(E ⊕ F ) = c(E)c(F )

Proof. If ∇E ,∇F are connections on E,F respectively with curvature ΘE

and ΘF , then∇E⊕∇F gives a connection on E⊕F with curvature
(

ΘE 0
0 ΘF

)
.

This shows

c(E ⊕ F ) = det

(
I − 1

2π
√
−1

ΘE 0

0 I − 1
2π

√
−1

ΘF

)

= det(I − 1

2π
√
−1

ΘE) det(I −
1

2π
√
−1

ΘF )

= c(E)c(F )

□
Corollary 8.1.1. Let E be a complex vector bundle and F be a trivial
complex bundle. Then

c(E ⊕ F ) = c(E)

8.1.2. Axiom viewpoint. In this section we introduce the axiomatic defini-
tion of Chern classes which is given by Hirzebruch and Husemoller. To be
explicit, the Chern class of complex vector bundle is given by the following
four axioms.
(1) For each complex vector bundle E over a smooth manifold M and for

each integer i ≥ 0, the i-th Chern class ci(E) ∈ H2i(M,R) is given and
c0(E) = 1.

(2) Let E be a complex vector bundle over M and f : M → M ′ a smooth
map. Then

c(f∗E) = f∗(c(E)) ∈ H∗(M ′,R)
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(3) Let E,F are two complex vector bundles. Then

c(E ⊕ F ) = c(E)c(F )

(4) −c1(OCP1(−1)) is the generator6 of H2(CP1,Z), where OCP1(−1) is the
tautological line bundle on CP1.

Theorem 8.1.1. Let E be a complex vector bundle. The Chern classes of
E defined by axioms is the same as the one defined by Chern-Weil theory.

Proof. Here it suffices to show Chern classes of E defined by Chern-Weil
theory satisfy the axiom (4), which is a normalization condition. Let P =
C2 \{0} → CP1 be the natural projection. There is a principal U(1)-bundle
structure on P , given by U(1) acting on P as

P ×U(1)→ P

((z0, z1), λ) 7→ (z0λ, z1λ)

By a direct computation of transition functions, one can see OCP1(−1) can
be realized as its associated vector bundle via trivial representation. Now
we define a 1-form ω on P as follows

ω =
(z, dz)

(z, z)

where (z, dz) = z0dz0 + z1dz1 and (z, z) = z0z0 + z1z1. A straightforward
verification yields ω is a connection 1-form on P with curvature form

Ω = dω =
(z, z)(dz, dz)− (z, dz) ∧ (z, dz)

(z, z)2

where
(dz, dz) = dz0 ∧ dz0 + dz1 ∧ dz1

Let U be the open subset of CP1 defined by z0 6= 0. Since CP1 \U is just
a point, so it suffices to compute −

´
U c1(OCP1(−1)). If we set w = z1/z0,

then w gives a local coordinate of U . Substituting z1 = z0w in the formula
of Ω, one has

Θ =
dw ∧ dw

(1 + ww)2

Thus

−
ˆ
U
c1(OCP1(−1)) = −

ˆ
U

√
−1
2π

dw ∧ dw

(1 + ww)2
= 1

where the last equality can be derived from setting w = re2π
√
−1θ. □

6In other words, c1(OCP1(−1)) evaluated on the fundamental 2-cycle CP1 equal to −1,
which is equivalent to say

´
CP1 c1(OCP1(−1)) = −1.
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8.1.3. Chern character. Let G = U(n) with Lie algebra g = u(n) and E
be a complex vector bundle over smooth manifold M with frame bundle P .
Consider the following power series which is Ad-invariant.

tr

(
exp(

−1
2π
√
−1

t)

)
Suppose ω is a connection 1-form on P with curvature Ω. Then by Chern-
Weil theory

tr

(
exp(

−1
2π
√
−1

Ω)

)
descends to an element in H∗(M,R), which is denoted by Ch(E) and called
Chern character of E.

Proposition 8.1.5. If c(E) =
∏n
i=1(1 + xi), then Ch(E) =

∑n
i=1 expxi.

