Solutions to Homework

June 13, 2023

Contents

1 Solutions to Homework9 1
2 Solutions to Homework11 6
3 Solutions to Homework13 10

Chapter 1

Solutions to Homework9

Exercise．For an ideal $I \subseteq R, r(I)=\left\{f \in R \mid f^{n} \in I\right.$ for some $\left.n \in \mathbb{Z}_{>0}\right\}$ is called its radical．
1．$r(I)$ is an ideal of R ．
2．$r(I)$ is the intersection of all prime ideals of R containing I ．
3．An ideal I is called radical if $r(I)=I$ ．Prove there is a one to one correspondence between the set of radical ideals and closed subets of $\operatorname{Spec} R$ by $I \mapsto Z(I)$ ，and this map reverses the inclusion relation．

Proof．For（1）．For $a, b \in I$ ，there exists $n \in \mathbb{Z}_{>0}$ such that $a^{n} \in I, b^{n} \in I$ ．Thus

$$
(a+b)^{2 n}=\sum_{i=0}^{2 n}\binom{2 n}{i} a^{i} b^{2 n-i} \in I
$$

and for all $c \in R,(c a)^{n}=c^{n} a^{n} \in I$ ．This shows $r(I)$ is an ideal．
For（2）．It suffices to show the radical of zero ideal is the intersection of prime ideals by taking quotient．However，note that the radical of zero ideal is exactly nilradical．

For（3）．For two ideals $I, J \subseteq R$ ，note that $Z(I) \subseteq Z(J)$ if and only if $r(I) \supseteq r(J)$ ．Then if $Z(I)=Z(J)$ ，then $I=r(I)=r(J)=J$ implies the correspondence is injective，and for arbitrary $Z(I)$ ，one has

$$
Z(I)=Z(r(I))
$$

which implies the correspondence is surjective．

Exercise．

1．$r(\mathfrak{a}) \supseteq \mathfrak{a}$
2．$r(r(\mathfrak{a}))=r(\mathfrak{a})$
3．$r(\mathfrak{a b})=r(\mathfrak{a} \cap \mathfrak{b})=r(\mathfrak{a}) \cap r(\mathfrak{b})$
4．$r(\mathfrak{a})=(1)$ rightarrow $\mathfrak{a}=(1)$
5．$r(\mathfrak{a}+\mathfrak{b})=r(r(\mathfrak{a})+r(\mathfrak{b}))$
6．if \mathfrak{p} is prime，$r\left(\mathfrak{p}^{n}\right)=\mathfrak{p}$ for all $n>0$ ．
Proof．（1）and（2）are almost obvious by definition．For（3）．Note that

$$
(\mathfrak{a} \cap \mathfrak{b})^{2} \subseteq \mathfrak{a} \mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}
$$

Then by (2) we obtain

$$
r(\mathfrak{a} \cap \mathfrak{b})=r\left((\mathfrak{a} \cap \mathfrak{b})^{2}\right) \subseteq r(\mathfrak{a} \mathfrak{b}) \subseteq r(\mathfrak{a} \cap \mathfrak{b})
$$

which implies $r(\mathfrak{a b})=r(\mathfrak{a} \cap \mathfrak{b})$. For the half part. If $x \in \mathfrak{a} \cap \mathfrak{b}$, then there exists m, n such that $x^{m} \in \mathfrak{a}, x^{n} \in \mathfrak{b}$. Then $x^{\max \{m, n\}} \in \mathfrak{a} \cap \mathfrak{b}$, and converse is clear.

For (4). $r(\mathfrak{a})=(1)$ is equivalent to for all $x \in(1)$, there exists n such that $x^{n} \in \mathfrak{a}$. Take $x=1$ implies $1 \in \mathfrak{a}$, so we have $\mathfrak{a}=(1)$, and converse is clear.

For (5). Consider $m+n$, where $m \in r(\mathfrak{a}), n \in r(\mathfrak{b})$, then there exists a sufficiently large N such that $(m+n)^{N} \in \mathfrak{a}+\mathfrak{b}$, just by considering binomial expansion. So if there exists n such that $x^{n} \in r(\mathfrak{a})+r(\mathfrak{b})$, then $x^{n N} \in \mathfrak{a}+\mathfrak{b}$, which implies $x \in r(\mathfrak{a}+\mathfrak{b})$, and converse is clear.

For (6). Just note that $x^{n} \in \mathfrak{p}$ is equivalent to $x \in \mathfrak{p}$ for a prime ideal \mathfrak{p}.
Exercise. The Jacobson radical ideal \mathfrak{A} of a ring A is defined to be the intersection of all the maximal ideals of A. It can be characterized as follows: $x \in \mathfrak{R}$ if and only if $1-x y$ is unit for all $y \in A$.

Proof. If $1-x y$ is not a unit, then there exists a maximal ideal \mathfrak{m} containing $1-x y$, but $x \in \mathfrak{R} \subseteq \mathfrak{m}$, which implies $1 \in \mathfrak{m}$, a contradiction. Conversely, suppose $x \notin \mathfrak{m}$ for some maximal ideal, then \mathfrak{m} and x generates the unit ideal, so we have $u+x y=1$ for some $u \in \mathfrak{m}, y \in A$, thus $1-x y \in \mathfrak{m}$, and is therefore not a unit.

Exercise. Let x be a nilpotent element of a ring A. Show that $1+x$ is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. If x is a nilpotent element, then $x \in \mathfrak{N} \subseteq \mathfrak{R}$. By exercise 3 we have $1-x y$ is unit for any $y \in A$. Take $y=-1$ we obtain $1+x$ is a unit. If y is unit, then we have $x+y=y\left(y^{-1} x+1\right)$. Since $y^{-1} x$ is also nilpotent, we have $y^{-1} x+1$ is unit, thus $x+y$ is unit.

Exercise. Let A be a ring and let $A[x]$ be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f=a_{0}+a_{1} x, \ldots, a_{n} x^{n} \in A[x]$. Prove that

1. f is a unit in $A[x] \Longleftrightarrow a_{0}$ is a unit in A and a_{1}, \ldots, a_{n} are nilpotent.
2. f is nilpotent $\Longleftrightarrow a_{0}, a_{1}, \ldots, a_{n}$ are nilpotent.
3. f is a zero-divisor \Longleftrightarrow there exists $a \neq 0$ in A such that $a f=0$.
4. f is said to be primitive if $\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(1)$. Prove that if $f, g \in A[x]$, then $f g$ is primitive $\Longleftrightarrow f$ and g are primitive.

