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Chapter 1

Solutions to Homework9

Exercise. For an ideal I ⊆ R, r(I) = {f ∈ R | fn ∈ I for some n ∈ Z>0} is called its radical.

1. r(I) is an ideal of R.

2. r(I) is the intersection of all prime ideals of R containing I.

3. An ideal I is called radical if r(I) = I. Prove there is a one to one correspondence between
the set of radical ideals and closed subets of SpecR by I 7→ Z(I), and this map reverses the
inclusion relation.

Proof. For (1). For a, b ∈ I, there exists n ∈ Z>0 such that an ∈ I, bn ∈ I. Thus

(a+ b)2n =
2n∑
i=0

(
2n

i

)
aib2n−i ∈ I

and for all c ∈ R, (ca)n = cnan ∈ I. This shows r(I) is an ideal.
For (2). It suffices to show the radical of zero ideal is the intersection of prime ideals by

taking quotient. However, note that the radical of zero ideal is exactly nilradical.
For (3). For two ideals I, J ⊆ R, note that Z(I) ⊆ Z(J) if and only if r(I) ⊇ r(J). Then

if Z(I) = Z(J), then I = r(I) = r(J) = J implies the correspondence is injective, and for
arbitrary Z(I), one has

Z(I) = Z(r(I))

which implies the correspondence is surjective.

Exercise.

1. r(a) ⊇ a

2. r(r(a)) = r(a)

3. r(ab) = r(a ∩ b) = r(a) ∩ r(b)

4. r(a) = (1)rightarrowa = (1)

5. r(a+ b) = r(r(a) + r(b))

6. if p is prime, r(pn) = p for all n > 0.

Proof. (1) and (2) are almost obvious by definition. For (3). Note that

(a ∩ b)2 ⊆ ab ⊆ a ∩ b
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Then by (2) we obtain
r(a ∩ b) = r((a ∩ b)2) ⊆ r(ab) ⊆ r(a ∩ b)

which implies r(ab) = r(a ∩ b). For the half part. If x ∈ a ∩ b, then there exists m,n such that
xm ∈ a, xn ∈ b. Then xmax{m,n} ∈ a ∩ b, and converse is clear.

For (4). r(a) = (1) is equivalent to for all x ∈ (1), there exists n such that xn ∈ a. Take
x = 1 implies 1 ∈ a, so we have a = (1), and converse is clear.

For (5). Consider m+ n, where m ∈ r(a), n ∈ r(b), then there exists a sufficiently large N
such that (m + n)N ∈ a + b, just by considering binomial expansion. So if there exists n such
that xn ∈ r(a) + r(b), then xnN ∈ a+ b, which implies x ∈ r(a+ b), and converse is clear.

For (6). Just note that xn ∈ p is equivalent to x ∈ p for a prime ideal p.

Exercise. The Jacobson radical ideal A of a ring A is defined to be the intersection of all the
maximal ideals of A. It can be characterized as follows: x ∈ R if and only if 1− xy is unit for
all y ∈ A.

Proof. If 1 − xy is not a unit, then there exists a maximal ideal m containing 1 − xy, but
x ∈ R ⊆ m, which implies 1 ∈ m, a contradiction. Conversely, suppose x 6∈ m for some maximal
ideal, then m and x generates the unit ideal, so we have u+xy = 1 for some u ∈ m, y ∈ A, thus
1− xy ∈ m, and is therefore not a unit.

Exercise. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce
that the sum of a nilpotent element and a unit is a unit.

Proof. If x is a nilpotent element, then x ∈ N ⊆ R. By exercise 3 we have 1−xy is unit for any
y ∈ A. Take y = −1 we obtain 1 + x is a unit. If y is unit, then we have x+ y = y(y−1x+ 1).
Since y−1x is also nilpotent, we have y−1x+ 1 is unit, thus x+ y is unit.

Exercise. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with
coefficients in A. Let f = a0 + a1x, . . . , anx

n ∈ A[x]. Prove that

1. f is a unit in A[x] ⇐⇒ a0 is a unit in A and a1, . . . , an are nilpotent.

2. f is nilpotent ⇐⇒ a0, a1, . . . , an are nilpotent.

3. f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0.

4. f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈ A[x], then fg is
primitive ⇐⇒ f and g are primitive.