Proof. For arbitrary X ∈ g, without lose of generality we can assume X =
diag{

√
−1λ1, . . . ,

√
−1λn}. Then

tr

(
exp(

−1
2π
√
−1

X)

)
=

n∑
i=1

exp(− λi
2π

)

On the other hand, one has

det(I − 1

2π
√
−1

X) = (1− λ1
2π

) . . . (1− λn
2π

)

□

Remark 8.1.1 (splitting principle). It is interesting to note that c(E) =∏
i c(Li), where Li is a line bundle with curvature given by −2π

√
−1xi.

Thus, as far as the Chern classes are concerned, the vector bundle E behaves
as a direct sum of the line bundles L1⊕· · ·⊕Ln. This phenomenon is called
the splitting principle. Using this notation, the Todd classes are defined by

Td(E) =
∏
i

xi
1− e−xi

The L-genus are defined by

L(E) =
∏
i

xi
tanhxi

and the Â-genus are defined by

Â(E) =
∏
i

xi/2

sinh(xi/2)

Proposition 8.1.6. Suppose E1 and E2 are two complex vector bundles.
Then

Ch(E1 ⊕ E2) = Ch(E1) + Ch(E2)

Ch(E1 ⊗ E2) = Ch(E1) ∧ Ch(E2)
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8.1.4. Chern classes of complex projective space.

Definition 8.1.4 (Chern class of complex manifold). Let X be a complex
manifold. Then its k-th Chern classes ck(X) are defined to be Chern classes
of its holomorphic tangent bundle.

Theorem 8.1.2. The total Chern class of CPn is equal to (1+ω)n+1, where
ω is a suitably chosen generator for H2(CPn,Z).

8.2. Pontryagin class. Let E be a real vector bundle of rank n over a
smooth manifold M . Then its frame bundle P is a principal O(n)-bundle.
For any X ∈ o(n), consider

det(I − t

2π
X) =

n∑
k=0

qk(X)tk

By the same argument one can show qk ∈ I(g), so if we pick arbitrary
connection ω of P with curvature Ω, then it gives rise to a closed 2k-form
qk(Θ) on M for each k ∈ Z≥0. Since X +Xt = 0, one has

det(I +
t

2π
X) = det(I − −t

2π
X)

which impiles
qk(X) = qk(−X) = (−1)kqk(X)

Thus we can conclude qk = 0 when k is odd.

Definition 8.2.1 (Pontryagin class). The k-th Pontrjagin class of E is
defined as [pk(Θ)] := [q2k(Θ)] ∈ H4k(M,R), where 0 ≤ k ≤ bn/2c.

Definition 8.2.2 (Pontryagin class of manifold). Let M be a smooth man-
ifold. Then its k-th Pontryagin classes pk(M) are defined to be Pontryagin
classes of its tangent bundle.

Proposition 8.2.1 (Whitney sum formula). Let E,F be two vector bun-
dles. Then

p(E ⊕ F ) = p(E)p(F )

Corollary 8.2.1. Let E be a vector bundle and F be a trivial bundle. Then
p(E ⊕ F ) = p(E)

Corollary 8.2.2. p(Sn) = 1.

Proof. Note that Sn ↪→ Rn+1. If NSn denotes the normal bundle of Sn,
then TSn ⊕NSn is trivial bundle, which impiles p(Sn) = p(TSn) = 1. □

Proposition 8.2.2. Let E be a vector bundle with its complexification
EC = E ⊗ C. Then

pk(E) = (−1)kc2k(EC)

Proof. See Theorem 4.1 in Chapter 12 of [KN96]. □
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Corollary 8.2.3. Let E be a complex vector bundle and ER be its under-
lying real bundle. Then
1−p1(ER)+p2(ER)+· · ·±pn(ER) = (1−c1(E)+c2(E)+· · ·±cn(E))(1+c1(E)+c2(E)+· · ·+cn(E))

In particular, if X is a complex manifold, then p1(X) = c1(X)2 − 2c2(X).

