Intersection Theory of Toric varieties

ZCC
zcc22@mails.tsinghua.edu.cn

December 29, 2023

Contents

1 Chow Groups 1
1.1 Algebraic Cycles 1
1.2 Rational Equivalence 2
1.3 Proper Pushforward 4
1.4 Flat Pullback 5
2 Intersection Products 8
2.1 Intersection with Cartier Divisors 8
2.2 Geometric Intersection 9
2.3 Chow Rings 10
3 Riemann-Roch Theorem 12
3.1 Chern Class 12
3.2 Hirzebruch-Riemann-Roch 13
4 Chow Groups of Toric Varieties 16
4.1 Chow Groups of Tori 16
4.2 Chow Groups of X_{Σ} 18
5 Toric Intersection Theory 22
5.1 Intersection with Cartier Divisors 22
5.2 Simplicial Case 23
5.3 Chow Rings of Smooth Complete Toric Varieties 26
6 Toric Riemann-Roch 29
Reference 29

Chapter 1

Chow Groups

We may introduce the general theory of intersection. Our main reference are [2] and Stacks Project. All schemes are of finite type over a given field and all morphisms are over this field, unless specified otherwise.

1.1 Algebraic Cycles

Definition 1.1.1 (algebraic cycle) A k-cycle of a scheme X is an element of the free abelian group $Z_{k}(X)$ generated by the closed integral subschemes of dimension k.

We have the $\left(\mathbb{N}\right.$-)graded group $Z_{\bullet}(X)=\bigoplus_{k \geq 0} Z_{k}(X)$, and generally a cycle refers an element in $Z_{\bullet}(X)$. We also have the concept of k-cocycle, which is an element of $Z^{n-k}(X)$ if X has pure dimension n. An 1-cocycle is nothing else but a Weil divisor when X is integral.

For a cycle

$$
\alpha=\sum n_{Z} Z
$$

we can define its support by $\operatorname{supp}(\alpha)=\bigcup_{n_{Z} \neq 0} Z$.

Definition 1.1.2 (effective cycle) An effective cycle is a cycle of nonnegative coeffecients. Any effective cycle is associated to a closed subscheme.

Let Z by a closed subscheme of X. We define the cycle associated to Z by

$$
\sum_{\operatorname{dim} \mathscr{O}_{Z, \xi}=0} \operatorname{length}\left(\mathscr{O}_{Z, \xi}\right) \cdot \overline{\{\xi\}}
$$

It is a cycle of support Z. Note that $\overline{\{\xi\}}$ runs through (finitely many) irreducible components of Z, and $\mathscr{O}_{Z, \xi}$ is an artinian local ring hence has finite length.

The pushforward of cycles are well-defined, makes Z_{\bullet} a functor.

Definition 1.1.3 (pushforward) For a morphism $f: X \rightarrow Y$ and an integral closed subscheme $V \subset X$ of dimension $k, W:=\overline{f(V)}$ is an integral closed subscheme of Y. If $\operatorname{dim} V=\operatorname{dim} W$, then $K(V)$ is a finite extension of $K(W)$ (see 02NX). We define

$$
f_{*} V= \begin{cases}{[K(V): K(W)] \cdot W,} & \operatorname{dim} V=\operatorname{dim} W \\ 0, & \text { otherwise }\end{cases}
$$

which extends linearly to a homomorphism

$$
f_{*}: Z_{k}(X) \rightarrow Z_{k}(Y)
$$

For example, if $i: V \rightarrow X$ is an closed immersion, then the pushforward i_{*} identifies $Z_{k}(V)$ as a subgroup of $Z_{k}(X)$ in an obvious way.

Definition 1.1.4 (exterier product) We have the obvious exterier product or Künneth map

$$
\begin{aligned}
Z \bullet(X) \otimes Z \bullet(Y) & \rightarrow Z \bullet(X \times Y) \\
(U, V) & \mapsto U \times V
\end{aligned}
$$

1.2 Rational Equivalence

Algebraic cycles generalize the concept of Weil divisors, and rational equivalence is the analog of linear equivalence.

Definition 1.2.1 (rational equivalence) Suppose V is a $(k+1)$-dimensional integral closed subscheme V of X. For a nonzero rational function $f \in K(V)^{*}$, we can define its principal divisor $\operatorname{div}_{V}(f)$ by

$$
\sum_{\operatorname{dim} \mathscr{O}_{V, z}=1} \operatorname{ord}_{z}(f) \cdot \overline{\{z\}},
$$

as in 0BE3. We have the subgroup $R_{k}(X) \subset Z_{k}(X)$ generated by principal divisors of every $(k+1)$-dimensional integral closed subschemes of X, and the graded subgroup $R_{\bullet}(X)=\bigoplus_{k} R_{k}(X)$.