Proof. For (1). Use $g=\sum_{i=0}^{m} b_{i} x^{i}$ to denote the inverse of f. Since $f g=1$ and if we use c_{k} to denote $\sum_{m+n=k} a_{m} b_{n}$, then we have

$$
\left\{\begin{array}{l}
c_{0}=1 \\
c_{k}=0, \quad k>0
\end{array}\right.
$$

But $c_{0}=a_{0} b_{0}$, thus a_{0} is unit. Now let's prove $a_{n}^{r+1} b_{m-r}=0$ by induction on $r: r=0$ is trivial, since $a_{n} b_{m}=c_{n+m}=0$. If we have already proven this for $k<r$. Then consider c_{m+n-r}, we have

$$
0=c_{m+n-r}=a_{n} b_{m-r}+a_{n-1} b_{m-r+1}+\ldots
$$

and multiply a_{n}^{r} we obtain

$$
0=a_{n}^{r+1} b_{m-r}+a_{n-1} \underbrace{a_{n}^{r} b_{m-r+1}}_{\text {by induction this term is } 0}+a_{n-2} a_{n} \underbrace{a_{n}^{r-1} b_{m-r+2}}_{\text {by induction this term is } 0}+\ldots
$$

which completes the proof of claim．Take $r=m$ ，we obtain $a_{n}^{m+1} b_{0}=0$ ．But b_{0} is unit，thus a_{n} is nilpotent and $a_{n} x^{n}$ is a nilpotent element in $A[x]$ ．By exercise 4，we know that $f-a_{n} x^{n}$ is unit，then we can prove a_{n-1}, a_{n-2} is also nilpotent by induction on degree of f ；Conversely，if a_{0} is unit and a_{1}, \ldots, a_{n} is nilpotent．We can imagine that if you power f enough times，then we will obtain unit．Or you can see $\sum_{i=1}^{n} a_{i} x^{i}$ is nilpotent，then unit plus nilpotent is also unit．

For $(2)^{1}$ ．If a_{0}, \ldots, a_{n} are nilpotent，then clearly f is；Conversely，if f is nilpotent，then clearly a_{n} is nilpotent，and we have $f-a_{n} x^{n}$ is nilpotent，then by induction on degree of f to conclude．

For（3）．$a f=0$ for $a \neq 0$ implies f is a zero－divisor is clear；Conversely choose a $g=$ $\sum_{i=0}^{m} b_{i} x^{i}$ of least degree m such that $f g=0$ ，then we have $a_{n} b_{m}=0$ ，hence $a_{n} g=0$ ，since $a_{n} g f=0$ and has degree less than m ．Then consider

$$
0=f g-a_{n} x^{n} g=\left(f-a_{n} x^{n}\right) g
$$

Then $f-a_{n} x^{n}$ is a zero－divisor with degree $n-1$ ，so we can conclude by induction on degree of f ．

For（4）．Note that $\left(a_{0}, \ldots, a_{n}\right)=1$ is equivalent to there is no maximal ideal \mathfrak{m} contains a_{0}, \ldots, a_{n} ，it＇s an equivalent description for primitive polynomials．For $f \in A[x], f$ is primitive if and only if for all maximal ideal \mathfrak{m} ，we have $f \notin \mathfrak{m}[x]$ ．Note that we have the following isomorphism

$$
A[x] / \mathfrak{m}[x] \cong(A / \mathfrak{m})[x]
$$

Indeed，consider the following homomorphism

$$
\begin{aligned}
\varphi: A[x] & \rightarrow(A / \mathfrak{m})[x] \\
\sum_{i=0}^{n} a_{i} x^{i} & \mapsto \sum_{i=0}^{n}\left(a_{i}+\mathfrak{m}\right) x^{i}
\end{aligned}
$$

Clearly $\operatorname{ker} \varphi=\mathfrak{m}[x]$ and use the first isomorphism theorem．So in other words，$f \in A[x]$ is primitive if and only if $\bar{f} \neq 0 \in(A / \mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} ．Since A / \mathfrak{m} is a field，then $(A / \mathfrak{m})[x]$ is an integral domain by（3），so $\overline{f g} \neq 0 \in(A / \mathfrak{m})[x]$ if and only if $\bar{f} \neq 0 \in(A / \mathfrak{m})[x], \bar{g} \neq$ $0 \in(A / \mathfrak{m})[x]$ ．This completes the proof．

Exercise．In the ring $A[x]$ ，the Jacobson radical is equal to the nilradical
Proof．Since we already have $\mathfrak{N} \subseteq \mathfrak{R}$ ，it suffices to show for any $f \in \mathfrak{R}$ ，it＇s nilpotent．Note that by exercise 3 ，we have $1-f g$ is unit for any $g \in A[x]$ ．Choose g to be x ，then by（ 1 ）of exercise 5 we know that all coefficients of f is nilpotent in A ，and by（2）of exercise $5, f$ is nilpotent． This completes the proof．

Exercise．Prove that $\operatorname{Spec} R$ is quasi－compact ${ }^{2}$ under Zariski topology．
Proof．It suffices to show every open covering taking the form $\left\{U_{f_{i}}\right\}$ has a finite subcovering， since U_{f} forms a basis of Zariski topology．We can translate $X=\bigcup_{i \in I} U_{f_{i}}$ as $\left(f_{i}\right)_{i \in I}=(1)$ ． Indeed，

$$
\left(f_{i}\right)_{i \in I}=(1) \Longleftrightarrow \bigcap_{i \in I} V\left(f_{i}\right)=V\left(\left(f_{i}\right)_{i \in I}\right)=\varnothing \Longleftrightarrow \bigcup_{i \in I} U_{f_{i}}=X
$$

[^0][^1]So if $\left\{f_{i}\right\}_{i \in I}$ generates（1），then there is a finite expression such that

$$
\sum_{i=1}^{n} a_{i} f_{i}=1, \quad a_{i} \in A
$$

So we can cover X just using $U_{f_{1}}, \ldots, U_{f_{n}}$ ．
Exercise．Let $X=\operatorname{Spec} R$ and $f \in R$ ．Denote by $U_{f}=X-Z(f)$ ．Let $S=R[x] /(x f-1)$ ． Prove that $\operatorname{Spec} S$ is homeomorphic to U_{f} induced by the natural ring homomorphism $R \rightarrow S$ ．

Proof．If f is nilpotent，then $Z(f)=X$ ，that is $U_{f}=\varnothing$ ．In this case，unit equals to nilpotent element in S ，since $1+(x f-1)=x f+(x f-1)$ ．This shows S is a zero ring，which implies Spec $S=\varnothing$ ．

If f is not nilpotent，then the localization of R with respect to $\left\{1, f, f^{2}, \ldots\right\}$ ，denoted by R_{f} is isomorphic to $R[x] /(x f-1)$ ．Indeed，consider

$$
\begin{aligned}
& \varphi: R[x] \rightarrow R_{f}=\left\{\left.\frac{r}{f^{n}} \right\rvert\, r \in R, n \in \mathbb{Z}_{\geq 0}\right\} \\
& \sum_{i=0}^{n} a_{i} x^{i} \mapsto \sum_{i=0}^{n} \frac{a_{i}}{f^{i}}
\end{aligned}
$$

which is a surjective ring homomorphism with kernel $(x f-1)$ ．Now it suffices to show U_{f} is homeomorphic to $\operatorname{Spec} R_{f}$ ，which is a well－known result．

