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Part 1. Basic Complex Geometry

In this part, we mainly follows [Huy05] and [Dem12].

1. REVIEW OF COMPLEX ANALYSIS

1.1. One variable case. We first give a quick review about basic results in holo-
morphic functions of one variable. Fix an open subset U ⊆C. There are too many
ways to define a holomorphic function, and all of them are equivalent.

Definition 1.1.1 (holomorphic). A function f : U →C is called holomorphic at z0 ∈
U , if there exists an open ball Bε(z0)⊆U with ε> 0 such that f |Bε(z0) can be written
as convergent power series, that is

f (z)=
∞∑

n=0
an(z− z0)n, z ∈ Bε(z0)

f is holomorphic om U , if f is holomorphic at any point of U .

Remark 1.1.1 (Cauchy-Riemann equation). The second definition is given by Cauchy-
Riemann equation. To be explicit, for a function f : U → C, we can regard it as a
function defined on R2, and write it as f (x, y) = u(x, y)+p−1v(x, y), where u,v are
real-valued functions, then f is holomorphic if and only if u,v are continuously
differentiable and satisfy the following Cauchy-Riemann equations:

∂u
∂x

= ∂v
∂y

∂u
∂y

=−∂v
∂x

If we introduce the following two operators
∂

∂z
:= 1

2
(
∂

∂x
−
p
−1

∂

∂y
)

∂

∂z
:= 1

2
(
∂

∂x
+
p
−1

∂

∂y
)

Then Cauchy-Riemann equation is equivalent to ∂ f
∂z = 0. Indeed,

∂ f
∂z

= 1
2

(
∂ f
∂x

+
p
−1

∂ f
∂y

)

= 1
2

(
∂u
∂x

+
p
−1

∂v
∂x

+
p
−1

∂u
∂y

− ∂v
∂y

)

= 0

Remark 1.1.2 (Cauchy integral formula). The third definition is given by Cauchy
integral formula. To be explicit, a function f : U →C is holomorphic if and only if f
is continuously differentiable and for any Bε(z0)⊆U , the following formula holds

f (z0)= 1

2π
p−1

ˆ
∂Bε(z0)

f (z)
z− z0

dz
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Here are some standard facts in complex analysis, which can be found in any
textbook.

Theorem 1.1.1 (maximum principle). Let U ⊆C be open and connected. If f : U →
C is holomorphic and non-constant, then | f | has no local maximum in U .

Theorem 1.1.2 (identity theorem). If f , g : U → C are two holomorphic functions
a connected open subset U ⊆C such that f (z)= g(z) for all z in a non-empty subset
V of U , then f = g.

Theorem 1.1.3 (Riemann extension theorem). Let f : Bε(z0)−{z0}→C be a bounded
holomorphic function, then f can be extended to a holomorphic function f : Bε(z0)→
C.

Theorem 1.1.4 (Riemann mapping theorem). Let U ⊆ C be a simply-connected
proper open subset. Then U is biholomorphic to the unit ball.

Theorem 1.1.5 (Liouville). Every bounded holomorphic function f : C→C is con-
stant.

Remark 1.1.3. Liouville theorem implies that C is not biholomorphic to the unit
ball. It’s a striking difference to the real case since we know unit ball is homeo-
morphic to R.

1.2. Several variables case. Now let U be an open subset of Cn. For any w ∈U ,
a polydisc Bε(w)= {z : |zi −wi| < εi}, where ε= (ε1, . . . ,εn).

Definition 1.2.1 (holomorphic). A function f : U → C is called holomorphic at
point w ∈U , if there exists a polydisc Bε(w)⊆U such that the restriction of f |Bε(w)
is given by power series

∞∑
i1,...,in=0

ai1...in (z1 −w1)i1 . . . (zn −wn)in

Remark 1.2.1 (equivalent definitions of holomorphic function).
(1) A function f : U → C is holomorphic, if it satisfies Cauchy-Riemann equations

for all coordinates zi = xi +p−1yi, that is
∂ f
∂zi

= 0, i = 1,2, . . . ,n

where ∂
∂zi := 1

2 ( ∂
∂xi +

p−1 ∂
∂yi )

(2) A function f : U → C is holomorphic if and only if f is continuously differen-
tiable and for any z0 ∈U , the following formula holds

f (z)= 1

(2π
p−1)n

ˆ
∂Bε(w)

f (w)
(z1 −w1) . . . (zn −wn)

dw1 . . .dwn

Remark 1.2.2. Other results such as maximum theorem, identity theorem and
Liouville theorem generalize easily to the higher dimension. A version of Riemann
extension still holds true. However, Riemann mapping theorem fails.
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Exercise 1.2.1. Show that polydisc B(1,1)(0) ⊆ C2 is not biholomorphic to the unit
disk D = {z ∈C2 : ‖z‖ < 1}.

Lemma 1.2.1 (local ∂∂-lemma). Let ω be a real (1,1)-form defined on Cn. Then ω

is d-closed if and only if for any point z ∈Cn, there exists an open neighborhood U
of z and a smooth function φ : U →R such that

ω=
p
−1∂∂φ.

Lemma 1.2.2. Let φ : Cn → R be a smooth function such that ∂∂ f = 0. Then for
any point z ∈ Cn, there exists an open neighborhood U of z and a holomorphic
functions f : U →C such that φ=Re( f ) over U .

Theorem 1.2.1 (Hartogs’ theorem). Suppose ε= (ε1, . . . ,εn) and ε′ = (ε′1, . . . ,ε′n) are
given such that for all i one has ε′i < εi. If n > 1, then any holomorphic map
f : Bε(0)\Bε′(0)→C can be uniquely extended to a holomorphic map f : Bε(0)→C.

Remark 1.2.3. This is only valid in dimension at least two.

Definition 1.2.2 (holomorphic). A function f : U →Cn is called holomorphic if all
coordinate functions f1, . . . , fn are holomorphic functions U →C.

Definition 1.2.3 (biholomorphic). A holomorphic map f : U → V between two
open subsets U ,V ⊆ Cn is biholomorphic if f is bijective and its inverse f −1 is
also holomorphic.

Definition 1.2.4 (complex Jacobian). Let f : U → Cn be a holomorphic map, the
complex Jacobian of f at point z ∈U is the matrix

JC( f )(z) :=
(
∂ f i

∂z j (z)
)

1≤i≤n
1≤ j≤m

where f i = zi ◦ f .

Remark 1.2.4. For each z ∈ U , the smooth map f : U ⊆ Cm = R2m → Cn = R2n in-
duces a R-linear map, which is denoted by JR( f )(z) : TzR

2m → T f (z)R
2n. Suppose

{ ∂
∂xi , ∂

∂yi }1≤i≤m and { ∂
∂r j , ∂

∂s j }1≤ j≤n are local frames of TzR
2m and T f (z)R

2n respec-
tively, then with respect to these basis one has

JR( f )(z)=
(
(∂ui
∂x j ) (∂ui

∂y j )

( ∂vi
∂x j ) ( ∂vi

∂y j )

)
where ui = ri ◦ f and vi = si ◦ f . If we consider its C-linear extension, with respect
to basis { ∂

∂zi , ∂

∂zi }1≤i≤m and { ∂
∂w j , ∂

∂w j }1≤ j≤n, it can be written as

JR( f )(z)=
( ∂ f i

∂z j ) ( ∂ f i

∂z j )

(∂ f i
∂z j ) (∂ f i

∂z j )


In particular, if f is holomorphic, then det JR( f )= det JC( f )det JC( f )= |det JC( f )|2 ≥
0.
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Definition 1.2.5 (regular value). Let U ⊆Cm be an open subset and let f : U →Cn

be a holomorphic map, z ∈ U is called regular point, if JC( f )(z) is surjective. If
every point z ∈ f −1(w) is regular point, then w is called a regular value.

Remark 1.2.5. In particular, if f −1(w)=∅, then w is also called a regular value.

Theorem 1.2.2 (inverse function theorem). Let f : U → V be a holomorphic map
between two open subsets U ,V ⊆ Cn. If z ∈U is a regular point, then there exist
open subsets z ∈ U ′ ⊆ U and f (z) ∈ V ′ ⊆ V such that f induces a biholomorphic
map f : U ′ →V ′.

Theorem 1.2.3 (implicit function theorem). Let U ⊆Cm be an open subset and let
f : U → Cn be a holomorphic map, where m ≥ n. Suppose z0 ∈ U is a point such
that

det(JC( f )(z0)) 6= 0
Then there exist open subsets U1 ⊆Cm−n,U2 ⊆Cn and a holomorphic map g : U1 →
U2 such that U1×U2 →U and f (z)= f (z0) if and only if g(zn+1, . . . , zm)= (z1, . . . , zn).

Corollary 1.2.1. Let U ⊆ Cm be an open subset and f : U → Cn be a holomorphic
map. Suppose that z0 ∈U such that JC( f )(z0) has maximal rank. Then
(1) If m ≥ n, then there exists a biholomorphic map h : V → U ′, where U ′ is an

open subset of U containing z0, and V is an open subset of Cn containing f (z0),
such that f (h(z1, . . . , zn))= (z1, . . . , zn).

(2) If m ≤ n, then there exists a biholomorphic map g : V → V ′, where V ,V ′ are
open subsets of Cn containing f (z0), such that g( f (z))= (z1, . . . , zm,0, . . . ,0).
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2. LOCAL THEORY

2.1. Algebraic germ.

2.1.1. Weierstrass’ theorems. Let f : Bε(0) → C be a holomorphic function defined
on polydisc Bε(0). For any w = (z2, . . . , zn) we denote fw(z1) the function f (z1, . . . , zn).
Now we’re going to show that all zeros of f are caused by a factor of f which has
the form of a Weierstrass polynomial.

Definition 2.1.1 (Weierstrass polynomial). A Weierstrass polynomial is a polyno-
mial in z1 of the form

zd
1 +α1(w)zd−1

1 +·· ·+αd(w)
where coefficients αi(w) are holomorphic functions on some small disc in Cn−1

vanishing at the origin.

Remark 2.1.1. Recall the one variable case, any holomorphic function f (z) with a
zero of order d at the origin can be written as zdh(z), where h(0) 6= 0. In fact, zd

is a Weierstrass polynomial since in this case, αi are constants which vanish at
origin, that’s exactly zero.

Theorem 2.1.1 (Weierstrass preparation theorem). Let f : Bε(0) → C be a holo-
morphic function on the polydisc Bε(0). Assume f (0) = 0 and f0(z1) 6= 0. Then
there exists a unique Weierstrass polynomial gw(z1) and a holomorphic function
h on some smaller polydisc Bε′(0)⊆ Bε(0) such that f = gh and h(0) 6= 0.

Proof. See Proposition 1.1.6 in Page8 of [Huy05]. □
Theorem 2.1.2 (Weierstrass division theorem). Let f ∈OCn,0 and let g ∈OCn−1,0[z1]
be a Weierstrass polynomial of degree d. Then there exist r ∈OCn−1,0[z1] of degree
< d and h ∈ OCn,0 such that f = gh+ r. The functions h and r are uniquely deter-
mined.

Proof. See Proposition 1.1.17 in Page15 of [Huy05]. □

2.1.2. Stalk of sheaf of holomorphic functions. Let’s use OCn to denote the sheaf2

of holomorphic functions on Cn, and use OCn,0 to denote its stalk at origin. The
elements in OCn,0 are called germs. It’s clear OCn,0 is a local ring with maximal
ideal m consisting of all functions that vanish at origin, which implies units in
OCn,0 are functions that don’t vanish at origin.

By using Weierstrass preparation theorem, one can derive more about alge-
braic properties of OCn,0. For example, Weierstrass preparation theorem can be
rephrased by saying that after an appropriate coordinate choice any function f ∈
OCn,0 can be uniquely written as f = gh, where h ∈OCn,0 is a unit and g ∈OCn−1,0[z1]
is a Weierstrass polynomial. Furthermore, it also shows the following important
property.

2Sheaf and its cohomology are important tools we will use once and again, if you’re not familiar
with it, see Appendix ??.
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Theorem 2.1.3. The local ring OCn,0 is a UFD.

Proof. We prove the assumption by induction on n. For n = 0, the ring OCn,0 =
C is a field, and thus a UFD. Suppose that OCn−1,0 is a UFD, for f ∈ OCn,0 we
choose coordinates such that Weierstrass preparation theorem is applied, that is
f = gh, where g ∈ OCn−1,0[z1] is a Weierstrass polynomial and h is a unit in OCn,0.
By induction we have OCn−1,0[z1] is UFD, then g can be written as a product of
irreducible elements of OCn−1,0[z1]. All that is left to show is that any irreducible
element in OCn−1,0[z1] is also irreducible as an element in OCn,0.

Assume g ∈OCn−1,0[z1] is a Weierstrass polynomial which is written as the prod-
uct of non-units g i ∈OCn−1,0[z1]. There are two cases:
(1) g i ∈ OCn−1,0. By induction hypothesis, g i can be written as the product of irre-

ducible elements of OCn−1,0, which are also irreducible in OCn,0.
(2) g i ∉OCn−1,0. In this case, g i satisfies the hypothesis of Weierstrass preparation

theorem since g is a Weierstrass polynomial, then g i is non-trivial on the z1-
line. So we can write g i = g̃ ihi, where g̃ i is also Weierstrass polynomial.

Note that degree of g as a polynomial in z1 is finite, then repeating above process
leads to a decomposition, with factors are either irreducible Weierstrass polyno-
mials or elements in OCn−1,0.

Now it suffices to show any irreducible Weierstrass polynomial g is actually
irreducible as an element of OCn,0. Suppose g = f1 f2, where f1, f2 ∈ OCn,0 are non-
units. We apply Weierstrass preparation theorem to obtain f i = g ihi, i = 1,2, and
thus g = (g1 g2)( f1 f2). By uniqueness one has g = g1 g2, which contradicts to the
irreducibility of g as an element of OCn−1,0[z1]. □

Another important fact is that OCn,0 is noetherian, which follows from Weier-
strass division theorem.

Theorem 2.1.4. The local UFD OCn,0 is noetherian.

Proof. We prove the assumption by induction on n. For n = 0, it’s clear since any
field is noetherian. Suppose that OCn−1,0 is noetherian, then Hilbert’s basis theo-
rem implies OCn−1,0[z1] is also noetherian. Let I ⊆ OCn,0 be a non-trivial idea and
choose 0 6= f ∈ I. Changing coordinates if neccessary, we may assume Weierstrass
preparation theorem is applied, that is f = gh, where g ∈ OCn−1,0[z1] is a Weier-
strass polynomial and h is a unit in OCn,0, hence g ∈ I. Furthermore, we assume
I ∩OCn−1,0[z1] is generated by g1, . . . , gk.

For any other f̃ ∈ I, the Weierstrass division theorem implies f̃ = gh̃+r for some
r ∈OCn−1,0[z1]. Since f̃ , gh̃ ∈ I, we have r ∈ I and therefore r ∈ I ∩OCn−1,0[z1]. Thus
f̃ = gh̃+∑k

i=1 ai g i. This shows I is finitely generated by elements g, g1, . . . , gk. □
Corollary 2.1.1. Let g ∈OCn,0 be an irreducible element. If f ∈OCn,0 vanishes on
Z(g)= {z | g(z)= 0}, then g divides f .

Proof. By Weierstrass preparation theorem we may assume g ∈ OCn−1,0[z1] is a
Weierstrass polynomial with degree d. By the Weierstrass division theorem one



10

finds h ∈OCn,0 and r ∈OCn−1,0[z1] of degree < d such that f = gh+r. For w ∈Cn−1, by
assumption rw vanishes on the zero set gw. If all of zeros of gw have multiplicity
one, then rw ≡ 0 since rw is of degree < d. Now it suffices to show the set w ∈Cn−1

such that gw has zeros with multiplicity > 1 is quite small".
Since g is irreducible and ∂g

∂z1
is of degree d −1, there exist elements h1,h2 ∈

OCn−1,0[z1] and 0 6= γ ∈ OCn−1,0 such that h1 g+ h2
∂g
∂z1

= γ. So if gw has a zero ξ of

multiplicity > 1, then γ(w) = h1(ξ,w)gw(ξ)+h2(ξ,w)∂gw
∂z1

(ξ) = 0. This shows such w
is contained in the zero set of a non-trivial holomorphic function γ ∈OCn−1,0. Then
the following exercise completes the proof. □
Exercise 2.1.1. Let U ⊆Cn be open and connected. Show that for any non-trivial
holomorphic function f : U → C the complement U\Z( f ) of the zero set of f is con-
nected and dense in U .

2.2. Analytic germ. For any f ∈ OCn,0, Z( f ) is not well-defined in fact since for
another g ∈OCn,0, which represents the same element with f , Z( f ) may not equal
to Z(g). However, there always exists an open neighborhood 0 ∈U ⊆Cn such that
Z( f )∩U = Z(g)∩U .

Definition 2.2.1 (germ of a set). The germ of a set in the origin 0 ∈ Cn is given
by a subset X ⊆ Cn. Two germs of a set in the origin X ,Y ⊆ Cn are same if there
exists an open neighborhood 0 ∈U ⊆Cn such that X ∩U =Y ∩U .

Unless otherwise specified, in this section we only consider germ of a set in the
origin, and for convenience we just call it a germ.

Example 2.2.1. For f ∈OCn,0, Z( f ) is a germ.

Definition 2.2.2 (analytic germ). A germ X ⊆ Cn is called analytic if there exist
elements f1, . . . , fk ∈OCn,0 such that X = Z( f1, . . . , fk) :=⋂k

i=1 Z( f i).

Example 2.2.2. Let A be a subset of OCn,0. If we use (A) to denote the idea gener-
ated by A, then (A) is finitely generated since OCn,0 is noetherian. Thus Z((A)) is
an analytic germ.

Definition 2.2.3. Let X ⊆Cn be a germ. Then I(X ) denotes the set of all elements
f ∈OCn,0 with X ⊆ Z( f ).

Remark 2.2.1. It’s clear I(X ) is an idea of OCn,0.

Lemma 2.2.1.
(1) If X1 ⊆ X2 are germs, then I(X2)⊆ I(X1).
(2) If a1 ⊆ a2 are two ideas of OCn,0, then Z(a2)⊆ Z(a1).
(3) For any analytic germ one has Z(I(X ))= X .
(4) For any idea a of OCn,0 one has a⊆ I(Z(a))

Proof. (1), (2) and (4) are clear. For (3). It’s clear X ⊆ Z(I(X )). On the other
hand since X is analytic germ there exist elements f1, . . . , fk ∈ OCn,0 such that
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X = Z( f1, . . . , fk) as germs, thus f1, . . . , fk ∈ I(X ), so by (2) we have Z(I(X )) ⊆ X =
Z( f1, . . . , fk). This completes the proof of (3). □

Definition 2.2.4 (irreducible germ). An analytic germ is irreducible if the follow-
ing condition is satisfied: If X = X1 ∪ X2, where X1, X2 are analytic germs, then
X = X1 or X = X2.

Lemma 2.2.2. An analytic germ X is irreducible if and only if I(X ) ⊆ OCn,0 is a
prime ideal.

Proof. If X is irreducible and f1 f2 ∈ I(X ), then X ⊆ Z( f1 f2) = Z( f1)∪Z( f2), so we
have X = (X∩Z( f1))∪(X∩Z( f2)) is a union of analytic germs. Then by irreducibility
one has X = X ∩Z( f i) for some i = 1 or i = 2, and thus at least one of functions f1
or f2 vanishes on X . This shows I(X ) is prime.

Conversely, if I(X ) is a prime ideal and let X = X1 ∪ X2 with X1 and X2 are
analytic. If f i ∈ I(X i), i = 1,2, then f1 f2 ∈ I(X ) since

X = X1 ∪ X2 ⊆ Z( f1)∪Z( f2)= Z( f1 f2)

Hence f1 ∈ I(X ) or f2 ∈ I(X ). Thus it suffices to shows that if X 6= X1 and X 6= X2,
there exist elements f1 ∈ I(X1)\I(X ) and f2 ∈ I(X2)\I(X ). This follows immedi-
ately from (1) of Lemma 2.2.1. □

Corollary 2.2.1. For f ∈ OCn,0, Z( f ) is irreducible if and only if there exists an
irreducible g ∈OCn,0 such that f = gk for some k ∈Z>0.

Proof. If f = gk with g irreducible, then Z( f ) = Z(g) and if h ∈ I(Z(g)), then g
divides h by Corollary 2.1.1, this shows I(Z(g)) = (g) and thus Z( f ) is irreducible
since I(Z( f )) also equals to (g), which is prime. Conversely, if f = ∏

gni
i , then

Z( f ) = ⋃
Z(g i), which cannot be irreducible except for the case f = gk for some

irreducible g. □

Lemma 2.2.3. Every decresing sequences of germs {X i} is stationary.

Proof. Consider its corresponding sequence {I(X i)}, it’s an increasing sequence,
thus it’s stationary since OCn,0 is noetherian, this completes the proof since for
each i, Z(I(X i))= X i. □

Theorem 2.2.1. Every germ X admits a finite decomposition X =⋃N
i=1 X i, where

X i is irreducible for each i and X i ⊊ X j for i 6= j. The decomposition is unique
apart from the ordering.

Proof. It suffices to show uniqueness since existence follows from above lemma.
Assume X = ⋃N ′

l=1 X ′
l is another decomposition, note that X i = ⋃N ′

l=1 X i ∩ X ′
l , we

must have X i = X i ∩ X ′
l(i) since X i is irreducible. Likewise one has X ′

l(i) ∩ X j, so
we i = j since X i ⊊ X j for i 6= j, and this shows X i = X ′

l( j) □
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2.3. Hilbert’s Nullstellensatz.

Theorem 2.3.1. Let X ⊆ Cn be an irreducible analytic germ defined by a prime
ideal p⊆OCn,0. Then one can find a coordinate system

(z1, . . . , zn−d, zn−d+1, . . . , zn)

such that the projection (z1, . . . , zn) → (zn−d+1, . . . , zn) induces a surjective map of
germs X →Cd and such that the induced ring homomorphism OCd ,0 →OCn,0/p is a
finite integral ring extension.

Proof. See (4.19) of [Dem12]. □
Theorem 2.3.2 (Hilbert’s Nullstellensatz). If I ⊆ OCn,0 is any ideal, then

p
I =

I(Z(I)).

Proof. It easy to see
p

I ⊆ I(Z(I)). Conversely, it suffices to show I(Z(I)) ⊆ p for
all prime ideals containing I since

p
I is the intersection of all prime ideals p

containing I. If one has
p=p

p= I(Z(p))
then the results follows from Z(p)⊆ Z(I). Thus we reduce the problem to the case
to I = p is a prime ideal. For f ∈ I(Z(p)), by Theorem 2.3.1 there exists an ap-
propriate coordinate system (z1, . . . , zn) such that the induced element f ∈ OCn,0/p

satisfies an irreducible algebraic equation f
k+a1 f

k−1+·· ·+ak = 0 with ai ∈OCd ,0.
Since f vanishes along Z(p), the 0-th coefficient ak does as well. As Z(p) → Cd

is surjective, this shows ak = 0. Hence above algebraic equation cannot be irre-
ducible unless k = 1. Therefore f = 0 and thus f ∈ p. □
Corollary 2.3.1. There is a one to one correspondence between prime ideals of
OCn,0 and irreducible analytic germ given by X 7→ I(X ) and p→ Z(p).

2.4. Dimension.

Definition 2.4.1 (dimension). Let X be an irreducible analytic germ defined by a
prime ideal p⊆OCn,0. Then the dimension of X is defined by n−htp, where htp is
the height of p.

Remark 2.4.1. For arbitrary analytic germ is of dimension d if all its irreducible
components are of the same dimension d.

Remark 2.4.2. If X ⊆ Cn is an irreducible analytic germ of codimensional 1, then
the prime ideal p defining X is of height 1. A basic result in commutative algebra
says any prime ideal of height 1 in a UFD is principle. Therefore, p= ( f ) for some
irreducible f ∈OCn,0.

2.5. Meromorphic functions and relatively prime.

Definition 2.5.1. Let U ⊆Cn be an open subset. A meromorphic function f on U
is a function on the complement of a nowhere dense subset S ⊆U with the follow-
ing property: There exist an open covering {Ui} of U and holomorphic functions
g i,hi : U →C with hi|Ui\S · f |Ui\S = g i|Ui\S.
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Remark 2.5.1. For any z ∈U , the meromorphic function f in a neighborhood of z
is given by g/h, where g,h ∈ OCn,z. If we assume g,h are chosen to be relatively
prime, then they’re unique up to units.

Proposition 2.5.1. Let f ∈ OCn,0 be irreducible, then for sufficiently small ε and
z ∈ Bε(0) the induced element f ∈OCn,z is irreducible.

Proof. Suppose f ∈ OCn,z is reducible, that is f = f1 f2 where f i ∈ OCn,z non-units,
i.e. f1(z)= f2(z)= 0. Thus ∂ f

∂z1
(z)= ∂ f1

∂z1
(z) f2(z)+ f1(z) ∂ f2

∂z1
(z)= 0.

Thus the set of points z ∈ Bε(0) where f as an element of OCn,z is reducible
is contained in the analytic set Z( f , ∂ f

∂z1
). Now it suffices to show it’s a proper

subset of Z( f ) since f is irreducible, so is Z( f ). If not, then ∂
∂z1

would vanish on

Z( f ). Since f is irreducible, we can apply Corollary 2.1.1 to obtain ∂ f
∂z1

divides f , a
contradiction. □
Proposition 2.5.2. If f , g ∈ OCn,0 are relatively prime, then they’re relatively
prime in OCn,z, for z in a sufficiently small neighborhood of 0.

Proof. Without lose of generality, we may assume f , g ∈ OCn−1,0[z1] are Weier-
strass polynomials, then f and g are relatively prime if and only if their resultant
R ∈ OCn−1 has non-zero germ at 0, therefore the germ of R is also non-zero in a
sufficiently small neighborhood of 0. □
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3. COMPLEX MANIFOLD

3.1. Basic definitions and properties.

Definition 3.1.1 (holomorphic atlas). A holomorphic atlas on a smooth manifold is
an atlas {(Uα,φα)} of the form φα : Uα

∼=φα(Uα)⊆Cn such that transition functions
φαβ :=φα ◦φ−1

β
:φβ(Uαβ)→φα(Uαβ) are holomorphic functions. Furthermore,

(1) the pair (Uα,φα) is called a holomorphic chart.
(2) two holomorphic atlases are called equivalent, if the union of them is still a

holomorphic atlas.

Definition 3.1.2 (complex manifold). A complex n-manifold X is a smooth 2n-
manifold admitting an equivalence class of holomorphic atlases.

Remark 3.1.1. A complex manifold is called connected, compact, simply-connected
and so on, if its underlying real manifold has this property.

Definition 3.1.3 (submanifold). Let X be a complex n-manifold and Y ⊆ Y be a
smooth manifold of (real) dimension 2k. Then Y is a complex submanifold if there
exists a holomorphic atlas {(Ui,φi)} of X such that φi : Ui ∩Y ∼=φi(Ui)∩Ck.

Definition 3.1.4 (holomorphic map). Let X ,Y be complex manifolds. A continu-
ous map f : X → Y is a holomorphic map if for any holomorphic charts (U ,φ) and
(U ′,φ′) of X and Y respectively, the map φ′ ◦ f ◦φ−1 : φ( f −1(U ′)∩U) → φ′(U ′) is
holomorphic.

Definition 3.1.5 (biholomorphic). Let X ,Y be two complex manifolds. X ,Y are
called biholomorphic, if there exists a holomorphic homeomorphism f : X →Y .

Definition 3.1.6 (holomorphic function). A holomorphic function on complex man-
ifold X is a holomorphic map f : X →C.

Notation 3.1.1. We always use OX to denote the sheaf of holomorphic functions on
complex manifold X , and use Γ(U ,OX ) to denote sections over open subset U ⊆ X .

Proposition 3.1.1. Let X be a compact connected complex manifold. Then Γ(X ,OX )=
C.

Proof. It’s clear from maximum principle. □
Definition 3.1.7 (meromorphic function). A meromorphic function on a complex
manifold X is a map f : X → ∐

x∈X Q(OX ,x) which associates to any x ∈ X an ele-
ment fx ∈Q(OX ,x) such that for any x0 ∈ X there exists a neighborhood x0 ∈U ⊆ X
and two holomorphic functions g,h : U →C with fx = g/h for all x ∈U .

Notation 3.1.2. We always use KX to denote the sheaf of meromorphic functions
on complex manifold X , and use K(X ) to denote Γ(X ,KX ).

Definition 3.1.8 (algebraic dimension). The algebraic dimension of a compact
connected complex manifold X is a(X ) := trdegC K(X ).
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Proposition 3.1.2 (Siegel). Let X be a compact connected complex n-manifold.
Then

trdegC K(X )≤ n

Proof. See Proposition 2.1.9 in Page54 of [Huy05]. □

3.2. Analytic subvariety.

Definition 3.2.1 (analytic subvariety). Let X be a complex manifold. An analytic
subvariety of X is a closed subset Y ⊆ X such that for any x ∈ Y there exists
an open neighborhood x ∈ U ⊆ X such that Y ∩U is a zero set of finitely many
holomorphic functions f1, . . . , fk ∈O (U).

Remark 3.2.1. Obviously, any analytic subvariety X defines an analytic germ in
any point z ∈ X .

Definition 3.2.2 (irreducible analytic subvariety). An analytic subvariety Y is
called irreducible, if it cannot be written as the union Y = Y1 ∪Y2 of two proper
analytic subvarieties Yi ⊆Y , i = 1,2.

Given an analytic subvariety Y of a complex manifold X .

Definition 3.2.3 (regular). A point x ∈ Y is called regular point, if the functions
f1, . . . , fk can be chosen such that φ(x) ∈φ(U) is a regular point of holomorphic map
f : = ( f1 ◦φ−1, . . . , fk ◦φ−1) :φ(U)→Ck, where (U ,φ) is a local chart of x.

Definition 3.2.4 (singular). A point x ∈Y is singular, if it’s not regular.

Proposition 3.2.1. The set of regular points Yreg = Y \Ysing is a non-empty sub-
manifold of X . Furthermore, if Y is irreducible, then Yreg is connected.

Definition 3.2.5 (dimension). The dimension of an irreducible analytic subvariety
Y is defined by dimY = dimYreg.

3.3. Examples.

Example 3.3.1 (affine space). The n-dimensional complex plane Cn is a complex
manifold.

Example 3.3.2 (complex tori). If V is a complex vector space of dimension n and
Γ ⊆ V is a free abelian, discrete subgroup of order 2n, then X = V /Γ is a complex
manifold, which is called complex tori.

Remark 3.3.1. The underlying manifolds of complex tori with different Γ are not
very interesting since they are all diffeomorphic to (S1)2n. However, if you pick
two lattices Γ1,Γ2 randomly, then Cn /Γ1 and Cn /Γ2 will not be biholomorphic to
each other.
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Example 3.3.3 (projective space). The projective space CPn is a complex manifold.
Indeed, atlas are given by Ui = {[z] ∈CPn | z j 6= 0},0≤ i ≤ n, and φi is defined as

φi : Ui →Cn

[z] 7→ (
z0

zi , . . . ,
ẑi

zi , . . . ,
zn

zi )

The transition functions are calculated as follows: For i < j

φi ◦φ−1
j : (u1, . . . ,un) 7→ (

u1

ui
, . . . ,

ûi

ui
, . . . ,

u j−1

ui
,

1
ui

,
u j+1

ui
, . . . ,

un

ui
)

It’s holomorphic on Ui ∩U j.