Proof. For (1). Use g =
∑m

i=0 bix
i to denote the inverse of f . Since fg = 1 and if we use ck to

denote
∑

m+n=k ambn, then we have {
c0 = 1

ck = 0, k > 0

But c0 = a0b0, thus a0 is unit. Now let’s prove ar+1
n bm−r = 0 by induction on r: r = 0 is trivial,

since anbm = cn+m = 0. If we have already proven this for k < r. Then consider cm+n−r, we
have

0 = cm+n−r = anbm−r + an−1bm−r+1 + . . .

and multiply arn we obtain

0 = ar+1
n bm−r + an−1 arnbm−r+1︸ ︷︷ ︸

by induction this term is 0

+an−2an ar−1
n bm−r+2︸ ︷︷ ︸

by induction this term is 0

+ . . .
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which completes the proof of claim. Take r = m, we obtain am+1
n b0 = 0. But b0 is unit, thus an

is nilpotent and anx
n is a nilpotent element in A[x]. By exercise 4, we know that f − anx

n is
unit, then we can prove an−1, an−2 is also nilpotent by induction on degree of f ; Conversely, if
a0 is unit and a1, . . . , an is nilpotent. We can imagine that if you power f enough times, then
we will obtain unit. Or you can see

∑n
i=1 aix

i is nilpotent, then unit plus nilpotent is also unit.
For (2)11. If a0, . . . , an are nilpotent, then clearly f is; Conversely, if f is nilpotent, then

clearly an is nilpotent, and we have f − anx
n is nilpotent, then by induction on degree of f to

conclude.
For (3). af = 0 for a 6= 0 implies f is a zero-divisor is clear; Conversely choose a g =∑m

i=0 bix
i of least degree m such that fg = 0, then we have anbm = 0, hence ang = 0, since

angf = 0 and has degree less than m. Then consider

0 = fg − anx
ng = (f − anx

n)g

Then f − anx
n is a zero-divisor with degree n − 1, so we can conclude by induction on degree

of f .
For (4). Note that (a0, . . . , an) = 1 is equivalent to there is no maximal ideal m contains

a0, . . . , an, it’s an equivalent description for primitive polynomials. For f ∈ A[x], f is primitive
if and only if for all maximal ideal m, we have f 6∈ m[x]. Note that we have the following
isomorphism

A[x]/m[x] ∼= (A/m)[x]

Indeed, consider the following homomorphism

φ : A[x] → (A/m)[x]
n∑

i=0

aix
i 7→

n∑
i=0

(ai +m)xi

Clearly kerφ = m[x] and use the first isomorphism theorem. So in other words, f ∈ A[x] is
primitive if and only if f 6= 0 ∈ (A/m)[x] for any maximal ideal m. Since A/m is a field, then
(A/m)[x] is an integral domain by (3), so fg 6= 0 ∈ (A/m)[x] if and only if f 6= 0 ∈ (A/m)[x], g 6=
0 ∈ (A/m)[x]. This completes the proof.

Exercise. In the ring A[x], the Jacobson radical is equal to the nilradical

Proof. Since we already have N ⊆ R, it suffices to show for any f ∈ R, it’s nilpotent. Note that
by exercise 3, we have 1− fg is unit for any g ∈ A[x]. Choose g to be x, then by (1) of exercise
5 we know that all coefficients of f is nilpotent in A, and by (2) of exercise 5, f is nilpotent.
This completes the proof.

Exercise. Prove that SpecR is quasi-compact22 under Zariski topology.

Proof. It suffices to show every open covering taking the form {Ufi} has a finite subcovering,
since Uf forms a basis of Zariski topology. We can translate X =

⋃
i∈I Ufi as (fi)i∈I = (1).

Indeed,
(fi)i∈I = (1) ⇐⇒

⋂
i∈I

V (fi) = V ((fi)i∈I) = ∅ ⇐⇒
⋃
i∈I

Ufi = X

1An alternative proof of (2). Note that

N(A[x]) =
∩

p[x] = (
∩

p)[x] = N(A)[x]

2Here X is called quasi-compact if every open covering of X has a finite subcovering, and a topological space
is called compact, if it’s both Hausdorff and quasi-compact.

3



So if {fi}i∈I generates (1), then there is a finite expression such that
n∑

i=1

aifi = 1, ai ∈ A

So we can cover X just using Uf1 , . . . , Ufn .

Exercise. Let X = SpecR and f ∈ R. Denote by Uf = X − Z(f). Let S = R[x]/(xf − 1).
Prove that SpecS is homeomorphic to Uf induced by the natural ring homomorphism R → S.

Proof. If f is nilpotent, then Z(f) = X, that is Uf = ∅. In this case, unit equals to nilpotent
element in S, since 1 + (xf − 1) = xf + (xf − 1). This shows S is a zero ring, which implies
SpecS = ∅.