Exercise．Let $A=\prod_{i=1}^{n} A_{i}$ be the direct product of rings A_{i} ．Show that $\operatorname{Spec} A$ is the disjoint union of open（and closed）subspaces X_{i} ，where X_{i} is canonically homeomorphic with Spec A_{i} ．

Proof．For each i consider the projection $p_{i}: \prod A_{i} \rightarrow A_{i}$ ．It＇s a surjective，and thus there is a homeomorphism $X_{i}=V\left(\operatorname{ker} p_{i}\right) \cong \operatorname{Spec}\left(A_{i}\right)$ ．We claim $\left\{X_{i}\right\}$ covers A and $X_{i} \cap X_{j}=\varnothing$ for distinct i, j ．Note that we can write X_{i} explictly as $V\left(\prod_{i \neq j} A_{j}\right)$ ．Then

$$
\bigcup V\left(\prod_{i \neq j} A_{j}\right)=V\left(\bigcap \prod_{i \neq j} A_{j}\right)=V((0))=X
$$

And

$$
X_{i} \cap X_{j}=V\left(\prod_{i \neq j} A_{j}+\prod_{i \neq j} A_{i}\right)=V((1))=\varnothing
$$

As desired．
Exercise．A topological space X is called noetherian if it satisfies the descending chain condition for closed subets．

1．A topological space X is noetherian if and only if every collection of closed subsets of X has a minimal element under inclusion．

2．A topological space X is noetherian if and only if every open subset of X is compact．
3．Every closed subset of noetherian space X is a finite union of irreducible subsets．
4．If R is a noetherian ring，then $\operatorname{Spec} R$ is noetherian．
Proof．For（1）．Let $\left\{Y_{i}\right\}_{i \in I}$ be a collection of closed subsets of X ．If there is no minimal element in this collection under inclusion，then there exists a descending chain of closed subsets which is not stable，a contradiction．Conversely，suppose $Y_{1} \supseteq Y_{2} \supseteq \ldots$ is a chain of closed subsets．Then there exists a minimal element under inclusion，denoted by Y_{m} ，which implies $Y_{m}=Y_{m+1}=\ldots$.

For（2）．It＇s clear to see X is noetherian if and only if it satisfies the increasing chain condition for open subsets．For open subset $U \subseteq X$ with open covering $\left\{U_{i}\right\}_{i \in I}$ ．If there is no finite subcovering，then there exists an increasing chain of open subsets which is not stable，a contradiction．Conversely，if $U_{1} \subseteq U_{2} \subseteq \ldots$ is an increasing chain of open subsets，then consider open subset $U=\bigcup_{i=1}^{\infty} U_{i}$ which is compact by hypothesis．Then open covering $\left\{U_{i}\right\}_{i=1}^{\infty}$ of U admits a finite subcovering，which implies this chain is stable．

For（3）．Let \mathcal{A} be the set of nonempty closed subsets of X which cannot be written as a finite union of irreducible closed subsets．If \mathcal{A} is nonempty，then since X is noetherian，it must contain a minimal element，say Y ．Then Y is not irreducible，by definition there exists proper closed subsets Y^{\prime} and $Y^{\prime \prime}$ of Y such that $Y=Y^{\prime} \cup Y^{\prime \prime}$ ．By minimality of Y ，each of Y^{\prime} and $Y^{\prime \prime}$ can be expressed as a finite union of closed irreducible subsets，hence Y also，which is a contradiction．

For（4）．Let $Z\left(I_{1}\right) \supseteq Z\left(I_{2}\right) \supseteq \ldots$ be a chain of closed subsets in Spec R ，and without lose of generality we may assume I_{i} are radical ideals，since $Z(I)=Z(r(I))$ ．By exercise 1 this corresponds to an increasing chain of ideals in R ，that is

$$
I_{1} \subseteq I_{2} \subseteq \ldots
$$

Since R is noetherian，there exists $m \in \mathbb{Z}_{>0}$ such that $I_{m}=I_{m+1}=\ldots$ ，which implies $Z\left(I_{m}\right)=$ $Z\left(I_{m+1}\right)=\ldots$ ．This completes the proof．

Exercise．Describe points and closed subets of $\operatorname{Spec} \mathbb{C}[x, y] /\left(x^{2}+y^{2}\right)$ and $\operatorname{Spec} \mathbb{R}[x, y] /\left(x^{2}+y^{2}\right)$ ． Proof．Note that $\operatorname{Spec} \mathbb{C}[x, y] /\left(x^{2}+y^{2}\right)$ is homeomorphic to $Z\left(x^{2}+y^{2}\right)=Z(x+\sqrt{-1} y) \cup Z(x-$ $\sqrt{-1} y)$ ．Note that

$$
\mathbb{C}[x, y] /(x-\sqrt{-1} y) \cong \mathbb{C}[y]
$$

This shows

$$
Z(x-\sqrt{-1} y)=\{(x-\sqrt{-1} y),(x-\sqrt{-1} y, y-\alpha) \mid \alpha \in \mathbb{C}\}
$$

The same argument shows

$$
Z(x+\sqrt{-1} y)=\{(x+\sqrt{-1} y),(x+\sqrt{-1} y, y-\beta) \mid \beta \in \mathbb{C}\}
$$

This gives all points of $\operatorname{Spec} \mathbb{C}[x, y] /\left(x^{2}+y^{2}\right)$ ．To see all its closed subsets，it suffices to find all its irreducible closed subsets，since $\operatorname{Spec} \mathbb{C}[x, y] /\left(x^{2}+y^{2}\right)$ is noetherian．However，every irreducible closed subsets of prime spectral turns out to be the closure of some point，so it suffices to consider closure of all points．By Hilbert＇s Nullstellensatz $(x-\sqrt{-1} y, y-\alpha)$ and $(x+\sqrt{-1} y, y-\beta)$ are maximal ideals for arbitrary $\alpha, \beta \in \mathbb{C}$ ，so they＇re closed points．$(x-\sqrt{-1} y)$ and $(x+\sqrt{-1} y)$ are not closed points，and their closures are $Z(x-\sqrt{-1} y)$ and $Z(x-\sqrt{-1} y)$ respectively．

For Spec $\mathbb{R}[x, y] /\left(x^{2}+y^{2}\right)$ ，it＇s homeomorphic to $Z\left(x^{2}+y^{2}\right)$ ，and thus all points are prime ideals of $\mathbb{R}[x, y]$ containing $\left(x^{2}+y^{2}\right)$ ．Let R be a PID．Then all prime ideals in $R[y]$ are listed as follows．