Remark 3.3.2. CPn is compact since CPn is diffeomorphic to S2n+1/S1, which is
called Hopf fiberation.

Definition 3.3.1 (projective manifold). A complex manifold X is called projective
if X is biholomorphic to a closed complex submanifold of some projective space
CPN .

Example 3.3.4 (Grassmannian manifold). The Grassmannian manifold

Gr(k,n+1)= {k-dimensional subspace of Cn+1}

Now we’re going to show Gr(k,n+1) is a manifold of dimension k(n+1− k). Any
W ∈ Gr(k,n+1) is generated by the rows of a k× (n+1) matrix A of rank k. Let
us denote the set of these matrices by Mk,n+1, which is an open subset of the set of
all k× (n+1) matrices. The latter space is a complex manifold which is canonically
isomorphic to Ck(n+1). Thus we obtain a natural surjection π : Mk,n+1 →Gr(k,n+1),
which is the quotient by the natural action of GL(k,C) on Mk,n+1.

Let’s fix an ordering {B1, . . . ,Bm} of all k× k-minors of matrices A ∈ Mk,n+1. De-
fine an open covering Gr(k,n+ 1) = ⋃m

i=1Ui, where Ui is the open subset {π(A) |
det(Bi) 6= 0}. Note that Ui is well-defined since if π(A) = π(A′), then A and A′ dif-
fers an action of GL(k,C), so det(Bi) 6= 0 if and only if det(B′

i) 6= 0. So without lose
of generality, we may assume A is of form (Bi,Ci), where Ci is a k × (n+ 1− k)
matrix. Then the map φi : Ui → Ck(n+1−k), given by π(A) → B−1

i Ci is well-defined,
and {(Ui,φi)} will give atlas of Gr(k,n+1), sicne all operations are matrix opera-
tion, thus they’re holomorphic. This shows Gr(k,n+1) is a complex manifold with
dimension k(n+1−k).

Remark 3.3.3. If V is a complex vector space of dimension n+1, then Gr(k,V ) is
defined as the set consisting of all k-dimensional subspaces of V , which is biholo-
morphic to Gr(k,n+1).

Example 3.3.5 (Plücker embedding). Let V be a complex vector space of dimension
n+1, then

Φ : Gr(k,V ) ,→CP(
k∧

V )
defined by W ⊆V with basis w1, . . . ,wk is mapped to [w1∧·· ·∧wk], is called Plücker
embedding. It’s well-defined, thanks to the following lemma.
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Lemma 3.3.1. Let W be a complex vector space of dimension k, and B1 = {w1, . . . ,wk}
and B2 = {v1, . . . ,vk} are two basis for W . Then v1∧·· ·∧vk =λw1∧·· ·∧wk for some
λ ∈C∗.

Proof. If we express w j = a1 jv1 +·· ·+ak jvk, then direct computation shows that

w1 ∧·· ·∧wk = (a11v1 +·· ·+ak1vk)∧·· ·∧ (a1kv1 +·· ·+akkvk)

= ∑
σ∈Sk

sign(σ)a1σ(1) · · ·akσ(k)v1 ∧·· ·∧vk

=λv1 ∧·· ·∧vk

Note that λ is exactly the determinant of the change of basis matrix from B1 to
B2. □
Remark 3.3.4. It’s a little bit complicated to check it’s injective.
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3.4. Vector bundle.

3.4.1. In viewpoint of transition functions.

Definition 3.4.1 (complex vector bundle). Let X be a smooth manifold. A complex
vector bundle E of rank r on X consists of the following data:

(1) E is a smooth manifold with surjective map π : E → X , such that
(1) For all x ∈ X , fibre Ex is a C-vector space of dimension r.
(2) For all x ∈ X , there exists x ∈U ⊆ X and there is a homeomorphism φ : π−1(U)→

U ×Cr such that
π−1(U) U

U ×Cr Cr

π

φ p1

p2

and for all y ∈ U , E y
p2◦φ−→ Cr is a C-vector space isomorphism. (U ,φ) is

called a trivialization of E over U .

Remark 3.4.1 (transition functions). Consider two local trivialization (Uα,φα), (Uβ,φβ).
Then φα ◦φ−1

β
: (Uα∩Uβ)×Cr → (Uα∩Uβ)×Cr induces

gαβ : Uα∩Uβ →GL(r,C)

where gαβ is called transition function. Furthermore, it satisfies

gαβgβγgγα = id on Uα∩Uβ∩Uγ

gαα = id on Uα

In fact, transition functions contain all information about this vector bundle since
a vector bundle is locally trivial, so how are these trivial pieces glued together
really matters.

Definition 3.4.2 (complex vector bundle). Let X be a smooth manifold. A complex
vector bundle E of rank r on X consists of the following data:

(1) open covering {Uα} of X .
(2) smooth functions {gαβ : Uα∩Uβ →GL(r,C)} satisfies

gαβgβγgγα = id on Uα∩Uβ∩Uγ

gαα = id on Uα

Remark 3.4.2. The two definitions above are equivalent. The first definition im-
plies the second clearly. The converse is a standard constructive method: If we
already have an open covering and a set of transition functions, the vector bundle
E is defined to be the quotient of the disjoint union

∐
Uα

(U×Cr) by the equivalence
relation that puts (p′,v′) ∈Uβ×Cr equivalent to (p,v) ∈Uα×Cr if and only if p = p′
and v′ = gαβ(p)v. To connect this definition with the previous one, define the map
π to send the equivalence class of any given (p,v) to p.
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Definition 3.4.3 (holomorphic vector bundle). A holomorphic vector bundle π : E →
X over a complex manifold X is a complex vector bundle with holomorphic transi-
tion functions.

Exercise 3.4.1. Show that the total space of a holomorphic vector bundle E is a
complex manifold.

Proof. Since we already have a complex structure on X , we need to pull it back
to E using π and use the holomorphic transition functions to show it do gives a
complex structure on E. □
Example 3.4.1 (trivial bundle). Let X be a smooth/complex manifold. Then X×Cr

is called trivial complex (holomorphic) vector bundle of rank r on X .

Definition 3.4.4 (subbundle). Let π : E → X be a complex (holomorphic) vector
bundle. F ⊆ E is called a subbundle of rank s, if
(1) For all x ∈ X , F ∩Ex is a subspace of Ex with dimension s.
(2) π|F : F → X induces a complex (holomorphic) vector bundle.

3.4.2. In viewpoint of sheaf. One may refer to Appendix ?? for more details about
sheaf.

Definition 3.4.5 (section). Let X be a complex manifold and π : E → X be a com-
plex (holomorphic) vector bundle. For any open subset U ⊆ X , a section of E over
U is a smooth/holomorphic map s : U → E such that π◦ s = idU .

Notation 3.4.1. The set of all smooth (or holomorphic) sections over open subset
U is denoted by C∞(U ,E) (or Γ(U ,E)).

One reason why sheaf plays an important role of study of complex geometry is
that you can regard a vector bundle as a special sheaf.

Definition 3.4.6 (sheaf of sections). Let X be a complex manifold and π : E → X a
holomorphic vector bundle. Then its sheaf of sections is defined as

OX (E)(U)=Γ(U ,E)

Example 3.4.2. Let E → X be trivial holomorphic vector bundle. Then OX (E) is
exactly sheaf of holomorphic functions.

Example 3.4.3 (locally free sheaf). A sheaf F over a topological space X is called
locally free, if there exists an open covering {Uα} of X such that F |Uα

∼=O⊕r
Uα

of rank
r.

Exercise 3.4.2. Let X be a complex manifold. There is one to one correspondence
over X :

{holomorphic vector bundles} 1−1←→ {locally free sheaves}

Proof. If π : E → X is a holomorphic vector bundle, then OX (E) is a locally free
sheaf. Indeed since we have local trivialization of holomorphic vector bundle {Uα},
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that is E|Uα
∼=Uα×Cr, and it’s known to all that sections of a trivial holomorphic

function is exactly holomorphic functions, thus O (E)|Uα
∼= O⊕r

Uα
, that is OX (E) is a

locally free sheaf.
Conversely, if E is locally free over an open covering {Uα} of X , then we just

need to glue Uα×Cr → Uα together to get a vector bundle. Therefore we need a
family of gluing data gαβ : (Uα∩Uβ)×Cr → (Uα∩Uβ)×Cr. Since E is locally free,
we have local isomorphism fα : E |Uα

→O⊕r
Uα

. Restricting to intersection Uα∩Uβ, we
get

fαβ = fα|Uα∩Uβ
◦ f −1

β |Uα∩Uβ
: O⊕r

Uβ
|Uα∩Uβ

→O⊕r
Uα

|Uα∩Uβ

Every such map is induced by a map

gαβ : (Uα∩Uβ)×Cr → (Uα∩Uβ)×Cr

that’s gluing data we desire. □
Definition 3.4.7 (cohomology of vector bundle). Let E be a holomorphic vector
bundle on a complex manifold X . Then its q-th cohomology Hq(X ,E) is defined to
be q-th sheaf cohomology of OX (E)

3.4.3. Algebraic construction. Let E,F be complex (holomorphic) vector bundles
on X with transition functions {gαβ}, {hαβ} respectively. Then by algebraic con-
struction we have
(1) E⊕F, given by transition functions {diag(gαβ,hαβ)}
(2) E⊗F, given by transition functions {gαβ⊗hαβ}.
(3) E∗, given by transition functions {(g−1

αβ
)T }.

(4) Hom(E,F) := E∗⊗F.
(5)

∧k E, given by transition functions {
∧r gαβ}.

(6) Let f : X →Y be a smooth/holomorphic map, π : E →Y is a vector bundle with
transition functions {gαβ}, then transition functions of pullback bundle f ∗E is
given by {gαβ ◦ f }.

Remark 3.4.3. Here is an explicit construction of pullback bundle defined by

f ∗E = {(x, e) ∈ X ×E | f (x)=π(e)}⊆ X ×E

In fact, you can regard it as a push out as

f ∗E E

X Y

π

f

In particular, pullback bundle has universal property.

3.4.4. Hermitian structure. Let X be a smooth manifold and π : E → X be a com-
plex vector bundle.

Definition 3.4.8 (Hermitian metric). A Hermitian metric h on E is a global sec-
tion of E∗⊗E.
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Remark 3.4.4 (local form). Let {eα} be a local frame of E. Then Hermitian metric
h is given by

h = h
αβ

eα⊗ eβ

where h
αβ

is a Hermitian matrix.

Proposition 3.4.1. Every complex vector bundle admits a Hermitian metric.

Proof. Use partition of unity. □
3.4.5. Line bundle.

Definition 3.4.9 (line bundle). A complex (or holomorphic) line bundle L is a
complex (or holomorphic) vector bundle of rank one.

Proposition 3.4.2. Let L be a complex line bundle over X . Then L⊗L∗ is the
trivial bundle.

Proof. Suppose {gαβ} is the transition functions of L, by Section 3.4.3 it’s clear to
see the transition functions of L∗⊗L is

(g−1
αβ)T gαβ = g−1

αβgαβ = id

This completes the proof. □
Proposition 3.4.3. Let L be a holomorphic over a compact complex manifold X .
Then L is trivial if and only if both L and its dual L∗ admit non-trivial global
section.

Proposition 3.4.4. Let π : E → X be a complex line bundle. Then E is a trivial
line bundle if and ony if there exists a nowhere vanishing global section s.

Proof. It’s clear there exists a nowhere vanishing global section if E is trivial.
Conversely, if there exists a nowhere vanishing global section s. Consider the
following map

φ : X ×C→ E
(x,λ) 7→λs(x)

It’s an isomorphism since fiberwisely one has φx(λ) = λs(x), and it’s injective thus
isomorphism since s(x) 6= 0. □
Definition 3.4.10 (picard group). The picard group Pic(X ) denotes set of all holo-
morphic line bundles on X up to isomorphism, whose group structure is given by
tensor product.

Proposition 3.4.5. There is a natural isomorphism Pic(X )∼= H1(X ,O∗
X ).

Proof. For a line bundle L, it’s completely determined by its transition functions
gαβ : Uαβ → C∗, which is holomorphic functions. It gives rise to an element in
Ȟ1(X ,O∗

X ) since gαβ satisfies cocycle conditions. Furthermore, ech cohomology3

computes the sheaf cohomology for reasonable topological space, e.g. for manifolds.
□

3For more details, see Appendix ??.
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Remark 3.4.5. This proposition gives us a method to compute Picard group of a
complex manifold since there is exponential sequence as follows

0→Z→OX →O∗
X → 0

which is a exact sequence of sheaves, then it gives a long exact sequence of coho-
mology groups as follows

· · ·→ H1(X ,Z)→ H1(X ,OX )→ H1(X ,O∗
X )→ H2(X ,Z)→ . . .

Thus Pic(X ) can in principle be computed by above exact sequence. Roughly
speaking, Pic(X ) has two parts:
(1) A discrete part, measured by its image in H2(X ,Z).
(2) A continuous part coming from the H1(X ,OX ), which is possibly trivial.

Proposition 3.4.6. The set OCPn (−1)⊆CPn×Cn+1 that consists of all pairs (l, z) ∈
CPn×Cn+1 with z ∈ l forms a holomorphic line bundle, called tautological line
bundle

Proof. Let π : OCPn (−1) → CPn be the projection to the first factor. Consider open
covering {Ui}n

i=0 of CPn, where

Ui = {[l]= [l0 : · · · : ln] ∈CPn | l i 6= 0}

A canonical trivialization of OCPn (−1) over Ui is given by

φi : π−1(Ui)→Ui ×C

(l, z) 7→ (l, zi)

Its transition function is computed as follows

φi ◦φ−1
j : (Ui ∩U j)×C−→ (Ui ∩U j)×C

(l,w) 7→ (l,w
l i

l j
)

where l = (l0 : · · · : ln). This shows its transition function g i j(z) = zi/z j ∈ C∗ is
holomorphic. □
Definition 3.4.11 (line bundles on CPn).

OCPn (−k)=OCPn (−1)⊗k k ∈Z>0

OCPn (k)= (OCPn (−k))∗ k ∈Z>0

OCPn (0)=CPn×C

Proposition 3.4.7. For k ≥ 0. the space Γ(CPn,OCPn (k)) is canonically isomorphic
to the space C[z0, . . . , zn]k of all homogenous polynomials of degree k.

Corollary 3.4.1. For k < 0 the line bundle OCPn (k) admits no global holomorphic
section.

Proof. It follows from above result and Proposition 3.4.3. □
3.5. Euler sequence and adjunction formula.
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3.5.1. Euler sequence.

Proposition 3.5.1. On CPn there exists a natural short exact sequence of holo-
morphic vector bundles

0→OCPn
ϕ−→OCPn (1)⊕n+1 ψ−→ TCPn → 0

Exercise 3.5.1. For Grassmannian manifold Gr(k,n), we have

0→ E →Gr(k,n)⊗Cn →Q → 0

Show that
TGr(k,n)

∼=Hom(E,Q)

3.5.2. Adjunction formula.

Proposition 3.5.2 (adjunction formula). Let π : L → X is a holomorphic line bun-
dle and s be a holomorphic section of L. Suppose that D = {x ∈ X | s(x) = 0} is
a smooth submanifold of codimensional 1. Show that the following sequence is
exact

0→ TD → TX |D → L|D → 0
As a consequence

K∗
D
∼= K∗

D ⊗L|D = (K∗
X ⊗L)|D

Or equivalently
KD ∼= (KX ⊗L)|D

This is called adjunction formula.

Proof. Firstly we have the following exact sequence

0→ TD → TX |D → ND → 0

where ND is the normal bundle. Now it suffices to show L|D is isomorphic to the
normal bundle of D. Note that s|D = 0 and s is not identically zero on X , so ds
gives an isomorphism between L|D and ND in fact. By taking determinant we
obtain the adjunction formula since for a exact sequence of vector bundle

0→ A → B → C → 0

we have
detB = det A⊗detC

and determinant of a line bundle is itself. □
Example 3.5.1. Let X = CPn and L = OCPn (−d). Proposition 3.4.7 shows that
D ⊆CPn is a smooth hypersurface defined by zero set of a homogenous polynomial
with degree d. Then we have

K∗
D
∼= (K∗

X ⊗L)|D
= (OCPn (n+1)⊗OCPn (−d))|D
∼=OCPn (n+1−d)|D
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Remark 3.5.1. As a consequence, D is called
Fano d < n+1
Calabi-Yau d = n+1
general type d > n+1

These concepts we will define later.
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4. DIVISOR AND LINE BUNDLE

In this section, unless otherwise specified, we assume X is a complex manifold.

4.1. Divisor.

Definition 4.1.1 (analytic hypersurface). An analytic hypersurface of X is an an-
alytic subvariety Y ⊆ X of codimensional one.

Remark 4.1.1. By Remark 2.4.2 one has a hypersurface is locally given as the zero
set of a non-trivial holomorphic function.

Definition 4.1.2 (divisor). A divisor D on X is a locally finite4 formal linear com-
bination D =∑

ai[Yi] with Yi ⊆ X are irreducible hypersurfaces and ai ∈Z.

Definition 4.1.3 (divisor group). The divisor group Div(X ) is the set of all divisors
endowed with the natural group structure.

Definition 4.1.4 (effective). A divisor D = ∑
ai[Yi] is called effective, if ai ≥ 0 for

all i. In this case, we write D ≥ 0.

Proposition 4.1.1. Every hypersurfaces Y defines an effective divisor
∑

[Yi] ∈
Div(X ), where Yi are irreducible components of Y .

Proof. It suffices to show the irreducible components of a hypersurface Y is locally
finite. □

Let Y ⊆ X be a hypersurface and x ∈ Y . Suppose that Y defines an irreducible
germ in x, that is this germ is the zero set of an irreducible g ∈OX ,x.

Definition 4.1.5 (order). Let f be a meromorphic function in a neighborhood of
x ∈Y . Then the order ordY ,x( f ) of f in x with respect to Y is given by

f = gordY ,x( f )h

where h ∈O∗
X ,x.

Remark 4.1.2.
(1) The order of f in x with respect to Y is independent of the choice of g since

any two irreducible g, g′ ∈OX ,x with Z(g)= Z(g′) only differs by an element in
O∗

X ,x.
(2) More globally, one can define order ordY ( f ) as ordY ( f ) = ordY ,x( f ) for x ∈ Y

such that Y defines an irreducible germ in x. Such a point x ∈Y always exists,
for example, one can choose a regular point x ∈Yreg. Moreover, it’s independent
of the choice of x since

Definition 4.1.6 (zeros and poles). Let f be a meromorphic function on X . Then
(1) f has zeros of order d ≥ 0 along Y if ordY ( f )= d.

4The sum is called locally finite, if for any x ∈ X , there exists an open neighborhood x ∈ U ⊆ X
such that only finite many coefficients ai 6= 0 with Yi ∩U 6=∅.
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(2) f has poles of order d ≥ 0 along Y if ordY ( f )=−d.

Definition 4.1.7 (principal divisor). For f ∈ K(X ), the divisor associated to f is

( f ) :=∑
ordY ( f )[Y ]

where the sum is taken over all irreducible hypersurfaces Y ⊆ X . A divisor of this
form is called principal.

Remark 4.1.3. The divisor ( f ) can be written as the difference of two effective
divisors ( f )= Z( f )−P( f ), where

Z( f )= ∑
ordY ( f )>0

ordY ( f )[Y ], P( f )= ∑
ordY ( f )<0

ordY ( f )[Y ]

Proposition 4.1.2. There exists a natural isomorphism

H0(X ,K ∗
X /O∗

X )∼=Div(X )

Proof. An element f ∈ H0(X ,K ∗
X /O∗

X ) is given by non-trivial meromorphic func-
tions f i ∈ K∗

X (Ui) such that f i f −1
j is a holomorphic function without zeros on

Ui ∩U j, where {Ui} is an open covering of X . Thus for any irreducible hyper-
surface Y ⊆ X with Y ∩Ui ∩U j 6=∅, one has ordY ( f i) = ordY ( f j). Hence ordY ( f )
is well-defined for any irreducible hypersurface Y . Then one associates to f the
divisor ( f )=∑

ordY ( f )[Y ] ∈Div(X ).
It’s clear this map is a group homomorphism. To see it’s bijective, we define

the inverse as follows. If D =∑
ai[Yi] ∈ Div(X ) is given, then there exists an open

covering {Ui} of X such that Yi∩U j is defined by g i j ∈O (U j) which is unique up to
elements in O∗(U j). Let f j := ∏

i gai
i j ∈ K ∗

X (U j) since g i j and g ik defines the same
irreducible hypersurface, they only differ by an element in O∗(U j ∩Uk). Thus f
glue to an element f ∈ H0(X ,K ∗

X /O∗
X ). It’s clear these two maps are inverse to

each other. □
Remark 4.1.4. In algebraic geometry, elements in H0(X ,K ∗

X /O∗
X ) are called Cartier

divisors and elements in Div(X ) are called Weil divisors. Above isomorphism still
holds in the algebraic setting under a weak smoothness assumption on X .

Corollary 4.1.1. There exists a natural group homomorphism
Div(X )→Pic(X )

D 7→O (D)

where O (D) is defined in the proof.

Proof. If D =∑
ai[Yi] ∈ Div(X ) corresponds to f ∈ H0(X ,K ∗

X /O∗
X ), which in turn is

given by functions f i ∈ K ∗
X (Ui) for an open covering {Ui}. Then we define O (D) ∈

Div(X ) with transition functions ψi j := f i f −1
j ∈O∗

X (Ui j).
If D,D′ are two divisors, without lose of generality we may assume they’re given

by { f i} and { f ′i } respectively on the same open covering, then D +D′, then D +D′

corresponds to { f i + f ′i }. By definition O (D + D′) is described by {ψi jψ
′
i j}, hence

O (D+D′)=O (D)⊗O (D′). □
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Remark 4.1.5. In fact, above corollary can be derived from the following exact
sequence of sheaves

0→O∗
X →K ∗

X →K ∗
X /O∗

X → 0
Then above group homomorphism is exactly the boundary map, the kernel of
which coincides with the image of H0(X ,K ∗

X ) → H0(X ,K ∗
X /O∗

X ), and the latter
by definition is the set of principal divisors.

Definition 4.1.8 (linearly equivalent). Two divisors D,D′ are called linearly equiv-
alent, denoted by D ∼ D′, if D−D′ is a principal divisor.

Corollary 4.1.2. The group homomorphism Div(X ) → Pic(X ) factorizes over an
injection

Div(X )/∼ ,→Pic(X )

4.2. Relations between divisor and line bundle. In general, Div(X )/∼ ,→Pic(X )
is a strict inclusion, but we will see if a line bundle admits a non-trivial global sec-
tion, then it’s contained in the image. In order to show this, we need to construct
a canonical map

H0(X ,L)\{0}→Div(X )
s 7→ Z(s)

The map is constructed as follows: Let L ∈ Pic(X ) on open covering {Ui} be triv-
ialized by ψi : L|Ui → OUi . Then divisor Z(s) is given by f := { f i := ψi(s|U } ∈
H0(X ,K ∗

X /O∗
X ).

Proposition 4.2.1. For 0 6= s ∈ H0(X ,L), the line bundle O (Z(s)) is isomorphic to
L.

Proposition 4.2.2. For any effective divisor D ∈ Div(X ), there exists a section
0 6= s ∈ H0(X ,O (D)) with Z(s)= D.

Corollary 4.2.1. Non-trivial sections s1 ∈ H0(X ,L1) and s2 ∈ H0(X ,L2) define
linearly equivalent divisors Z(s1)∼ Z(s2) if and only if L1 ∼= L2.

Proof. If L1 ∼= L2, then
If Z(s1) ∼ Z(s2), then by Corollary 4.1.2 one has O (Z(s1)) ∼= O (Z(s2)), then this

shows L1 ∼= L2 since O (Z(si))= L i, i = 1,2. □
Corollary 4.2.2. The image of the natural map Div(X ) → Pic(X ) is generated by
those line bundles L ∈Pic(X ) with H0(X ,L) 6= 0.

Proof. We have already seen if H0(X ,L) 6= 0, then L is contained in the image.
Conversely, any divisor D = ∑

ai[Yi] can be written as D = ∑
a+

i [Yi]−∑
a−

j [Y j]
with a±

k ≥ 0, and thus O (D) ∼= O (
∑

a+
i [Yi])⊗O (

∑
a−

j [Y j])∗. Both O (
∑

a+
i [Yi]) and

O (
∑

a−
j [Y j]) are associated to effective divisors, and therefore admit non-trivial

global sections. □
Remark 4.2.1. For projective manifolds, the map Div(X )→Pic(X ) is surjective, but
note that even for very easy manifolds, such as complex tori, this is no longer the
case.
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4.3. Ample line bundle.

Definition 4.3.1 (base point). Let L be a holomorphic line bundle on a complex
manifold X . A point x ∈ X is a base point of L if s(x)= 0 for all s ∈ H0(X ,L).

Notation 4.3.1. The base locus Bs(L) is the set of all base points of L.

Remark 4.3.1. If dimH0(X ,L)<∞, we can choose a basis of global sections s1, . . . , sN
of it, then Bs(L)= Z(s1)∩·· ·∩Z(sN ) is an analytic subvariety. Later we will see if
X is compact, then dimH0(X ,L)<∞.

Proposition 4.3.1. Let L be a holomorphic line bundle on a complex manifold X
and suppose s1, . . . , sN ∈ H0(X ,L) is a basis. Then

φL : X\Bs(L)→CPN

x 7→ (s0(x) : · · · : sN (x))

defines a holomorphic map such that φ∗
LOCPN (−1)∼= L|X\Bs(L).

Definition 4.3.2 (ample line bundle). A holomorphic line bundle L on a complex
manifold X is called ample if for some k > 0 and some linear system in H0(X ,Lk)
the associated map φ is an embedding.

Remark 4.3.2. By definition, a compact complex manifold is projective if and only
if it admits an ample line bundle.
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5. TANGENT AND COTANGENT BUNDLE

5.1. Complex and holomorphic tangent bundle.

Definition 5.1.1 (complex tangent bundle). Let X be a smooth n-manifold with an
atlas {Uα,φα : Uα → Vα ⊆ Rn}. Then (real) tangent bundle TRX is a vector bundle
given by smooth transition functions

gαβ : Uα∩Uβ →GL(n,R)

x 7→ JR(φα ◦φ−1
β )(φβ(x))

The complex tangent bundle TCX is defined as the complexification of TRX , that
is, TRX ⊗RC.

Definition 5.1.2 (holomorphic tangent bundle). Let X be a complex n-manifold,
with an atlas {Uα,φα : Uα → Vα ⊆ Cn}. Then holomorphic tangent bundle TX is
given by holomorphic transition functions

gαβ : Uα∩Uβ →GL(n,C)

z 7→ JC(φα ◦φ−1
β )(φβ(z))

Remark 5.1.1 (relations between complex tangent bundle and holomorphic tan-
gent bundle). Let X be a complex n-manifold and {zi = xi +p−1yi}1≤i≤n be a local
coordinate of X . Then {x1, . . . , xn, y1, . . . , yn} gives a local coordinate of its underly-
ing real 2n-manifold, and there is an almost complex structure J on TRX given
by

J(
∂

∂xi )= ∂

∂yi

J(
∂

∂yi )=− ∂

∂xi

Thus complex tangent bundle TCX can be decomposed as TCX = T1,0X ⊕T0,1X
with respect to J, with local frames as follows:
(1) { ∂

∂zi := 1
2 ( ∂

∂xi −
p−1 ∂

∂yi )} is a local frame of T1,0X .

(2) { ∂

∂zi := 1
2 ( ∂

∂xi +
p−1 ∂

∂yi )} is a local frame of T0,1X .

Indeed, direct computation shows

J(
∂

∂zi )= 1
2

(
∂

∂yi +
p
−1

∂

∂xi )=
p−1

2
(
∂

∂xi −
p
−1

∂

∂yi )=
p
−1

∂

∂zi

J(
∂

∂zi )= 1
2

(
∂

∂yi −
p
−1

∂

∂xi )=−
p−1

2
(
∂

∂xi +
p
−1

∂

∂yi )=−
p
−1

∂

∂zi

and for any section s of TCX , one has the following decomposition

s = 1
2

(s−
p
−1J(s))+ 1

2
(s+

p
−1J(s))

Note that TX is isomorphic to (TRX , J) as complex vector bundle, and we claim
(TRX , J) is isomorphic to T1,0X as a complex vector bundle. Indeed, there is
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a natural inclusion TRX ,→ TCX , if we compose this inclusion with projection
TCX = T1,0X ⊕T0,1

X → T1,0X onto the first summand, we obtain an C-isomorphism
(TRX , J)→ T1,0X with inverse map 2Re(-).

In particular, T1,0X is isomorphic to TX as complex vector bundles, so we can
endow T1,0X with holomorphic structure such that T1,0X is isomorphic to TX as
holomorphic vector bundles, and thus we can use {dzi} as local frame of holomor-
phic tangent bundle.

5.2. Bidegree forms. For complex manifold X , there is also an almost complex
structure on Ω1

X ,R, that is dual bundle of TRX , and complexified dual space of TRX
admits an analogous decomposition:

Ω1
X ,C =Ω1

X ,R⊗C=Ω
1,0
X ⊕Ω

0,1
X

There is also a decomposition on its k-th wedge product as follows:

Ωk
X ,C =

k∧
Ω1

X ,C = ⊕
p+q=k

Ω
p,q
X

where Ω
p,q
X =∧pΩ

1,0
X ⊗∧qΩ

0,1
X .

Definition 5.2.1 ((p, q)-form). A k-form ω of type (p, q) is a smooth section of Ωp,q
X ,

that is

ω ∈ C∞(X ,Ωp,q
X )⊆ C∞(X ,Ωk

X ,C)

Remark 5.2.1 (local form). Suppose {z1, . . . , zn} is a local coordinate of X , and de-
note zi = xi +p−1yi. Then {dx1, . . . ,dxn,dy1, . . . ,dyn} gives a local frame of Ω1

X ,R,
and induced almost complex structure is given by

J∗(dxi)(
∂

∂xi )= dxi(J(
∂

∂xi ))= dxi(
∂

∂yi )= 0

J∗(dxi)(
∂

∂yi )= dxi(J(
∂

∂yi ))= dxi(− ∂

∂xi )=−1

that is
J∗(dxi)=−dyi

J∗(dyi)= dxi

and similarly we have

(1) {dzi := dxi +p−1dyi} is a local frame of Ω1,0
X .

(2) {dzi := dxi −p−1dyi} is a local frame of Ω0,1
X .

For a k-form, it locally looks like ∑
|I|=p,|J|=q

p+q=k

f IJdzI ∧dzJ
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where f IJ are smooth functions, and a k-form is a (p, q)-form if and only if locally
it looks like ∑

|I|=p,|J|=q
f IJdzI ∧dzJ

Exercise 5.2.1. For Cn ∼=R2n, one has

dx1 ∧dy1 ∧·· ·∧dxn ∧dyn = (
p−1

2
)ndz1 ∧dz1 ∧·· ·∧dzn ∧dzn

Proof. It suffices to show the case n = 1, and we can compute directly as follows

(
p−1

2
)dz∧dz = (

p−1
2

)(dx+
p
−1dy)∧ (dx−

p
−1dy)

= (
p−1

2
)(−2

p
−1dx∧dy)

= dx∧dy

□
5.3. Dolbeault operators. For complex manifold X , naturally there is a differ-
ential operator

d: C∞(X ,Ωk
X ,C)→ C∞(X ,Ωk+1

X ,C)

Since there is a decomposition for α ∈ C∞(X ,Ωk
X ,C), it’s natural to ask how to de-

compose dα ∈ C∞(X ,Ωk+1
X ,C).