If f is not nilpotent, then the localization of R with respect to {1, f, f2, . . . }, denoted by
Rf is isomorphic to R[x]/(xf − 1). Indeed, consider

φ : R[x] → Rf = { r

fn
| r ∈ R,n ∈ Z≥0}

n∑
i=0

aix
i 7→

n∑
i=0

ai
f i

which is a surjective ring homomorphism with kernel (xf − 1). Now it suffices to show Uf is
homeomorphic to SpecRf , which is a well-known result.

Exercise. Let A =
∏n

i=1Ai be the direct product of rings Ai. Show that SpecA is the disjoint
union of open (and closed) subspaces Xi, where Xi is canonically homeomorphic with SpecAi.

Proof. For each i consider the projection pi :
∏

Ai → Ai. It’s a surjective, and thus there is
a homeomorphism Xi = V (ker pi) ∼= Spec(Ai). We claim {Xi} covers A and Xi ∩Xj = ∅ for
distinct i, j. Note that we can write Xi explictly as V (

∏
i ̸=j Aj). Then⋃

V (
∏
i ̸=j

Aj) = V (
⋂∏

i ̸=j

Aj) = V ((0)) = X

And
Xi ∩Xj = V (

∏
i ̸=j

Aj +
∏
i ̸=j

Ai) = V ((1)) = ∅

As desired.

Exercise. A topological space X is called noetherian if it satisfies the descending chain condition
for closed subets.

1. A topological space X is noetherian if and only if every collection of closed subsets of X has
a minimal element under inclusion.

2. A topological space X is noetherian if and only if every open subset of X is compact.

3. Every closed subset of noetherian space X is a finite union of irreducible subsets.

4. If R is a noetherian ring, then SpecR is noetherian.

Proof. For (1). Let {Yi}i∈I be a collection of closed subsets of X. If there is no minimal
element in this collection under inclusion, then there exists a descending chain of closed subsets
which is not stable, a contradiction. Conversely, suppose Y1 ⊇ Y2 ⊇ . . . is a chain of closed
subsets. Then there exists a minimal element under inclusion, denoted by Ym, which implies
Ym = Ym+1 = . . . .
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For (2). It’s clear to see X is noetherian if and only if it satisfies the increasing chain
condition for open subsets. For open subset U ⊆ X with open covering {Ui}i∈I . If there is no
finite subcovering, then there exists an increasing chain of open subsets which is not stable, a
contradiction. Conversely, if U1 ⊆ U2 ⊆ . . . is an increasing chain of open subsets, then consider
open subset U =

⋃∞
i=1 Ui which is compact by hypothesis. Then open covering {Ui}∞i=1 of U

admits a finite subcovering, which implies this chain is stable.
For (3). Let A be the set of nonempty closed subsets of X which cannot be written as a

finite union of irreducible closed subsets. If A is nonempty, then since X is noetherian, it must
contain a minimal element, say Y . Then Y is not irreducible, by definition there exists proper
closed subsets Y ′ and Y ′′ of Y such that Y = Y ′ ∪ Y ′′. By minimality of Y , each of Y ′ and
Y ′′ can be expressed as a finite union of closed irreducible subsets, hence Y also, which is a
contradiction.

For (4). Let Z(I1) ⊇ Z(I2) ⊇ . . . be a chain of closed subsets in SpecR, and without lose
of generality we may assume Ii are radical ideals, since Z(I) = Z(r(I)). By exercise 1 this
corresponds to an increasing chain of ideals in R, that is

I1 ⊆ I2 ⊆ . . .

Since R is noetherian, there exists m ∈ Z>0 such that Im = Im+1 = . . . , which implies Z(Im) =
Z(Im+1) = . . . . This completes the proof.

Exercise. Describe points and closed subets of SpecC[x, y]/(x2+y2) and SpecR[x, y]/(x2+y2).
Proof. Note that SpecC[x, y]/(x2+y2) is homeomorphic to Z(x2+y2) = Z(x+

√
−1y)∪Z(x−√

−1y). Note that
C[x, y]/(x−

√
−1y) ∼= C[y]

This shows
Z(x−

√
−1y) = {(x−

√
−1y), (x−

√
−1y, y − α) | α ∈ C}

The same argument shows

Z(x+
√
−1y) = {(x+

√
−1y), (x+

√
−1y, y − β) | β ∈ C}

This gives all points of SpecC[x, y]/(x2 + y2). To see all its closed subsets, it suffices to find
all its irreducible closed subsets, since SpecC[x, y]/(x2 + y2) is noetherian. However, every
irreducible closed subsets of prime spectral turns out to be the closure of some point, so it
suffices to consider closure of all points. By Hilbert’s Nullstellensatz (x −

√
−1y, y − α) and

(x+
√
−1y, y−β) are maximal ideals for arbitrary α, β ∈ C, so they’re closed points. (x−

√
−1y)

and (x +
√
−1y) are not closed points, and their closures are Z(x −

√
−1y) and Z(x −

√
−1y)

respectively.
For SpecR[x, y]/(x2 + y2), it’s homeomorphic to Z(x2 + y2), and thus all points are prime

ideals of R[x, y] containing (x2 + y2). Let R be a PID. Then all prime ideals in R[y] are listed
as follows.
1. (0).