1．（0）．
2．$(f(y))$ ，where $f(y)$ is irreducible in $R[y]$
3．$(p, f(y))$ ，where $p \in R$ is prime and $f(y)$ is irreducible in $(R / p)[y]$ ．
Thus all prime ideals of $\mathbb{R}[x, y]$ containing $\left(x^{2}+y^{2}\right)$ are $\left(x^{2}+y^{2}\right),(x, y),\left(x-a, y^{2}+a^{2}\right),(y-$ $\left.a, x^{2}+a^{2}\right),\left(x+c y+d, x^{2}+y^{2}\right),\left(y+c x+d, x^{2}+y^{2}\right)$ ，where $a, c, d \in \mathbb{R}$ ．Note that

$$
\mathbb{R}[x, y] /\left(x-a, y^{2}+a^{2}\right) \cong \mathbb{C}
$$

Thus $\left(x-a, y^{2}+a^{2}\right)$ is a closed points，and the same argument yields both $\left(y-a, x^{2}+a^{2}\right),(x+$ $\left.c y+d, x^{2}+y^{2}\right),\left(y+c x+d, x^{2}+y^{2}\right)$ and (x, y) are closed points．Thus all irreducible closed subsets of Spec $\mathbb{R}[x, y] /\left(x^{2}+y^{2}\right)$ are $Z\left(x^{2}+y^{2}\right)$ and points except $\left(x^{2}+y^{2}\right)$ ．

Chapter 2

Solutions to Homework11

Exercise．Calculate $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z}$ for positive integers m and n ．
Proof．Now we＇re going to prove the following isomorphism

$$
\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}
$$

Consider the following mapping

$$
\begin{aligned}
\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} & \rightarrow \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z} \\
(x+m \mathbb{Z}, y+n \mathbb{Z}) & \mapsto x y+\operatorname{gcd}(m, n) \mathbb{Z}
\end{aligned}
$$

It＇s well－defined and bilinear，and thus it induces a linear map $f: \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}$ such that

$$
f(x+m \mathbb{Z} \otimes y+n \mathbb{Z})=x y+\operatorname{gcd}(m, n) \mathbb{Z}
$$

Consider the following map

$$
\begin{aligned}
g: & \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}
\end{aligned} \rightarrow \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}, ~(\operatorname{gcd}(m, n) \mathbb{Z} \mapsto(z+m \mathbb{Z}) \otimes(1+n \mathbb{Z}) \quad .
$$

It＇s well－defined．Indeed，if we let $z^{\prime}=z+k \operatorname{gcd}(m, n)$ ，then Bezout theorem implies that there exists $a, b \in \mathbb{Z}$ such that $a m+b n=\operatorname{gcd}(m, n)$ ．Thus

$$
\begin{aligned}
\left(z^{\prime}+m \mathbb{Z}\right) \otimes(1+n \mathbb{Z}) & =(z+m \mathbb{Z}) \otimes(1+n \mathbb{Z})+(k(a m+b n)+m \mathbb{Z}) \otimes(1+n \mathbb{Z}) \\
& =(z+m \mathbb{Z}) \otimes(1+n \mathbb{Z})+(n(k b+m \mathbb{Z})) \otimes(1+n \mathbb{Z}) \\
& =(z+m \mathbb{Z}) \otimes(1+n \mathbb{Z})+(k b+m \mathbb{Z}) \otimes(n+n \mathbb{Z}) \\
& =(z+m \mathbb{Z}) \otimes(1+n \mathbb{Z})
\end{aligned}
$$

It＇s clear $f \circ g=1, g \circ f=1$ ，so we have desired isomorphism．
Exercise．Let V be a free R－module with basis $x, x \in X$ and W a free R－module with basis $y, y \in Y$ ．Show that the tensor product of V and W is free with basis $x \otimes y$ ．

Proof．Suppose $X \otimes Y$ is the free module generated by basis $\{x \otimes y \mid x \in X, y \in Y\}$ ，and $\tau: V \times W \rightarrow X \otimes Y$ be the map given by $(x, y) \mapsto x \otimes y$ ．Now we＇re going to prove $X \otimes Y$ satisfies the universal property，and then the uniqueness shows $X \otimes Y \cong V \otimes W$ ．For arbitrary R－module P and a bilinear map $f: V \times W \rightarrow P$ ，it suffices to prove there exists a unique linear map $\widetilde{f}: X \otimes Y \rightarrow P$ such that the following diagram commute

Since $X \otimes Y$ is the free module generated by $\{x \otimes y \mid x \in X, y \in Y\}, \widetilde{f}$ is uniquely determined by its values on basis，and in order to let the diagram commute，we need to define

$$
\widetilde{f}(x \otimes y)=f(x, y)
$$

Note that \tilde{f} defined in this way is linear since f is．This shows the existence and uniqueness of \widetilde{f} ，and thus $X \otimes Y \cong V \otimes W$ ．

Exercise．Let M be a R－module．Prove that both $\operatorname{Hom}_{R}(-, M)$ and $\operatorname{Hom}_{R}(M,-)$ are left exact．
Proof．Here we only prove $\operatorname{Hom}_{R}(-, M)$ is left exact．If

$$
A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is exact，we need to show the induced sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(C, M) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(B, M) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(A, M)
$$

is exact，where $f^{*}=\operatorname{Hom}_{R}(f, M)$ and $g^{*}=\operatorname{Hom}_{R}(g, M)$ ．One inclusion，namely ker $f^{*} \supseteq \operatorname{im} g^{*}$ is obvious，because $f^{*} \circ g^{*}=(g \circ f)^{*}=0^{*}=0$ ．Now let $h \in \operatorname{ker} f^{*}$ ，which means $f^{*}(h)=h \circ f=0$ ． This is equivalent to im $f \subseteq$ ker h and，by exactness of the original sequence，ker $g \subseteq \operatorname{ker} h$ ． By the homomorphism theorems，$h: B \rightarrow M$ induces a homomorphism $h: B / \operatorname{ker} g \rightarrow M$ such that $h=h \circ \pi$ ，where $\pi: B \rightarrow B / \operatorname{ker} g$ is the canonical map．By assumption g is surjective，g induces an isomorphism $g: B / \operatorname{ker} g \rightarrow C$ such that $g=g \circ \pi$ ．Consider $k=h \circ g^{-1}: C \rightarrow M$ and then

$$
g^{*}(k)=k \circ g=h
$$

which implies $h \in \operatorname{im} g^{*}$ ，and thus $\operatorname{ker} f^{*}=\operatorname{im} g^{*}$ ．For $h \in \operatorname{ker} g^{*}$ ，that is $h \circ g=0$ ，one must have $h=0$ since g is surjective．This completes the proof．