Example 8.2.1. Since by Theorem 8.1.2 the total Chern class c(CPn) equals
to (1 + ω)n+1, where ω is a suitably chosen generator of H2(CPn,Z). Then

(1− p1(CPn) + c2(CPn) + · · · ± pn(CPn)) = (1− ω)n+1(1 + ω)n+1

= (1− ω2)n+1

Therefore the total Pontrjagin class p(CPn) = (1 + ω2)n+1. In other words,
one has

pk(CPn) =
(
n+ 1

k

)
ω2k

Corollary 8.2.4. RP2 can not be embedded into R3.

8.3. Euler class. Let n = 2m and consider Lie group SO(n) with Lie al-
gebra so(n). A basic fact is that so(n) = o(n) since SO(n) is the identity
component of O(n), and thus so(n) is the set of all skew-symmetric matrices.
For A = (ai,j) ∈ so(n), the Pfaffian of A is defined as

Pf(A) :=
1

2mm!

∑
σ∈Sn

sign(σ)
m∏
i=1

aσ(2i−1),σ(2i)

A direct computation shows Pf ∈ Im(so(n)), and thus it gives a character-
istic class by Chern-Weil theory.

Definition 8.3.1 (Euler class). Let E be an oriented vector bundle of rank
2m. Then [ 1

(2π)m Pf(Θ)] ∈ H2m(M,R) is called the Euler class of E, which
is denoted by e(E).

Proposition 8.3.1. Let A,B be two skew-symmetric matrices. Then
Pf(A⊕B) = Pf(A) Pf(B)

Corollary 8.3.1 (Whitney sum formula). Let E,F be two oriented vector
bundles. Then

e(E ⊕ F ) = e(E)e(F )

Proposition 8.3.2. Let E be an oriented vector bundle of rank 2m. Then
c2m(E ⊗ C) = e((E ⊗ C)R))

As a consequence, if E is a complex vector bundle of rank n, then cn(E) =
e(ER).

Corollary 8.3.2. Let E be an oriented vector bundle of rank 2m. Then
pm(E) equals to the square of the Euler class e(E).
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Theorem 8.3.1 (Gauss-Bonnet-Chern). LetM be an oriented 2m-dimensional
manifold. Then ˆ

M
e(TM) = χ(M)

Corollary 8.3.3 (Gauss-Bonnet-Chern). LetX be a complex n-dimensional
manifold. Then ˆ

M
cn(X) = χ(X)
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9. The classifying space

In last section, we have defined characteristic classes in a geometrical
viewpoint. However, they’re topological invariants. In this section, we work
on category of topological spaces (In particular, CW-complexes) instead of
smooth manifolds, and give another explaination about characteristic class.

9.1. The universal G-bundle.
Definition 9.1.1 (contractible). A topological space is called contractible,
if it’s homotopic equivalent to a point.
Definition 9.1.2 (weakly homotopy). Let X,Y be topological spaces. X
is called weakly homotopy equivalent to Y , if there exists a continuous map
f : X → Y such that f induces isomorphisms between homotopy groups of
X and Y .
Definition 9.1.3 (weakly contractible). A topological space X is called
weakly contractible, if it’s weakly homotopy to a point.
Example 9.1.1. A contractible space is weakly contractible.
Proposition 9.1.1. For any topological space, there exists a CW-complex
which is weakly homotopic to it.
Theorem 9.1.1 (Whitehead). The weakly homotopy equivalence between
CW-complexes is the same as homotopy equivalence.
Corollary 9.1.1. A CW-complex is weakly contractible if and only if it’s
contractible.
Definition 9.1.4 (classifying space). Let EG → BG be a principal G-
bundle, where EG,BG are topological spaces. If EG is weakly contractible,
then
(1) BG is called a classifying space for G.
(2) EG is called a universal G-bundle.
Proposition 9.1.2. If the classifying space for G exists, then there exists
a classifying space EG→ BG for G such that BG is CW-complex.
Proof. Suppose P → B is a classifying space for G, where P,B are topo-
logical spaces. By Proposition 9.1.1, there exists a CW-complex BG and a
weakly homotopy f : BG → B. By exact homotopy sequence of fiberation,
one has

· · · → πn+1(B) πn(G) πn(P ) πn(B) πn−1(G)→ . . .

· · · → πn+1(EG) πn(G) πn(f
∗P ) πn(EB) πn−1(G)→ . . .