Example 5.3.1. For smooth function α on X , locally a direct computation shows

dα= ∂α

∂xi dxi + ∂

∂yi dyi

= 1
2

(
∂α

∂xi −
p
−1

∂α

∂yi )dzi + 1
2

(
∂α

∂xi +
p
−1

∂α

∂yi )dzi

= ∂α

∂zi dzi + ∂α

∂zi dzi

If we denote

∂α= ∂α

∂zi dzi

∂α= ∂α

∂zi dzi

then dα = ∂α+∂α, where ∂α ∈ C∞(X ,Ω1,0
X ) and ∂α ∈ C∞(X ,Ω0,1

X ). In general case,
for α ∈ C∞(X ,Ωp,q

X ), locally looks like

α= ∑
|I|=p,|J|=q

αIJdzJ ∧dzK

then
dα= ∑

|I|=p,|J|=q

∂αIJ

∂zl dzl ∧dzI ∧dzJ + ∑
|I|=p,|J|=q

∂αIJ

∂zl dzl ∧ zI ∧ zJ
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Thus one can define
∂ : C∞(X ,Ωp,q

X )→ C∞(X ,Ωp+1,q
X )

∂ : C∞(X ,Ωp,q
X )→ C∞(X ,Ωp,q+1

X )

such that d= ∂+∂.

Proposition 5.3.1.
(1)

∂(α∧β)= ∂α∧β+ (−1)degαα∧∂β

(2)
∂2 = ∂

2 = 0, ∂∂+∂∂= 0

According to (2) of Proposition 5.3.1 there is following cochain complex

(5.1) 0→ C∞(X ,Ωp,0
X ) ∂−→ C∞(X ,Ωp,1

X ) ∂−→ . . . ∂−→ C∞(X ,Ωp,n
X )→ 0

Definition 5.3.1 (Dolbeault cohomology).

Hp,q(X ) := Hq
∂

(C∞(X ,Ωp,•
X ))

Remark 5.3.1. Note that we have decomposition C∞(X ,Ωk
X ,C)=⊕

p+q=k C∞(X ,Ωp,q
X ),

could we have the following decomposition

Hk(X ,C)= ⊕
p+q=k

Hp,q(X )

In fact, for compact Kähler manifold, such decomposition do holds, which is called
Hodge decomposition.

Example 5.3.2. Note that

Hp,0(X )= {α ∈ C∞(X ,Ωp,0
X ) | ∂α= 0}

For α ∈ C∞(X ,Ωp,0
X ) locally written as α=∑

|I|=pαIdzI , one has

∂α= ∑
|I|=p

∂αI

∂zl dzl ∧dzI = 0⇐⇒ ∂αI

∂zl = 0

which implies αI is a holomorphic function. This shows Hp,0(X )=Γ(X ,Ωp
X ).

A natural question arises: what does this cohomology compute? In the context
of smooth manifolds, de Rham cohomology calculates the cohomology of a constant
sheaf, which heavily relies on the Poincaré lemma. In the complex setting, Dol-
beault cohomology Hp,q(X ) determines the q-th sheaf cohomology of Ωp

X , which is
based on the following lemma.

Proposition 5.3.2 (∂-Poincaré lemma). Let B be an sufficiently small open disc
in Cn. If α ∈ C∞(B,Ωp,q

X ) is ∂-closed and q > 0, then there exists β ∈ C∞(B,Ωp,q−1
X )

such that α= ∂β.

Proof. See Corollary 1.3.9 of Page47 of [Huy05]. □
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Proposition 5.3.3 (functorial). Let f : X →Y be a holomorphic map between com-
plex manifolds with pullback

f ∗ : C∞(Y ,Ωk
Y ,C)→ C∞(X ,Ωk

X ,C)

Then
f ∗ : C∞(Y ,Ωp,q

Y ,C)→ C∞(X ,Ωp,q
X ,C)

and it induces
f ∗ : Hp,q(Y )→ Hp,q(X )

Example 5.3.3 (Dolbeault cohomology of a holomorphic vector bundle5). For a
holomorphic vector bundle E → X , we can also define

∂E : C∞(X ,Ω0,q
X ⊗E)→ C∞(X ,Ω0,q+1

X ⊗E)

satisfies ∂
2
E = 0. Let’s elaborate this construction: Since any global section is glued

together by local sections, we just need to define ∂E for local sections and check
is well-defined under the change of local chart. We can choose a local holomorphic
frame {e1, . . . , en} for E on U , so any section s ∈ C∞(U ,Ω0,q

X ⊗E) locally can be written
as s = si ⊗ e i with si ∈ C∞(U ,Ω0,q

X ). Then we can define

∂E(s)= ∂si ⊗ ei

It’s clear that this definition is independent of the choice of local chart since the
transition functions are holomorphic and ∂ kills them. Furthermore, ∂

2
E = 0 holds

since ∂
2 = 0. Thus we can construct a cochain complex and define its cohomology,

denoted by
Hq(X ,E)= Hq

∂E
(C∞(X ,Ω0,•

X ⊗E))

and similarly Hq(X ,E) computes the q-th sheaf cohomology of E.

5In previous case, E =Ω
p,0
X
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Part 2. Complex Differential Geometry

6. CONNECTIONS AND ITS CURVATURE

6.1. Connections on complex vector bundle. Let X be a complex manifold
and π : E → X be a complex vector bundle.

6.1.1. Basic definitions.

Definition 6.1.1 (connection). A connection on E is a C-linear operator

∇ : C∞(X ,E)→ C∞(X ,Ω1
X ,C⊗E)

satisfying the Leibniz rule
∇( f s)= d f ⊗ s+ f∇s

for f ∈ C∞(X ) and s ∈ C∞(X ,E).

Remark 6.1.1 (connection form). Let {eα} be a local frame of E. Then any section s
of E can be written as s = sαeα, and

∇(sαeα)= dsαeα+ sα∇sα

= dsαeα+ sαωβ
αeβ

where ω
β
α are 1-forms, which is called connection 1-form. In terms of Christoffel

symbol, one has

ω
β
α =Γ

β

iαdzi +Γ
β

iα
dzi

6.1.2. Curvature form. Now we’re going to extend connection to something called
exterior derivative defined on sections of vector bundle valued k-forms as follows

d∇ : C∞(X ,Ωk
X ,C⊗E)→ C∞(X ,Ωk+1

X ,C⊗E)

ω⊗ s 7→ dω⊗ s+ (−1)kω∧∇s

Definition 6.1.2 (curvature form). Let E be a complex vector bundle over a com-
plex manifold X equipped with connection ∇. There exists a section Θ ∈ C∞(X ,Ω2

X ,C⊗
EndE), called curvature form, such that

(d∇)2s =Θ∧ s

for all s ∈ C∞(X ,Ωk
X ,C⊗E).

Remark 6.1.2 (local form). Let {eα} be a local frame of E. The curvature form Θ
can be written as

Θ=Θ
β

i jα
dzi ∧dz j ⊗ eα⊗ eβ

where Θ
β

i jα
can also be expressed in terms of Christoffel symbols just like what we

have seen in [Liu23].
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6.2. Chern connection. In this section, we will introduce additional structures
to enhance the complexity of a vector bundle E over a complex manifold X . These
structures include Hermitian metrics and complex structures. We will explore con-
nections that align harmoniously with these structures, similar to our approach
in Riemannian geometry. By doing so, we will obtain the Chern connection, which
runs parallel to the Levi-Civita connection.

6.2.1. Compatiblity with Hermitian metric.

Definition 6.2.1 (Hermitian metric). Let E be a complex vector bundle. A Her-
mitian metric h on E is a smooth section of E∗⊗E

∗
.

Remark 6.2.1 (local form). Let {eα} be a local frame of E. Then a Hermitian metric
is determined by a positive definite Hermitian matrix (h

αβ
), that is

h = h
αβ

eα⊗ eβ

where h
αβ

= h(eα, eβ).

Definition 6.2.2 (Hermitian vector bundle). A complex vector bundle E together
with a Hermitian metric h is called a Hermitian vector bundle (E,h).

Remark 6.2.2 (metric weight). Let L be a Hermitian line bundle. A Hermitian
metric h is locally given by e−2φ, where φ is a smooth function, which is called
metric weight. Suppose {gαβ} is transition function of L with respect to open cov-
ering {Uα}. Then h is given by a collection {hα ∈ C∞(Uα)} such that hα = |gαβ|−2hβ.
In other words, a Hermitian metric is a collection of metric weights {φα ∈ C∞(Uα)}
such that

φα =φβ+ log |gαβ|
Definition 6.2.3 (sesquilinear map). For a Hermitian vector bundle (E,h) over
complex manifold X , there is a sesquilinear map

C∞(X ,Ωp
X ,C⊗E)×C∞(X ,Ωq

X ,C⊗E)→ C∞(X ,Ωp+q
X ,C )

(s, t) 7→ {s, t}

locally given by
{sαeα, tβeβ}= h

αβ
sα∧ tβ

Definition 6.2.4 (metric connection). A connection ∇ on a Hermitian vector bun-
dle (E,h) is called a metric connection, if

d〈s, t〉 = {∇s, t}+ {s,∇t}

where s, t are sections of E.

Remark 6.2.3 (local form). If {eα} is a local frame of E, then
dh

αβ
= d〈eα, eβ〉
= {∇eα, eβ}+ {eα,∇eβ}

=ω
γ
αh

γβ
+ω

γ

β
hαγ
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So in matrix notation, we have

dh =ωh+hωT

In particular, if we take {eα} to be orthogonal local frame of E with respect to h,
we will find ω+ωT = 0, that is ω is skew-Hermitian matrix.

Proposition 6.2.1. Let (E,h) be a Hermitian vector bundle over a complex mani-
fold X . A connection ∇ is a metric connection if and only if

d{s, t}= {∇s, t}+ (−1)p{s,∇t}

where s ∈ C∞(X ,Ωp
X ,C⊗E) and t ∈ C∞(X ,Ωq

X ,C⊗E).

Proposition 6.2.2. Let (E,h) be a Hermitian vector bundle equipped with con-
nection ∇E. Then ∇E is a metric connection if and only if ∇E∗⊗E

∗
h = 0.

Proof. Direct computation shows

∇E∗⊗E
∗
(h

αβ
eα⊗ eβ)= dh

αβ
⊗ eα⊗ eβ+h

αβ
∇E∗

eα⊗ eβ+h
αβ

eα⊗∇E
∗
eβ

= dh
αβ

⊗ eα⊗ eβ−h
αβ

ωα
γ eγ⊗ eβ−h

αβ
ω
β
γ eα⊗ eγ

= (dh
αβ

−ω
γ
αh

γβ
−ω

γ

β
hαγ)eα⊗ eβ

This shows desired result. □

6.2.2. Compatiblity with complex structure. For a complex manifold X , we have
decomposition

Ω1
X ,C =Ω

1,0
X ⊕Ω

0,1
X

Let E → X be a complex vector bundle with connection ∇. Then we can decompose
∇=∇1,0 +∇0,1 by composing the projection as follows

C∞(X ,Ω1,0
X ⊗E)

C∞(X ,E) C∞(X ,Ω1
X ,C⊗E)

C∞(X ,Ω0,1
X ⊗E)

∇

If we write ∇= d+ω locally, then

∇1,0 = ∂+ω1,0

∇0,1 = ∂+ω0,1

Definition 6.2.5 (complex connection). A connection ∇ on a holomorphic vector
bundle E over a complex manifold X is said to be compatible with complex struc-
ture if ∇0,1 = ∂E.
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Remark 6.2.4 (local form). Let {eα} be a holomorphic local form of E, and denote

∇eα = (Γβ

iαdzi +Γ
β

iα
dzi)eβ

that is
∇0,1eα =Γ

β

iα
eβdzi

But since {eα} is holomorphic, that is ∂E eα = 0, which implies ∇ is complex if and
only if Γβ

iα
= 0.

6.2.3. Chern connection.

Theorem 6.2.1 (Chern connection). Let X be a complex manifold, (E,h) a Her-
mitian holomorphic vector bundle. Then there exists a unique metric connection
called Chern connection such that it’s compatible with complex structure.

Proof. If metric connection ∇ is compatible with complex structure, then the fol-
lowing three equations are equivalent

dh =ωh+hωt

∂h =ωh

∂h = hωt

since ω is a (1,0)-valued matrix. This shows Chern connection is uniquely deter-
mined by ω= (∂h)h−1. □
Remark 6.2.5 (local form). Chern connection is locally determined by

∂h
αβ

∂zi =Γ
γ

iαh
γβ

Definition 6.2.6 (Chern curvature). Let X be a complex manifold and (E,h) be a
Hermitian holomorphic vector bundle. The Chern curvature Θh of (E,h) is defined
as the curvature of Chern connection with respect to h.

Corollary 6.2.1. Let X be a complex manifold and (E,h) a Hermitian holomorphic
vector bundle equipped with Chern connection ∇ locally given by ω. Then
(1) ∂ω=ω∧ω.
(2) Θh = ∂ω.
(3) ∂Θh = 0.

Proof. For (1). Since ω= (∂h)h−1, then directly computation shows

∂ω=−∂h∧∂(h−1)

=−∂h∧ (−h−1∂hh−1)

= (∂h)h−1 ∧ (∂h)h−1

=ω∧ω

For (2). Θh locally looks like

Θh = dω−ω∧ω= dω−∂ω= ∂ω
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For (3). It’s clear from (2). □

Remark 6.2.6 (local form). The Chern curvature can be expressed in terms of
Christoffel symbol as follows

Θh =Θ
γ

i jα
dzi ∧dz j ⊗ eα⊗ eγ

where Θ
γ

i jα
=−∂Γ

γ

iα

∂z j . In other type one has

Θi jαβ = h
γβ
Θ

γ

i jα

=−h
γβ
∂ j(h

γδ
∂h

αδ

∂zi )

=−
∂2h

αβ

∂zi∂z j +hγδ
∂h

αδ

∂zi

∂h
γβ

∂z j

6.2.4. Useful formulas of Chern connection. Let X be a complex manifold and
(E,h) be a Hermitian holomorphic vector bundle over X . Let ∇ be Chern connec-
tion determined by Christoffel symbol Γβ

iα on (E,h) with curvature Θh. Suppose
{zi} is local coordinate of X , {eα} is the local frame of E, and {eα} and {eα} denote
local frames of E∗ and E respectively.

Proposition 6.2.3.

Γ
β

iα = hβγ
∂hαγ

∂zi

Proof. See Remark 6.2.5. □

Proposition 6.2.4.

Θ
γ

i jα
=−∂Γ

γ

iα

∂z j

Θi jαβ =−
∂2h

αβ

∂zi∂z j +hγδ
∂h

αδ

∂zi

∂h
γβ

∂z j

Proof. See Remark 6.2.6. □

Proposition 6.2.5.

∇ ∂

∂zi
eα =Γ

β

iαeβ, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα =Γ

β

iα
eβ

∇ ∂

∂zi
eα =−Γα

iβeβ, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα = 0, ∇ ∂

∂zi
eα =−Γα

iβ
eβ

Proof. It suffices to show the first two equalities, and others can be obtained from
taking conjugates and dualities. The first one holds from definition of Christoffel
symbol, and Γ

β

iα
= 0 holds from the Remark 6.2.4. □

Corollary 6.2.2.



39

(1) For s ∈ C∞(X ,E), locally written as s = sαeα, one has

∇ ∂

∂zi
s = (

∂sβ

∂zi + sαΓβ

iα)eβ

∇ ∂

∂zi
s = ∂sβ

∂zi eβ

(2) For s ∈ C∞(X ,E), locally written as s = sαeα, one has

∇ ∂

∂zi
s = ∂sβ

∂zi eβ

∇ ∂

∂zi
s = (

∂sβ

∂zi + sαΓβ

iα
)eβ

(3) For s ∈ C∞(X ,E∗), locally written as s = sαeα, one has

∇ ∂

∂zi
s = (

∂sβ
∂zi − sαΓα

iβ)eβ

∇ ∂

∂zi
s = ∂sβ

∂zi eβ

(4) For s ∈ C∞(X ,E
∗
), locally written as s = sαeα, one has

∇ ∂

∂zi
s =

∂s
β

∂zi eβ

∇ ∂

∂zi
s = (

∂s
β

∂zi − sαΓ
γ

iβ
)eβ

Proposition 6.2.6 (Ricci identity). For s ∈ C∞(X ,E), locally written as s = sαeα,
one has

∇ ∂

∂zi
∇ ∂

∂z j
sβ−∇ ∂

∂z j
∇ ∂

∂zi
sβ =Θ

β

i jα
sα

Proof. Direct computation shows

∇ ∂

∂zi
∇ ∂

∂z j
s =∇ ∂

∂zi
(
∂sα

∂z j eα)

= ∂2sβ

∂zi∂z j eβ+Γ
β

iα
∂sα

∂z j eβ

that is

∇ ∂

∂zi
∇ ∂

∂z j
sβ = ∂2sβ

∂zi∂z j +Γ
β

iα
∂sα

∂z j

Direct computation also shows

∇ ∂

∂z j
∇ ∂

∂zi
sβ = ∂2sβ

∂z j∂zi
+ ∂sα

∂z j Γ
β

iα+ sα
∂Γ

β

iα

∂z j
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Thus

∇ ∂

∂zi
∇ ∂

∂z j
sβ−∇ ∂

∂z j
∇ ∂

∂zi
sβ =−sα

∂Γ
β

iα

∂z j

=Θ
β

i jα
sα

□
6.3. First Chern class.

6.3.1. First Chern class of complex line bundle. Let π : X → L be a complex line
bundle with connection ∇ over a complex manifold X . Then curvature Θ is a
global section of Ω2

X ,C since EndL is trivial bundle. Furthermore, Θ locally looks
like dω since for line bundle ω∧ω= 0. An immediate consequence is dΘ= 0, that
is Θ gives a cohomology class

[Θ] ∈ H2(X ,C)

Definition 6.3.1 (first Chern class of line bundle). Let L be a complex line bundle
over complex manifold X equipped with connection ∇. The first Chern class of L
is defined as

c1(L) := [
p−1
2π

Θ] ∈ H2(X ,C)

where Θ is the curvature of ∇.

Proposition 6.3.1 (topological invariance). c1(L) ∈ H2(X ,C) is independent of the
choice of connection.

Proof. Let ∇̃ be another connection which is locally given by ω̃. Then for section s
of Ωk

X ,C⊗L, one has

(∇−∇̃)s = (ds+ω∧ s)− (ds+ ω̃∧ s)
= (ω− ω̃)∧ s

Note that ω− ω̃ is a global section of Ω1
X ,C, so Θ− Θ̃ is exact. □

Proposition 6.3.2. Let π : L → X be a complex line bundle over a complex mani-
fold X . Then c1(L) ∈ H2(X ,R).

Proof. Equip L with a Hermitian metric h, then for a metric connection ∇, locally
we have

ω=−ω
Thus p−1

2π
Θ=−

p−1
2π

Θ=−
p−1
2π

dω=
p−1
2π

dω=
p−1
2π

Θ

□
Remark 6.3.1. Here are two facts here we don’t prove:
(1) c1(L) ∈ H2(X ,Z).
(2) L is determined by c1(L).
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Definition 6.3.2 (first Chern class of vector bundle). Let E be a complex vector
bundle over complex manifold X . The first Chern class of E is defined to be the
first Chern class of detE.

6.3.2. First Chern class of Hermitian holomorphic line bundle. Let X be a complex
manifold, (L,h) a Hermitian holomorphic line bundle, and ∇ is the Chern connec-
tion of (L,h) with Chern curvature Θh. Then by Proposition 6.3.2 and Corollary
6.2.1, we have

[
p−1
2π

Θh] ∈ H2(X ,R)∩H1,1(X )

Remark 6.3.2 (local form). Suppose Hermitian metric h is given by metric weight
{φα}, that is locally h = e−2φα . Then direct computation shows first Chern class is
locally given by p−1

2π
Θh =

p−1
π

∂∂φα

Proposition 6.3.3. [
p−1
2π Θh] ∈ H1,1(X ) is independent of h.

Proof. Note that any two metric on a line bundle differ a smooth function which
is positive everywhere, so if h and h′ are two different metrics, we can write
‖e(z)‖h′ = e f ‖e(z)‖h for some globally defined smooth function f . So by Remark
6.3.2, we have the difference of first Chern classes coming from different metrics
is

p−1
π

∂∂ f , and it’s trivial in H1,1(X ) since f is globally defined. □

6.4. Lefschetz (1,1)-theorem. Now we know that given a Hermitian holomor-
phic line bundle (L,h), its Chern curvature we will get a real (1,1)-form. So we
may wonder the converse of this statement. Is there any real (1,1)-form comes
from such a Hermitian holomorphic line bundle? That’s main theorem for this
section.

Theorem 6.4.1 (Lefschetz (1,1)-theorem). Let X be a complex manifold and [ω] ∈
H2(X ,R)∩H1,1(X ). If

[ω] ∈ im{H2(X ,Z)→ H2(X ,R)},

then there exists a Hermitian holomorphic line bundle (L,h) such that
p−1
2π

Θh =ω

Before proving this theorem, let’s explain these notations. Here H2(X ,Z) and
H2(X ,R) are sheaf cohomology of constant sheaves Z and R. By de Rham theorem6,
there is no difference between sheaf cohomology of R and de Rham cohomology, but
it’s meaningless to consider de Rham cohomology with Z-coefficient.

6See appendix ??.
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Here we use the isomorphisms

H2(X ,Z)∼= Ȟ2(X ,Z)

H2(X ,R)∼= Ȟ2(X ,R)

and consider the map in terms of ech cohomology

Ȟ2(X ,Z)→ Ȟ2(X ,R).

Above isomorphism is called comparision theorem, and can be proved by tech-
nique of spectral sequences in general. Here we give an explicit construction in
dimension two, that is, construct a ech 2-cocycle from a closed 2-form.

In sketch, the philosophy of this construction is that we can descend the de-
gree of differential forms, but the price we pay is to consider functions defined on
intersections of many open subsets.

Proof of comparision theorem in dimension two. Let X be a smooth manifold and
Z1(X ) ⊂Ω1

X ,R be the sheaf of closed 1-form. Then we have the following sequence
of sheaves

0→R→ C∞(X ) d−→ Z1 → 0.
By Poincaré lemma it’s an exact sequence. Similarly, there is also an exact se-
quence

0→ Z1 →Ω1
X ,R

d−→ Z2 → 0,

where Z2 is the sheaf of closed 2-forms. By the definition of de Rham cohomology,
we have

H2(X ,R)= C∞(X , Z2)
dC∞(X ,Ω1

X ,R)

In order to avoid taking limit in ech cohomology, we choose a good enough open
covering7 U= {Uα}α∈I such that
(1)

d: C∞(Uα,Ω1
Uα,R)→ C∞(Uα, Z2)

is surjective for any α ∈ I.
(2)

d: C∞(Uα∩Uβ)→ C∞(Uα∩Uβ, Z1)
is surjective for any α,β ∈ I.

Let ω be a closed 2-form. For any α ∈ I, we choose Aα ∈ C∞(Uα,Ω1
Uα,R) such that

ω|Uα
= dAα.

Then ∏
α,β

(Aα− Aβ)

7In fact, it’s called Leray covering, and Leray’s theorem about ech cohomology says that the ech
cohomology with respect to Leray covering is exactly the ech cohomology.
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is a ech 1-cocycle in C1(U, Z1) since d(Aα− Aβ)|Uα∩Uβ
=ω−ω= 0. For any α,β ∈ I,

we choose fαβ ∈ C∞(Uα∩Uβ) such that

(Aα− Aβ)αβ = d fαβ.

Note that
fβγ− fαγ+ fαβ|Uα∩Uβ∩Uγ

is d-closed by the same reason, and thus it’s locally constant. Then

ω̌= ∏
α,β,γ

( fβγ− fαγ+ fαβ)

is a ech 2-cocycle in C2(U,R). Then by Leray’s theorem, we obtain a ech 2-cocycle
ω̌ ∈ Ȟ2(X ,R) from a closed 2-form ω ∈ H2(X ,R). □

Now let’s prove Lefschetz (1,1)-theorem.

Proof of theorem 6.4.1. Let U = {Uα}α∈I be an open covering consisting of open
polydisk such that for all α,β ∈ I, the intersection Uα∩Uβ is simply-connected.

For a d-closed real (1,1)-form ω, after a refinement if neccessary, Lemma 1.2.1
implies that there exist smooth functions φα : Uα →R such that

ω|Uα
=

p−1
2π

∂∂φα.

Then on any two intersection Uα ∩Uβ, one has ∂∂(φα −φβ) = 0. Again after a
refinement if neccessary, Lemma 1.2.2 implies that there exist holomorphic func-
tions fαβ such that

(φα−φβ)|Uα∩Uβ
= 2Re( fαβ)= fαβ+ fαβ.

For
∏

fαβ ∈ C1(U,OX ), one has

(δ f )αβγ = ( fβγ− fαγ+ fαβ)|Uα∩Uβ∩Uγ

Since 2Re( fβγ − fαγ + fαβ)αβγ = 0, it must be a locally constant pure imaginary
number, that is, it lies in 2π

p−1R(Uα∩Uβ∩Uγ).
For real 1-form

Aα =
p−1
4π

(∂φα−∂φα),

a direct computation shows that ω|Uα
= dAα, and that’s why we define Aα in this

form.
Recall what we have done in the proof of comparision theorem: If we want to

find ech cocycle which corresponding to ω, we need to consider Aα − Aβ on the
intersection Uα∩Uβ. A direct computation shows that

∂(φβ−φα)= ∂( fαβ+ fαβ)
= ∂ fαβ
= d fαβ

∂(φβ−φα)= d fαβ.
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Thus

(Aβ− Aα)αβ =
p−1
4π

d( fαβ− fαβ)= 1
2π

d(Im( fαβ)).

Then the ech 2-cocycle ω̌ corresponding to ω is

ω̌=∏
(

1
2π

Im( fβγ− fαγ+ fαβ))αβγ

=∏
(

1

2π
p−1

( fβγ− fαγ+ fαβ))αβγ.

By hypothesis one has [ω̌] is an image of
[∏

nαβγ

] ∈ Ȟ2(X ,Z). However, it
doesn’t mean that fαβ are exactly integers, but not too bad, we just need some
correction terms, that is∏

(
1

2π
p−1

( fβγ− fαγ+ fαβ))αβγ =
∏

nαβγ+δ(
∏

cαβ)

where
∏

(cαβ) ∈ C1(U,R) is 1-cochain. If we define f ′
αβ

= fαβ−2π
p−1cαβ, then

( f ′βγ− f ′αγ+ f ′αβ)αβγ = 2π
p
−1nαβγ ∈ 2π

p
−1Z(Uα∩Uβ∩Uγ).

Now consider the holomorphic function from Uα∩Uβ to C∗ defined by gαβ = exp(− f ′
αβ

).
A direct computation shows that it satisfies the cocycle condition

gβγg−1
αγgαβ = 1,

since e2π
p−1 = 1. Then {gαβ} is a collection of transition functions, and gives a

holomorphic line bundle L.
Now it suffices to construct a Hermitian metric on L, and calculate its curvature

to complete the proof. Note that

(φα−φβ)Uα∩Uβ
= 2Re( fαβ)= 2Re( fαβ)′ =− log |gαβ|2.

Consider the Hermitian metric h, which is locally given by

hα = exp(−φα)

on Uα. It’s well-defined since hβ = |gαβ|2hα = gT
αβ

hαgαβ. Moreover,
p−1
2π

Θh =
p−1
2π

∂∂φα =ω.

This completes the proof. □
Remark 6.4.1. Consider the exponential sequence

0→Z
2π

p−1−→ OX
exp−→O∗

X → 0

and the induced long exact sequence

· · ·→ H1(X ,O∗
X ) δ−→ H2(X ,Z)→ H2(X ,OX )→ . . . .

Let L be a holomorphic line bundle determined by its transition functions {gαβ}.
The proof for Lefschetz (1,1)-theorem shows that δ maps {gαβ} to −c1(L).
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7. HERMITIAN GEOMETRY

7.1. Hermitian manifold and Riemannian manifold. A Hermitian manifold
is a complex manifold X together with a Hermitian metric h on holomorphic tan-
gent bundle TX . One way to construct a Hermitian metric on TX is to consider
special Riemannian metric on the underlying real manifold.

Suppose {zi = xi +p−1xI } is a local coordinate of X , where 1≤ i ≤ n and n+1≤
I = i+n ≤ 2n. Then {xi, xI } gives a local coordinate of underlying real manifold of
X , and there is a natural almost complex structure J on TRX which is given by

J(
∂

∂xi )= ∂

∂xI

J(
∂

∂xI )=− ∂

∂xi

Definition 7.1.1 (compatiblity). A Riemannian metric g on TRX is called compat-
ible with almost complex structure, if

g(V ,W)= g(JV , JW)

for all V ,W ∈ C∞(X ,TRX ).

Proposition 7.1.1. Let g be a Riemannian metric on TRX which is compatible
with J and locally given by

g = g i jdxi ⊗dx j + g iJdx j ⊗dxJ + gI jdxI ⊗dx j + gIJdxI ⊗dxJ

Then
g i j = gIJ

g iJ = gJi =−g jI =−gI j

Proof. Direct computation. □
Notation 7.1.1. (

gil giL

gIl gIL

)(
gl j glJ
gL j gLJ

)
= I2n

In other words,
gil gl j + giL gL j = δi

j

gil glJ + giL gLJ = 0

Let g be a Riemannian metric on underlying real manifold which is compatible
with J. Then its C-linear extension gC gives a matrix

G =
(

gC( ∂
∂zi , ∂

∂z j )
)

n×n

(
gC( ∂

∂zi , ∂

∂z j )
)

n×n(
gC( ∂

∂zi , ∂
∂z j )

)
n×n

(
gC( ∂

∂zi , ∂

∂z j )
)

n×n


Direct computation shows that

gC(
∂

∂zi ,
∂

∂z j )= 0

gC(
∂

∂zi ,
∂

∂z j )= 0
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and if we denote H = (hi j)n×n, where

(7.1) hi j := gC(
∂

∂zi ,
∂

∂z j )= 1
2

(g i j +
p
−1g iJ)

Then

G =
(

0 H
H 0

)
Moreover, H is a positive definite Hermitian matrix since G is a positive definite
symmetric matrix. Thus h gives a Hermitian metric on T1,0X , which makes X a
Hermitian manifold. Conversely, if h is a Hermitian metric on T1,0X , there is also
a Riemannian metric on TRX given by

g i j = 2Rehi j

g iJ = 2imhi j

gI j =−g iJ

gIJ = g i j

From now on, g always denotes a Riemannian metric on the underlying real
manifold which is compatible with J, and h be the Hermitian metric correspond-
ing to g.