Exercise．In general，tensor product does not commute with direct product．
Proof．Now we＇re going to show $\left(\prod_{n \geq 1} \mathbb{Z} / n \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \neq 0$ and $\prod_{n \geq 1}\left(\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}\right)=0$ ，and thus tensor product doesn＇t commute with direct product in general．It＇s clear to see $\prod_{n \geq 1}\left(\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}\right)=$ 0 ，since $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}=0$ for any $n \in \mathbb{Z}_{\geq 1}$ ．Let $S=\mathbb{Z} \backslash\{0\}$ ．Then

$$
\left(\prod_{n \geq 1} \mathbb{Z} / n \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong S^{-1}\left(\prod_{n \geq 1} \mathbb{Z} / n \mathbb{Z}\right)
$$

Consider $\alpha=(1)_{n \geq 1} \in \prod_{n \geq 1} \mathbb{Z} / n \mathbb{Z}$ ，which is a non－torsion element．In particular，there is no element $N \in S$ such that $N \alpha=0$ ，and thus its image in $S^{-1}\left(\prod_{n \geq 1} \mathbb{Z} / n \mathbb{Z}\right)$ is not zero．This completes the proof．

Exercise．Let A and B be two R－algebras．Let $\pi_{1}: A \rightarrow A \otimes_{R} B, a \mapsto a \otimes 1$ and $\pi_{2}: B \rightarrow$ $A \otimes_{R} B, b \mapsto 1 \otimes b$ be two homomorphisms of R－algebras．Show the universal property of $A \otimes_{R} B$. In other words，if there is a R－algebra C with $f_{1}: A \rightarrow C$ and $f_{2}: B \rightarrow C$ ，then there exists a unique homomorphism of R－algebra $f: A \otimes_{R} B \rightarrow C$ such that $f_{i}=f \circ \pi_{i}$ ．

Proof．Since A, B are R－modules we may form their tensor product $A \otimes_{R} B$ ，which is an R－ module．To make it into an R－algebra，it suffices to define a multiplication on it．Consider the following linear map from $A \times B \times A \times B$ to $A \otimes_{R} B$ given by

$$
\left(a, b, a^{\prime}, b^{\prime}\right) \mapsto a a^{\prime} \otimes b b^{\prime}
$$

It induces an R－module homomorphism

$$
\left(A \otimes_{R} B\right) \otimes_{R}\left(A \otimes_{R} B\right) \rightarrow A \otimes_{R} B
$$

which gives the multiplication structure on $A \otimes_{R} B$. Suppose there is R-algebra C with $f_{1}: A \rightarrow$ C and $f_{2}: B \rightarrow C$. If we consider the bilinear map $f: A \times B \rightarrow C$ given by $f(a, b)=f_{1}(a) f_{2}(b)$, by universal property of tensor product, there exists a unique R-module homomorphism $f: A \otimes_{R}$ $B \rightarrow C$ such that $f_{i}=f \circ \pi$, and by the construction of multiplication structure on $A \otimes_{R} B$, it's clear to see f is a R-algebra homomorphism.

Exercise. Simplify $\mathbb{C}[t] \otimes_{\mathbb{C}} \mathbb{C}[t], \mathbb{C}[t] \otimes_{\mathbb{C}[t]} \mathbb{C}[t]$ and $\mathbb{C}[t, s] \otimes_{\mathbb{C}[t]} \mathbb{C}[t$, s]. Here $\mathbb{C}[t]$ and $\mathbb{C}[t$, s] are $\mathbb{C}[t]$-modules via the natural embedding.

Proof. It's clear $\mathbb{C}[t] \otimes_{\mathbb{C}[t]} \mathbb{C}[t] \cong \mathbb{C}[t]$, and $\mathbb{C}[t] \otimes_{\mathbb{C}} \mathbb{C}[t] \cong \mathbb{C}[x, y], \mathbb{C}[t, s] \otimes_{\mathbb{C}}[t] \mathbb{C}[t, s] \cong \mathbb{C}[x, y, z]$. The last two isomorphisms follows from the following claim: Let R be a ring. Then $R[x] \otimes_{R}$ $R[y] \cong R[x, y]$, which can be directly proved by universal property of tensor product.

Exercise. Let M and N be two R-modules and G be an abelian group. We call a map $f: M \times$ $N \rightarrow G$ " R-balanced" if the map is \mathbb{Z}-bilinear and also satisfies $f(r m, n)=f(m, r n)$ for any $r \in R, m \in M$ and $n \in N$. The set of such maps is denoted by $\operatorname{Hom}_{R-b a l a n c e}(M \times N, G)$.
(1) Show that there is a bijection between

$$
\operatorname{Hom}_{R-\text { balance }}(M \times N, G) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, G)\right)
$$

Here the R-module structure on $\operatorname{Hom}_{\mathbb{Z}}(N, G)$ is given by $(r \phi)(n)=\phi(r n)$ for any $\phi \in$ $\operatorname{Hom}_{\mathbb{Z}}(N, G)$.
(2) Construct an abelian group $M \widetilde{\otimes} N$ such that there is an natural bijection between

$$
\operatorname{Hom}_{\mathbb{Z}}(M \widetilde{\otimes} N, G) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, G)\right)
$$

Try to write it as quotient group of free abelian group with basis $M \times N$ quotient by some relations. Denote by $m \widetilde{\otimes} n$ for the image of $(m, n) \in M \times N$ in $M \widetilde{\otimes} N$. State the universal property of $M \widetilde{\otimes} N$.
(3) Use the universal property to prove that $r \cdot m \widetilde{\otimes} n=(r m) \widetilde{\otimes} n$ gives a well defined R-module structure on $M \widetilde{\otimes} N$. Prove that the natural map $M \otimes N \rightarrow M \widetilde{\otimes} N$ is R-bilinear under this R-module structure.
(4) Show that $M \widetilde{\otimes} N \cong M \otimes N$ as R-module.

Proof. For (1). Let $f \in \operatorname{Hom}_{R \text {-balance }}(M \times N, G)$ and $m \in M$, we define $g(m)$ be the map $n \mapsto f(m, n)$, where $n \in N$. Note that $n \mapsto f(m, n)$ lies in $\operatorname{Hom}_{\mathbb{Z}}(N, G)$, so if we want to show g gives an element in $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, G)\right)$, it suffices to show g is a R-module homomorphism. For arbitrary $m_{1}, m_{2} \in M$, one has

$$
\begin{aligned}
g\left(m_{1}+m_{2}\right) & =\left\{n \mapsto f\left(m_{1}+m_{2}, n\right)\right\} \\
& =\left\{n \mapsto f\left(m_{1}, n\right)+f\left(m_{2}, n\right)\right\} \\
& =\left\{n \mapsto f\left(m_{1}, n\right)\right\}+\left\{n \mapsto f\left(m_{2}, n\right)\right\} \\
& =g\left(m_{1}\right)+g\left(m_{2}\right)
\end{aligned}
$$

and for $r \in R, m \in M$, one has

$$
\begin{aligned}
g(r m) & =\{n \mapsto f(r m, n)\} \\
& =\{n \mapsto f(m, r n)\} \\
& =r\{n \mapsto f(m, n)\} \\
& =r g(m)
\end{aligned}
$$