2. (f(y)), where f(y) is irreducible in R[y]

3. (p, f(y)), where p ∈ R is prime and f(y) is irreducible in (R/p)[y].
Thus all prime ideals of R[x, y] containing (x2 + y2) are (x2 + y2), (x, y), (x − a, y2 + a2), (y −
a, x2 + a2), (x+ cy + d, x2 + y2), (y + cx+ d, x2 + y2), where a, c, d ∈ R. Note that

R[x, y]/(x− a, y2 + a2) ∼= C

Thus (x−a, y2+a2) is a closed points, and the same argument yields both (y−a, x2+a2), (x+
cy + d, x2 + y2), (y + cx + d, x2 + y2) and (x, y) are closed points. Thus all irreducible closed
subsets of SpecR[x, y]/(x2 + y2) are Z(x2 + y2) and points except (x2 + y2).
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Chapter 2

Solutions to Homework11

Exercise. Calculate Z /nZ⊗Z Z /mZ for positive integers m and n.

Proof. Now we’re going to prove the following isomorphism

Z /mZ⊗Z /nZ ∼= Z / gcd(m,n)Z

Consider the following mapping

Z /mZ×Z /nZ → Z / gcd(m,n)Z
(x+mZ, y + nZ) 7→ xy + gcd(m,n)Z

It’s well-defined and bilinear, and thus it induces a linear map f : Z /mZ⊗Z /nZ → Z / gcd(m,n)Z
such that

f(x+mZ⊗y + nZ) = xy + gcd(m,n)Z

Consider the following map

g : Z / gcd(m,n)Z → Z /mZ⊗Z /nZ
z + gcd(m,n)Z 7→ (z +mZ)⊗ (1 + nZ)

It’s well-defined. Indeed, if we let z′ = z+ k gcd(m,n), then Bezout theorem implies that there
exists a, b ∈ Z such that am+ bn = gcd(m,n). Thus

(z′ +mZ)⊗ (1 + nZ) = (z +mZ)⊗ (1 + nZ) + (k(am+ bn) +mZ)⊗ (1 + nZ)
= (z +mZ)⊗ (1 + nZ) + (n(kb+mZ))⊗ (1 + nZ)
= (z +mZ)⊗ (1 + nZ) + (kb+mZ)⊗ (n+ nZ)
= (z +mZ)⊗ (1 + nZ)

It’s clear f ◦ g = 1, g ◦ f = 1, so we have desired isomorphism.

Exercise. Let V be a free R-module with basis x, x ∈ X and W a free R-module with basis
y, y ∈ Y . Show that the tensor product of V and W is free with basis x⊗ y.

Proof. Suppose X ⊗ Y is the free module generated by basis {x ⊗ y | x ∈ X, y ∈ Y }, and
τ : V × W → X ⊗ Y be the map given by (x, y) 7→ x ⊗ y. Now we’re going to prove X ⊗ Y
satisfies the universal property, and then the uniqueness shows X ⊗ Y ∼= V ⊗W . For arbitrary
R-module P and a bilinear map f : V ×W → P , it suffices to prove there exists a unique linear
map f̃ : X ⊗ Y → P such that the following diagram commute

V ×W P

X ⊗ Y

τ

f

f̃
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Since X ⊗ Y is the free module generated by {x⊗ y | x ∈ X, y ∈ Y }, f̃ is uniquely determined
by its values on basis, and in order to let the diagram commute, we need to define

f̃(x⊗ y) = f(x, y)

Note that f̃ defined in this way is linear since f is. This shows the existence and uniqueness of
f̃ , and thus X ⊗ Y ∼= V ⊗W .

Exercise. Let M be a R-module. Prove that both HomR(−,M) and HomR(M,−) are left exact.