Proposition 7.1.2. √
det g = 2n deth

Proof. Direct computation shows

det g = det
(
(g i j)n×n (g iJ)n×n
(gI j)n×n (gIJ)n×n

)
(1)= det

(
(g i j)n×n (g iJ)n×n

(−g iJ)n×n (g i j)n×n

)
= det

(
(g i j +

p−1g iJ)n×n (g iJ)n×n
(−g iJ +p−1g i j)n×n (g i j)n×n

)
= det

(
(g i j +

p−1g iJ)n×n (g iJ)n×n
O (g i j +

p−1g iJ)n×n

)
= (2n deth)2

where (1) holds from Proposition 7.1.1. □

Notation 7.1.2. hi j is defined by the (i, j)-entry of (H−1)T , that is hil h jl = δi
j, and

hi j := hi j. Note that

G−1 = (G−1)T =
(

0 (hi j)n×n

(hi j)n×n 0

)
Proposition 7.1.3.

hi j = 2(gi j −
p
−1giJ)
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Proof. Direct computation shows

hil h jl = (gil −
p
−1giL)(g jl +

p
−1g jL)

= gil g jl + giL g jL +
p
−1(gil g jL − giL g jL)

= gil gl j + giL gL j −
p
−1(gil glJ + giL gL j)

= δi
j

□

Definition 7.1.2 (fundamental form). The fundamental form ω of g is defined as

ω(V ,W) := gC(JV ,W)

where V ,W ∈ C∞(X ,TCX ).

Proposition 7.1.4.

ω=
p
−1hi jdzi ∧dz j

In particular, ω is a real (1,1)-form.

Proof. Direct computation shows

ω(
∂

∂zi ,
∂

∂z j )= gC(J(
∂

∂zi ),
∂

∂z j )=
p
−1gC(

∂

∂zi ,
∂

∂z j )= 0

ω(
∂

∂zi ,
∂

∂z j )= gC(J(
∂

∂zi ),
∂

∂z j )=
p
−1gC(

∂

∂zi ,
∂

∂z j )=
p
−1hi j

ω(
∂

∂z j ,
∂

∂zi )= gC(J(
∂

∂zi ),
∂

∂z j )=−
p
−1gC(

∂

∂zi ,
∂

∂z j )=−
p
−1hi j

ω(
∂

∂zi ,
∂

∂z j )= gC(J(
∂

∂zi ),
∂

∂z j )=−
p
−1gC(

∂

∂zi ,
∂

∂z j )= 0

This shows

ω=
p
−1hi jdzi ⊗dz j −

p
−1hi jdzi ⊗dz j

=
p
−1hi jdzi ⊗dz j −

p
−1h jidz j ⊗dzi

=
p
−1hi jdzi ∧dz j

where the last step holds since h is Hermitian, that is h ji = hi j. □

Proposition 7.1.5.

2h+
p
−1ω= gC
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Proof. Direct computation shows

h− 1
2

gC = hi jdzi ⊗dz j − 1
2

(hi jdzi ⊗dz j +hi jdzi ⊗dz j)

= 1
2

hi jdzi ⊗dz j − 1
2

hi jdzi ⊗dz j

= 1
2

hi jdzi ∧dz j

=−
p−1

2
ω

□

Remark 7.1.1. In fact, Hermitian metric h, Riemannian metric g on underlying
real manifold and fundamental form ω are the same things on a complex manifold
X , and any of them gives a Hermitian structure on X .

h

ω gC

1 3

2

5 4

6

The explict correspondences are listed as follows:

1 2ω(-, -)=−Imh(-, -)

2 2h(-, -)=ω(-, J-)−
p
−1ω(-, -)

3 2gC(-, -)=Reh(-, -)

4 2h(-, -)= gC(-, -)−
p
−1gC(J-, -)

5 gC(-, -)=ω(-, J-)
6 ω(-, -)= gC(J-, -)

In later discussion, we may say a Hermitian manifold (X ,h) or (X ,ω) when we’re
emphasizing its Hermitian metric or fundamental form.

Theorem 7.1.1 (normal coordinate). Let (X ,h) be a Hermitian manifold. For any
p ∈ X , there exists a local holomorphic coordinate {zi} centered at p such that

hi j(p)= δi j and
∂hi j

∂zk + ∂hik

∂z j = 0

Proof. Without lose of generality, we may assume

ω=
p
−1(δi j +ai jlw

l +ai jlw
l +O(|w|2))dwi ∧dw j

□
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7.2. Curvatures of Hermitian manifold. Sometimes we need to consider Her-
mitian holomorphic vector bundles over a Hermitian manifold, so there are two
Hermitian metrics. In this case, in order to distinguish them, we always say a
Hermitian holomorphic vector bundle (E,h) over a Hermitian manifold (X , g).

Definition 7.2.1 (curvatures of vector bundle). Let (E,h) be a Hermitian holomor-
phic vector bundle on Hermitian manifold (X , g). Then
(1) the first Chern-Ricci curvature of (E,h) is locally given by

Ric(1)(h)=
p
−1hαβΘi jαβdzi ∧dz j

(2) the second Chern-Ricci curvature of (E,h) is locally given by

Ric(2)(h)=
p
−1gi jΘi jαβeα⊗ eβ

(3) the Chern scalar curvature of (E,h) is locally given by

s = gi jhαβΘi jαβ

Remark 7.2.1. For convenience, we always use the following notations.
(1) Ric(1)(h) = p−1trhΘh and Ric(2)(h) = p−1trgΘh, where Θh is the Chern cur-

vature of (E,h).
(2) For a real (1,1)-form φ locally written as

p−1φi jdzi ∧dz j, trgφ denotes the

function gi jφi j. In particular, the Chern scalar curvature is denoted by trg trhΘh,
where Θh is the Chern curvature of (E,h).

Definition 7.2.2 (curvatures of Hermitian manifold). Let (X ,h) be a Hermitian
manifold. Then
(1) the first (or second) Chern-Ricci curvature of (X ,h) is defined to be the first (or

second) Chern-Ricci curvature of its holomorphic tangent bundle.
(2) the Chern scalar curvature of (X ,h) is defined to be the Chern scalar curvature

of its holomorphic tangent bundle.

Proposition 7.2.1. Let (E,h) be a Hermitian holomorphic vector bundle. The first
Chern-Ricci curvature of (E,h) gives the first Chern class of (E,h) up to a scalar.

Proof. A direct computation shows
p−1
2π

hαβ(−
∂2h

αβ

∂zi∂z j +hγδ
∂h

αδ

∂zi

∂h
γβ

∂z j )=−
p−1
2π

∂2 logdet(h
αβ

)

∂zi∂z j

Thus the first Chern-Ricci curvature of (E,h) gives the Chern curvature of (detE,deth)
up a scalar 1/2π, and by Definition 6.3.2 the first Chern class of (E,h) is defined to
be first Chern class of detE. □
Definition 7.2.3 (holomorphic sectional curvature). Let (X ,h) be a Hermitian
manifold and v = vi ∂

∂zi ∈ Tp X be a unit vector. The holomorphic sectional cur-
vature in the direction v is defined as

HSCp(v) :=Θi jklv
iv jvkvl
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Definition 7.2.4 (holomorphic bisectional curvature). Let (X ,h) be a Hermitian
manifold and v = vi ∂

∂zi ,w = wi ∂
∂zi ∈ Tp X be unit vectors. The holomorphic sectional

curvature in the direction v,w is defined as

HBSCp(v,w) :=Θi jklv
iv jwkwl

7.3. Useful formulas of Hermitian geometry. In this section we collect some
useful formulas in Hermitian geometry. Unless otherwise specified, we assume
(X ,h) is a Hermitian n-manifold with fundamental form ω, and g is the Riemann-
ian metric on the underlying real manifold.

Proposition 7.3.1.

ωn = (
p
−1)nn!det(hi j)dz1 ∧dz1 ∧·· ·∧dzn ∧dzn

Proof. Direct computation shows

ωn = (
p
−1)n(hi jdzi ∧dz j)n

= (
p
−1)n ∑

σ∈Sn
τ∈Sn

hiσ(1) jτ(1)
. . .hiσ(n) jτ(n)

dziσ(1) ∧dz jτ(1) ∧·· ·∧dziσ(n) ∧dz jτ(n)

= (
p
−1)n ∑

σ∈Sn
τ∈Sn

(−1)|σ|(−1)|τ|hiσ(1) jτ(1)
. . .hiσ(n) jτ(n)

dz1 ∧dz1 ∧·· ·∧dzn ∧dzn

= (
p
−1)n ∑

σ∈Sn

∑
ρ∈Sn

(−1)|ρ|hiρ(1) j1
. . .hiρ(n) jn

dz1 ∧dz1 ∧·· ·∧dzn ∧dzn

= (
p
−1)nn!det(hi j)dz1 ∧dz1 ∧·· ·∧dzn ∧dzn

□

Corollary 7.3.1.

ωn−1 = (
p
−1)n−1(n−1)!

∑
i1<···<in−1 ,il 6=p
j1<···< jn−1 , jl 6=q

h(p, q)dzi1 ∧dz j1 ∧·· ·∧dzin−1 ∧dz jn−1

where h(p, q) the cofactor of h without row p and column q.

Proof. Direct computation shows

ωn−1 = (
p
−1)n−1(hi jdzi ∧dz j)n−1

= (
p
−1)n−1 ∑

σ∈Sn−1
τ∈Sn−1

hiσ(1) jτ(1)
. . .hiσ(n−1) jτ(n−1)

dziσ(1) ∧dz jτ(1) ∧·· ·∧dziσ(n−1) ∧dz jτ(n−1)

= (
p
−1)n−1 ∑

i1<···<in−1 ,il 6=p
j1<···< jn−1 , jl 6=q

∑
σ∈Sn−1
ρ∈Sn−1

(−1)|ρ|hiρ(1) j1
. . .hiρ(n−1) jn−1

dzi1 ∧dz j1 ∧·· ·∧dzin−1 ∧dz jn−1

= (
p
−1)n−1(n−1)!

∑
i1<···<in−1 ,il 6=p
j1<···< jn−1 , jl 6=q

h(p, q)dzi1 ∧dz j1 ∧·· ·∧dzin−1 ∧dz jn−1

□
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Corollary 7.3.2.

ωn−2 = (
p
−1)n−2(n−2)!

∑
i1<···<in−2 ,il 6=p,s
j1<···< jn−2 , jl 6=q,t

h
(
p, q
s, t

)
dzi1 ∧dz j1 ∧·· ·∧dzin−2 ∧dz jn−2

where h
(
p, q
s, t

)
the cofactor of h without rows p, s and columns q, t.

Proposition 7.3.2. ωn/n! is the volume form of the underlying real manifold with
respect to g.

Proof. Direct computation shows

ωn (1)= (
p
−1)nn!det(hi j)dz1 ∧dz1 ∧·· ·∧dzn ∧dzn

(2)= n!2n det(hi j)dx1 ∧dy1 ∧·· ·∧dxn ∧dyn

(3)= n!vol

where
(1) holds from Proposition 7.3.1.
(2) holds from Exercise 5.2.1.
(3) holds from Proposition 7.1.2.

□

Proposition 7.3.3.
(1) If φ is a real (1,1)-form, then

φ∧ωn−1 = 1
n

trωφ ·ωn

(2) If φ is a (1,0)-form, then
p
−1φ∧φ∧ωn−1 = 1

n
|φ|2 ·ωn

(3) If φ is a (0,1)-form, then
p
−1φ∧φ∧ωn−1 =− 1

n
|φ|2 ·ωn

Proof. For (1). Suppose φ=p−1φi jdzi ∧dz j. Then by Proposition 7.3.1 one has

1
n

trωφ ·ωn = (
p
−1)n(n−1)!hi jφi j dethdz1 ∧dz1 ∧·· ·∧dzn ∧dzn

and by Corollary 7.3.1 one has

φ∧ωn−1 = (
p
−1)n(n−1)!φi jdzi ∧dz j ∧ ∑

i1<···<in−1 ,il 6=p
j1<···< jn−1 , jl 6=q

h(p, q)dzi1 ∧dz j1 ∧·· ·∧dzin−1 ∧dz jn−1

= (
p
−1)n(n−1)!

∑
1≤p,q≤n

φpq(−1)p+qh(p, q)dz1 ∧dz1 ∧·· ·∧dzn ∧dzn
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Note that by expansion of determinant one has

hi jφi j deth = hi jφi j

n∑
k=1

hk j(−1)k+ jh(k, j)= ∑
1≤i, j≤n

φi j(−1)i+ jh(i, j)

For (2). Suppose φ=φidzi. Then
p
−1φ∧φ=

p
−1φiφ jdzi ∧dz j

is a real (1,1)-form, and it’s clear

trω
p
−1φ∧φ= |φ|2

then by (1) we obtain desired result, and (3) follows from (2) directly. □

Proposition 7.3.4.

〈dzi ∧α,β〉 = 〈α,hpiιpβ〉
holds for α,β with appropriate bidegrees.

Proposition 7.3.5. Let (E,h) be a Hermitian holomorphic vector bundle over a
Hermitian manifold (X , g) and φ be a real (1,1)-form. Then

{φ,φ}
ωn−2

(n−2)!
= (|trωφ|2 −|φ|2)

ωn

n!

Proof. Suppose φ=p−1φα

i j
dzi ∧dz j ⊗ eα. Then by Corollary 7.3.2 one has

LHS= (
p
−1)nφα

i j
φ
β

kl
h
αβ

dzi∧z j∧dzl∧zk∧ ∑
i1<···<in−2 ,il 6=p,s
j1<···< jn−2 , jl 6=q,t

g
(
p, q
s, t

)
dzi1∧dz j1∧·· ·∧dzin−2∧dz jn−2

If we want to insert dzi∧dz j∧dzl ∧dzk into
∑

i1<···<in−2 ,il 6=p,s
j1<···< jn−2 , jl 6=q,t

dzi1 ∧dz j1 ∧·· ·∧dzin−2 ∧
dz jn−2 , there are the following four cases

i = p, l = s, j = q,k = t
i = p, l = s, j = t,k = q
i = s, l = p, j = q,k = t
i = s, l = p, j = t,k = q

So case by case one has

φα

i j
φ
β

kl
dzi ∧dz j ∧dzl ∧dzk ∧ ∑

i1<···<in−2 ,il 6=p,s
j1<···< jn−2 , jl 6=q,t

dzi1 ∧dz j1 ∧·· ·∧dzin−2 ∧dz jn−2

= ∑
1≤p,q≤n
1≤s,t≤n

(φα
pqφ

β

ts −φα

ptφ
β

qs −φα
sqφ

β

tp +φα

stφ
β

qp)(−1)p+q+t+sdz1 ∧dz1 ∧·· ·∧dzn ∧dzn
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On the other hand, direct computation shows

|trωφ|2 =φα

i j
φ
β

kl
gi j glkh

αβ

|φ2| =φα

i j
φ
β

kl
gik gl jh

αβ

and thus
RHS= (

p
−1)nφα

i j
φ
β

kl
h
αβ

(gi j glk − gik gl j)det g

Note that Laplacian’s theorem implies

(gi j glk − gik gl j)det g = (gi j glk − gik gl j)
∑

1≤p,s≤n
1≤ j,k≤n

(gp j gsk − gs j gpk)(−1)p+ j+s+k g
(
p, j
s,k

)

= (δi
pδ

l
s −δi

sδ
l
p −δi

sδ
l
p +δi

pδ
l
s)(−1)p+ j+s+k g

(
p, j
s,k

)
This shows the RHS equals to the LHS. □
7.4. Gauduchon metric.

Theorem 7.4.1 (Gauduchon metric). If X be a complex manifold, then there exists
a Hermitian metric ω such that

∂∂ωn−1 = 0,

which is called Gauduchon metric.

Proof. See [Gau77]. □
Corollary 7.4.1. Let f : X →R be a smooth function on a compact complex mani-
fold X . If p

−1∂∂ f ≥ 0,
then f is a constant.

Proof. Let ω be the Gauduchon metric on X . Then

0≤
ˆ

X

p
−1∂∂ f ∧ωn−1 =

ˆ
X

p
−1 f ∧∂∂ωn−1 = 0

which implies
p−1∂∂ f = 0. Note that

(7.2) ∂∂ f 2 = ∂(2 f ∂ f )= 2∂ f ∧∂ f +2 f ∂∂ f = 2∂ f ∧∂ f

Then
0 (1)=
ˆ

X

p
−1∂∂ f 2 ∧ωn−1

(2)= 2
ˆ

X

p
−1∂ f ∧∂ f ∧ωn−1

(3)= 2
n

ˆ
X
|∂ f |2ωn

where
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(1) holds from ω is a Gauduchon metric.
(2) holds from equation (7.2).
(3) holds from (2) of Proposition 7.3.3.

This shows ∂ f = 0, and this also shows d f = 0 since f is real-valued, that is f is a
constant. □

Corollary 7.4.2. Let f : X →R be a smooth function on a compact complex mani-
fold X . If there exists a Hermitian metric ω such that

p
−1trω∂∂ f ≥ 0,

then f is a constant.

Proof. By (1) of Proposition 7.3.3 one hasˆ
X

p
−1trω∂∂ f ∧ωn =

ˆ
X

n
p
−1∂∂ f ∧ωn−1

The argument in above corollary still works. □

7.5. Second fundamental form. Let (E,h) be a Hermitian holomorphic vector
bundle over complex manifold X with rank r and S be a holomorphic subbundle
of E with rank s. Then there is an exact sequence of holomorphic vector bundles

0→ S → E →Q → 0

where Q is the quotient bundle, which is isomorphic to S⊥ as complex vector bun-
dle.

7.5.1. Second fundamental form of subbundle. Suppose ∇E is the Chern connec-
tion on E and define ∇S :=πS ◦∇E, where πS : E → S is the orthogonal projection.

(1) It’s clear ∇S is compatible with complex structure of S since ∇E is Chern con-
nection of E, and S is holomorphic subbundle of E.

(2) For sections s, t of S, one has

dh(s, t)= h(∇Es, t)+h(s,∇E t)
(a)= h(πS ◦∇Es, t)+h(s,πS ◦∇E t)

= h(∇Ss, t)+h(s,∇S t),

where (a) holds from πS is orthogonal projection.

This shows that ∇S is the Chern connection of S with respect to Hermitian metric
induced by the one on E.

Definition 7.5.1 (second fundamental form). The second fundamental form of the
subbundle S of E is defined as

B =∇E −∇S : C∞(X ,S)→ C∞(X ,Ω1,0
X ⊗Q).
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Remark 7.5.1 (local form). For p ∈ X , suppose {eα}1≤α≤r is a holomorphic local
frame of E such that {eα}1≤α≤s is a holomorphic local frame of S, and for conve-
nience we assume h

αβ
(p)= δ

αβ
. By formula of Chern connection, for 1≤α≤ s, one

has

∇E eα(p)=
r∑

β=1

h
αβ

∂zi (p)dzi ⊗ eβ

∇S eα(p)=
s∑

β=1

h
αβ

∂zi (p)dzi ⊗ eβ

Then for 1≤α≤ s, one has

Beα(p)=
r∑

β=s+1

h
αβ

∂zi (p)dzi ⊗ eβ

Thus with respect to local frame we choose, one has

B(p)=
s∑

α=1

r∑
β=s+1

h
αβ

∂zi (p)dzi ⊗ eα⊗ eβ

One has its conjugate transpose is

B∗(p)=
r∑

β=s+1

s∑
α=1

hβα

∂z j (p)dz j ⊗ eβ⊗ eα

then B∗∧B gives a section of Ω1,1
X ⊗S∗⊗S. To be explicit, for 1≤α≤ s, one has

B∗∧Beα(p)= B∗(
r∑

γ=s+1

hαγ

∂zi (p)dzi ⊗ eγ)

=−
s∑

β=1

r∑
γ=s+1

hαγ

∂zi

h
γβ

∂z j (p)dzi ∧dz j eβ

which implies

B∗∧B(p)=−
s∑

α,β=1

{
r∑

γ=s+1

∂hαγ

∂zi

∂h
γβ

∂z j (p)

}
dzi ∧dz j ⊗ eα⊗ eβ

On the other hand, direct computation shows

EΘ|S(p)−SΘ(p)=
s∑

α,β=1

{
r∑

γ=s+1

∂hαγ

∂zi

∂h
γβ

∂z j (p)

}
dzi ∧dz j ⊗ eα⊗ eβ

Thus
SΘ= EΘ|S +B∗∧B

where B∗ is conjugate transpose of B since eβ = δ
ββ

eβ.
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7.5.2. Second fundamental form of quotient bundle. Here we consider the follow-
ing exact sequence

0→Q∗ → E∗ → S∗ → 0
The second fundamental form C of quotient bundle Q is defined as the second
fundamental form of subbundle Q∗.
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8. KÄHLER GEOMETRY

8.1. Kähler manifold.

Definition 8.1.1 (Kähler manifold). A Hermitian manifold (X ,h) is called a Käh-
ler manifold, if its fundamental form ω is d-closed8.

Remark 8.1.1. Note that dω = 0 is equivalent to ∂ω = 0, and is also equivalent to
∂ω= 0 since ω is a real (1,1)-form.

Remark 8.1.2 (local form). By Proposition 7.1.4 one has

ω=
p
−1hi jdzi ∧dz j

So Kähler condition dω can be computed explicitly as follows

dω=
p
−1d(hi jdzi ∧dz j)

=
p
−1(

∂hi j

∂zk dzk ∧dzi ∧dz j −
∂hi j

∂zk dzi ∧dzk ∧dz j)

= 0

So locally Kähler condition can be written as follows
∂khi j = ∂ihk j

∂khi j = ∂ jhik

holds for all i, j,k.

Proposition 8.1.1. Let (X ,h) be a Kähler manifold. Then the first Chern-Ricci
curvature coincides with the second Chern-Ricci curvature.

Proof. Note that

Θi jkl =−
∂2hi j

∂zk∂zl +hpq ∂hkq

∂zi

∂hpl

∂z j

Thus if (X ,h) is Kähler, then

Θi jkl =Θk jil =Θilk j

As a consequence, one has

Ric(1)(h)=
p
−1hklΘi jkldzi ∧dz j =

p
−1hklΘkli jdzi ∧dz j =Ric(2)(h)

This completes the proof. □
Definition 8.1.2 (Kähler-Einstein metric). A Kähler metric ω is called a Kähler-
Einstein metric, if there exists λ ∈R such that

Ric(ω)=λω

Example 8.1.1. Any complex curve9 X is Kähler since dω= 0 automatically holds.
8ω is called Kähler form and h is called Kähler metric.
9In other words, a Riemann surface.
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Proposition 8.1.2. A submanifold of a Kähler manifold is still Kähler.

Proof. If (X ,ω) is a Kähler manifold and Y is a submanifold, the restriction of ω
to Y gives Kähler form of Y . □
Proposition 8.1.3. Let (X ,ω) be a compact Kähler n-manifold. Then H2k(X ,R) 6=
0 for 0≤ k ≤ n.

Proof. Note that d(ωk)= 0 holds for 0≤ k ≤ n since dω= 0, that is [ωk] ∈ H2k(X ,R).
By Proposition 7.3.2 one has ωn = n!vol, so the integral pairingˆ

X
ωk ∧ωn−k = n!

ˆ
X

vol 6= 0

implies [ωk] 6= 0 for 0≤ k ≤ n. □
Theorem 8.1.1. Let (X ,h) be a Kähler manifold. Then around each point there
exists a holomorphic coordinate (z1, . . . , zn) such that

hi j(z)= δi j −Θi jkl(p)zkzl +O(|z|2).

8.2. Levi-Civita connection encounters Chern connection. Let X be a com-
plex n-manifold and {zi = xi +p−1xI } be a local coordinate of X , where 1 ≤ i ≤ n
and n+1 ≤ I = i+n ≤ 2n. Then {xi, xI } gives a local coordinate of underlying real
manifold of X . Let g be a Riemannian metric on TRX which is compatible with
natural almost complex structure J on TRX with Levi-Civita connection ∇. Now
consider C-linear extension of ∇

∇̃ : C∞(X ,TCX )→ C∞(X ,Ω1
X ,C⊗TCX )

It’s clear ∇̃ gives a connection on TCX .

Notation 8.2.1. For A ∈ {1, . . . ,n,1, . . . ,n}, we denote

zA =
{

zi A = i
zi A = i

Proposition 8.2.1. Let { ∂
∂zi , ∂

∂zi } be a local frame of TCX . Then

∇̃ ∂

∂zA

∂

∂zB =ΓC
AB

∂

∂zC = 1
2

hCE(
∂hEB

∂zA + ∂hAE

∂zB − ∂hAB

∂zE )
∂

∂zC

where A,B,C,E ∈ {1, . . . ,n,1, . . . ,n}.

Proof. By proof of Koszul formula, it suffices to check
(1) ∇̃ is compatible with gC.
(2) ∇̃ is torsion-free, that is for X ,Y ∈ C∞(X ,TCX ), one has

∇̃X Y −∇̃Y X = [X ,Y ]

Above two claims can be checked easily by using the fact ∇ is Levi-Civita connec-
tion and the C-linearity of ∇̃. □
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Corollary 8.2.1.

Γk
i j
=Γk

i j =
1
2

hkl(
∂h jl

∂zi + ∂hil

∂z j )

Γk
i j
=Γk

i j
= 1

2
hkl(

∂h jl

∂zi −
∂h ji

∂zl )

Γk
i j =Γk

i j
= 0

Proof. Note that
hi j = hi j = hi j = hi j = 0

□
Theorem 8.2.1. Let (X ,h) be a Kähler manifold with induced Riemannian met-
ric g on underlying real manifold, and suppose ∇ is Levi-Civita connection with
respect to g. Then Chern connection with respect to h can be obtained from the
restriction of C-linear extension of ∇ to T1,0X .

Proof. Let ∇̃ be the C-linear extension of ∇ and { ∂
∂zi } be a local frame of T1,0X .

Then by definition one has

∇̃ ∂

∂z j =Γk
i jdzi ⊗ ∂

∂zk +Γk
i jdzi ⊗ ∂

∂zk +Γk
i j

dzi ⊗ ∂

∂zk +Γk
i j

dzi ⊗ ∂

∂zk

By Corollary 8.2.1 one has Γk
i j = 0 automatically, and if Kähler condition holds,

then

Γk
i j = hkl

∂h jl

∂zi

Γk
i j
=Γk

i j
= 0

Thus ∇̃|T1,0 X gives a connection on T1,0X , and by formula of Chern connection, it’s
exactly the Chern connection with respect to h. □
8.3. Curvatures of Kähler metric. In this section, let (X ,h) be a Kähler mani-
fold with induced Riemannian metric g on underlying real manifold, and suppose
{zi = xi+p−1xI } is a local coordinate of X , where 1≤ i ≤ n and n+1≤ I = i+n ≤ 2n.

Notation 8.3.1.
(1)

Ri jkl = R(
∂

∂xi ,
∂

∂x j ,
∂

∂xk ,
∂

∂xl )

Ri jKL = R(
∂

∂xi ,
∂

∂x j ,
∂

∂xK ,
∂

∂xL )

where R is curvature tensor of Levi-Civita connection ∇ with respect to g.
(2)

Θi jkl =Θ(
∂

∂zi ,
∂

∂z j ,
∂

∂zk ,
∂

∂zl )

where Θ is Chern curvature with respect to h.
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8.3.1. Ricci curvature and scalar curvature.

Lemma 8.3.1.
Ri jkl = Ri jKL

Ri jKl =−Ri jkL

Proof. It follows from Kähler condition. □

Corollary 8.3.1.
Ri j = RIJ

RiJ = RJi =−R jI =−RI j

Proof. It follows from Proposition 7.1.1 and Lemma 8.3.1. □

Theorem 8.3.1.

Θi j =
1
2

(Ri j +
p
−1RiJ)

where Θi j is given by Ric(h)=p−1Θi jdzi∧dz j, while Ri j and RiJ are Riemannian
Ricci curvatures.

Proof. Suppose { ∂
∂xi , ∂

∂xI } is an orthonormal frame of real tangent bundle with re-
spect to g, and thus {ui := 1p

2
( ∂
∂xi −

p−1 ∂
∂xI )} gives an orthonormal frame of holo-

morphic tangent bundle with respect to h. Then

Θi j =
∑
k

(
R(

∂

∂zi ,
∂

∂z j ,uk,uk)
)

=∑
k

1
2

R(
∂

∂xi ,
∂

∂x j ,uk,uk)︸ ︷︷ ︸
part I

+
p
−1R(

∂

∂xi ,
∂

∂xJ ,uk,uk)︸ ︷︷ ︸
part II


For part I, one has∑

k
R(

∂

∂xi ,
∂

∂x j ,uk,uk)=∑
k

1
2

R(
∂

∂xi ,
∂

∂x j ,
∂

∂xk −
p
−1

∂

∂xK ,
∂

∂xk +
p
−1

∂

∂xK )

=∑
k

p−1
2

(
Ri jkK −Ri jKk

)
=∑

k

p
−1Ri jkK

=∑
k

p
−1(−Rki jK −R jkiK )

=∑
k

p
−1(RkiJk +RK iJK )

=
p
−1RiJ
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Here we used Lemma 8.3.1 and first Bianchi identity. Similarly for part II one has∑
k

p
−1R(

∂

∂xi ,
∂

∂xJ ,uk,uk)=∑
k

p−1
2

R(
∂

∂xi ,
∂

∂xJ ,
∂

∂xk −
p
−1

∂

∂xK ,
∂

∂xk +
p
−1

∂

∂xK )

=∑
k
−RiJkK

=∑
k

(RkiJK +RJkiK )

=∑
k

(Rki jk +RK i jK )

= Ri j

This shows the desired result. □
Corollary 8.3.2. Let (X ,h) be a Kähler manifold with induced Riemannian metric
g on underlying real manifold. Then
(1) h has positive Chern-Ricci curvature if and only if g has positive Ricci curva-

ture.
(2) h is Kähler-Einstein with Einstein constant λ if and only if g is an Einstein

metric with Einstein constant λ.

Corollary 8.3.3. Let (X ,h) be a Kähler manifold with induced Riemannian metric
g on underlying real manifold. Let sR be the Riemannian scalar curvature and s
is the Chern scalar curvature. Then sR = 2s.

Proof. On one hand, direct computation shows

s = hi jΘi j

= 2(gi j −
p
−1giJ) · 1

2
(Ri j +

p
−1RiJ)

= gi jRi j + giJRiJ

On the other hand,

sR = gi jRi j + giJRiJ + gI jRI j + gIJRi j

(1)= 2gi jRi j +2giJRiJ

= 2s

where (1) holds from Proposition 7.1.1 and Corollary 8.3.1. □
8.3.2. Holomorphic sectional curvature and holomorphic bisectional curvature. Re-
call that for a Hermitian manifold (X ,h) and unit vectors v = vi ∂

∂zi ,w = wi ∂
∂zi ∈

Tp X , the holomorphic sectional curvature is defined by

HSCp(v)=Θi jklv
iv jvkvl

and the holomorphic bisectional curvature is defined by

HBSCp(v,w)=Θi jklv
iv jwkwl
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Now suppose (X ,h) is a Kähler manifold, we will see the holomorphic sectional
curvature and holomorphic bisectional curvature are closely related to the Rie-
mannian sectional curvature.

Suppose unit vectors v,w ∈ Tp X are given by

v = 1p
2

(x−
p
−1Jx)

w = 1p
2

(y−
p
−1J y)

where x, y are real vectors with g(x, x) = g(y, y) = 1. Then the holomorphic bisec-
tional curvature is computed by

R(v,v,w,w)= 1
2

R(x−
p
−1Jx, x+

p
−1Jx,w,w)

=
p
−1R(x, Jx,w,w)

=−R(x, Jx, y, J y)
= R(x, y, y, x)+R(x, J y, J y, x)

In particular, the holomorphic sectional curvature of v is exactly the sectional
curvature of the plane spanned by x and Jx.