If we use φ to denote this correspondence，we＇re going to show φ is a bijection．It＇s clear φ is injective，since if $\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)$ ，then for arbitrary $(m, n) \in M \times N$ ，one has $f_{1}(m, n)=f_{2}(m, n)$ ． To see it＇s surjective，for arbitrary $g \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, G)\right)$ ，we define $f(m, n)=g(m)(n)$ ， where $(m, n) \in M \times N$ ，a routine computation shows such f is R－balanced．

For（2）．Suppose $F(M \times N)$ is the free abelian group with basis $M \times N$ ，and consider

$$
M \widetilde{\otimes} N:=F(M \times N) / N
$$

where N is the subgroup generated by $\left\{\left(m_{1}+m_{2}, m\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right),\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\right.$ $\left.\left(m, n_{2}\right),(r m, n)-(m, r n) \mid m_{1}, m_{2} \in M, n_{1}, n_{2} \in N, r \in R\right\}$ ．By definition of $M \widetilde{\otimes} N$ ，it＇s clear there is a bijection between

$$
\operatorname{Hom}_{R \text {-balance }}(M \times N, G) \cong \operatorname{Hom}_{\mathbb{Z}}(M \widetilde{\otimes} N, G)
$$

and thus $\operatorname{Hom}_{\mathbb{Z}}(M \widetilde{\otimes} N, G) \cong \operatorname{Hom}_{\mathbb{Z}}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, G)\right)$ ．There is a universal property of $M \widetilde{\otimes} N$ ： Let $\tau: M \times N \rightarrow M \widetilde{\otimes} N$ be the map $(m, n) \mapsto m \widetilde{\otimes} n$ ．For arbitrary abelian group G and R－ balanced map $f: M \times N \rightarrow G$ ，there exists a unique group homomorphism $\widetilde{f}: M \widetilde{\otimes} N \rightarrow G$ such that the following diagram commutes

For（3）．For $r \in R$ ，consider the following map

$$
\begin{aligned}
M \times N & \rightarrow M \widetilde{\otimes} N \\
(m, n) & \mapsto(r m) \widetilde{\otimes} n
\end{aligned}
$$

A direct computation shows it＇s R－balanced．By universal property，it induces a well－defined map

$$
\begin{aligned}
& M \widetilde{\otimes} N \rightarrow M \widetilde{\otimes} N \\
& m \widetilde{\otimes} n \mapsto(r m) \widetilde{\otimes} n
\end{aligned}
$$

which gives a R－module structure on $M \widetilde{\otimes} N$ ．
For（4）．Consider the map $\tau: M \times N \rightarrow M \widetilde{\otimes} N$ given by $(m, n) \mapsto m \widetilde{\otimes} n$ ．Note that for $m \in M, n \in N, r \in R$ ，one has

$$
\begin{aligned}
& \tau(r m, n)=(r m) \widetilde{\otimes} n=r(m \widetilde{\otimes} n)=r \tau(m, n) \\
& \tau(m, r n)=m \widetilde{\otimes}(r n)=(r m) \widetilde{\otimes} n=r(m \widetilde{\otimes} n)=r \tau(m, n)
\end{aligned}
$$

Thus τ is a R－bilinear map，and thus it induces a R－module homomorphism $F: M \otimes N \rightarrow M \widetilde{\otimes} N$ ． Conversely，consider the map $\tau^{\prime}: M \times N \rightarrow M \otimes N$ given by $(m, n) \mapsto m \otimes n$ ，which is R－ bilinear．In particular it＇s R－balanced，so by universal property it induces a group homomor－ phism $G: M \widetilde{\otimes} N \rightarrow M \otimes N$ ，and it＇s also a R－module homomorphism if we consider R－module structure of $M \widetilde{\otimes} N$ ．A direct computation yields $F \circ G=\mathrm{id}$ and $G \circ F=\mathrm{id}$ ，so $M \widetilde{\otimes} N \cong M \otimes N$ as R－modules．

Chapter 3

Solutions to Homework13

Exercise. Let R be a UFD, prove that R is normal, that is it's integrally closed in its field of fractions.

Proof. Suppose K is the field of fractions of R and $\alpha \in K$ is integral over R, that is, there is a monic polynomial

$$
f(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}
$$

such that $f(\alpha)=0$. We can express α as $\frac{a}{b}$ with $a, b \in R$, and using unique factorization we may assume that no irreducible of R divides both a and b. Then one has

$$
a^{n}+c_{n-1} b a^{n-1}+\cdots+c_{0} b^{n}=0
$$

Now, $c_{n-1} b a^{n-1}+\cdots+c_{0} b^{n}$ is divisible by b, hence a^{n} is divisible by b. Since no irreducible of R divides both a and b, it follows that b must be a unit by unique factorization. Hence $\alpha \in R$.

Exercise. If $A \rightarrow B$ is an integral ring homomorphism, prove that $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$ is a closed mapping.

Proof. Firstly, consider $A \xrightarrow{f} f(A) \xrightarrow{i} B$, where i is an inclusion. Note that $\operatorname{Spec} f(A)$ is homeomorphic to a closed subset of $\operatorname{Spec} A$, so it suffices to show $i^{*}: \operatorname{Spec} B \rightarrow \operatorname{Spec} f(A)$ is a closed mapping, that is we may assume $A \subseteq B$, as a subring. For an closed sets $V(\mathfrak{b})$ of Spec B, we claim

$$
f^{*}(V(\mathfrak{b}))=V\left(f^{-1}(\mathfrak{b})\right)
$$

thus it's closed mapping. Indeed, note that $V(\mathfrak{b})=\{\mathfrak{q} \supseteq \mathfrak{b} \mid \mathfrak{q}$ is prime $\}$, then it's clear $f^{*}(\mathfrak{q})=f^{-1}(\mathfrak{q}) \supseteq f^{-1}(\mathfrak{b})$ and it's prime, thus $f^{*}(V(\mathfrak{b})) \subseteq V\left(f^{-1}(\mathfrak{b})\right)$. Conversely, for any prime \mathfrak{p} containing $f^{-1}(\mathfrak{b})$, by going-up theorem, there exists $\mathfrak{q} \supseteq \mathfrak{b}$ such that $\mathfrak{q}^{c}=\mathfrak{p}$, this implies reverse inclusion.