Proof. Here we only prove HomR(−,M) is left exact. If

A
f−→ B

g−→ C → 0

is exact, we need to show the induced sequence

0 → HomR(C,M)
g∗−→ HomR(B,M)

f∗
−→ HomR(A,M)

is exact, where f∗ = HomR(f,M) and g∗ = HomR(g,M). One inclusion, namely ker f∗ ⊇ im g∗

is obvious, because f∗◦g∗ = (g◦f)∗ = 0∗ = 0. Now let h ∈ ker f∗, which means f∗(h) = h◦f = 0.
This is equivalent to im f ⊆ kerh and, by exactness of the original sequence, ker g ⊆ kerh.
By the homomorphism theorems, h : B → M induces a homomorphism h : B/ ker g → M such
that h = h ◦ π, where π : B → B/ ker g is the canonical map. By assumption g is surjective, g
induces an isomorphism g : B/ ker g → C such that g = g ◦ π. Consider k = h ◦ g−1 : C → M
and then

g∗(k) = k ◦ g = h

which implies h ∈ im g∗, and thus ker f∗ = im g∗. For h ∈ ker g∗, that is h ◦ g = 0, one must
have h = 0 since g is surjective. This completes the proof.

Exercise. In general, tensor product does not commute with direct product.

Proof. Now we’re going to show (
∏

n≥1 Z /nZ)⊗ZQ 6= 0 and
∏

n≥1(Z /nZ⊗ZQ) = 0, and thus
tensor product doesn’t commute with direct product in general. It’s clear to see

∏
n≥1(Z /nZ⊗ZQ) =

0, since Z /nZ⊗ZQ = 0 for any n ∈ Z≥1. Let S = Z \{0}. Then

(
∏
n≥1

Z /nZ)⊗Z Q ∼= S−1(
∏
n≥1

Z /nZ)

Consider α = (1)n≥1 ∈
∏

n≥1 Z /nZ, which is a non-torsion element. In particular, there is no
element N ∈ S such that Nα = 0, and thus its image in S−1(

∏
n≥1 Z /nZ) is not zero. This

completes the proof.

Exercise. Let A and B be two R-algebras. Let π1 : A → A ⊗R B, a 7→ a ⊗ 1 and π2 : B →
A⊗RB, b 7→ 1⊗b be two homomorphisms of R-algebras. Show the universal property of A⊗RB.
In other words, if there is a R-algebra C with f1 : A → C and f2 : B → C, then there exists a
unique homomorphism of R-algebra f : A⊗R B → C such that fi = f ◦ πi.

Proof. Since A,B are R-modules we may form their tensor product A ⊗R B, which is an R-
module. To make it into an R-algebra, it suffices to define a multiplication on it. Consider the
following linear map from A×B ×A×B to A⊗R B given by

(a, b, a′, b′) 7→ aa′ ⊗ bb′

It induces an R-module homomorphism

(A⊗R B)⊗R (A⊗R B) → A⊗R B

7



which gives the multiplication structure on A⊗RB. Suppose there is R-algebra C with f1 : A →
C and f2 : B → C. If we consider the bilinear map f : A×B → C given by f(a, b) = f1(a)f2(b),
by universal property of tensor product, there exists a unique R-module homomorphism f : A⊗R

B → C such that fi = f ◦ π, and by the construction of multiplication structure on A ⊗R B,
it’s clear to see f is a R-algebra homomorphism.

Exercise. Simplify C[t]⊗C C[t],C[t]⊗C[t] C[t] and C[t, s]⊗C[t] C[t, s]. Here C[t] and C[t, s] are
C[t]-modules via the natural embedding.

Proof. It’s clear C[t]⊗C[t] C[t] ∼= C[t], and C[t]⊗C C[t] ∼= C[x, y],C[t, s]⊗C[t] C[t, s] ∼= C[x, y, z].
The last two isomorphisms follows from the following claim: Let R be a ring. Then R[x] ⊗R

R[y] ∼= R[x, y], which can be directly proved by universal property of tensor product.

Exercise. Let M and N be two R-modules and G be an abelian group. We call a map f : M ×
N → G “R-balanced” if the map is Z-bilinear and also satisfies f(rm, n) = f(m, rn) for any
r ∈ R,m ∈ M and n ∈ N . The set of such maps is denoted by HomR−balance(M ×N,G).

(1) Show that there is a bijection between

HomR−balance(M ×N,G) ∼= HomR(M,HomZ(N,G))

Here the R-module structure on HomZ(N,G) is given by (rϕ)(n) = ϕ(rn) for any ϕ ∈
HomZ(N,G).

(2) Construct an abelian group M⊗̃N such that there is an natural bijection between

HomZ(M⊗̃N,G) ∼= HomR(M,HomZ(N,G)).

Try to write it as quotient group of free abelian group with basis M ×N quotient by some
relations. Denote by m⊗̃n for the image of (m,n) ∈ M ×N in M⊗̃N . State the universal
property of M⊗̃N .

(3) Use the universal property to prove that r ·m⊗̃n = (rm)⊗̃n gives a well defined R-module
structure on M⊗̃N . Prove that the natural map M ⊗N → M⊗̃N is R-bilinear under this
R-module structure.