Note that the holomorphic bisectional curvature is a sum of two sectional curva-
tures. Hence the holomorphic bisectional curvature carries less information than
the sectional curvature. On the other hand, the holomorphic bisectional curvature
carries more information that the Ricci curvature, since for real vector x, one has

Ricp(x)=
n∑

i=1

(
R(

∂

∂xi , x, x,
∂

∂xi )+R(J(
∂

∂xi ), x, x, J(
∂

∂xi ))
)

As a consequence, positive sectional curvature implies positive holomorphic bisec-
tional curvature, and positive holomorphic bisectional curvature implies positive
Ricci curvature.

Definition 8.3.1 (constant holomorphic sectional curvature). Let (X ,h) be a Käh-
ler manifold. (X ,h) has constant holomorphic sectional curvature c if

HSCp(v)= c

for all unit vector v ∈ Tp X .

Remark 8.3.1. In other words, the sectional curvature of all J-invariant planes
equal to c, that it, R(x, Jx, Jx, x)= c for all unit real vector x.

The definition given above is the the most natural way to define constant holo-
morphic sectional curvature, and now let’s try to give another descriptions which
is easy to use.
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Proposition 8.3.1. Let (X ,h) be a Kähler manifold with constant holomorphic
sectional curvature c. Then R = cR0, where

R0(X ,Y , Z,W)= 1
4

{g(X ,W)g(Y , Z)− g(Y ,W)g(X , Z)− g(X , JZ)g(Y , JW)

+g(X , JW)g(Y , JZ)−2g(X , JY )g(Z, JW)}

Proof. See Proposition 7.3 of Chapter IX in [KN69]. □
Proposition 8.3.2. Let (X ,h) be a Kähler manifold. It has constant holomorphic
sectional curvature c if and only if

Θi jkl =
c
2

(hi jhkl +hil hk j)

Proof. A direct computation shows

Θi jkl =R(
∂

∂zi ,
∂

∂z j ,
∂

∂zk ,
∂

∂zl )

=cR0(
∂

∂zi ,
∂

∂z j ,
∂

∂zk ,
∂

∂zl )

= c
4

{
g(

∂

∂zi ,
∂

∂zl )g(
∂

∂z j ,
∂

∂zk )− g(
∂

∂z j ,
∂

∂zl )g(
∂

∂zi ,
∂

∂zk )− g(
∂

∂zi , J
∂

∂zk )g(
∂

∂z j , J
∂

∂zl )

+g(
∂

∂zi , J
∂

∂zl )g(
∂

∂z j , J
∂

∂zk )−2g(
∂

∂zi , J
∂

∂z j )g(
∂

∂zk , J
∂

∂zl )
}

= c
4

(hil hk j +hil hk j +2hi jhkl)

= c
2

(hil hk j +hi jhkl)

On the other hand, it’s clear (X ,h) has constant holomorphic sectional curvature
c if Θi jkl = c

2 (hi jhkl +hil hk j). □
Remark 8.3.2.
(1) Above formula differs a sign from the one given in Proposition 7.6 of Chapter

IX in [KN69], since the curvature notation we defined here differs a sign from
the one defined by Kobayashi.

(2) In [Tia00], he called this by constant holomorphic bisectional curvature, and
it maybe a bit confusing for beginners. If (X ,h) has constant holomorphic
sectional curvature, in this case you have that the bisectional curvature of
X ,Y equals

R(X , JX , JY ,Y )= c
2

(
1+ g(X ,Y )2 + g(X , JY )

)
As you can see, this expression is not constant (as you vary X ,Y among unit
vectors), but it varies between c/2 and c according to the relative position of
the 2-planes spanned by (X , JX ) and (Y , JY ). In particular you see that there
is no such thing as a non-flat Kähler manifold with constant holomorphic bi-
sectional curvature", because if there was such a thing, in particular the holo-
morphic sectional curvature would be constant, but then the curvature tensor
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would be given by the above formula, and the bisectional curvature would ac-
tually be NOT constant unless c = 0, that is, all the curvatures are constant
because the metric is flat.

8.4. Fubini-Study metric.

Proposition 8.4.1 (Fubini-Study metric). Let CPn =⋃n
i=0Ui be the canonical open

covering, that is Ui = {(z0 : · · · : zn) | zi 6= 0}. Then there is a Kähler metric ωFS on
CPn, called Fubini-Study metric, such that

ωFS|Ui =
p−1

2
∂∂ log

(∑n
l=0 |zl |2
|zi|2

)
Proof. Note that ωFS|Ui can be written as

ωFS|Ui =
p−1

2
∂∂ log(

n∑
l=1

|wl |2 +1)

where wl = zl /zi. The following steps show that {ωFS|Ui }
n
i=0 gives a real (1,1)-form

which is closed.
(1) It’s globally defined since direct computation shows

log(
∑n

k=0 |zl |2
|zi|2 )= log(

|z j|2
|zi|2

∑n
k=0 |zl |2
|z j|2 ))

= log(
|z j|2
|zi|2 )+ log(

∑n
k=0 |zl |2
|z j|2 )

= log(
∑n

k=0 |zl |2
|z j|2 )

where the last equality holds since |z j|2/|zi|2 is a nowhere vanishing holomor-
phic function.

(2) It’s real since ∂∂= ∂∂=−∂∂.
(3) It’s ∂-closed since each ωFS|Ui is ∂-closed.
It remains to show ω is positive. A direct computation yields

∂∂ log(1+
n∑

l=1
|wl |2)= 1

(1+∑n
l=1 |wl |2)2 hi jdwi ∧dw j

where hi j = (1+∑n
l=1 |wl |2)δi j −wiw j. Now it suffices to show hi j is positive defi-

nite, for u 6= 0, one has

uT (hi j)u = (u,u)+ (w,w)(u,u)−uT wwT u

= (u,u)+ (w,w)(u,u)− (u,w)(w,u)

= (u,u)+ (w,w)(u,u)− (w,u)(w,u)

= (u,u)+ (w,w)(u,u)−|(w,u)|2 > 0

□
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Corollary 8.4.1. Any projective manifold is Kähler.

Proof. By Proposition 8.1.2, the submanifold of Kähler manifold is still Kähler. □
Proposition 8.4.2. OCPn (1) is a positive holomorphic line bundle.

Proof. Note that line bundle OCPn (1) can be given transition functions {Ui, g i j},
where {Ui} is canonical open covering and g i j = z j/zi. Consider hi : Ui →R>0 given
by

hi = |zi|2∑n
l=0 |zl |2

Then hi can be glued together to obtain a Hermitian metric on OCPn (1) since
hi = h j|g i j|2. And it’s clear to see Hermitian metric corresponding to curvature
of Chern connection with respect to this metric is Fubini-Study metric. □
Remark 8.4.1. Note that OCPn (−1) is a subbundle of CPn×Cn+1, so we can obtain a
natural Hermitian metric of OCPn (−1) by restricting standard Hermitian metric of
CPn×Cn+1, and Hermitian metric on OCPn (1) we defined before is exactly the dual
metric of this natural metric.

Theorem 8.4.1. The Fubini-Study metric ωFS on CPn is a Kähler-Einstein metric
with Einstein constant n+1 and has constant holomorphic sectional curvature.

Remark 8.4.2.
(1) In our definition (or the one given by Kobayashi in [KN69]), Fubini-Study met-

ric has constant holomorphic sectional curvature 2, and in the definition given
by Gang Tian in [Tia00], Fubini-Study metric has constant holomorphic sec-
tional curvature 1, but it doesn’t matter since up to a rescaling they’re all the
same.

(2) There are other models that have constant holomorphic sectional curvature,
such as

Example 8.4.1. Let X = Cn equipped with ω = p−1/2dzi ∧dzi. Then (X ,ω) is
flat, and thus has constant holomorphic sectional curvature 0.

Example 8.4.2. Let X =Bn = {z ∈Cn : |z| < 1} equipped with

ω=
p−1

2
∂∂ log(1−|z|2)

Then (X ,ω) has constant holomorphic sectional curvature −2.

Also, there is a theorem parallel to the Hopf ’s theorem in Riemannian ge-
ometry.

Theorem 8.4.2 (uniformizaiton theorem). If (X ,h) is a complete Kähler mani-
fold of constant holomorphic sectional curvature, then its universal covering is
one of above examples. Moverover, up to rescaling, h pulls back to one of the
metrics in the above examples.
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Part 3. Hodge theory

9. HODGE THEOREM

9.1. Hodge star and adjoint operators. Let (X ,ω) be a compact Hermitian
manifold. A (p, q)-form α can be locally written as

α= 1
p!× q!

αi1...i p j1... jq
dzi1 ∧·· ·∧dzi p ∧dz j1 ∧·· ·∧dz jq

Then for α,β ∈ C∞(X ,Ωp,q
X ), the local inner product is defined as

〈α,β〉 = 1
p!× q!

hi1k1 . . .hi pkp hl1 j1 . . .hlq jqαi1...i p j1... jq
βk1...kp l1...lq

which is a smooth function on X .

Definition 9.1.1 (inner product on (p, q)-form). An inner product on the space of
(p, q)-form is defined as

(α,β) :=
ˆ

X
〈α,β〉ω

n

n!

where α,β ∈ C∞(X ,Ωp,q
X ). This also gives an inner product on Ωk

X ,C =⊕
p+q=kΩ

p,q
X .

Holding the inner product (-, -), the formal adjoint operator of d is defined as an
operator

d∗ : C∞(X ,Ωk
X ,C)→ C∞(X ,Ωk−1

X ,C)

satisfying (α,dβ)= (d∗α,β) for α,β with appropriate degrees, similarly one can de-
fine ∂∗ and ∂

∗
. In order to construct these adjoint operators, we need to introduce

the well-known Hodge star operator.

Definition 9.1.2 (Hodge star operator). There exists an operator

? : C∞(X ,Ωp,q
X )→ C∞(X ,Ωn−q,n−p

X )

such that

(α,β)=
ˆ

X
α∧?β

Remark 9.1.1. It’s well-defined since β is a (q, p)-form, and thus ?β is a (n− p,n−
q)-form.

Lemma 9.1.1.

(1) ?1=ωn/n!
(2) ?ω=ωn−1/(n−1)!
(3) ?ψ=?ψ

(4) ??= (−1)p+q on C∞(X ,Ωp,q
X )

(5) (?φ,?ψ)= (φ,ψ)

Proposition 9.1.1. d∗ =−?d?
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Proof. For arbitrary α ∈ C∞(X ,Ωp+q
X ,C ) and β ∈ C∞(X ,Ωp+q+1

X ,C ), then

(dα,β)=
ˆ

X
dα∧?β

=
ˆ

X
d(α∧?β)− (−1)p+qα∧d?β

= (−1)p+q+1
ˆ

X
α∧d?β

(1)= (−1)p+q+1(−1)2n−(p+q+1)+1
ˆ

X
α∧??d?β

=−(α,?d?β)

where (1) holds from (4) of Lemma 9.1.1. □

Proposition 9.1.2.
∂∗ =−?∂?

∂
∗ =−?∂?

Proof. Direct computation. □

Definition 9.1.3 (Lefschetz operator). Let (X ,ω) be a compact Kähler manifold.
The Lefschetz operator is defined as

L : C∞(X ,Ωp,q
X )→ C∞(X ,Ωp+1,q+1

X )
α 7→ω∧α

Lemma 9.1.2. Λ := L∗ = (−1)p+q ?L? on (p, q)-forms.

Proof. For α ∈ C∞(X ,Ωp,q
X , ),β ∈ C∞(X ,Ωp+1,q+1

X ), direct computation shows

(Lα,β)=
ˆ

X
Lα∧?β

=
ˆ

X
ω∧α∧?β

(1)=
ˆ

X
α∧ω∧?β

(2)=
ˆ

X
α∧ (−1)p+q ??ω∧?β

= (α, (−1)p+q ?L?β)

where

(1) holds from ω is a 2-form.
(2) holds from (4) of Lemma 9.1.1.

□
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9.1.1. Local computations of adjoint operators.

Proposition 9.1.3. Let (X ,h) be a Kähler manifold. Then locally{
∂= dzi ∧∇i

∂∗ =−hi jιi ◦∇ j =−hi j∇ j ◦ ιi

{
∂= dzi ∧∇i

∂
∗ =−hi jι j ◦∇i =−hi j∇i ◦ ι j

Proof. Here we only give the proof of the case ∂ and ∂∗, the proof for the other two
cases are same. It suffices to check pointwisely, and at each point we may also
choose normal coordinate in Theorem 8.1.1. For (p, q)-form α, locally written as
α=αJK dzJ ∧dzK . Then

∂α= ∂αJK

∂zi dzi ∧dzJ ∧dzK

and

dzi ∧∇iα= dzi ∧∇i(αJK dzJ ∧dzK )

= dzi ∧ ∂αJK

∂zi dzJ ∧dzK +αJK∇i(dzJ ∧dzK )

(1)= ∂αJK

∂zi dzi ∧dzJ ∧dzK

where (1) holds from our choice of normal coordinate. To see formula of ∂∗, take
arbitrary forms α,β with appropriate bidegrees, then

(∂α,β)= (dzi ∧∇iα,β)
(2)= (∇iα,hpiιpβ)
(3)= −(α,hpi∇i ◦ ιpβ)

where

(2) holds from Proposition 7.3.4.
(3) holds from Stokes’ theorem and the fact Chern connection is compatible with
metric.

This shows

∂∗ =−hi j∇ j ◦ ιi
(4)= −hi jιi ◦∇ j

where (4) holds from ιi ◦∇ j =∇ j ◦ ιi. □

Proposition 9.1.4. Let (X ,ω) be a Kähler manifold. Then locally

Λ=
p
−1hi jιi ◦ ι j =−

p
−1hi jι j ◦ ιi
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Proof. For arbitrary forms α,β with appropriate bidegrees, direct computation
shows

(ω∧α,β)= (
p
−1hi jdzi ∧dz j ∧α,β)

(1)= (
p
−1hi jdz j ∧α,hpiιpβ)

(2)= (
p
−1hi jα,hpih jqιq ◦ ιpβ)

(3)= (α,−
p
−1h jih

pih jqιq ◦ ιpβ)

= (α,−
p
−1hpiιi ◦ ιpβ)

where
(1) and (2) hold from Proposition 7.3.4.
(3) holds from hi j is Hermitian, that is hi j = h ji.

This shows
Λ=−

p
−1hi jι j ◦ ιi

(4)=
p
−1hi jιi ◦ ι j

where (4) holds from ιi ◦ ι j =−ι j ◦ ιi. □

9.2. Hodge theorem.

Definition 9.2.1 (Laplacian). Laplacian ∆• is an operator defined by ∆• := ••∗+•∗
•, where • can be d,∂ and ∂.

Definition 9.2.2 (harmonic). A form α is called ∆•-harmonic if ∆•α = 0, where •
can be d,∂ and ∂.

Notation 9.2.1. H k denotes the space of ∆d-harmonic k-forms, and H p,q denotes
the space of ∆

∂
-harmonic forms of type (p, q).

Lemma 9.2.1. α is ∆•-harmonic if and only if •α= 0,•∗α= 0, where • can be d,∂
and ∂.

Proof. Direct computation shows
(α,∆dα)= (α,dd∗α)+ (α,d∗dα)

= ‖d∗α‖2 +‖dα‖2

This shows α is ∆d-harmonic if and only if dα= d∗α= 0, the other cases are same.
□

Theorem 9.2.1 (Hodge theorem). Let (X ,h) be a compact Hermitian n-manifold.
Then
(1) H p,q is finite dimensional.
(2) There is a decomposition C∞(X ,Ωp,q

X ) = H p,q ⊕∆
∂
(C∞(X ,Ωp,q

X )), which is or-
thogonal with respect to inner products in Definition 9.1.1.

Corollary 9.2.1. There is the following orthonormal decomposition

C∞(X ,Ωp,q
X )=H p,q ⊕∂(C∞(X ,Ωp,q−1

X )⊕∂
∗
(C∞(X ,Ωp,q+1

X ))
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Corollary 9.2.2.
ker∂=H p,q ⊕∂

∗
(C∞(X ,Ωp,q−1

X ))

ker∂
∗ =H p,q ⊕∂(C∞(X ,Ωp,q+1

X ))

Corollary 9.2.3. The natural map H p,q → Hp,q(X ) is an isomorphism. In partic-
ular, Hp,q(X ) is finite dimensional.

In order to give the following isomorphism

? : H p,q →H n−q,n−p

Parallel to the real case10, it suffices to have

?◦∆
∂
=∆

∂
◦?

But something bad happens since we only have ∂
∗ =−?∂?, and direct computation

only yields ∆
∂
◦?=?◦∆∂. So it fails generally since ∆

∂
6=∆∂. There are two ways

to deal with this gap. The first way is that we will see later if X is compact Kähler
manifold, then ∆∂ =∆

∂
, that is Theorem 10.1.1. Then

Corollary 9.2.4. If (X ,ω) is a compact Kähler n-manifold, then ? : H p,q →H n−q,n−p

is an isomorphism.

Another way is to consider

? : C∞(X ,Ωp,q
X )→ C∞(X ,Ωn−p,n−q

X )

α 7→?α

then direct computation shows

?◦∆
∂
=∆

∂
◦?

Corollary 9.2.5. If (X ,h) is a compact Hermitian manifold, then ? : H p,q →
H n−p,n−q is an isomorphism.

Corollary 9.2.6. Hp,q(X )∼= Hn−p,n−q(X ).

Remark 9.2.1. This is a special case of Serre duality.

10See Hodge theory in [Liu23].
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10. HODGE DECOMPOSITION

10.1. Kähler identities.

Definition 10.1.1 (commutor of differential operators). Let A,B be two differen-
tial operators. The commutor of A,B is defined as

[A,B] := AB− (−1)deg A degBBA

Lemma 10.1.1 (Jacobi identity). Let A,B,C be differential operators. Then

(−1)deg A degC[A, [B,C]]+ (−1)degBdeg A[B, [C, A]]+ (−1)degC degB[C, [A,B]]= 0

Remark 10.1.1. In our case, the degree of d,d∗,∂,∂∗,∂,∂
∗

is one, and the degree of
L and Λ is zero11.

Proposition 10.1.1 (Kähler identities). If (X ,ω) is a compact Kähler manifold,
then

[∂
∗
,L]=

p
−1∂

[∂∗,L]=−
p
−1 ·∂

[Λ,∂]=−
p
−1∂∗

[Λ,∂]=
p
−1 ·∂∗

Proof. By taking conjugates and adjoints, it suffices to prove the first identity,
which is a first order identity of differential equation. But by Theorem 8.1.1, lo-
cally we have hi j = δi j +O(|ξ2|). Thus it suffices to check Kähler identity for the
case U ⊆Cn equipped with standard Hermitian metric.

Suppose (p, q)-form α is locally given by α=αJK dzJ ∧dzK , then by Proposition
9.1.3 one has ∂

∗
α=−∑

l ι ∂

∂zl

∂α
∂zl . Thus

[∂
∗
,L]α= ∂

∗
(ω∧α)−ω∧∂

∗
α

=−∑
l
ι ∂

∂zl

∂

∂zl (ω∧α)+ω∧∑
l
ι ∂

∂zl

∂α

∂zl

(1)= −∑
l
ι ∂

∂zl
(ω∧ ∂α

∂zl )+ω∧∑
l
ι ∂

∂zl

∂α

∂zl

=−{
∑
l

(ι ∂

∂zl
ω)∧ ∂α

∂zl +ω∧ ι ∂

∂zl

∂α

∂zl }+∑
l
ω∧ ι ∂

∂zl

∂α

∂zl

=−∑
l

(ι ∂

∂zl
ω)∧ ∂α

∂zl

(2)=
p
−1

∑
l

dzl ∧ ∂α

∂zl

=
p
−1∂α

11You can try to understand this thing in a following way: operators d,d∗,∂,∂∗,∂,∂
∗

take deriva-
tives, but L and Λ are linear operators.
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where
(1) holds from ω is a closed (1,1)-form.
(2) holds from Proposition 7.1.4, that is ω=p−1

∑n
i=1 dzi ∧dzi.

□

Theorem 10.1.1. Let (X ,ω) be a compact Kähler manifold. Then

∆d = 2∆∂ = 2∆
∂

Proof. Since
∆d = (∂+∂)(∂∗+∂

∗
)+ (∂∗+∂

∗
)(∂+∂)

By the fourth Kähler identity, one has
(1) The first term can be computed as

(∂+∂)(∂∗+∂
∗
)= (∂+∂)(∂∗−

p
−1Λ∂+

p
−1∂Λ)

= ∂∂∗−
p
−1∂Λ∂+∂∂∗−

p
−1 ·∂Λ∂+

p
−1 ·∂∂Λ

(2) The second term can be computed as

(∂∗+∂
∗
)(∂+∂)= (∂∗−

p
−1Λ∂+

p
−1∂Λ)(∂+∂)

= ∂∗∂+
p
−1∂Λ∂+∂∗∂−

p
−1Λ∂∂+

p
−1∂Λ∂

By the third Kähler identity, one has

∂∗ =
p
−1[Λ,∂]=

p
−1Λ∂−

p
−1∂Λ

then
∂∂∗ = ∂(

p
−1Λ∂−

p
−1 ·∂Λ)=

p
−1 ·∂Λ∂

∂∗∂= (
p
−1Λ∂−

p
−1 ·∂Λ)∂=−

p
−1 ·∂Λ∂=−∂∂∗

Now we have

∆d =∆∂−
p
−1 ·∂Λ∂−

p
−1Λ∂∂+

p
−1∂∂Λ+

p
−1∂Λ∂

=∆∂+
p
−1(Λ∂∂−∂Λ∂)+

p
−1(∂Λ∂−∂∂Λ)

=∆∂+
p
−1[Λ,∂]∂+

p
−1∂[Λ,∂]

=∆∂+∂∗∂+∂∂∗

= 2∆∂

□

Corollary 10.1.1. On a compact Kähler manifold, ∆d-harmonic is equivalent to
∆∂-harmonic, and is equivalent to ∆

∂
-harmonic.

Corollary 10.1.2. Let (X ,ω) be a Kähler manifold and α be a (p, q)-form. Then
∆dα is still a (p, q)-form.

Proof. It’s clear to see ∆∂α is still a (p, q)-form. □
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Exercise 10.1.1. Show that for compact Kähler manifold we have

[∆d,L]= 0

[L,Λ]= (k−n) id on C∞(X ,Ωk
X ,C)

Proof. For the first equation, we have ∆d = 2∆∂ = 2(∂∂∗+∂∗∂). Thus

[∆d,L]= 2([∂∂∗,L]+ [∂∗∂,L])= 2(∂[∂∗,L]+ [∂∗,L]∂)

The last equality holds by the fact that L commutes with ∂ since ω is ∂-closed. Now
we use the identity [∂∗,L]=−p−1 ·∂, which anticommutes with ∂ to conclude.

For the second equation, without lose of generality it suffices to check on U ⊆Cn

equipped with standard Hermitian metric since we are considering operators of
order zero. Suppose φ=φIJdzIdzJ is a k-form with type (p, q). A direct computa-
tion shows

LΛφ=L

(p
−1

n∑
i=1

φIJ ιi ◦ ιi(dzI ∧dzJ)

)

=L

(p
−1

n∑
i=1

(−1)pφIJ ιidzI ∧ ιidzJ

)

=(
p
−1)2

n∑
i, j=1

(−1)2p−1φIJdz j ∧ ιidzI ∧dz jιidzJ

ΛLφ=Λ
(p

−1
n∑

j=1
(−1)pφIJdz j ∧dzI ∧dz j ∧dzJ

)

=(
p
−1)2

n∑
i, j=1

(−1)pφIJ ιi ◦ ιi(dz j ∧dzI ∧dz j ∧dzJ)

=(
p
−1)2

n∑
i, j=1

(−1)2p+1φIJ ιi

(
dz j ∧dzI ∧ ιi(dz j ∧dzJ)

)

=(
p
−1)2

n∑
i, j=1

(−1)2p+1φIJ ιi

dz j ∧dzI ∧ (δ j
i
dzJ −dz j ∧ ιidzJ︸ ︷︷ ︸

A

)


=(

p
−1)2

n∑
i, j=1

(−1)2p+1φIJ(δ j
i dzI ∧ A−dz j ∧ ιidzI ∧ A)

Then

LΛφ−ΛLφ= (
p
−1)2

n∑
j=1

φIJ

(
dzI ∧dzJ −dzI ∧dz j ∧ ι jdzJ −dz j ∧ ι jdzI ∧dzJ

)
= (k−n)φ

□
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10.2. Hodge decomposition.

Theorem 10.2.1. Let (X ,h) be a compact Kähler manifold, α=∑
p+q=kα

p,q. Then
α is harmonic if and only if αp,q is harmonic, that is

H k ⊗RC= ⊕
p+q=k

H p,q

with H p,q =H q,p.

Proof. It follows from ∆d preserves bidegree. □
Theorem 10.2.2 (Hodge decomposition). Let (X ,h) be a compact Kähler manifold.
Then

Hk(X ,C)∼=
⊕

p+q=k
Hp,q(X )

with Hp,q(X )= Hq,p(X ).

Proof. It follows from there are natural isomorphisms Hk(X ,C) ∼= H k ⊗C and
Hp,q(X )∼=H p,q. □
Corollary 10.2.1. Let (X ,h) be a compact Kähler manifold. Then

bk =
∑

p+q=k
hp,q

with hp,q = hq,p, where bk = dimHk(X ,C) and hp,q = dimHp,q(X ).

Corollary 10.2.2. bk is even when k is odd.

Corollary 10.2.3. bk 6= 0 when k is even.

Proof. hk,k 6= 0 since 0 6=ωk ∈ Hk,k(X ). □
There are many relations between hp,q, and we can draw a picture as follows,

called Hodge diamond since it has the same symmetry as a diamond.

h0,0 b0

h1,0 h0,1 b1

h2,0 h1,1 h0,2 b2

...
...

. . .
...

Hodge ←→ hn,0 · · · å
Serre

· · · h0,n bn

. . .
...

...
...

hn,n−2 hn−1,n−1 hn−2,n b2n−2

hn,n−1 hn−1,n b2n−1

hn,n b2n

←→
conjugation
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Example 10.2.1.

Hp,q(CPn)=
{
C 0≤ p = q ≤ n
0 otherwise

Proof. It’s known to all that the singular cohomology of CPn with complex coeffi-
cient is

Hk(CPn,C)=
{
C k is even
0 k is odd

Thus it’s clear to compute Dolbeault cohomology of CPn using the symmetry of
Hodge diamond. □

10.3. Bott-Chern cohomology. In the proof Hodge decomposition, we used the
Kähler metric. A natural question is to consider (in)denpendence of the Kähler
metric. In this section we will show our decomposition is independent of the choice
of Kähler metric, by using Bott-Chern cohomology.

Definition 10.3.1 (Bott-Chern cohomology). Let X be a complex manifold. The
Bott-Chern cohomology is defined as

Hp,q
BC (X ) := Zp,q

BC := {α ∈ C∞(X ,Ωp,q
X ) | dα= 0}

∂∂C∞(X ,Ωp−1,q−1
X )

Remark 10.3.1. There is a natural map

Zp,q
BC (X )→ Hp+q(X ,C)

which descends to
Hp,q

BC (X )→ Hp+q(X ,C)

since ∂∂β= d∂β. On the other hand, there is also a natural map

Zp,q
BC (X )→ Hp,q(X )

which descends to
Hp,q

BC (X )→ Hp,q(X )

since ∂∂β=−∂∂β. So if we can prove there are isomorphisms between

Hp,q
BC (X )∼= Hp,q(X )⊕

p+q=k
Hp,q

BC (X )∼= Hk(X ,C)

then Hodge decomposition is canonical, that is independent of choice of Kähler
metric since Bott-Chern cohomology is independent of the choice of Kähler metric.

Lemma 10.3.1 (∂∂-lemma). Let (X ,ω) be a compact Kähler manifold and α be a
d-closed (p, q)-form. If α is ∂-exact or ∂-exact, then there exists a (p−1, q−1)-form
such that

α= ∂∂β
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Proof. Suppose α is ∂-exact. Then α = ∂γ for some (p, q−1)-form γ, and Hodge’s
theorem implies γ has decomposition

γ= a+∂b+∂∗c

where a is ∆∂-harmonic, and b, c are forms with appropriate degrees. Direct com-
putation shows

α= ∂γ= ∂a+∂∂b+∂∂∗c

=−∂∂b+∂∂∗c

=−∂∂b−∂∗∂c

Now it suffices to show −∂∗∂c = 0. A trick here is to note that

0= ∂α=−∂∂∗∂c =⇒ ∂∗∂c ∈ ker∂∩ im∂∗ = 0 =⇒ ∂∗∂c = 0

So we have
α= ∂∂(−b)

as desired. □
Corollary 10.3.1. Let (X ,ω) be a compact Kähler manifold. Then
(1) Hp,q

BC (X )→ Hp,q(X ) is an isomorphism.
(2)

⊕
p+q=k Hp,q

BC (X )→ Hk(X ,C) is an isomorphism.

Proof. Here we only prove the first isomorphism. From Remark 10.3.1, there is
a canonical map Hp,q

BC (X ) → Hp,q(X ), and if we choose a Kähler metric, we have
Hp,q(X ) ∼= H p,q, we will show our canonical map is both surjective and injective
via this chosen metric.
(1) To see surjectivity: For element in Hp,q(X ) we choose a ∆

∂
-harmonic represen-

tative. Since ∆∂-harmonic is equivalent to ∆d-harmonic, so this representative
is also d-closed.

(2) To see injectivity: Suppose we have [α] ∈ Hp,q
BC (X ) such that α is trivial in

Hp,q(X ), that is ∂-exact. Then Lemma 10.3.1, that is ∂∂-lemma implies it’s
trivial in Bott-Chern cohomology.

□
Corollary 10.3.2. A Hermitian metric ω is Kähler if and only if it can be written
locally as

ω=
p
−1∂∂ f

where f is a real-valued smooth function.

Proof. It’s clear if ω is locally written as
p−1∂∂ f , then it gives a Kähler met-

ric. Conversely, a Kähler metric ω is an element in H1,1(X ), and we have al-
ready shown that H1,1(X ) = H1,1

BC(X ), and Dolbeault lemma implies Dolbeault co-
homology vanishes on open subset which is sufficiently small, this completes the
proof. □
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11. SERRE DUALITY

11.1. Operators on bundle valued forms. Let(E,h) be a Hermitian holomor-
phic vector bundle on Hermitian n-manifold (X , g), what we have done can be
generalized to bundle valued forms. More explicitly, for φ,ψ ∈ C∞(X ,Ωp,q

X ⊗E),
locally written as φ=φαeα,ψ=ψβeβ, then local inner product is given by

〈φ,ψ〉 := h
αβ

〈φα,ψβ〉,
where 〈φα,ψβ〉 is induced by the Hermitian metric g.
(1) The inner product on C∞(X ,Ωp,q

X ⊗E) is given by

(φ,ψ) :=
ˆ

X
〈φ,ψ〉ω

n

n!
,

where φ,ψ ∈ C∞(X ,Ωp,q
X ⊗E).

(2) The Hodge star operator is the operator

?E : C∞(X ,Ωp,q
X ⊗E)→ C∞(X ,Ωn−q,n−p

X ⊗E)

such that

(φ,ψ)=
ˆ

X
φ∧?Eψ,

where φ,ψ ∈ C∞(X ,Ωp,q
X ⊗E).

Let ∇ be the Chern connection of (E,h). By definition one has ∇0,1 = ∂E, and if we
set ∇1,0 = ∂E, then

Θh =∇2

= ∂2
E +∂E∂E +∂E∂E +∂

2
E

= [∂E,∂E].