Exercise. Prove that if $R \subseteq A$ be an integral ring extension, then $\operatorname{dim}_{\text {Krull }} A=\operatorname{dim}_{\text {Krull }} R$
Proof. Let $\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n}$ be a chain of prime ideals in R. By going-up theorem, there exists a chain of primes ideals $\mathfrak{q}_{0} \subsetneq \mathfrak{q}_{1} \subsetneq \cdots \subsetneq \mathfrak{q}_{n}$ in A such that $\mathfrak{q}_{i} \cap R=\mathfrak{p}_{i}$ for each $0 \leq i \leq n$. Thus one has $\operatorname{dim}_{\text {Krull }} A \geq \operatorname{dim}_{\text {Krull }} R$. On the other hand, let $\mathfrak{q}_{0} \subsetneq \mathfrak{q}_{1} \subsetneq \cdots \subsetneq \mathfrak{q}_{n}$ be a chain of prime ideals in A and set $\mathfrak{p}_{i}=\mathfrak{q}_{i} \cap R$. Then by imcomposibility $\mathfrak{p}_{i} \neq \mathfrak{p}_{i+1}$ since $\mathfrak{q}_{i} \neq \mathfrak{q}_{i+1}$, and thus $\operatorname{dim}_{\text {Krull }} A \leq \operatorname{dim}_{\text {Krull }} R$. This completes the proof.

Exercise. Let $A \rightarrow B \rightarrow C$ be ring homomorphisms. Show that if B is finite over A and C is finite over B, then C is finite over A.

Proof. Since C is finite over B, we may assume C is generated by c_{1}, \ldots, c_{n} as a B-module, and since B is finite over A, we assume B is generated by b_{1}, \ldots, b_{m} as a A-module. In particular, C is generated by $\left\{c_{i} b_{j}\right\}$ as a A-module, and thus C is finite over A.

Exercise．Let $A \rightarrow B$ be ring homomorphism and B is a finitely generated A－algebra under this ring homomorphism．If B is integral over A ，prove that B is finite over A ．

Proof．Suppose B is generated by b_{1}, \ldots, b_{n} as A－algebra．B is integral over A implies for each b_{i} ，one has $A\left[b_{i}\right]$ is finite over A ，and thus we can conclude $A\left[b_{1}, \ldots, b_{n}\right]$ is finite over A by adding b_{i} successively．This completes the proof．

Exercise．Let k be a field with infinitely many elements．Let $B=k\left[y_{1},, \ldots, y_{m}\right] / I$ be a finitely generated k－algebra and $I \neq 0$ ．Prove that there are $m-1 k$－linear combinations of y_{1}, \ldots, y_{m} ， denoted by $z_{1},, \ldots, z_{m-1}$ such that B is finite over the k－subalgebra generated by $z_{1},, \ldots, z_{m-1}$ ．

Proof．For arbitrary $0 \neq f\left(y_{1}, \ldots, y_{m}\right) \in I$ ，let F be the homogenous part of highest degree． Since k is infinite，there exists $\lambda_{1}, \ldots, \lambda_{m-1} \in k$ such that

$$
F\left(\lambda_{1}, \ldots, \lambda_{m-1}, 1\right) \neq 0
$$

Let $z_{i}=y_{i}-\lambda_{i} y_{m}$ ，where $1 \leq i \leq m-1$ ．Then

$$
f\left(y_{1}, \ldots, y_{m}\right)=f\left(z_{1}+\lambda_{1} y_{m}, z_{2}+\lambda_{2} y_{m}, \ldots, z_{m-1}+\lambda_{m-1} y_{m}, y_{m}\right)
$$

whose highest degree term of y_{m} has coefficient $F\left(\lambda_{1}, \ldots, \lambda_{m-1}, 1\right) \neq 0$ ．Thus y_{m} is integral over $A^{\prime}=k\left[z_{1}, \ldots, z_{m-1}\right]$ ．Note that $y_{i}=z_{i}+\lambda_{i} y_{m}$ ，one has B is integral over A^{\prime} ．Then by exercise 5 one has B is finite over A^{\prime} since B is finitely generated A^{\prime}－algebra．

Exercise（Noether normalization ${ }^{1}$ ）．Let k be a field with infinitely many elements and $A=$ $k\left[x_{1}, \ldots, x_{n}\right] / I$ is a finitely generated k－algebra．Prove that there exist k－linear combinations of x_{1}, \ldots, x_{n} ，denoted by y_{1}, \ldots, y_{m} such that the ring homomorphism $R=k\left[t_{1}, \ldots, t_{m}\right] \rightarrow A, t_{i} \mapsto$ y_{i} is injective and finite（hence an integral ring extension）．

Proof．Let $A=\left\{N \mid\right.$ there exists k－linear combinations of $x_{1}, \ldots x_{n}$ ，denoted by y_{1}, \ldots, y_{N} ，such that A is finite over $\left.k\left[y_{1}, \ldots, y_{N}\right]\right\}$ and $m=\min A$ ．By exercise 6 one has $m \leq n-1$ ．Now we＇re going to prove the integral homomorphism

$$
f: k\left[y_{1}, \ldots, y_{m}\right] \rightarrow A
$$

is injective．Otherwise，$k\left[y_{1}, \ldots, y_{m}\right] /(\operatorname{ker} f) \rightarrow A$ is an injective integral homomorphism．Again by exercise 6 there exists integral homomorphism $g: k\left[z_{1}, \ldots, z_{m-1}\right] \rightarrow k\left[y_{1}, \ldots, y_{m}\right] /(\operatorname{ker} f)$ ． Then $f \circ g$ gives an integral homomorphism from $k\left[z_{1}, \ldots, z_{m-1}\right]$ to A ，which is a contradiction to the choice of m ．

Exercise．Let k be a field with infinitely many elements．Show that $\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right]=n$ ．
Proof．Let＇s prove by induction on n ．It＇s clear the Krull dimension of $k[x]$ is 1 since every non－zero prime ideal is maximal and zero ideal is a prime which is contained in arbitrary ideal． Suppose the hypothesis holds for $k<n$ ．Note that

$$
(0) \subsetneq\left(x_{1}\right) \subsetneq\left(x_{1}, x_{2}\right) \subsetneq \cdots \subsetneq\left(x_{1}, \ldots, x_{n}\right)
$$

implies $\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right] \geq n$ ．If $(0)=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{l}$ is a chain of prime ideals． Choose $0 \neq f \in \mathfrak{p}_{1}$ ，by exercise 6 one has $k\left[x_{1}, \ldots, x_{n}\right] /(f)$ is finite over some $k\left[y_{1}, \ldots, y_{n}\right]$ with $m \leq n-1$ ．Then

$$
\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right] /(f) \leq \operatorname{dim}_{\text {Krull }} k\left[y_{1}, \ldots, y_{m}\right]=m \leq n-1
$$

[^2]Furthermore, since $k\left[x_{1}, \ldots, x_{n}\right] /(f) \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{p}_{1}$ is surjective, one has $\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{p}_{1} \leq$ $\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right] /(f) \leq n-1$. Note that

$$
(0) \subsetneq \mathfrak{p}_{2} / \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{l} / \mathfrak{p}_{1}
$$

is a chain of prime ideals in $k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{p}_{1}$, so $l-1 \leq n-1$, and thus $l \leq n$. This shows $\operatorname{dim}_{\text {Krull }} k\left[x_{1}, \ldots, x_{n}\right]=n$.