(4) Show that M⊗̃N ∼= M ⊗N as R-module.

Proof. For (1). Let f ∈ HomR−balance(M × N,G) and m ∈ M , we define g(m) be the map
n 7→ f(m,n), where n ∈ N . Note that n 7→ f(m,n) lies in HomZ(N,G), so if we want to show g
gives an element in HomR(M,HomZ(N,G)), it suffices to show g is a R-module homomorphism.
For arbitrary m1,m2 ∈ M , one has

g(m1 +m2) = {n 7→ f(m1 +m2, n)}
= {n 7→ f(m1, n) + f(m2, n)}
= {n 7→ f(m1, n)}+ {n 7→ f(m2, n)}
= g(m1) + g(m2)

and for r ∈ R,m ∈ M , one has

g(rm) = {n 7→ f(rm, n)}
= {n 7→ f(m, rn)}
= r{n 7→ f(m,n)}
= rg(m)

8



If we use φ to denote this correspondence, we’re going to show φ is a bijection. It’s clear φ is
injective, since if φ(f1) = φ(f2), then for arbitrary (m,n) ∈ M×N , one has f1(m,n) = f2(m,n).
To see it’s surjective, for arbitrary g ∈ HomR(M,HomZ(N,G)), we define f(m,n) = g(m)(n),
where (m,n) ∈ M ×N , a routine computation shows such f is R-balanced.

For (2). Suppose F (M ×N) is the free abelian group with basis M ×N , and consider

M⊗̃N := F (M ×N)/N

where N is the subgroup generated by {(m1+m2,m)−(m1, n)−(m2, n), (m,n1+n2)−(m,n1)−
(m,n2), (rm, n) − (m, rn) | m1,m2 ∈ M,n1, n2 ∈ N, r ∈ R}. By definition of M⊗̃N , it’s clear
there is a bijection between

HomR−balance(M ×N,G) ∼= HomZ(M⊗̃N,G)

and thus HomZ(M⊗̃N,G) ∼= HomZ(M,HomZ(N,G)). There is a universal property of M⊗̃N :
Let τ : M × N → M⊗̃N be the map (m,n) 7→ m⊗̃n. For arbitrary abelian group G and R-
balanced map f : M ×N → G, there exists a unique group homomorphism f̃ : M⊗̃N → G such
that the following diagram commutes

M ×N

M⊗̃N G

τ f

f̃

For (3). For r ∈ R, consider the following map

M ×N → M⊗̃N

(m,n) 7→ (rm)⊗̃n

A direct computation shows it’s R-balanced. By universal property, it induces a well-defined
map

M⊗̃N → M⊗̃N

m⊗̃n 7→ (rm)⊗̃n

which gives a R-module structure on M⊗̃N .
For (4). Consider the map τ : M × N → M⊗̃N given by (m,n) 7→ m⊗̃n. Note that for

m ∈ M,n ∈ N, r ∈ R, one has

τ(rm, n) = (rm)⊗̃n = r(m⊗̃n) = rτ(m,n)

τ(m, rn) = m⊗̃(rn) = (rm)⊗̃n = r(m⊗̃n) = rτ(m,n)

Thus τ is a R-bilinear map, and thus it induces a R-module homomorphism F : M⊗N → M⊗̃N .
Conversely, consider the map τ ′ : M × N → M ⊗ N given by (m,n) 7→ m ⊗ n, which is R-
bilinear. In particular it’s R-balanced, so by universal property it induces a group homomor-
phism G : M⊗̃N → M ⊗N , and it’s also a R-module homomorphism if we consider R-module
structure of M⊗̃N . A direct computation yields F ◦G = id and G◦F = id, so M⊗̃N ∼= M ⊗N
as R-modules.
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Chapter 3

Solutions to Homework13

Exercise. Let R be a UFD, prove that R is normal, that is it’s integrally closed in its field of
fractions.

Proof. Suppose K is the field of fractions of R and α ∈ K is integral over R, that is, there is a
monic polynomial

f(x) = xn + cn−1x
n−1 + · · ·+ c0

such that f(α) = 0. We can express α as a
b with a, b ∈ R, and using unique factorization we

may assume that no irreducible of R divides both a and b. Then one has

an + cn−1ba
n−1 + · · ·+ c0b

n = 0

Now, cn−1ba
n−1+ · · ·+c0b

n is divisible by b, hence an is divisible by b. Since no irreducible of R
divides both a and b, it follows that b must be a unit by unique factorization. Hence α ∈ R.

Exercise. If A → B is an integral ring homomorphism, prove that SpecA → SpecR is a closed
mapping.