Exercise 11.1.1. Give formulas of ∂∗E and ∂
∗
E in terms of Hodge star ?E.

Proof. □

Exercise 11.1.2. Give formulas of Laplacians ∆∂E ,∆
∂E

in terms of Hodge star ?E.

Proof. □

Then there is also a Hodge decomposition given by

C∞(X ,Ωp,q
X ⊗E)=H p,q(X ,E)⊕ im∂E ⊕ im∂

∗
E,

and
Hp,q(X ,E)∼=H p,q

Lefschetz operator is defined as follows

L : C∞(X ,Ωp,q ⊗E)→ C∞(X ,Ωp+1,q+1 ⊗E)
α 7→ω∧α
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and Λ is the formal adjoint of L. If (X ,ω) is also a Kähler n-manifold, then there
are also Kähler identities

[∂
∗
E,L]=

p
−1∂E

[∂∗E,L]=−
p
−1 ·∂E

[Λ,∂E]=−
p
−1∂∗E

[Λ,∂E]=
p
−1 ·∂∗E,

and
[L,Λ]= (p+ q−n) id

holds on E-valued (p, q)-forms.

11.2. Serre duality.

Theorem 11.2.1 (Serre duality). Let X be a compact complex n-manifold and E be
a holomorphic vector bundle. Then there exists a non-degenerate C-linear pairing

Hp,q(X ,E)×Hn−p,n−q(X ,E∗)→C

([α], [β]) 7→
ˆ

X
α∧β

In particular, we have

Hp,q(X ,E)= Hn−p,n−q(X ,E∗)∗

Sketch of the proof. Let h be a Hermitian metric on E. Firstly prove that

∆
∂
∗
E
◦?E =?E ◦∆

∂E
.

This give an isomorphism

?E : H p,q(X ,E)
∼=−→H n−p,n−q(X ,E∗).

On the other hand, the Hodge theorem shows that

H p,q(X ,E)∼= Hp,q(X ,E).

For any α ∈H p,q(X ,E) and β ∈H n−p,n−q(X ,E∗), there exists some γ ∈H p,q(X ,E)
such that β=?Eγ, and thusˆ

X
α∧β=

ˆ
X
α∧?Eγ= 〈α,γ〉

is non-degenerate. □
Corollary 11.2.1. Let X be a compact complex n-manifold and E be a holomorphic
vector bundle. Then

Hp,q(X )= Hn−p,n−q(X )∗.

Proof. Consider E = OX in Serre duality, and then desired result holds from the
fact O∗

X =OX . □
Remark 11.2.1. This recovers Corollary 9.2.6.
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Corollary 11.2.2. Let X be a compact complex n-manifold and E be a holomorphic
vector bundle. Then

Hq(X ,E)= Hn−q(X ,KX ⊗E∗)∗

Proof. Set p = 0 in Serre duality one has

H0,q(X ,E)∼= Hn,n−q(X ,E∗)∗

which gives desired result. □
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12. LEFSCHETZ DECOMPOSITION

12.1. Lefschetz decomposition.

Proposition 12.1.1. Let (X ,ω) be a Kähler n-manifold. Then Ln−k : C∞(X ,Ωk
X ,R)→

C∞(X ,Ω2n−k
X ,R ) is an isomorphism for k ≤ n.

Proof. In fact, we will prove that Lr are injective for all 1 ≤ r ≤ n− k. As a con-
sequence, Ln−k is an isomorphism since Ωk

X ,R has the same rank as Ω2n−k
X ,R . In

Exercise 10.1.1 we have shown that

[L,Λ]α= (k−n)α, ∀α ∈ C∞(X ,Ωk
X ,R).

Then
[Lr,Λ]= LrΛ−ΛLr

= L(Lr−1Λ−ΛLr−1)+LΛLr−1 −ΛLLr−1

= L[Lr−1,Λ]+ [L,Λ]Lr−1.

By induction it’s easy to show the following identity

[Lr,Λ]α= (r(k−n)+ r(r−1))Lr−1α, ∀α ∈ C∞(X ,Ωk
X ,R).

For α ∈ C∞(X ,Ωk
X ,R), if Lrα= 0, r ≤ n−k, then

LrΛα= [Lr,Λ]α

= (r(k−n)+ r(r−1))Lr−1α.

In other words, we have

(12.1) Lr−1(LΛα− (r(k−n)+ r(r−1))α)= 0.

Now let’s prove Lr is injective by induction on r: It’s clear L is injective, and
suppose Lr−1 is injective. Then by (12.1) one has

LΛα= (r(k−n)+ r(r−1))α.

If we denote β=Λα, and apply Lr to both side of above equation, then we have

Lr+1β= (r(k−n)+ r(r−1))Lrα= 0,

where β ∈ C∞(X ,Ωk−2
X ,R). It’s clear β= 0 if β is a smooth function. Then by induction

on k, we have β= 0, and thus α= 0. □

Definition 12.1.1 (primitive form). Let (X ,ω) be a Kähler n-manifold. A k-form
α is called primitive if Ln−k+1α= 0.

Exercise 12.1.1. A k-form α is primitive if and only if Λα= 0.

Proof. For an n-form α, α is primitive if and only if Lα= 0. On the other hand, the
Exercise 10.1.1 implies that

[L,Λ]= (k−n) id, on C∞(X ,Ωk
X ,R).
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This shows if n = k, then L and Λ commutes. Thus we have α is primitive if and
only if Λα= 0, since

Λα= 0⇐⇒ LΛα= 0⇐⇒ΛLα= 0⇐⇒ Lα= 0

and the first and last equality we use the fact that L is injective on Ωk
X ,R,k ≤ n and

Λ is injective on Ωn+2
X ,R . In general case, we have

[Lr,Λ]α= (r(k−n)+ r(r−1))Lr−1α

and in particular for r = n−k+1 where k is the degree of α, we have

[Lr,Λ]α= 0

The argument can be repeated to conclude. □
Proposition 12.1.2. For any k-form α, there exists a unique decomposition

α=∑
r

Lrαr,

where αr is primitive (k−2r)-form.

Proof. Firstly let’s prove the uniqueness: If
∑

r Lrαr = 0 with primitive αr, we need
to show αr = 0. If not, then take the largest rm such that αrm 6= 0. By the choice of
αrm , Ln−k+rm kills everything in

∑
r Lrαr but Lrm arm . Then

0= Ln−k+rm (
∑
r

Lrαr)= Ln−k+rm (Lrmαrm ) 6= 0,

which is a contradiction.
Now let’s prove the existence: Since Ln−k+2 : C∞(X ,Ωk−2

X ,R) → C∞(X ,Ω2n−k+2
X ,R is

an isomorphism, then there exists β ∈ C∞(X ,Ωk−2
X ,R) such that

Ln−k+1α= Ln−k+2β.

Then α−Lβ is primitive a primitive k-form, that is

α= (α−Lβ)+Lβ.

By induction on k, we have primitive decomposition for β ∈ C∞(X ,Ωk−2
X ,R). and this

completes the proof. □
Remark 12.1.1. If we define H = [L,Λ], then (L,H,Λ) generates an sl2-action on⊕

k C∞(X ,Ωk
X ,R).

In fact, the Lefschetz operator also defines a map between cohomology groups

L : Hk(X ,R)→ Hk+2(X ,R)
[α] 7→ [ω∧α].

Now let’s see it’s well-defined:
(1) If α is closed, then

d(ω∧α)= dω∧α+ω∧dα= 0.
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(2) If α= dβ, then
ω∧dβ= dω∧β+ω∧dβ= d(ω∧β).

Theorem 12.1.1 (hard Lefschetz theorem12). Let (X ,ω) be a compact Kähler n-
manifold. Then

Ln−k : Hk(X ,R)→ H2n−k(X ,R)
is an isomorphism for 1≤ k ≤ n.

Proof. In Exercise 10.1.1 we have shown [∆d,L] = 0, so the Lefschetz operator
induces a map between harmonic forms as follows

Ln−k : H k →H 2n−k.

By Proposition 12.1.1 Ln−k is injective and H k,H 2n−k have the same dimension,
we obtain the desired result. □
Definition 12.1.2 (primitive form). Let (X ,ω) be a compact Kähler n-manifold.
For [α] ∈ Hk(X ,R), it’s called primitive, if Ln−k+1[α]= 0.

Notation 12.1.1. Hk(X ,R)prim denotes the set of all primitive forms.

Corollary 12.1.1 (Lefschetz decomposition). There is the following decomposition

Hk(X ,R)=⊕
r

LrHk−2r(X ,R)prim.

Remark 12.1.2. If [ω] ∈ H2(X ,Z), such as ω comes from a positive holomorphic line
bundle, then we can state theorem and corollary for Hk(X ,Q).

Moreover, we have the following isomorphism

Ln−k : Hp,q(X )→ Hn−q,n−p(X )

for k = p+ q ≤ n.

Corollary 12.1.2. Let (X ,ω) be a compact Kähler n-manifold. Then for 2≤ k ≤ n,
one has bk−2 ≤ bk and hp−1,q−1 ≤ hp,q with k = p+ q.

12.2. Hodge index.

12.2.1. Surface case.

Example 12.2.1. For open subset U ⊆C2 equipped with canonical Kähler form

ω=
p
−1

(
dz1 ∧dz1 +dz2 ∧dz2)

.

The volume form is given by

vol= ω2

2!
=−(

dz1 ∧dz1 ∧dz2 ∧dz2)
.

12Though proof of this theorem is quite easy using tools we have, but it’s quite hard for Lefschetz,
since during his time, there is no Hodge theorem. Here we use L to denote Lefschetz operator, in
order to honor Lefschetz.
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Suppose α is a real (2,0)-form written as

α= adz1 ∧dz2,

where a ∈ R. Now we’re going to compute ?α, which is also a (2,0)-form. Suppose
?α= bdz1 ∧dz2 for some b ∈R. Then by definition, for an arbitrary real (0,2)-form
β one has

〈β,α〉vol=β∧?α.

In particular, if we choose β= dz1 ∧dz2, then

β∧?α=−bdz1 ∧dz1 ∧dz2 ∧dz2

〈β,α〉vol= 〈
dz1 ∧dz2,adz1 ∧dz2〉× (−dz1 ∧dz1 ∧dz2 ∧dz2)

=−adz1 ∧dz1 ∧dz2 ∧dz2.

This shows α = ?α. By the same computation one has α = ?α holds for any real
(0,2)-form α. On the other hand, it’s clear all real (2,0)-form and real (0,2)-form
are automatically primitive.

Now we’re going to see if a real (1,1)-form α is primitive, what’s the relation
between α and ?α. For a real (1,1)-form α, written as

α= a11dz1 ∧dz1 +a22dz2 ∧dz2 +a12dz1 ∧dz2 +a21dz2 ∧dz1.

A direct computation shows that

?α= a22dz1 ∧dz1 +a11dz2 ∧dz2 −a12dz1 ∧dz2 −a21dz2 ∧dz1.

On the other hand,

Lα=ω∧α=
p
−1(a11 +a22)dz1 ∧dz1 ∧dz2 ∧dz2.

Then
Lα= 0⇐⇒ a11 +a22 = 0⇐⇒?α=−α.

Lemma 12.2.1. Let (X ,ω) be a Kähler surface. If real (p, q)-form α is primitive
2-form, then

?α= (−1)pα.

Proof. By taking normal coordinate, it suffices to consider U ⊆ C2, and that’s ex-
actly what we have done in Example 12.2.1. □

Let X be a compact Kähler surface. The Poincaré duality and Stokes theorem
imply that we have the following well-defined non-degenerate pairing

Q : H2(X ,R)×H2(X ,R)→R

([α], [β]) 7→
ˆ

X
α∧β

Then we obtain a Hermitian form by considering

H([α], [β])=Q([α], [β]).
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Lemma 12.2.2. The Lefschetz decomposition H2(X ,R) = H2(X ,R)prim ⊕R ·[ω] is
orthonormal with respect to Q.

Proof.

Q([ω], [α])=
ˆ

X
ω∧α=

ˆ
X

Lα= 0

for α is primitive and harmonic. □

Theorem 12.2.1. H2(X ,C)prim =⊕
p+q=2 Hp,q(X )prim is orthonormal with respect

to H, and (−1)pH is positive definite on Hp,q(X )prim.

Proof. It’s clear above decomposition is orthonormal, sinceˆ
X
α= 0

if α is not a (2,2)-form. To see (−1)pH is positive definite on Hp,q(X )prim, we
take a harmonic representative α for any non-zero primitive cohomology class in
Hp,q(X )prim. Then

(−1)pH([α], [α])= (−1)p
ˆ

X
α∧α

= (−1)p+q
ˆ

X
α∧?α

= ‖α‖2 > 0.

This shows (−1)pH is positive definite on Hp,q(X )prim. □

Corollary 12.2.1 (Hodge index). The index of H defined on H2(X ,C)∩H1,1(X ) is
(1,h1,1 −1).

Proof. Note that there is the following decomposition

H2(X ,C)∩H1,1(X )= H1,1(X )prim ⊕C[ω],

and we have already shown that H is negative definite on H1,1(X )prim. Then the
index for H on H2(X ,C)∩H1,1(X ) is (1,h1,1 −1). □

12.2.2. General case. In this section we will introduce a more general case: Let
(X ,ω) be a compact Kähler n-manifold. Then by Lefschetz decomposition we have

Hk(X ,R)=⊕
r

LrHk−2r(X ,R)prim, k ≤ n,

and by Hodge decomposition we have a more explicit decomposition

Hk(X ,C)prim = ⊕
p+q=k

Hp,q(X )prim.

As we have seen in the case of surface, H will be positive definite or negative
definite in these (p, q) components. Now we introduce some symbols, in order to
get a neater result.
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Consider
Q : Hk(X ,R)×Hk(X ,R)→R

([α], [β]) 7→ (−1)
k(k−1)

2

ˆ
X
ωn−k ∧α∧β.

Then Q is a bilinear form, and it is symmetric when k is even and anti-symmetric
when k is odd.

Definition 12.2.1 (Weil operator). The Weil operator Ù : Hk(X ,C) → Hk(X ,C) is
defined by Ù|Hp,q(X ) 7→

p−1
p−q

id.

Remark 12.2.1. The Weil operator Ù maps Hk(X ,R) to Hk(X ,R) in fact:

Ù|Hp,q(X ) = ÙHq,p(X ) =
p
−1

q−p
id=

p
−1

p−q
id= Ù|Hp,q(X ).

Now we define
H : Hk(X ,C)×Hk(X ,C)→C

([α], [β]) 7→Q(Ù[α], [β]).
In other words, we have

H([α], [β])= (−1)
k(k−1)

2
p
−1

p−q
ˆ

X
ωn−k ∧α∧β, α,β ∈ Hp,q(X ).

Exercise 12.2.1. H is a Hermitian form on Hp,q(X ).

Proof. For [α], [β] ∈ Hp,q(X ), one has

H([α], [β])= (−1)
k(k−1)

2 (−1)p−qp−1
p−q
ˆ

X
ωn−k ∧α∧β

= (−1)
k(k−1)

2 (−1)p−qp−1
p−q

(−1)(p+q)2
ˆ

X
ωn−k ∧β∧α.

Note that
(p+ q)2 − p− q = 2pq+ p(p−1)+ q(q−1)

is always even, this completes the proof. □
Lemma 12.2.3. Let α be a primitive (p, q)-form with p+ q = k. Then

?α= (−1)
k(k+1)

2
p
−1

p−q Ln−kα

(n−k)!
.

Theorem 12.2.2 (Hodge-Riemann bilinear relations).
(1) Hk(X ,R)=⊕

r LrHk−2r(X ,R)prim is orthonormal with respect to Q.
(2) Hk(X ,C)prim =⊕

p+q=k Hp,q(X )prim is orthonormal with respect to H.
(3) H is positive definite on Hp,q(X )prim.

Proof. For (1). For r < s, note that

ωn−k ∧Lrγ∧Lsδ= (Ln−k+r+sγ)∧δ= 0

since Ln−k+2r+1γ= 0 and r < s.
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For (2). If α is a (p, q)-form, and β is (p′, q′)-form, and (p, q) 6= (p′, q′), then
ωn−k ∧α∧β is not a (n,n)-form.

For (3). To see H is positive definite on Hp,q(X )prim, we take a harmonic repre-
sentative α for any non-zero primitive cohomology class in Hp,q(X )prim. Then

H([α], [α])= (−1)
k(k−1)

2
p
−1

p−q
ˆ

X
ωn−k ∧α∧α

By Lemma 12.2.3 one has

?α= (−1)
k(k+1)

2
p
−1

q−p Ln−kα

(n−k)!

= (−1)
k(k−1)

2
p
−1

p−q Ln−kα

(n−k)!
.

Then

H([α], [α])= (n−k)!
ˆ

X
α∧?α= (n−k)!‖α‖2 > 0.

□

Corollary 12.2.2 (Hodge index theorem). Let X be a compact Kähler n-manifold
with n is even13. Then

´
X α∧β on Hn(X ,R) is of signature∑

p,q
(−1)php,q

where summation runs over all p, q.

Proof. Note that the signature of
´

X α∧β on Hn(X ,R) is the same as the signature
of
´

X α∧β on Hn(X ,C). We write

Hn(X ,C)= ⊕
p+q+2r=n
r,p,q∈Z≥0

LrHp,q(X )prim

Then Hodge-Riemann bilinear theorem implies that
´

X α∧β is (−1)p-definite on
LrHp,q(X )prim, where we used the fact n is even. Then we have the signature is∑

p+q+2r=n
(−1)php,q

prim.

But hp,q
prim = hp,q −hp−1,q−1, so∑

p+q+2r=n
(−1)p(hp,q −hp−1,q−1).

Note that p+ q = n counted once and p+ q < n counted twice, so rewrite it as∑
p+q even

(−1)php,q,

13In this case
´

X α∧β is symmetric on Hn(X ,R).
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since hp,q = hn−p,n−q. And this is also equivalent to sum all p, q, since∑
p+q odd

(−1)php,q = 0

This completes the proof. □
Example 12.2.2. For surface, we have

H2(X ,C)= H2,0(X )⊕H1,1(X )prim ⊕C[ω]⊕H0,2(X )

Then this corollary implies

h0,0 +h2,0 −h1,1 +h0,2 +h2,2 = h2,0 +h0,2 + (1− (h1,1 −1)),

which recovers what we have done in the case of surface.
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Part 4. Positivity and vanishing theorems

13. POSITIVITY

13.1. Positivity of line bundle. Let (L,h) be a Hermitian holomorphic line bun-
dle over a complex manifold X . Then

p−1
2π Θh gives a real (1,1)-form, so it corre-

sponds to a Hermitian form on TX .

Definition 13.1.1 (positive line bundle). Let L be a holomorphic line bundle over
X . L is called positive if it admits a Hermitian metric h such that the Hermitian
form corresponding to

p−1
2π Θh is positive definite.

Remark 13.1.1. The Kodaira embedding theorem implies positive line bundle is
exactly ample divisor in algebraic geometry.

Remark 13.1.2 (local form). Locally, one has
p−1
2π

Θh =−
p−1
2π

∂∂ logh =
p−1
2π

∂2φ

∂zi∂z j dzi ∧dz j

where φ=− logh. Thus L is positive if and only if the Hermitian matrix ( ∂2φ

∂zi∂z j ) is
positive definite everywhere.

Proposition 13.1.1. If X admits a positive holomorphic line bundle, then X is
Kähler.

Proof. The first Chern class of (L,h) gives its Kähler form. □

Proposition 13.1.2. L is positive if and only if L⊗m is positive for some m ∈N≥0.

Proof. For a line bundle L locally we have the Hermitian metric corresponding to
its curvature looking like

(
∂2φ

∂zi∂z j )

and for L⊗m,m ∈N≥0 we have

(m · ∂2φ

∂zi∂z j )

It’s clear L is positive if and only if L⊗m is. □

Exercise 13.1.1. Let X be a compact complex manifold and L be a positive line
bundle. For any holomorphic line bundle L′, there exists N0 ∈N such that L′⊗L⊗N

positive for N ≥ N0.

Proof. The proof is quite similar to above exercise, we need to check locally, but
compactness is neccessary here. Over an open subset U1, locally we have the
Hermitian metric corresponding to L′⊗Lm looking like

(
∂2φL′

∂zi∂z j +m · ∂2φL

∂zi∂z j )
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So we can choose suffices large N1 such that M⊗L⊗N1 is positive on U . Since X is
compact, we can take a finite open covering {Ui} of X and choose the largest Ni to
be N we desired. □
13.2. Positivity of vector bundles. Let (E,h) be a Hermitian holomorphic vec-
tor bundle of rank r over a complex n-manifold X with Chern connection ∇. In
local frame, its Chern curvature is given by

Θh =Θ
β

i jα
dzi ∧dz j ⊗ eα⊗ eβ

Definition 13.2.1 (positivity).
(1) (E,h) is said to be Griffiths positive, if for any non-zero (ui) ∈Cn and (vα) ∈Cr

Θi jαβuiu jvαvβ > 0

(2) (E,h) is said to be Nakano positive, if for any non-zero matrix (uiα)

Θi jαβuiαu jβ > 0

(3) (E,h) is said to be dual Nakano positive, if for any non-zero matrix (uiα)

Θi jαβuiβu jα > 0

Remark 13.2.1. The semi-positivity and negativity can be defined in the same way.

Proposition 13.2.1.
(1) If (E,h) is Nakano positive or dual Nakano positive, then (E,h) is Griffiths

positive.
(2) (E,h) is Nakano positive if and only if (E∗,h∗) is dual Nakano negative.

Proof. For (1). If (E,h) is Nakano positive, then for non-zero (ui) ∈Cn and (vα) ∈Cr,
consider matrix (uiα) defined by uiα := uivα, then

Θi jαβuiu jvαvβ =Θi jαβuiαu jβ > 0

The same argument holds for the case (E,h) is dual Nakano positive. (2) follows
from the relation between curvature form of (E,h) and (E∗,h∗), see Section 4.3 of
[Liu23]. □
Proposition 13.2.2. Let

0→ S → E →Q → 0
be an exact sequence of holomorphic vector bundles.
(1) If (E,h) is Griffiths or dual Nakano positive, then so is (Q,hQ).
(2) If (E,h) is Griffiths or Nakano negative, then so is (S,hS).

Proposition 13.2.3. If Hermitian holomorphic vector bundle (E,h) is Griffiths
positive, then (E⊗detE,h⊗deth) is Nakano positive and dual Nakano positive.
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14. VANISHING THEOREMS

14.1. Kodaira vanishing theorem.

Theorem 14.1.1 (Bochner-Kodaira-Nakano identity). Let (X ,ω) be a compact Käh-
ler manifold and (E,h) a Hermitian holomorphic vector bundle. Then

∆
∂E

= [
p
−1Θh,Λ]+∆∂E

Proof. Direct computation shows

∆
∂E

= [∂E,∂
∗
E]

=−
p
−1[∂E, [Λ,∂E]]

=−
p
−1[Λ, [∂E,∂E]]−

p
−1[∂E, [∂E,Λ]]

=−
p
−1[Λ,Θh]−

p
−1[∂E,

p
−1∂∗E]

= [
p
−1Θh,Λ]+∆∂E

□

Corollary 14.1.1 (Bochner-Kodaira-Nakano inequality). Let (X ,ω) be a compact
Kähler manifold and (E,h) a Hermitian holomorphic vector bundle. Then for α ∈
C∞(X ,Ωp,q

X ⊗E), one has

([
p
−1Θh,Λ]α,α)≤ (∆

∂E
α,α)

In particular, if α is ∆
∂E

-harmonic, then ([
p−1Θh,Λ]α,α)≤ 0.

Proof. Direct computation shows

(∆
∂E
α,α)− ([

p
−1Θh,Λ]α,α)= (∆∂Eα,α)

= ‖∂Eα‖2 +‖∂∗Eα‖2 ≥ 0

□

Corollary 14.1.2. Let X be a complex manifold. If Hermitian holomorphic vector
bundle(E,h) is Griffiths positive, then (detE,deth) is a positive holomorphic line
bundle. In particular, X is Kähler.

Theorem 14.1.2 (Kodaira-Akizuki-Nakano vanishing). Let X be a compact n-
manifold, (L,h) a positive Hermitian holomorphic line bundle. Then

Hp,q(X ,L)= 0

for p+ q > n.

Proof. Let X be endowed with the Kähler metric ω given by Chern curvature of
L. Then there is an isomorphism Hp,q(X ,L) ∼=H p,q(X ,L). For α ∈H p,q(X ,L), by
Corollary 14.1.1 one has

[
p
−1Θh,Λ]α≤ 0.
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On the other hand,

([
p
−1Θh,Λ]α,α)= 2π(p+ q−n)‖α‖2 ≥ 0.

Thus if p+ q > n, one has α= 0. This completes the proof. □
Corollary 14.1.3 (Kodaira vanishing). Let X be a compact n-manifold and (L,h)
be a positive holomorphic line bundle over X . Then

Hq(X ,KX ⊗L)= 0

for q > 0.

Proof. Just note that
Hq(X ,KX ⊗L)= Hn,q(X ,L)

□
Corollary 14.1.4. Let (X ,ω) be a compact Kähler n-manifold. If (L,h) is a semi-
positive line bundle and rkΘh ≥ k, then

Hp,q(X ,L)= 0

for p+ q ≥ 2n−k+1.

Exercise 14.1.1. Compute all Hq(CPn,OCPn (k)) for all k, q.

Definition 14.1.1 (Fano). A Fano manifold is a compact Kähler manifold with
positive anti-canonical bundle K∗

X = detTX .

Proposition 14.1.1. Let X be a Fano manifold, then

Hq(X ,OX )= 0

for all q > 0.

Proof. Note that OX = KX ⊗K∗
X . □

Theorem 14.1.3 (Serre vanishing). Let X be a compact complex n-manifold and
(L,h) be a positive holomorphic line bundle over X . For any holomorphic vector
bundle E on X , there exists a constant m0 such that for all m ≥ m0

Hq(X ,E⊗L⊗m)= 0

for q > 0.

Proof. If X is endowed with Kähler metric ω given by Chern curvature of L and E
is endowed with a Hermitian metric h, then Hp,q(X ,E⊗L⊗m)∼=H p,q(X ,E⊗L⊗m).
For α ∈H p,q(X ,E⊗L⊗m), one has

([
p
−1Θh,Λ]α,α)+2πm(p+ q−n)‖α‖2 (1)= ([

p
−1ΘE⊗L⊗m ,Λ]α,α)

(2)≤ 0

where
(1) holds from ΘE⊗L⊗m =ΘE ⊗ id+m(id⊗ΘL).
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(2) holds from Corollary 14.1.1, that is Bochner-Kodaira-Nakano inequality.
On the other hand, Cauchy inequality implies that

([
p
−1Θh,Λ]α,α)≥−C‖α‖2

where constant C is the norm of [
p−1Θh,Λ]. So if we have 2πm(p+ q−n)−C > 0,

the argument in proof of Kodaira vanishing theorem implies α= 0. Consider p =
n, q > 0,m0 ≥ C

2π , then for all m ≥ m0 and q > 0, one has

Hn,q(X ,E⊗L⊗m)= 0

that is to say Hq(X ,KX ⊗E⊗L⊗m) = 0. So in order to show Hq(X ,E⊗L⊗m) = 0, it
suffices to consider K∗

X ⊗E at beginning, and then we will obtain

Hq(X ,KX ⊗K∗
X ⊗E⊗L⊗m)= Hq(X ,E⊗L⊗m)= 0

This completes the proof. □
14.2. Nakano vanishing.

Theorem 14.2.1 (Nakano vanishing). Let X be a compact complex manifold and
(E,h) a Hermitian holomorphic vector bundle over X .
(1) If (E,h) is Nakano positive, then

Hn,q(X ,E)= 0

for q ≥ 1.
(2) If (E,h) is dual Nakano positive, then

Hp,n(X ,E)= 0

for p ≥ 1.

Proof. Here we only give the proof of the first one, the second can be derived from
the same argument. Suppose { ∂

∂z1 , . . . , ∂
∂zn } is a holomorphic local frame which is

orthonormal at point p ∈ X , and φ ∈ Hn,q(X ,E) which is locally written as φ =
φα

I
dz1 ∧·· ·∧dzn ∧dzI ⊗ eα where |I| = q. Direct computation shows

〈
p
−1[Θh,Λ]φ,φ〉 = 〈

p
−1ΘhΛφ,φ〉

(1)= −〈Θγ

klα
dzk ∧dzl ∑

m
ιmιmφα

I
dz1 ∧dzn ∧dzI ⊗ eγ,φβ

J
dz1 ∧·· ·∧dzn ∧dzJ ⊗ eβ〉

=−Θklαβφ
α

I
φ
β

J
〈dzk ∧dzl ∧∑

m
ιmιmdz1 ∧·· ·∧dzn ∧dzI ,dz1 ∧·· ·∧dzn ∧dzJ〉

=∑
k
Θklαβφ

α

I
φ
β

J
〈dzl ∧ ιkdzI ,dzJ〉

= ∑
I,J

{
Θklαβ(

∑
k∈I

φα

I
)(

∑
l∈J

φ
β

J
)

}
(2)≥ 0

where
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(1) holds from Proposition 9.1.4 since by Corollary 14.1.2 one has X is Kähler.
(2) holds from (E,h) is Nakano positive.

But by Corollary 14.1.1, that is Bochner-Kodaira-Nakano inequality, one has 〈p−1[Θh,Λ]φ,φ〉 ≤
0. This shows φ= 0 as before. □

Corollary 14.2.1. Let X be a compact complex n-manifold with n ≥ 2. Then there
doesn’t exist metric h such that (TX ,h) is Nakano positive.

Proof. Suppose (TX ,h) is Nakano positive, then

H1,1(X )= H0,1(X ,T∗X )
(1)= Hn,n−1(X ,TX )
(2)= 0

where

(1) holds from Serre duality.
(2) holds from Nakano vanishing theorem.

However, by Proposition 13.2.1 and Corollary 14.1.2 one has X is a Käher mani-
fold, which leads to a contradiction since H1,1(X ) 6= 0 for a Kähler manifold. □

Corollary 14.2.2. Let X be a compact complex n-manifold with n ≥ 2. Then there
doesn’t exist metric h such that (T∗X ,h) is dual Nakano positive.

Proof. Note that

Hn−1,n(X ,T∗X )= H1,0(X ,TX )= H0(X ,End(TX )) 6= 0

□

Example 14.2.1. If n ≥ 2, (CPn,ωFS) is dual Nakano positive and Nakano semi-
positive, but not Nakano positive.

Proof. By Theorem 8.4.1 one has the curvature of Fubini-Study metric is

Θi jkl = hi jhkl +hil hk j

For p ∈ X , if we consider normal coordinate at p, then for any non-zero matrix
(ui j), a direct computation shows

Θi jkl u
il u jk = hi jhkl u

il u jk +hil hk ju
il u jk

=∑
i, j

|ui j|2 +uiiu j j

= ∑
i 6= j

|ui j|2 + 1
2

∑
i, j

|uii +u j j|2

> 0
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which implies (CPn,ωFS) is dual Nakano positive.

Θi jkl u
iku jl = hi jhkl u

iku jl +hil hk ju
iku jl

=∑
i, j

|ui j|2 +ui ju ji

= 1
2

∑
i, j

|ui j +u ji|2

≥ 0

which implies (CPn,ωFS) is Nakano semi-positive, and it’s not Nakano positive by
Corollary 14.2.1. □
14.3. Griffiths vanishing.