Exercise. Let $\phi: R \rightarrow A$ be a finite ring homomorphism. Prove that $f: \operatorname{Spec} A \rightarrow \operatorname{Spec} R$ has finite fibers. In other words, for any $\mathfrak{p} \in \operatorname{Spec} R$, there are only finitely many $\mathfrak{q} \in \operatorname{Spec} A$ such that $f^{-1}(\mathfrak{q})=\mathfrak{p}$.
(1) Reduce the question to finite ring extension, i.e. ϕ injective.
(2) Use localization to reduce this to R a local ring with maximal ideal \mathfrak{p}.
(3) Let $k=R / \mathfrak{p}$ be the quotient field. Prove that the tensor product of R-algebras $A \otimes_{R} k$ is a finite-dimensional k-vector space.
(4) Prove that $\operatorname{Spec} A \otimes_{R} k$ has Krull-dimension zero and has only finitely many maximal ideals.
(5) Prove that there is a one-to-one correspondence between preimages of \mathfrak{p} in $\operatorname{Spec} A$ and $\operatorname{Spec} A \otimes_{R} k$.

Proof. For (1). This question can be reduced to the finite ring extension as what we have done in exercise 2.

For (2). Let S be the multiplicative closed subset given by $R \backslash \mathfrak{p}$. By localization one has the following communicative diagram

For all $\mathfrak{q} \in \operatorname{Spec} A$ such that $\mathfrak{q} \cap R=\mathfrak{p}$, one has $\mathfrak{q} \cap S=\varnothing$, thus $\mathfrak{q} \in \operatorname{im} j_{1}$, that is $f^{-1}(\mathfrak{p}) \subseteq$ $j_{1}\left(F^{-1}\left(\mathfrak{p} R_{\mathfrak{p}}\right)\right.$. Thus it suffices to prove F has finite fiber over $\mathfrak{p} R_{\mathfrak{p}}$. So we can assume R is a local ring with only maximal ideal $\mathfrak{p} R_{\mathfrak{p}}$.

For (3) and (4). Since A is finite over R, we may assume A is generated by a_{1}, \ldots, a_{n} as a R-module. Then

$$
\begin{aligned}
A \otimes_{R} k & =\left(R a_{1}+\cdots+R a_{n}\right) \otimes_{R} k \\
& =k\left(a_{1} \otimes 1\right)+\cdots+k\left(a_{n} \otimes 1\right)
\end{aligned}
$$

This shows $A \otimes_{R} k$ is finite over k, and thus $\operatorname{dim}_{\text {Krull }} A \otimes_{R} k=\operatorname{dim}_{\text {Krull }} k=0$, which implies $A \otimes_{R} k$ only has maximal ideals. On the other hand, since $A \otimes_{R} k$ is noetherian, one has $\operatorname{Spec}\left(A \otimes_{R} k\right)$ is a noetherian topological space. Thus $\operatorname{Spec}\left(A \otimes_{R} k\right)$ can be written as a finite union of $V\left(\mathfrak{p}_{i}\right)$, where $\mathfrak{p}_{i} \in \operatorname{Spec}\left(A \otimes_{R} k\right)$, and since the Krull dimension of $A \otimes_{R} k$ is zero, one has every point is closed point. In particular, there are only finitely many points in $\operatorname{Spec}\left(A \otimes_{R} k\right)$. This shows $A \otimes_{R} k$ only has finitely many maximal ideals.

For (5). For $\mathfrak{q} \in \operatorname{Spec} A$ such that $\mathfrak{q} \cap R=\mathfrak{p}$, one has R-algebra homomorphisms $A \rightarrow A / \mathfrak{q}$ and $k \rightarrow A / \mathfrak{p}$, so there is a unique R-algebra homomorphism

$$
\varphi_{\mathfrak{q}}: A \otimes_{R} k \rightarrow A / \mathfrak{q}
$$

which induces a continuous map

$$
\operatorname{Spec} A / \mathfrak{q} \rightarrow \operatorname{Spec}\left(A \otimes_{R} k\right)
$$

On one hand there is a map

$$
\begin{aligned}
T: F^{-1}(\{\mathfrak{p}\}) & \rightarrow \operatorname{Spec}\left(A \otimes_{R} k\right) \\
\mathfrak{q} & \mapsto \operatorname{ker} \varphi_{\mathfrak{q}}
\end{aligned}
$$

On the other hand，for any $\mathfrak{m} \in \operatorname{Spec}\left(A \otimes_{R} k\right)$ ，one has the following diagram

Let \mathfrak{q} be the kernel of $A \rightarrow A \otimes_{R} k \rightarrow\left(A \otimes_{R} k\right) / \mathfrak{m}$ ．Then $\mathfrak{q} \cap R$ is the kernel of $R \rightarrow A \rightarrow$ $A \otimes_{R} k \rightarrow\left(A \otimes_{R} k\right) / \mathfrak{m}$ ，which is the kernel of $R \rightarrow k \rightarrow\left(A \otimes_{R} k\right) / \mathfrak{m}$ by the commutativity of diagram．However，$k \rightarrow\left(A \otimes_{R} k\right) / \mathfrak{m}$ is injective since it＇s a homomorphism between fields，and thus $\mathfrak{q} \cap R=\mathfrak{p}$ ．This induces a map

$$
\begin{aligned}
G: \operatorname{Spec}\left(A \otimes_{R} k\right) & \rightarrow F^{-1}(\{\mathfrak{p}\}) \\
\mathfrak{m} & \mapsto \operatorname{ker}\left\{A \rightarrow A \otimes_{R} k \rightarrow\left(A \otimes_{R} k\right) / \mathfrak{m}\right\}
\end{aligned}
$$

Then G and T gives the bijection between $F^{-1}\left(\{\mathfrak{p}\}\right.$ and $\operatorname{Spec}\left(A \otimes_{R} k\right)$ ．

[^0]: ${ }^{1}$ An alternative proof of（2）．Note that

 $$
 \mathfrak{N}(A[x])=\bigcap \mathfrak{p}[x]=(\bigcap \mathfrak{p})[x]=\mathfrak{N}(A)[x]
 $$

[^1]: ${ }^{2}$ Here X is called quasi－compact if every open covering of X has a finite subcovering，and a topological space is called compact，if it＇s both Hausdorff and quasi－compact．

[^2]: ${ }^{1}$ For example，$A=k[x, y] /(x y)$ is an integral ring extension over $R=k[x+y]$ ．