∼= ∼= ∼= ∼=

Then f∗P → BG is a classifying space for G by 5-lemma. □
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Theorem 9.1.2. Let EG → BG be a universal G-bundle. For all CW-
complexes X, the following map is bijective:

Φ: [X,BG]→ PGX
f 7→ f∗P

where [X,BG] denotes the set of all continuous maps up to homotopy.
Proof. See [Mit01]. □
Remark 9.1.1. This theorem impiles why BG is called classifying space, since
it can be used to classify principal G-bundles over a given CW-complex.
Theorem 9.1.3. For any topological group G, classifying space for G exists,
and it’s unique up to G-homotopy equivalence.
Proof. See [Mil56]. □
Proposition 9.1.3. For a discrete group G, PK(G, 1) → K(G, 1) is the
universal G-bundle, and hence K(G, 1) is a classifying space for G.
Proof. It’s clear path space PK(G, 1) is contractible. □
Remark 9.1.2. In [Liu22] we have already computed K(G, 1) for groups, for
example, K(Z, 1) = S1, K(Z2, 1) = RP∞ and so on.
Proposition 9.1.4. Vn(R∞) → Grn(R∞) is a universal GL(n,R)-bundle,
and hence Grn(R∞) is a classifying space for GL(n,R).
Proof. It suffices to show Vn(R∞) is contractible. Since we have already
computed low dimensional homotopy groups of Vn(RN ) in [Liu22], and then
telescope construction completes the proof. □
Corollary 9.1.2. For all CW-complexes X, [X,Grn(R∞)]→ VectRn X.
Proof. See Remark 2.3.2. □
Remark 9.1.3. The analogous result also holds with R replaced by C.
9.2. Homotopical properties of classifying spaces. In this section we
collect some Homotopical properties of classifying spaces.
Theorem 9.2.1. For any topological group G, G is weakly equivalent to
the loop space Ω(BG).
Corollary 9.2.1. For n ≥ 1, πn(BG) = πn−1(G).
Theorem 9.2.2. Let G be a topological space and H a subgroup. Then
the homotopy fiber of BH → BG is G/H, up to weakly equivalent.
Theorem 9.2.3. Let G be a topological space and H a subgroup. Then
there is a fiberation BH → BG→ B(G/H).
Example 9.2.1. The exact sequences 1 → SO(n) → O(n) → Z2 → 1 and
1→ SU(n)→ U(n)→ S1 → 1 give rise to fiberation

B SO(n)→ BO(n)→ RP∞

and
B SU(n)→ BU(n)→ CP∞
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9.3. Another viewpoint to characteristic class.
Proposition 9.3.1. The cohomology ring of BU(n) with integer coefficients
is Z[c1, . . . , cn].

Proof. If we consider U(n − 1) as a subgroup of U(n), then we have the
following filteration

S2n−1 ∼= U(n)/U(n− 1) BU(n− 1)

BU(n)

Apply Leray spectral sequence this this fiberation and use the fact that the
cohomology ring of BU(1) = CP∞ is Z[c1] to conclude. □
Definition 9.3.1 (universal Chern class). The generators c1, · · · , cn ofH∗(BU(n),Z)
are called the universal Chern classes of U(n)-bundles.

Definition 9.3.2 (Chern class). The k-th Chern class of the U(n)-bundle
π : E →M with classifying map fπ : M → BU(n) is defined as

ck(E) := f∗π(ck) ∈ H2k(M,Z)

Proposition 9.3.2. The cohomology ring of BO(n) with Z2 coefficients is
Z2[w1, . . . , wn].

Proof. The same as above, just note that cohomology ring of RP∞ with Z2

coefficient is Z2[w1]. □
Definition 9.3.3 (universal Steifel-Whitney class). The generators w1, · · · , wn
of H∗(BO(n),Z2) are called the universal Steifel-Whitney classes of O(n)-
bundles.

Definition 9.3.4 (Steifel-Whitney class). The k-th Steifel-Whitney class
of the O(n)-bundle π : E → M with classifying map fπ : M → BO(n) is
defined as

wk(E) := f∗π(wk) ∈ H2k(M,Z2)
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