Theorem 14.3.1 (Griffiths vanishing). If (E,h) is Griffiths positive, then
(1) Hn,n(X ,E)= 0.
(2) Hp,q(X ,E)= 0 for p+ q ≥ n+rkE.
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15. KODAIRA EMBEDDING AND CHOW THEOREM

15.1. Blow-up. In this section we will introduce a technical tool we need in the
proof of Kodaira embedding, which is blow-up at a point.

Definition 15.1.1 (blow-up). U ×CPn−1 ⊃ Ũ := {((x1, . . . , xn), (y1 : · · · : yn)) | xi yj =
x j yi}

Remark 15.1.1. The most vivid way to understand blow-up is to consider the fibres
of projection Ũ → U : If x 6= 0, then the fibre of x is just a point since the ratio of
yi is uniquely determined. But for x = 0, there is no restriction for yi, so you
get the whole projective space CPn−1. Thus as you can imagine, there is nothing
happening except the origin, sounds like a boom. For example, the following figure
shows the case of n = 2

Lemma 15.1.1. Ũ ⊆U ×CPn−1 is a submanifold of dimension n.

Since blow-up is a local operation, so it can be done on a complex manifold. If X
is a complex manifold with dimension n with x ∈ X , and {Ui} is an open covering
such that x ∈U1 and x 6∈Ui, i 6= 1, then we can show that Ũ1∪(

⋃
i 6=1Ui) glue together

a new complex manifold with dimension n. This is called blow-up of X at point x,
and it’s denoted by X̃ . Similarly there is a natural projection π : X̃ → X and π−1(x)
is biholomorphic to CPn−1, which is called exceptional divisor and denote it by E.

Exercise 15.1.1. If X is compact Kähler manifold, then X̃ is also a compact Kähler
manifold.

Exercise 15.1.2. The idea sheaf of exceptional divisor IE ∼=O X̃ (E)∗

Proposition 15.1.1. The canonical bundle K X̃ of the blow-up X̃ is isomorphic to
π∗KX ⊗O X̃ (E)⊗n−1.
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Corollary 15.1.1. For the exceptional divisor E =CPn ⊆ X̃ → X one has O (E)|E ∼=
OCPn−1(−1).

Proof. The adjunction formula implies

KE ∼= (K X̃ ⊗O X̃ (E))|E
Then by Proposition 15.1.1 and KE =OCPn−1(−n) one has

OCPn−1(−n)∼= (π∗KX ⊗O X̃ (E)⊗n)|E
Note that E is a fibre of π, so π∗KX |E is trivial. Thus

OCPn−1(−n)∼=O X̃ (E)⊗n|E
On the other hand, the only possible line bundles on CPn−1 take the form OCPn−1(k),k ∈
Z. Thus O X̃ (E)|E ∼=OCPn−1(−1). □

The main reason we need blow-up here is that the sections after blow-up is the
same" as the one before.

Proposition 15.1.2. For a holomorphic line bundle L, one has

H0(X ,L⊗m)= H0(X̃ ,π∗L⊗m)

holds for arbitrary m ∈Z≥0.

Proof. If X is one-dimensional, then π : X̃ → X is an isomorphism and thus H0(X ,L⊗m)=
H0(X̃ ,π∗L⊗m).

Now let’s consider the case dimC X ≥ 2. Given an element s ∈ H0(X ,L⊗m), we
can get an element in H0(X̃ ,π∗L⊗m) by composing projection π. Conversely, for
s̃ ∈ H0(X̃ ,π∗L⊗m), it can be restricted to X̃\E = X\{x}, and then extended to a
global section of L⊗m by Hartogs theorem. □

15.2. Kodaira embedding.

Theorem 15.2.1 (Kodaira embedding). Let X be a compact complex manifold.
The following statements are equivalent:
(1) There exists a holomorphic embedding φ : X ,→CPN .
(2) There exists an integral Kähler form ω on X , that is, [ω] ∈ im{H2(X ,Z) →

H2(X ,R)}
(3) There exists a positive holomorphic line bundle on X .

Remark 15.2.1. (1) clealy implies (2), and (2) implies (3) is Lefschetz (1,1)-theorem,
so the heart of the proof is (3) to (1).

Sketch. Use holomorphic global sections H0(X ,L⊗m) for sufficiently large m to
construct φ : X ,→CPN . We need to show the following three things:
(1) For sufficiently large m, L⊗m is globally generated, which means for all x ∈ X ,

there exists a global section s ∈ H0(X ,L⊗m) such that s(x) 6= 0. Then for all
x ∈ X , Hx = {s ∈ H0(X ,L⊗m) | s(x) = 0} is a hypersurface. Thus we get a holo-
morphic map φ : X → CP(H0(X ,L⊗m)∗), defined by x 7→ Hx. Indeed since any
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hypersurface in H0(X ,L⊗m) is a line in H0(X ,L⊗m)∗, that is an element in
CP(H0(X ,L⊗m)∗). And you will find φ is holomorphic since we’re using holo-
morphic sections.

(2) For more sufficiently large14 m, L⊗m separetes points, that is for all x, y ∈ X ,
there exists s ∈ H0(X ,L⊗m) such that s(x) 6= 0, s(y)= 0. Thus in this case our φ

is injective.
(3) For more more sufficiently large m, L⊗m separetes tangent vectors, that is, for

all x ∈ X ,u ∈ TX ,x there exists s ∈ H0(X ,L⊗m) such that s(x) = 0 and ds(u) 6= 0.
Thus in this case our φ is an immersion, together with X is compact we have
φ is an embedding.

Remark 15.2.2. We can also describe φ more explicitly. Locally around x0, choose
a basis s0, . . . , sN of H0(X ,L⊗m) such that s0(x0) 6= 0. Then there exists a neighbor-
hood U of x0 such that s0(x) 6= for all x ∈U . Then

s1

s0
, . . . ,

sN

s0
∈ H0(U ,OU )

So we can define
φ|U : U →CPN

x 7→ (1,
x1

x0
(x), . . . ,

sN

s0
(x))

And you can check it’s same as what we have defined without choosing a basis.

Here we only give a sketch proof of the first statement, the proofs for second
and third are similar, but more complicated.

We want to detect the value of a section at a point is zero or not. Sheaves give
us a good way to describe such thing. For x ∈ X , consider ideal sheaf of x

Ix = {s ∈OX | s(x)= 0}⊆OX

Then sections we are searching for is H0(X ,Ix ⊗L⊗m). For computation, we have
exact sequence of sheaf

0→Ix ⊗L⊗m → L⊗m → L⊗m|x → 0

And using ech cohomology we can derive a long exact sequence

0→ H0(X ,Ix ⊗L⊗m)→ H0(X ,L⊗)→C→ Ȟ1(X ,Ix ⊗L⊗m)→ . . .

Our goal is to show H0(X ,Ix ⊗L⊗m) 6= 0. If Ȟ1(X ,Ix ⊗L⊗m) = 0 for sufficiently
large m, then we can get desired result.

For ech cohomology we know a little, but we know quite a lot for Dolbeault
cohomology. So an ideal is to turn idea sheaf into a line bundle and use Dolbeault
cohomology to compute.

Similarly, we have

H0(X ,Ix ⊗L⊗m)= H0(X̃ ,IE ⊗π∗L⊗m)= H0(X̃ ,O X̃ (E)∗⊗π∗L⊗m)

14Larger than m is step one.
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And that’s why blow-up works since Ix ⊗L⊗m is just a sheaf, and it’s a little
difficult for us to compute the cohomology of sheaf, but after blow-up, we make it
to a line bundle O X̃ (E)∗⊗π∗L⊗m, and Dolbeault cohomology comes into its place.

Consider the following short exact sequence of sheaves on X̃ :

0→IE ⊗π∗L⊗m →π∗L⊗m →π∗L⊗m|E → 0

So we get a long exact sequence

0→ H0(X̃ ,IE ⊗π∗L⊗m)→ H0(X̃ ,π∗L⊗m)→C→ Ȟ1(X̃ ,IE ⊗π∗L⊗m)→ . . .

But
Ȟ1(X̃ ,IE ⊗π∗L⊗m)= H1

Dol(H̃,IE ⊗π∗L⊗m)

Claim H1
Dol(H̃,IE ⊗π∗L⊗m)= 0, when m is sufficiently large. Indeed, note that

IE ⊗π∗L⊗m ∼= K X̃ ⊗ {O X̃ (E)∗⊗n ⊗π∗(K∗
X ⊗L⊗m)}

So by Kodaira vanishing, it suffices to show the following line bundle is positive
when m is sufficiently large:

O X̃ (E)∗⊗n ⊗π∗(K∗
X ⊗L⊗m)

In fact, K∗
X ⊗L⊗m will be positive on X when m is sufficiently large. But when we

pull it back something bad may happen since π∗(K∗
X⊗L⊗m) is positive except along

E. However, O X̃ (E)∗⊗n|E =OCPn−1(n), so two parts work together to give a positive
line bundle. To be more explicit, take any Hermitian metric on O X̃ (E)∗⊗n extend-
ing (Fubini-Study)⊗n, then its positive on E, but may not be positive otherwise.
However we can choose m sufficiently large to offset its negative impact.

This completes the proof of first part of Kodaira embedding, for second and
third, arguments are similar, but we need more blow-ups and things become com-
plicated. □
Corollary 15.2.1. Let (X ,ω) be a compact Kähler manifold such that H2,0(X ) =
H0,2(X )= 0. Then X is a projective manifold.

Proof. Hodge decomposition implies that H2,0(X )= H0,2(X )= 0, and thus H2(X ,Q)⊗Q

C= H2(X ,C)= H1,1(X ). Let [α1], . . . , [αn] ∈ H2(X ,Q) be a basis such that αi is har-
monic and of type (1,1). Since the Kähler form ω is real, harmonic15 and of type
(1,1). Then

ω=∑
i
λiαi, λi ∈R

For µi ∈ Q sufficiently close to λi, one still has
∑

i µiαi is positive. Thus
∑

i µiαi
gives a Kähler form. Take N sufficiently large such that [N

∑
i µiαi] ∈ im(H2(X ,Z)→

H2(X ,R)). Applying Kodaira embedding to complete the proof. □
Corollary 15.2.2. Fano manifold is projective.

Proof. Since for Fano manifold, all H0,p(X )= 0, q > 0. □
15It’s harmonic since [∆d,L]= 0.
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15.3. Chow’s theorem. Since we already embed a compact complex manifold
into projective space, there is no reason for us to avoid Chow’s theorem. A wonder-
ful theorem lies in the intersection of algebraic and analytic.

Theorem 15.3.1 (Chow). Every closed complex submanifold X ⊆CPn is algebraic,
that is, defined by polynomial equations.

Remark 15.3.1. Finally, for holomorphic line on compact complex manifolds: posi-
tive is equivalent to ample.

Although Chow’s theorem can be derived from GAGA proved by Serre, in an
elegant way using sheaf theory, here we give a sketch of a classical proof of Chow’s
theorem.

We need to show every closed complex submanifold X of CPn is algebraic, our
ideal is to construct an analytic hypersurface in a Grassmannian manifold Gr(r,n)
with Plücker embedding φ : Gr(r,n) ,→CP(

∧r Cn), and use some facts about it:
(1) Pic(Gr(r,n))=Z ·φ∗OCP(1)
(2) Every closed analytic hypersurface of Gr(r,n) is algebraic.

If the analytic hypersurface W we construct in Grassmannian manifold can
determine X algebraically, that is W is algebraic implies X is, then we complete
the proof.

The philosophy here is to convert a submanifold with arbitrary codimension in
CPn to a an hypersurface, the cost we pay is that we need to consider Grassman-
nian manifold rather than CPn. But it do works!

Let’s be more explicit:

Definition 15.3.1 (analytic subset). A closed analytic subset in CPn is a closed
subset, locally defined by some holomorphic equations.

Remark 15.3.2. We can replace closed complex submanifold by closed analytic sub-
set in Chow’s theorem since we can not avoid singularity, and it doesn’t matter in
fact.

However, although we allow singularities, singularities won’t be too much: Let
X ⊆CPn be an irreducible closed analytic subset of dimension r. Then there exists
closed analytic subset Xsing ⊆ X such that X\Xsing is smooth and dense. Further-
more, X\Xsing is a submanifold of CPn of dimension r.

Now fix X , an irreducible closed analytic subset of dimension r in CPn. Let
V ∈ Gr(n− r,n+ 1), then CP(V ) ⊆ CPn with dimension n− r − 1. So as you can
imagine, an object with dimension r and an object with dimension n− r−1 may
fail to intersect with each other.

Let
W = {V ∈Gr(n− r,n+1) |CP(V )∩ X 6=∅}

Claim:
(1) W is a closed analytic hypersurface of Gr(n− r,n+1).
(2) W determines X algebraically.
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Here we give a sketch of proof of Claims:
For (1). Consider the following diagram

CP(E) CPn ⊃ X

Gr(n− r,n+1)

p

q

where E →Gr(n− r,n+1) is tautological bundle of Grassmannian manifold. Then
we can write16

W = p(q−1(X ))

Since q is holomorphic and X is closed and analytic, then q−1(X ) is also closed and
analytic. But the difficulty is p(q−1(X )) is also closed and analytic, and this holds
from the following fact.

Theorem 15.3.2. p is holomorphic and proper17.

Now we show that W is a hypersurface, and that’s just a computation for dimen-
sion: We already know the dimension of Gr(n− r,n+1) is (n− r)(n+1− (n− r)) =
(n− r)(r+1), so we need to show the dimension of W is (n− r)(r+1)−1.

First, let’s consider the fibre of q: it consists of subspaces V ⊆Cn+1 of dimension
n− r containing a given line l, and that’s another Grassmannian manifold Gr(n−
r − 1,n), if we consider V 7→ V /l, and its dimension is (n− r − 1)(r + 1). So the
dimension of q−1(X ) is r+(n−r−1)(r+1)= (n−r)(r+1)−1= dimGr(n−r,n+1)−1.

So we may desire the property of p is not too bad so that we will obtain dim p(q−1(X ))=
dim q−1(X ) as we desired. It suffices to show that there exists a dense open subset
U ⊆ q−1(X ), such that p|U has finite fibres. In fact, we will show it’s one to one
correspondence.

Consider fibre of pX : q−1(X ) → Gr(n− r,n+1) over given V ∈ Gr(n− r,n+1),
and that’s CP(V )∩X . So we may desire almost every V such that this intersection
is just a point. It suffices to show that the complement of

{(V , x) ∈ q−1(X ) |CP(V )∩ X has only one smooth point x}

is closed analytic of dimension less than dim q−1(X ). There are three cases:

(1) CP(V )∩X contains x ∈ Xsing, singular locus of X . But dimC q−1(Xsing)< dimC q−1(X ).
(2) CP(V )∩ X has at least two points.
(3) CP(V )∩ X not transverse intersection at x.

Then W = p(q−1(X ))⊆Gr(n− r,n+1) is a closed analytic hypersurface.
For (2). Consider qW : p−1(W)→CPn. Claim

X = {x ∈CPn | q−1
W (x)= q−1(x)}

16Why?
17Proper means: For any Y ⊆CP(E) closed and analytic, then p(Y ) is closed and analytic.
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And there are some equivalent descriptions:

q−1
W (x)= q−1(x)⇐⇒ p−1(W)∩ q−1(x)= q−1(x)

⇐⇒ q−1(x)⊆ p−1(W)

Clearly, if x ∈ X , then q−1(x) ∈ p−1(W) since W = p(q−1(X )). For the other direction:
we can translate it as: If y 6∈ X , then we need to find V ∈Gr(n− r,n+1) containing
l = 〈y〉, but CP(V )∩ X =∅.

To see this: Use projection from y, that is CPn πy−→ CPn−1. Since y 6∈ X , then
πy|X is well-defined and has finite fibres. Note that CP(V )∩ X 6= ∅ if and only
if CP(V /〈y〉)∩πy(X ) = ∅. From computation before, we know it’s a condition for
hypersurface. So it’s easy to choose V we desire.

Conclusion (from analytic to algebraic): p and q is algebraic, and W is algebraic,
so we obtain p−1(W) is also algebraic. So qW is also algebraic. Thus X is algebraic.
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16. MORE BOCHNER TECHNIQUES

16.1. Obstruction to holomorphic vector fields. In Riemannian geometry,
there is the following theorem which shows there are obstructions of Killing vector
fields or harmonic 1-forms.

Theorem 16.1.1. Let (M, g) be a compact Riemannian manifold.

(1) If Ric(g)< 0, then there is no non-trivial Killing vector field.
(2) If Ric(g)> 0, then b1(M)= 0.

In the realm of complex geometry, analogous obstructions exist, drawing a par-
allel between Killing fields and holomorphic vector fields. However, it is important
to note that not every Killing vector field is a holomorphic vector field.

Theorem 16.1.2. On a compact Kähler manifold, a Killing vector field X is holo-
morphic if and only if

(1) divX = 0.
(2) ∇∗X = 0.

Lemma 16.1.1. Let (M, g) be a compact Riemannian manifold. A vector field X is
Killing if and only if divX = 0 and ∇∗∇X = (Ric(X ))].

Lemma 16.1.2. Let (M,ω) be a compact Kähler manifold. A vector field X is
holomorphic if and only if ∇∗∇X = (Ric(X ))].

Theorem 16.1.3. Let (M,ω) be a compact Kähler manifold with Ric(ω) < 0. Then
there is no non-trivial holomorphic vector field.

Proof. Let X be a non-trivial holomorphic vector field locally given by X = X i ∂
∂zi

and ω=p−1hi jdzi ∧dz j. If we define u = |X |2, a direct computation shows

p
−1∂∂u =

p
−1

(
∂{∇0,1X , X }+ {X ,∇1,0X }

)
(1)=

p
−1∂{X ,∇1,0X }

=
p
−1

(
{∇1,0X ,∇1,0X }+ {X ,∇0,1∇1,0X

)
(2)=

p
−1({∇X ,∇X }+ {X ,ΘhX })
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where (1) and (2) holds from X is a holomorphic vector field. Note that

trω
p
−1{∇X ,∇X }= trω(

p
−1∇i X j∇k X l h jldzi ∧dzk)

=∇i X j∇k X l h jl h
ik

= |∇X |2

trω
p
−1{X ,ΘhX }=−trω{

p
−1ΘhX , X }

=−trω(
p
−1Θβ

i jα
XαX

γ
hβγdzi ∧dz j)

=−hi jΘi jαγXαX
γ

=−Ric(X , X )

This shows
trω

p
−1∂∂u = |∇X |2 −Ric(X , X )> 0

If u obtains its maximum at some point p ∈ M, then trω
p−1∂∂u(p) ≤ 0, a contra-

diction. □
Corollary 16.1.1. Let (M,ω) be a compact Kähler manifold. If Ric(ω) ≤ 0, then
the following statements are equivalent:
(1) X is parallel.
(2) X is Killing.
(3) X is holomorphic.

Proof. As shown in Theorem 16.1.3, if Ric(ω) ≤ 0, for a non-trivial holomorphic
vector field X one has

trω
p
−1∂∂u = |∇X |2 −Ric(X , X )≥ 0

Then by the same argument one has ∇X = 0, that is every holomorphic vector field
is parallel, and it’s clear every parallel vector field is Killing. □
Corollary 16.1.2. Let (M,ω) be a compact complex manifold with negative holo-
morphic sectional curvature. Then there is no non-trivial holomorphic vector field.

Proof. Let X be a non-trivial holomorphic vector field locally given by X = X i ∂
∂zi

and u = |X |2. The same argument shows
p
−1∂∂u(X , X )= |∇X X |2 −Θi jkl X i X

j
X k X

l

Then maximum principle completes the proof. □

16.2. Obstruction to holomorphic 1-form.

Theorem 16.2.1. Let (M,ω) be a compact Kähler manifold. If Ric(ω) > 0. Then
there is no non-trivial holomorphic 1-form.

Corollary 16.2.1. Let (M,ω) be compact Kähler manifold and Ric(ω) ≥ 0. Then
any holomorphic 1-form is parallel.
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16.3. Rigidity of complex projective space. The rigidity of complex projec-
tive space is a fascinating subject in complex geometry. It involves determining
whether a geometric object satisfies certain conditions to be CPn or not, and it has
produced numerous interesting results. Yau demonstrated that any Kähler mani-
fold, which is homeomorphic to CPn, is also biholomorphic to CPn. He also resolved
a conjecture put forth by Frankel in 1961, which stated that a compact Kähler
manifold with positive bisectional curvature must be biholomorphic to CPn. Addi-
tionally, there exists an even stronger result.

Theorem 16.3.1 ([FLW17]). Let (X ,ω) be a compact Kähler manifold with positive
orthogonal bisectional curvature. Then X is biholomorphic to CPn.

In this section we try to use Bochner technique to show the following easier
result.

Proposition 16.3.1. Let (X ,ω) be a compact Kähler manifold with positive or-
thogonal bisectional curvature. Then H1,1(X )=C.
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17. SCHWARZ LEMMAS

In this section, we will present the powerful formulas called Schwarz calcula-
tion, which extend the Bochner techniques discussed earlier.

17.1. Schwarz lemmas for holomorphic bisectional curvature.

Lemma 17.1.1. Let f : (M, g) → (N,h) be a holomorphic map between Hermitian
manifolds and ∇ be the induced connection on T∗X ⊗ f ∗(TN) by Chern connec-
tions. Then in the local holomorphic coordinates {zi} and {wα} on M and N respec-
tively, one has

∂∂u = {∇d f ,∇d f }+
(
(Θg)i jkl gkq gpl h

αβ
f αp f βq − (Θh)

αβγδ
( f αi f βj )(gpq f γp f δq )

)
dzi ∧dz j

and

trω
p
−1∂∂u = |∇d f |2 + (gi j(Θg)i jkl)gkq gpl h

αβ
f αp f βq − (Θh)

αβγδ
(gi j f αi f βj )(gpq f γp f δq )

where u = trg( f ∗ωh) = |∇ f |2, f = f αi dzi ⊗ eα and eα = f ∗( ∂
∂wα ). Furthermore, one

has

trω
p
−1∂∂ logu ≥ 1

u

(
(gi j(Θg)i jkl)gkq gpl h

αβ
f αp f βq − (Θh)

αβγδ
(gi j f αi f βj )(gpq f γp f δq )

)
holds outside the set of critical points of f .

Corollary 17.1.1. Let g,h be two Hermitian metrics on a complex manifold M.
Then

trg
p
−1∂∂ logtrgωh ≥ 1

trgωh

(
(gi j(Θg)i jkl)gkq gpl hpq − (Θh)i jpq gi jgpq

)
and

trh
p
−1∂∂ logtrgωh ≥ 1

trgωh

(
(hi j(Θg)i jkl)gkq gpl hpq − (hi j(Θh)i jpq)gpq

)
Corollary 17.1.2. Let f : (M, g) → (N,h) be a holomorphic map between Hermit-
ian manifolds. Suppose

(1) the second Chern-Ricci curvature Ric(2)(ωg)≥ aωg for some a;
(2) the holomorphic bisectional curvature (N,h) is bounded from above by b, that

is
Θh(w,w,v,v)≤ b|w|2|v|2

Then
trg

p
−1∂∂u ≥ au−bu2

where u = trg( f ∗ωh) = |∇ f |2. Furthermore, outside the set of critical points of f ,
one has

trg
p
−1∂∂ logu ≥ a−bu
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Proof. Note that Ric(2)(ωg)≥ aωg implies (Θg)i jkl gkl ≥ ag i j. Thus

(gi j(Θg)i jkl)gkq gpl h
αβ

f αp f βq = gi j(Θg)i jkl)
gkl gkl

n
gkq gpl h

αβ
f αp f βq

≥
agi j g i j

n
gkl gkq gpl h

αβ
f αp f βq

= agpl f αp f βl
= au

On the other hand, by using normal coordinate on M it’s easy to see

(Θh)
αβγδ

(gi j f αi f βj )(gpq f γp f δq )≤ b( f αi f βj gi jh
αβ

)( f γp f δq gpqh
γδ

)= bu2

Then by Lemma 17.1.1 this completes the proof. □

Lemma 17.1.2 ([Yau75]). Let (M, g) be a complete Riemannian manifold with
Ricci curvature bounded from below and f ∈ C2(M,R) be bounded from above.
Then there exists {pk}⊆ M such that
(1) limk |∇ f (pk)| = 0.
(2) limsupk∆ f (pk)≤ 0.
(3) limk f (pk)= sup f .

Theorem 17.1.1 ([Yau78a]). Let (M,ωg) be a complete Kähler manifold with Ric(ωg)≥
aωg and (N,ωh) be a Hermitian manifold with holomorphic bisectional curvature
≤ b < 0. If f : M → N is a non-constant holomorphic map, then a < 0 and

f ∗ωh ≤ a
b
ωg

Proof. Let ∆g denotes the operator trg
p−1∂∂. By Corollary 17.1.2 one has

∆gu ≥ au−bu2

where u = trg( f ∗ωh). It suffices to show supM u ≤ a/b. Now let’s consider the
following two cases:
(1) If supM u <∞, then by Lemma 17.1.2 there exists a sequence {pk} such that

limsup∆u(pk)≤ 0, and limu(pk)= supM u ans so

∆gu(pk)≥ au(pk)−bu2(pk)

By taking limsup, we deduce that

0≥ asup
M

u−b(sup
M

u)2

Since supM u > 0 and b < 0, one has a < 0 and supM u ≤ a/b.
(2) If supM u =∞, consider

v = 1p
u+ c
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for some constant c > 0. Direct computation shows

∆gv =−1
2

v3∆gu+ 3
v
|∇v|2

∆gu = 2
v3 (

3
v
|∇v|2 −∆gv)≥ au−bu2

that is
6|∇v|2 −2v∆gv ≥ auv4 −bu2v4

By Lemma 17.1.2 again there exists a sequence {pk} such that limk(−v)(pk) =
supM(−v)= 0 and ∇v(pk)= 0 and

limsup
k

∆gv(pk)≤ 0

Then

0≥ limsup(6|∇v|2 −2v∆gv)(pk)≥ limsup(auv4 −buv4)(pk)=−b

which is a contradiction to b > 0.
In a word, only the first case will happen, and this completes the proof. □
Corollary 17.1.3. Let f : (D,ω) → (D,ω) be a holomorphic map between unit disk
with Poincaré metric. Then

f ∗(ω)≤ω

Proof. It’s clear since unit disk with Poincaré metric has constant holomorphic
bisectional curvature −1 and Ric(ω)=−ω. □
Corollary 17.1.4. Let f : (M, g)→ (N,h) be a holomorphic map between two Her-
mitian manifolds. If
(1) (M, g) is complete Kähler with Ric(g)≥ 0.
(2) (N,h) has negative holomorphic bisectional curvature.
Then f is constant.

Proof. Suppose the holomorphic bisectional curvature of N is bounded above by
b < 0. If there exists a non-constant holomorphic map from (M, g) to (N,h), then it
contradicts to Ric(ωg) ≥ 0 since by Theorem 17.1.1 one has if Ric(ωg) ≥ aωg, then
a < 0. □
Corollary 17.1.5. Let f : (M, g)→ (N,h) be a holomorphic map between two Her-
mitian manifolds such that M is compact with Ric(2)(ωg) ≥ 0 and N has non-
positive holomorphic bisectional curvature. If one of the following statements
holds, then f is a constant.
(1) Ric(2)(ωg)> 0 at some point.
(2) N has negative holomorphic bisectional curvature at some point.

Proof. Let ωG be a Gauduchon metric of M and u = trg( f ∗ωh). By Lemma 17.1.1
the integration ˆ

M
trω

p
−1∂∂u ·ωn

G = 0
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implies ∇d f = 0 and

(gi j(Θg)i jkl)gkq gpl h
αβ

f αp f βq = (Θh)
αβγδ

(gi j f αi f βj )(gpq f γp f δq )= 0

Hence |d f | is a constant, and it’s clear from the second equation that (1) or (2)
implies d f = 0, that is f is a constant. □

17.2. Schwarz lemmas for holomorphic sectional curvature.

Lemma 17.2.1. There is the following identity
ˆ
CPn−1

ξiξ
j
ξkξ

l

|ξ|4 ωn−1
FS = δi jδkl +δilδk j

n(n+1)

where [ξ1 : · · · : ξn] are homogenous coordinates on CPn−1 and ωFS is the Fubini-
Study metric.

Theorem 17.2.1. Let (M, g) be a Hermitian n-manifold, (N,h) be a Kähler n-
manifold and f : (M, g)→ (N,h) be a non-constant holomorphic map. Suppose that

(1) Ric(2)(g)≥−λωg +µ f ∗ωh for continuous functions λ,µ with µ≥ 0.
(2) holomorphic sectional curvature of h is bounded from above by a continuous

functions −κ≤ 0.

Then

trg
p
−1∂∂u ≥−λu+

(
(r+1) f ∗κ

2r
+ µ

n

)
u2

where r is maximal rank of d f and u = trg( f ∗ωh). Furthermore, outside the criti-
cal points of f one has

trg
p
−1∂∂ logu ≥−λ+

(
(r+1) f ∗κ

2r
+ µ

n

)
u

Proof. Let ∆g denote the operator = trg
p−1∂∂. Then as computation in Lemma

17.1.1 one has

∆gu = |∇d f |2 + (gi j(Θg)i jkl)gkq gpl h
αβ

f αp f βq︸ ︷︷ ︸
I

− (Θh)
αβγδ

(gi j f αi f βj )(gpq f γp f δq )︸ ︷︷ ︸
II

For part I, one has

I ≥ gi j(Θh)i jkl

gkl gkl

n
gkq gpl h

αβ
f αp f βq

= (−λgkl +µgi j gkl hγδ
f γi f δj )gkq gpl h

αβ
f αp f βq

= (−λgkl +µh
γδ

f γk f δl )gkq gpl h
αβ

f αp f βq

=−λµ+ µ

n
µ2
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For part I I, by taking normal coordinate at p ∈ M and f (p) ∈ N we may assume
f αi = λiδ

α
i with λ1 ≥ λ2 ≥ ·· · ≥ λr(p) > λr(p)+1 = 0, where r(p) is rank of d f (p). Then

trg( f ∗ωh)=∑n
i=1λ

2
i . Hence

I I = (Θh)
αβγδ

(gi j f αi f βj )(gpq f γp f δq )

=
n∑

i,k=1
(Θh)

αβγδ
f αi f βi f γk f δk

(a)=
n∑

i, j,k,l=1
(Θh)

αβγδ
f αi f βj f γk f δl

(
δi jδkl +δilδk j

2

)
(b)= n(n+1)

2
(Θh)

αβγδ
f αi f βj f γk f δl

ˆ
CPn−1

ξiξ
j
ξkξ

l

|ξ|4 ωn−1
FS

= n(n+1)
2

ˆ
CPn−1

(Θh)
αβγδ

( f αi ξi)( f βj ξ
j)( f γk ξ

γ)( f δl ξ
l)

|ξ|4 ωn−1
FS

(c)≤ −κ( f (p))n(n+1)
2

ˆ
CPn−1

(| f αi ξi|2)2

|ξ|4 ωn−1
FS

where

(a) holds from (N,h) is Kähler.
(b) holds from Lemma 17.2.1.
(c) holds from holomorphic sectional curvature of h is bounded from above by −κ.