Proof. Firstly, consider A
f−→ f(A)

i−→ B, where i is an inclusion. Note that Spec f(A) is
homeomorphic to a closed subset of SpecA, so it suffices to show i∗ : SpecB → Spec f(A) is a
closed mapping, that is we may assume A ⊆ B, as a subring. For an closed sets V (b) of SpecB,
we claim

f∗(V (b)) = V (f−1(b))

thus it’s closed mapping. Indeed, note that V (b) = {q ⊇ b | q is prime}, then it’s clear
f∗(q) = f−1(q) ⊇ f−1(b) and it’s prime, thus f∗(V (b)) ⊆ V (f−1(b)). Conversely, for any prime
p containing f−1(b), by going-up theorem, there exists q ⊇ b such that qc = p, this implies
reverse inclusion.

Exercise. Prove that if R ⊆ A be an integral ring extension, then dimKrull A = dimKrull R

Proof. Let p0 ⊊ p1 ⊊ · · · ⊊ pn be a chain of prime ideals in R. By going-up theorem, there
exists a chain of primes ideals q0 ⊊ q1 ⊊ · · · ⊊ qn in A such that qi ∩R = pi for each 0 ≤ i ≤ n.
Thus one has dimKrull A ≥ dimKrull R. On the other hand, let q0 ⊊ q1 ⊊ · · · ⊊ qn be a chain of
prime ideals in A and set pi = qi ∩R. Then by imcomposibility pi 6= pi+1 since qi 6= qi+1 , and
thus dimKrull A ≤ dimKrull R. This completes the proof.

Exercise. Let A → B → C be ring homomorphisms. Show that if B is finite over A and C is
finite over B, then C is finite over A.

Proof. Since C is finite over B, we may assume C is generated by c1, . . . , cn as a B-module, and
since B is finite over A, we assume B is generated by b1, . . . , bm as a A-module. In particular,
C is generated by {cibj} as a A-module, and thus C is finite over A.
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Exercise. Let A → B be ring homomorphism and B is a finitely generated A-algebra under
this ring homomorphism. If B is integral over A, prove that B is finite over A.

Proof. Suppose B is generated by b1, . . . , bn as A-algebra. B is integral over A implies for each
bi, one has A[bi] is finite over A, and thus we can conclude A[b1, . . . , bn] is finite over A by
adding bi successively. This completes the proof.

Exercise. Let k be a field with infinitely many elements. Let B = k[y1, , . . . , ym]/I be a finitely
generated k-algebra and I 6= 0. Prove that there are m− 1 k-linear combinations of y1, . . . , ym,
denoted by z1, , . . . , zm−1 such that B is finite over the k-subalgebra generated by z1, , . . . , zm−1.

Proof. For arbitrary 0 6= f(y1, . . . , ym) ∈ I, let F be the homogenous part of highest degree.
Since k is infinite, there exists λ1, . . . , λm−1 ∈ k such that

F (λ1, . . . , λm−1, 1) 6= 0

Let zi = yi − λiym, where 1 ≤ i ≤ m− 1. Then

f(y1, . . . , ym) = f(z1 + λ1ym, z2 + λ2ym, . . . , zm−1 + λm−1ym, ym)

whose highest degree term of ym has coefficient F (λ1, . . . , λm−1, 1) 6= 0. Thus ym is integral
over A′ = k[z1, . . . , zm−1]. Note that yi = zi + λiym, one has B is integral over A′. Then by
exercise 5 one has B is finite over A′ since B is finitely generated A′-algebra.

Exercise (Noether normalization11). Let k be a field with infinitely many elements and A =
k[x1, . . . , xn]/I is a finitely generated k-algebra. Prove that there exist k-linear combinations of
x1, . . . , xn, denoted by y1, . . . , ym such that the ring homomorphism R = k[t1, . . . , tm] → A, ti 7→
yi is injective and finite (hence an integral ring extension).

Proof. Let A = {N | there exists k-linear combinations of x1, . . . xn, denoted by y1, . . . , yN , such
that A is finite over k[y1, . . . , yN ]} and m = minA. By exercise 6 one has m ≤ n − 1. Now
we’re going to prove the integral homomorphism

f : k[y1, . . . , ym] → A

is injective. Otherwise, k[y1, . . . , ym]/(ker f) → A is an injective integral homomorphism. Again
by exercise 6 there exists integral homomorphism g : k[z1, . . . , zm−1] → k[y1, . . . , ym]/(ker f).
Then f ◦ g gives an integral homomorphism from k[z1, . . . , zm−1] to A, which is a contradiction
to the choice of m.

Exercise. Let k be a field with infinitely many elements. Show that dimKrull k[x1, . . . , xn] = n.