Since f αi =λiδ
α
i , one has

ˆ
CPn−1

(| f αi ξi|2)2

|ξ|4 ωn−1
FS = 1

n(n+1)

∑
i, j,α,β

λiλ jλkλlδ
α
i δ

α
j δ

β

kδ
β

l (δi jδkl +δilδk j)

= 1
n(n+1)

(
(
∑
α

λ2
α)2 +∑

α

λ4
α

)
(d)≥ 1

n(n+1)
· r+1

r
(
∑
α

λ2
α)2

where (d) holds since r is the maximal numbers of non-zero elements of λα. Hence
one has

I I ≤− (r+1) f ∗κ
2r

(
∑
α

λ2
α)2 =− (r+1) f ∗κ

2r
u2

This completes the proof. □

Corollary 17.2.1. Let (M,ω) be a complete Kähler manifold with Ricci curvature
bounded from below by a positive constant. Then M is compact, and there is no
non-trivial holomorphic map from M into a Kähler manifold with non-positive
holomorphic sectional curvature.
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Corollary 17.2.2. Let (N,h) be a Hermitian manifold with non-positive holomor-
phic sectional curvature. Then any holomorphic map from CPn to N is constant.
In particular, N contains no rational curves.

Corollary 17.2.3. Let (N,h) be a Hermitian manifold with negative holomorphic
sectional curvature. Then any holomorphic map from torus T2 to N is constant.
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Part 5. Topics

18. CALABI-YAU THEOREM

18.1. Introduction. The investigation into the existence of Kähler-Einstein met-
rics is a compelling and extensive topic that traces back to 1954. In which year
Calabi proposed the famous Calabi conjecture, which was finally solved by Yau in
1976. Firstly, Calabi proved the uniqueness of the solution and laid out the pro-
gram of proving the existence by the method of continuity and also pointed out
the openness and the need of a priori estimates in [Cal57]. The very easy a priori
zeroth oreder estimate for the case of negative first Chern class was firstly given
by Aubin in [Aub78], but he did not apply his a priori estimate to the continu-
ity method. Instead he used the method of variation which is rather difficult to
comprehend.

Yau made the important contribution of using Morser’s method of integration
by parts and iteration by Sobolev inequality to get a priori zeroth oreder estimate.

Theorem 18.1 ([MR054],[Yau78b]). Let (X ,ωg) be a compact Kähler manifold. If
Ω is a real (1,1)-form which represents 2πc1(X ), then there exists a unique metric
ω ∈ [ωg] such that Ric(ω)=Ω.

This remarkable result establishes several related results which are of funda-
mental importance in the study of complex manifolds.

Corollary 18.1.1. Let (X ,ωg) be a compact Kähler manifold with c1(X )= 0. Then
there exists a unique Ricci flat metric.

Corollary 18.1.2. Let (X ,ωg) be a compact Kähler manifold with c1(X )> 0. Then
M is simply-connected.

Corollary 18.1.3 ([Yau77]). Every complex surface which is homotopic equivalent
to CP2 is biholomorphic to CP2.

18.2. The Monge-Amperé equation and priori estimates.

18.2.1. The reformulation of Calabi conjecture in Monge-Amperé equation. The
Calabi conjecture can be reduced to a problem of fully non-linear partial differen-
tial equations. By Lemma 10.3.1, that is ∂∂-lemma, one has

ω=ωg +
p
−1∂∂φ,

where φ is the smooth function we desire. Again by ∂∂-lemma one also has

Ric(ωg)=Ω+
p
−1∂∂F,

where F is a smooth function which is unique up to a constant, and if we consider
the following normalization ˆ

X
eFωn

g =
ˆ

X
ωn

g,
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then F is unique. Suppose Ric(ω)=Ω. Then

Ric(ωg)−Ric(ω)=
p
−1∂∂F

that is
p
−1∂∂ log

ωn

ωn
g
=
p
−1∂∂F

which is equivalent to the following equation

ωn = eF+Cωn
g,

and by nomalization of F one has C = 0. Thus in order to solve Calabi conjecture,
it suffices to solve the following complex Monge-Amperé equation:

(18.1)

{
(ωg +

p−1∂∂φ)n = eFωn
g´

X eFωn
g = 1.

Theorem 18.2.1 ([Cal57]). The solution of (18.1) is unique.

Proof. Suppose φ1,φ2 are two solutions. Then

0=ωn
1 −ωn

2 = (ω1 −ω2)(ωn−1
1 +·· ·+ωn−1

2 )

=
p
−1∂∂(φ1 −φ2)(ωn−1

1 +·· ·+ωn−1
2 ).

If we define ψ=φ1 −φ2, then

−
ˆ

X
ψ
p
−1∂∂ψ∧ (ωn−1

1 +·· ·+ωn−1
2 ) (1)=

ˆ
X
∂ψ∧∂ψ∧ (ωn+1

1 +·· ·+ωn−1
2 )

(2)≥ 1
n
|∂ψ|2ωn

1

where

(1) holds from integration by parts and ω1,ω2 are Kähler forms.
(2) holds from (2) of Proposition 7.3.3 and positivity of ω1,ω2.

This shows ∂ψ= 0, and thus ψ is a constant, which completes the proof. □

To solve the existence of solution of (18.1), Yau used the continuity method.
Consider a sequence of equations as follows

(18.2) det(g i j +φi j)=
etF´

X etFωn
g

det(g i j).

It’s clear (18.2) is solvable at t = 0, and thus consider the following set is non-empty

I = {t ∈ [0,1] | equation (18.2) is solvable}.

The openness of I can be relatively easily demonstrated through the application of
the inverse function theorem. However, the true challenge lies in establishing its
closedness. To accomplish this, a series of rigorous a priori estimates are essential.
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18.2.2. C0-estimate.

Theorem 18.2.2 (C0-estimate). Suppose φ is a solution of (18.1). Then there
exists constant C depending on X ,ωg,F such that

supφ− infφ≤ C.

Proof. Without lose of generality we may assume supφ=−1. Then Green formula
says

φ(x)= 1
V

ˆ
φ(y)ωn

g −
1
V

ˆ
G(x, y)∆φ(y)ωn

g

and ω−ωg =
p−1∂∂φ implies

trg
p
−1∂∂φ= trgω−n ≥ n

Assume G ≥ 0, if φ(p)=−1, then

−1=φ(p)

= 1
V

ˆ
φ(y)ωn

g −
1
V

ˆ
G(p, y)∆φ(y)ωn

g

≤ 1
V

ˆ
φ(y)ωn

g +
1
V

ˆ
nG(p, y)ωn

g

this shows

‖φ‖L1 =−
ˆ

φωn
g ≤ C1

For L2-estimate, note that
ˆ

φ(eF −1)ωn
g =
ˆ

φ(ωn −ω)

=
ˆ

φ(
p
−1∂∂φ)(ωn−1 +·· ·+ωn−1

g )

≤− 1
n

ˆ
|∂φ|2ωn

g

that is ˆ
|∂φ|2ωn

g ≤ nsup |eF −1|
ˆ

|φ|ωn
g ≤ C2

that is ‖∇φ‖2
L2 ≤ C3, and by Poincaré inequality one has

‖φ−φ‖L2 ≤ C4‖∇φ‖L2

that is ‖φ‖L2 ≤ C5.
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For p ≥ 2, set ψ=−φ, one hasˆ
ψp−1(eF −1)ωn

g =−
ˆ

ψp−1p−1∂∂ψ∧ (ωn−1 +·· ·+ωn−1
g )

=
ˆ

(p−1)ψp−2p−1∂ψ∧∂ψ∧ (ωn−1 +·· ·+ωn−1
g )

≥
ˆ

(p−1)ψp−2p−1∂ψ∧∂ψ∧ωn−1
g

= 4(p−1)
p2

ˆ p
−1∂ψ

p
2 ∧∂ψ

p
2 ∧ωn−1

g

= 4(p−1)
np2

ˆ
|∂ψ p

2 |2ωn
g

This gives ˆ
|∂ψ p

2 |ωn
g ≤ C6 p

ˆ
|φ|p−1ωn

g

that is

‖∇ψ‖2
L2 ≤ C6 p‖ψ‖p−1

Lp−1

The Sobolev inequality shows for all f ∈W1,q(X ,ωg), one has

‖ f ‖
L

2nq
2n−q

≤ C7‖ f ‖W1,q

Set f =ψ
p
2 and q = 2, one has

(
ˆ

ψ
np

n−1 ωn
g)

n−1
n = ‖ψ‖p

L
np

n−1
= ‖ψ‖2

L
2n

n−1

≤ C8(
ˆ

|∇ψ p
2 |2ωn

g +
ˆ

ψωn
g)

≤ C9(p‖ψ‖p−1
Lp−1 +‖ψ‖p

Lp )

≤ C10 p‖ψ‖p
Lp

This gives

‖ψ‖
L

np
n−1

≤ C
1
p
10 p

1
p ‖ψ‖Lp

Set pk = ( n
n−1 )k p, then

‖ψ‖Lpk+1 ≤ (C10Pk)
1

pk ‖ψ‖Lpk ≤
k∏

j=0
(C10 p j)

1
p j ‖ψ‖Lp

This gives

‖ψ‖L∞ ≤ C‖ψ‖Lp

□



115

18.2.3. C2-estimate.

Theorem 18.2.3. Suppose ωh is a solution of (18.1). Then there exists a constant
c depending on X ,ωg,F such that

c−1ωg ≤ωh ≤ cωg

Proof. It suffices to prove trgωh ≤ c since linear algebra yields the following in-
equality

trhωg ≤ 1
n−1

(trgωh)n−1ω
n
g

ωn
h

By Corollary 17.1.1, that is Schwarz computation, one has

∆h logtrgωh ≥ 1
trgωh

(
hi j(Θg)i jkl gkq gpl hpq −hi j(Θh)i jpq gpq

)
where ∆h = trh

p−1∂∂. Since (X , g) is a given Käher manifold, one has its curva-
ture is bounded from below by −B as follows

(Θg)i jkl ≥−B(g i j gkl + g il gk j)

Then
hi j(Θg)i jkl gkq gpl hpq ≥−B(g i j gkl + g il gk j)gkq gpl hi jhpq

=−B(1+ 1
n

)δp
i δ

q
j hi jhpq

=−(n+1)B
On the other hand, one has

hi j(Θh)i jpq gpq =
(
gi j(Θg)i jpq −Fpq

)
gpq = s−Fpq gpq

where Ric(ωg) = Ω+p−1∂∂F and s is the scalar curvature of (X , g). Then by
trhωg trgωh ≥ n2 one has

∆h logtrgωh ≥− 1
n2 ((n+1)B+ c0)trhωg

≥−2B trhωg − c0

n2 trgωh

where c0 = (s−Fpq gpq). Note that

∆hφ= h jkφ jk = h jk(h jk − g jk)= n− trhωg

Then there exists an appropriate λ such that

∆h(logtrgωh +λφ)≥ trhωg −C1

If logtrgωh +λφ obtain its maximum at p ∈ X , then trhωg(p) ≤ C1, and again by
trick of linear algebra one has

trgωh(p)≤ C2
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for some constant C2. Since p is the point such that logtrgωh +λφ obtains its
maximum, then by C0-estimate there exists some constant C such that

trgωh ≤ C

This completes the proof. □

18.2.4. C3-estimate. Let (Γg)k
i j and (Γh)k

i j denote the Christoffel symbols of g and
h respectively, and set

Sk
i j = (Γh)k

i j − (Γg)k
i j

Suppose we have the following C2-estimate

c−1ωg ≤ωh ≤ cωg

Lemma 18.2.1. There exists a constant C depending on X ,ωg,F, c such that

∆h|S|2h ≥−C|S|2h −C

Lemma 18.2.2. There exists a constant C depending on X ,ωg,F, c such that

|S| < C

18.3. Proof of Calabi-Yau theorem.

Theorem 18.3.1. Let (X ,ωg) be a compact Kähler manifold. Then for any k ≥ 3
and F ∈ Ck(X ,R), the complex Monge-Amperé equation

ωn
h = eFωn g

ωh =ωg +
p−1∂∂φ´

X eFωn
g =
´

X ωn
g

has a solution φ ∈ Ck+1,α(X ).

18.4. Aubin-Yau theorem.

18.4.1. Uniqueness of Kähler-Einstein metric when c1(X )< 0.

Lemma 18.4.1. Let X be a compact complex manifold. Then there exists at most
one Kähler metric ω such that Ric(ω)=−ω.

Proof. Suppose that there are two Kähler metrics ω1 and ω2 such that
Ric(ω1)=−ω1

Ric(ω2)=−ω2

By ∂∂-lemma, there exists φ ∈ C∞(X ,R) such that ω1 =ω2 +
p−1∂∂φ, so one has

p
−1∂∂φ=

p
−1∂∂ log

ωn
1

ωn
2

In other words, there exists a constant c such that

ωn
1 = eφ+cωn

2



117

Suppose φ attains its maximum at point p, that is,
p−1∂∂φ(p)≤ 0. Then

ω1 =ω2 +
p
−1∂∂φ≤ω2

which implies eφ(p)+c ≤ 1. This shows φ+ c ≤φ(p)+ c ≤ 0. Similarly, if φ attains its
minimum at q, then eφ(q)+c ≥ 1 and φ+ c ≥φ(q)+ c ≥ 0. Hence φ+ c ≡ 0, and thus
ω1 =ω2. □
18.4.2. The reformulation of Aubin-Yau theorem in Monge-Amperé equation.

Theorem 18.4.1 (Aubin-Yau). Let X be a complex manifold with c1(X )< 0. Then
there exists a unique Kähler metric ω ∈ 2πc1(X ) such that Ric(ω)=−ω.

Proof. Let ωg be any Kähler metric in [−2πc1(X )]. Then by ∂∂-lemma there exists
a smooth function F such that

Ric(ωg)=−ωg +
p
−1∂∂F

since [Ric(ωg)] = 2πc1(X ). Let ω be another Kähler metric such that [ω] = [ωg].
Again by ∂∂-lemma there exists a smooth function φ such that

ω=ωg +
p
−1∂∂φ

Then Ric(ω)=−ω is equivalent to
p
−1∂∂ log

ωn

ωn
g
=
p
−1∂∂(F +φ)

or in other words, there exists a constant C such that

ωn = eF+φ+Cωn
g

By rescaling F we may assume C = 0, so Aubin-Yau is equivalent to solve the
following complex Monge-Amperé equation:

(18.3)

{
(ωg +

p−1∂∂φ)n = eF+φωn
g´

X eF+φωn
g = 1

□
18.4.3. C0-estimate.

Theorem 18.4.2 (C0-estimate). Suppose φ is a solution of (18.3). Then

sup
X

|φ| ≤ sup
X

|F|

Proof. As argument in Lemma 18.4.1, at maximum point p of φ, one has φ+F(p)≤
φ(p)+F(p)≤ 0, so

sup
X

φ≤−F(p)≤ sup
X

|F|
Similarly, at minimum point q of φ, φ+F(q)≥φ(q)+F(q)≥ 0 and

inf
X

φ≥−F(q)≥−sup
X

|F|

Hence supX |φ| ≤ supX |F|. □
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18.4.4. C2-estimate.

Theorem 18.4.3 (C2-estimate). There exists a uniform constant C depending on
X ,ωg,F such that

C−1ωg ≤ω≤ Cωg

Proof. The same as Theorem 18.2.3. □
18.4.5. C3-estimate. Given the C0-estimate and C2-estimate, the C3-estimate is
very similar to that in the proof of Calabi-Yau theorem. Here we formulate a
general setup. Let (Γg)k

i j and (Γh)k
i j denote the Christoffel symbols of g and h

respectively, and set
Sk

i j = (Γh)k
i j − (Γg)k

i j

Suppose we have the following C2-estimate

c−1ωg ≤ωh ≤ cωg

Theorem 18.4.4 (C3-estimate).

18.4.6. Proof of Aubin-Yau theorem.

18.5. Miyaoka-Yau inequality.

Theorem 18.5.1 (Miyaoka-Yau inequality). Let (X ,ω) be a compact Kähler-Einstein
n-manifold. Then ˆ

M
(nc2

1(X )−2(n+1)c2(M))∧ωn−2 ≤ 0

The equality holds if and only if (X ,ω) has constant holomorphic bisectional cur-
vature.

Proof. Note that Ri j = cg i j, s = gi jRi j = nc and |Ric |2 = gil gk jRi jRkl = nc2. Di-
rect computation shows

c2
1(M)∧ωn−2 = c2ωn

4π2

c2(M)∧ωn−2 = n(n−2)c2 −|R|2
8π2n(n−1)

ωn

Thus

(nc2
1(M)−2(n+1)c2(M))∧ωn−2 = 2nc2 − (n+1)|R|2

4π2n(n−1)
ωn

□
Theorem 18.5.2 (uniformization theorem). Let (X̃ ,ω) be a complete, simply-connected,
Kähler n-manifold with constant holomorphic bisectional curvature λ.
(1) If λ> 0, then X̃ is biholomorphic to CPn.
(2) If λ= 0, then X̃ is biholomorphic to Cn.
(3) If λ< 0, then X̃ is biholomorphic to Bn.

Proof. See [Tia00] for a proof. □
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Corollary 18.5.1.
(1) If c1(X )< 0, then

(−1)ncn−2
1 (M)c2(X )≥ n

2(n+1)
cn

1 (X )

The equality holds if and only if X is biholomorphic to Bn/Γ.
(2) If c1(X )= 0, then ˆ

X
c2(M)∧ωn−2 ≥ 0

The equality holds if and only if X is biholomorphic to Cn /Γ.
(3) If c1(X )> 0, then

cn−2
1 (X )c2(X )≥ n

n+2
cn

1 (X )

The equality holds if and only if X is biholomorphic to CPn.

Proof. It follows from Theorem 18.5.1 and Theorem 18.5.2. □
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19. DEFORMATIONS OF COMPLEX STRUCTURE

19.1. The Maurer-Cartan equation. Recall that a complex structure on a smooth
manifold M is encoded by an integrable almost complex structure J, and two com-
plex manifolds (M, J) and (M′, J′) are isomorphic if there exists a diffeomorphism
F : M → M′ such that dF ◦ J = J′ ◦dF. Thus the set of all complex structures on a
fixed smooth manifold M is the quotient of the set

Ac(M) := {J | J is an integrable almost complex structure on M}

of all complex structures by the action of the diffeomorphism group. Firstly let’s
consider the set

Aac(M) := {J | J is an almost complex structure on M}

For arbitrary almost complex structure J ∈Aac(M), it’s uniquely determined by a
decomposition of the complexified tangent bundle TCM = T1,0M⊕T0,1M with J isp−1id on T1,0M and −p−1id on T0,1M. In fact, giving T0,1M ⊆ TCM is enough,
since we can set T1,0M = T0,1M. If J(t) is a continuous family of almost com-
plex structure with J(0) = J, there is a continuous family of such decompositions
TCM = T1,0

t M⊕T0,1
t M, or equivalently, of subspaces T0,1

t M ⊆ TCM.
Thus for small t the deformations J(t) of J gives a map

ϕ(t) : T0,1M → T1,0M

with v +ϕ(t)v ∈ T1,0
t M. Conversely, if ϕ(t) : T0,1M → T1,0M is given, then one

defines for small t

T1,0
t M := (id+ϕ(t))(T0,1M)

Here the condition t to be small" has to be imposed in order to ensure that with
this definition T1,0

t M ⊆ TCM → T1,0M is an isomorphism. Thus deformations of
almost complex structure is encoded by such a map ϕ(t). Now for convenience we
assume J is an integrable almost complex, and thus we denote (M, J) by X . In
particular, there is ∂ operator on the holomorphic tangent bundle TX , which can
be applied to ϕ(t) ∈ C∞(X ,Ω0,1

X ⊗T1,0X ).
The following proposition shows that the integrability condition for deformation

of the almost complex structure can be rephrased in terms of ϕ(t).

Proposition 19.1.1. The integrability condition is equivalent to the Maurer-Cartan
equation

∂ϕ(t)+ [ϕ(t),ϕ(t)]= 0

Proof. It suffices to compute locally so we write ϕ(t) with respect to local coordinate
{z1, . . . , zn} as follows

ϕ(t)=ϕ
j
i (t)dzi ⊗ ∂

∂z j
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The integrability condition implies [T0,1
t X ,T0,1

t X ] ⊆ T0,1
t X , so in particular one

has [
∂

∂zi
+ϕ(t)(

∂

∂zi
),

∂

∂z j
+ϕ(t)(

∂

∂z j
)
]
∈ T0,1

t X

A direct computation yields([
∂

∂zi ,ϕl
k(t)

∂

∂zl

]
+

[
ϕ

j
i (t)

∂

∂z j ,
∂

∂zk

]
+

[
ϕ

j
i (t)

∂

∂z j ,ϕl
k(t)

∂

∂zl

])
∈ T0,1

t X

Note that [
∂

∂zi ,ϕl
k(t)

∂

∂zl

]
=

∂ϕl
k(t)

∂zi
∂

∂zl[
ϕ

j
i (t)

∂

∂z j ,
∂

∂zk

]
=−∂ϕ

j
i (t)

∂zk
∂

∂z j

This shows[
∂

∂zi ,ϕl
k(t)

∂

∂zl

]
+

[
ϕ

j
i (t)

∂

∂z j ,
∂

∂zk

]
=

(
∂ϕ

j
k(t)

∂zi − ∂ϕ
j
i (t)

∂zk

)
∂

∂z j = ∂ϕ(t)(
∂

∂zi ,
∂

∂zk )

On the other hand, note that

[ϕ(t),ϕ(t)]= dzi ∧dzk
[
ϕ

j
i (t)

∂

∂z j ,ϕl
k(t)

∂

∂zl

]
Thus [

ϕ
j
i (t)

∂

∂z j ,ϕl
k(t)

∂

∂zl

]
= [ϕ(t),ϕ(t)](

∂

∂zi ,
∂

∂zk )

So integrability condition implies

∂(t)+ [ϕ(t),ϕ(t)](
∂

∂zi ,
∂

∂zk ) ∈ T0,1
t X

This shows ∂(t)+[ϕ(t),ϕ(t)] is a section of Ω0,2
X ⊗(T1,0X∩T0,1

t X ), but for sufficiently
small t one has T1,0X ∩T0,1

t X = 0. This shows

∂(t)+ [ϕ(t),ϕ(t)]= 0

Conversely, if the Maurer-Cartan equation holds, then the integrability condition
holds for a local frame of T0,1

t X , and thus for all sections of T0,1
t X . □

Now let’s consider the power series expansion of a given deformation ϕ(t) as
follows

ϕ(t)=ϕ0 +ϕ1t+ϕ2t2 + . . .

The Maurer-Cartan equation gives

∂

( ∞∑
i=1

ϕi ti

)
+

∞∑
i, j=1

[ϕi,ϕ j]ti+ j = 0
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This yields a recursive system of equations

0= ∂ϕ1

0= ∂ϕ2 + [ϕ1,ϕ1]
...

0= ∂ϕk +
∑

0<i<k
[ϕi,ϕk−i]

In particular, the first-order deformation of the complex structure is determined
by a ∂-closed (0,1)-form ϕ1 with valued in TX . Thus it determines an element
[ϕ1] ∈ H1(X ,TX ).

Definition 19.1.1 (Kodaira-Spencer class). The Kodaira-Spencer class of a one-
parameter deformation J(t) of a complex structure J is the induced cohomology
class [ϕ1] ∈ H1(X ,TX ).

Proposition 19.1.2. Let X be a complex manifold. There is a natural bijection
between all first-order deformations of X and elements of H1(X ,TX ).

Corollary 19.1.1. A first-order deformations v ∈ H1(X ,TX ) cannot be integrated
if [v,v] ∈ H2(X ,TX ) does not vanish.
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20. HERMITIAN-YANG-MILLS METRIC

Definition 20.1 (Hermitian-Yang-Mills metric). Let (X ,ω) be a compact Kähler
manifold and (E,h) be a holomorphic vector bundle over X with Chern curvature
Θh. The metric h is called an Hermitian-Yang-Mills metric if

trωΘh =λI

for some constant λ ∈R, where I is the identity operator in EndE.

Remark 20.1 (local form). Suppose the Chern curvature Θh is locally given by
(Θh)α

βi j
, where

(Θh)αβ = ∂(hαγ∂hβγ).

Then the Hermitian-Yang-Mills equation is

gi j(Θh)α
βi j

=λδαβ,

where ω=p−1g i jdzi ∧dz j.

The final goal of this section is to introduce the following two celebreated theo-
rems of existence of Hermitian-Yang-Mills metrics.

Theorem 20.1 ([UY86]). Let (X ,ω) be a compact Kähler manifold and E be an
ω-stable holomorphic vector bundle over X . Then E admits a unique Hermitian-
Yang-Mills metric.

Theorem 20.2 ([Sim88]). Let (X ,ω) be a compact Kähler manifold and (E,θ) be
an ω-stable Higgs bundle over X . Then (E,θ) admits an Hermitian-Yang-Mills
metric.

Along the way, we’re going to talk the following topics

(1) ω-stabilities of holomorphic vector bundle.
(2)
(3) Higgs bundles.
(4)

20.1. Stable bundle. In this section, X always denotes a complex manifold.

Definition 20.1.1 (degree). Let π : E → X be a holomorphic vector bundle. The
degree of E is defined as

deg(E) :=
ˆ

X
c1(E).

Definition 20.1.2 (slope). Let π : E → X be a holomorphic vector bundle. The
slope of E is defined as

µ(E) := deg(E)
rk(E)

.
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Remark 20.1.1. Note that the slope of a holomorphic vector bundle is indepen-
dent of the holomorphic structure, since both the degree and rank are topological
invariants.

Definition 20.1.3 (slope stability). Let π : E → X be a holomorphic vector bundle.
(1) E is said to be stable if for every non-trivial holomorphic subbundle F, µ(F) <

µ(E);
(2) E is said to be semi-stable if for every non-trivial holomorphic subbundle F,

µ(F)≤µ(E);
(3) E is said to be unstable if it’s not semi-stable.

Remark 20.1.2.
(a) It’s clear that all holomorphic line bundles are stable, since they don’t have

non-trivial subbundles;
(b) A semi-stable vector bundle with coprime rank and degree is actually stable,

since
(c) The slope stability is not topological invariant, since here we only consider

holomorphic subbundles, which depends on the holomorphic structure.

Proposition 20.1.1. Let π : E → X be a holomorphic vector bundle.
(1) It’s stable if and only if for every non-trivial holomorphic subbundle F, µ(E/F)>

µ(E);
(2) It’s semi-stable if and only if for every non-trivial holomorphic subbundle F,

µ(E/F)≥µ(E).

Proof. Denote r, r′, r′′ the ranks of E,F,E/F respectively, and d,d′,d′′ their degrees
respectively. From exact sequence

0→ E → E → E/F → 0

one has r = r′+ r′′ and d = d′+d′′, thus

d′

r′
< d′+d′′

r′+ r′′
⇐⇒ d′

r′
< d′′

r′′
⇐⇒ d′+d′′

r′+ r′′
< d′′

r′′

and likewise with the case semi-stable. □

A philosophy is that semi-stable bundles don’t admit too many subbundles,
since any subbundle they may have is of slope no greater than their own. This
turns out to have many interesting consequences we’re going to show, for exam-
ple, the category of semi-stable bundles is abelian.

Lemma 20.1.1. If φ : E → E′ is a non-zero homomorphism of holomorphic vector
bundles over X , then

µ(E/kerφ)≤µ(imφ)

Proposition 20.1.2. Let E,E′ be two semi-stable bundles such that µ(E)> µ(E′).
Then any homomorphism φ : E → E′ is zero.
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Proof. If φ is non-zero, since E is semi-stable, then

µ(imφ)
(1)≥ µ(E/kerφ)

(2)≥ µ(E)>µ(E′)

where
(1) holds from Lemma 20.1.1;
(2) holds from Proposition 20.1.1.

which contradicts to the semi-stablity of E′. □

Proposition 20.1.3. Let φ : E → E′ be a non-zero homomorphism of semi-stable
holomorphic of slope µ. Then kerφ and imφ are semi-stable bundles of slope µ,
and the natural map E/kerφ→ imφ is an isomorphism.

Corollary 20.1.1. The category of semi-stable bundles of slope µ is abelian, and
the simple object18 in this category is the stable bundles of slope µ.

Proof. By Proposition 20.1.3 one has the category of semi-stable bundles of slope
µ is abelian. A stable bundle E is simple in this category, since it admits no non-
trivial subbundles with slope µ; Conversely, if a semi-stable bundle E is simple,
then any non-trivial subbundle F satisfies µ(F) ≤ µ(E) since E is semi-stable and
µ(F) 6=µ(E) since E is simple, this shows E is stable. □

Proposition 20.1.4. Let E,E′ be two stable holomorphic vector bundles over X
with same slopes and φ : E → E′ be a non-zero homomorphism. Then φ is an
isomorphism.

Proof. Since φ : E → E′ is a non-zero homomorphism between stable bundles with
same slopes, then by Proposition 20.1.3 one has kerφ is either 0 or has slope µ(E),
but E is actually stable, then kerφ must be 0, and since φ is strict, this shows φ

is injective. Likewise, imφ 6= 0 and has slope µ(E′), then it must be E′ since E′ is
stable. Then again by φ is strict, imφ= E′ impiles φ is surjective. Therefore φ is
an isomorphism. □

Proposition 20.1.5. If E is a stable bundle over X , then EndE =C. In particular,
AutE =C∗.

Proof. Let φ be a non-zero endomorphism of E, by Proposition 20.1.4 one has φ

is an automorphism, so EndE is a field, which contains C as its subfield of scalar
endomorphisms. For any φ ∈ EndE, by Cayley-Hamilton theorem one has φ is
algebraic over C, and since C is algebraic closed, this shows EndE ∼=C. □

Corollary 20.1.2. A stable bundle is indecomposable, that is it’s not isomorphic
to a direct sum of non-trivial subbundles.

Proof. The automorphism group of E = E1⊕E2 contains C∗×C∗, so by Proposition
20.1.5 it can’t be stable. □

18Recall a simple object in an abelian category is an object with no non-trivial sub-object.
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Theorem 20.1.1 (Jordan-Hölder filteration). Any semi-stable bundle of slope µ

over X admits a filteration

0= E0 ⊂ E1 ⊂ ·· · ⊂ Ek = E

by holomorphic subbundles such that for each 1≤ i ≤ k, one has
(1) E i/E i−1 is stable;
(2) µ(E i/E i−1)=µ(E).

Proposition 20.1.6 (Seshadri). Any two Jordan-Hölder filterations

S : 0= E0 ⊂ E1 ⊂ ·· · ⊂ Ek = E

and
S′ : 0= E′

0 ⊂ E′
1 ⊂ ·· · ⊂ E′

l = E
of a semi-stable bundle E have same length, and the associated graded objects

gr(S) : 0= E1/E0 ⊕·· ·⊕Ek/Ek−1

and
gr(S′) : 0= E′

1/E′
0 ⊕·· ·⊕E′

k/E′
k−1

satisfy E i/E i−1 ∼= E′
i/E

′
i−1 for all 1≤ i ≤ k.

Definition 20.1.4 (poly-stable bundle). A holomorphic vector bundle E over X is
called poly-stable if it is isomorphic to a direct sum E1 ⊕·· ·⊕Ek of stable bundles
of the same slope.

Example 20.1.1. A stable bundle is poly-stable.

Example 20.1.2. The graded object associated to any Jordan-Hölder filteration of
a semi-stable bundle E is a poly-stable, and by Proposition 20.1.6, it’s unique up to
isomorphism, this isomorphic class is denoted by gr(E).
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