Proof. Let’s prove by induction on n. It’s clear the Krull dimension of k[x] is 1 since every
non-zero prime ideal is maximal and zero ideal is a prime which is contained in arbitrary ideal.
Suppose the hypothesis holds for k < n. Note that

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xn)

implies dimKrull k[x1, . . . , xn] ≥ n. If (0) = p0 ⊊ p1 ⊊ · · · ⊊ pl is a chain of prime ideals.
Choose 0 6= f ∈ p1, by exercise 6 one has k[x1, . . . , xn]/(f) is finite over some k[y1, . . . , yn] with
m ≤ n− 1. Then

dimKrull k[x1, . . . , xn]/(f) ≤ dimKrull k[y1, . . . , ym] = m ≤ n− 1

1For example, A = k[x, y]/(xy) is an integral ring extension over R = k[x+ y].
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Furthermore, since k[x1, . . . , xn]/(f) → k[x1, . . . , xn]/p1 is surjective, one has dimKrull k[x1, . . . , xn]/p1 ≤
dimKrull k[x1, . . . , xn]/(f) ≤ n− 1. Note that

(0) ⊊ p2/p1 ⊊ · · · ⊊ pl/p1

is a chain of prime ideals in k[x1, . . . , xn]/p1, so l − 1 ≤ n − 1, and thus l ≤ n. This shows
dimKrull k[x1, . . . , xn] = n.

Exercise. Let ϕ : R → A be a finite ring homomorphism. Prove that f : SpecA → SpecR has
finite fibers. In other words, for any p ∈ SpecR, there are only finitely many q ∈ SpecA such
that f−1(q) = p.

(1) Reduce the question to finite ring extension, i.e. ϕ injective.

(2) Use localization to reduce this to R a local ring with maximal ideal p.

(3) Let k = R/p be the quotient field. Prove that the tensor product of R-algebras A⊗R k is a
finite-dimensional k-vector space.

(4) Prove that SpecA⊗Rk has Krull-dimension zero and has only finitely many maximal ideals.

(5) Prove that there is a one-to-one correspondence between preimages of p in SpecA and
SpecA⊗R k.

Proof. For (1). This question can be reduced to the finite ring extension as what we have done
in exercise 2.

For (2). Let S be the multiplicative closed subset given by R \ p. By localization one has
the following communicative diagram

SpecS−1A SpecRp

SpecA SpecR

j1

F

j2

f

For all q ∈ SpecA such that q ∩ R = p, one has q ∩ S = ∅, thus q ∈ im j1, that is f−1(p) ⊆
j1(F

−1(pRp). Thus it suffices to prove F has finite fiber over pRp. So we can assume R is a
local ring with only maximal ideal pRp.

For (3) and (4). Since A is finite over R, we may assume A is generated by a1, . . . , an as a
R-module. Then

A⊗R k = (Ra1 + · · ·+Ran)⊗R k

= k(a1 ⊗ 1) + · · ·+ k(an ⊗ 1)

This shows A ⊗R k is finite over k, and thus dimKrull A ⊗R k = dimKrull k = 0, which implies
A ⊗R k only has maximal ideals. On the other hand, since A ⊗R k is noetherian, one has
Spec(A ⊗R k) is a noetherian topological space. Thus Spec(A ⊗R k) can be written as a finite
union of V (pi), where pi ∈ Spec(A⊗Rk), and since the Krull dimension of A⊗Rk is zero, one has
every point is closed point. In particular, there are only finitely many points in Spec(A⊗R k).
This shows A⊗R k only has finitely many maximal ideals.

For (5). For q ∈ SpecA such that q ∩ R = p, one has R-algebra homomorphisms A → A/q
and k → A/p, so there is a unique R-algebra homomorphism

φq : A⊗R k → A/q

which induces a continuous map

SpecA/q → Spec(A⊗R k)
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On one hand there is a map

T : F−1({p}) → Spec(A⊗R k)

q 7→ kerφq

On the other hand, for any m ∈ Spec(A⊗R k), one has the following diagram

R A

k A⊗R k (A⊗R k)/m

Let q be the kernel of A → A ⊗R k → (A ⊗R k)/m. Then q ∩ R is the kernel of R → A →
A ⊗R k → (A ⊗R k)/m, which is the kernel of R → k → (A ⊗R k)/m by the commutativity of
diagram. However, k → (A⊗R k)/m is injective since it’s a homomorphism between fields, and
thus q ∩R = p. This induces a map

G : Spec(A⊗R k) → F−1({p})
m 7→ ker{A → A⊗R k → (A⊗R k)/m}

Then G and T gives the bijection between F−1({p} and Spec(A⊗R k).

13


	Solutions to Homework9
	Solutions to Homework11
	Solutions to Homework13