Any tow cycles α, β with $\alpha-\beta \in R_{\bullet}(X)$ is called rationally equivalent, denoted by $\alpha \sim \beta$. The quotient groups

$$
A_{\bullet}(X)=Z_{\bullet}(X) / R_{\bullet}(X)
$$

is called the Chow group of X.

Remark. The Chow group of a scheme X is the analog of the singular homology of a topological space.

If X is an integral scheme of finite type over k, with $\operatorname{dim} X=n$, then there are some easy observations that

- $A_{n-1}(X)=\mathrm{Cl}(X)$ is just the Weil divisor class group,
- $A_{n}(X)=Z_{n}(X)$ is just the free abelian generated by X itself,
- $A_{k}(X)=Z_{n}(X)=0$ for $k>n$.

However, it is difficult to determine $A_{k}(X)$ for $k<n$, even if X is affine or $k=0$.

Proposition 1.2.2 The exterier product of two cycles rationally equivalent to zero is also rationally equivalent to zero. So we have exterier product

$$
A_{\bullet}(X) \otimes A_{\bullet}(Y) \rightarrow A_{\bullet}(X \times Y)
$$

of Chow groups.

1.3 Proper Pushforward

Suppose $f: X \rightarrow Y$ is a proper morphism, the pushforward f_{*} will behave well.

Proposition 1.3.1 If V is an integral closed subscheme of X and h is a nonzero rational function on V, then

$$
f_{*} \operatorname{div}_{V}(h)= \begin{cases}\operatorname{div}\left(\operatorname{Norm}_{K(V) / K(f(V))}(h)\right), & \operatorname{dim} V=\operatorname{dim} f(V), \\ 0, & \operatorname{dim} V>\operatorname{dim} f(V) .\end{cases}
$$

Proof. This is not easy, see 02RT.
This proposition shows that f can induce the morphism

$$
f_{*}: A_{\bullet}(X) \rightarrow A_{\bullet}(Y),
$$

of Chow groups, which is the so-called proper pushforward.
Remark. There are other advantages of proper morphism. For example, since f (in fact universally) closed, for any integral closed subscheme $V \subset X, f(V)$ is already closed and $\operatorname{dim} f(V) \leq \operatorname{dim} V$.

Remark. A closed immersion $i: V \rightarrow X$ is always proper, so it induces a morphism $i_{*}: A_{k}(V) \rightarrow A_{k}(X)$. This is not in general injective, even if $Z_{k}(V)$ is a subgroup of $Z_{k}(X)$.

Definition 1.3.2 (degree of 0-cycles) Consider the structure morphism $X \rightarrow$ Spec k, we have the induced morphism

$$
Z_{0}(X) \rightarrow Z_{0}(\operatorname{Spec} k)=\mathbb{Z},
$$

which defines the degree of 0 -cycles. When X is proper over k, the degree morphism

$$
\operatorname{deg}: A_{0}(X) \rightarrow \mathbb{Z}
$$

is well-defined. If $\alpha=n_{1} x_{1}+\cdots+n_{r} x_{r}$, then we have explicitly

$$
\operatorname{deg} \alpha=\sum_{i=1}^{r} n_{i}\left[\kappa\left(x_{i}\right) / k\right]
$$

where $\kappa\left(x_{i}\right)$ is the residue field of $\mathscr{O}_{X, x_{i}}$.

Remark. When X is a smooth complete variety of dimension n, then we can define

$$
\int_{X}: A^{\bullet}(X) \rightarrow \mathbb{Z}
$$

which sends a cocycle to the degree of its component of degree n. The integral symbol comes from the Poincaré duality of a compact manifold.

1.4 Flat Pullback

There are various ways to define the pullback of a cycle. We first introduce the flat pullback.

Definition 1.4.1 (pullback) For a morphism $f: X \rightarrow Y$ and an integral closed subscheme $W \subset Y$, we can consider the scheme theoretic inverse image

$$
f^{*} V:=W \times_{Y} X,
$$

which is a closed subscheme of X with underlying topological space $f^{-1}(V)$ (see exercise II.3.11(a) in [1, pp92]). This extends linearly to a map

$$
f^{*}: Z_{\bullet}(Y) \rightarrow Z_{\bullet}(X)
$$

When $f: X \rightarrow Y$ is flat which has relative dimension, this pullback f^{*} will behave well.

Proposition 1.4.2 If f is a flat morphism of relative dimension r, then

1. If W is a k-dimensional integral closed subscheme of Y, then $f^{-1} W$ has pure dimension $k+r$.
2. If $\alpha \sim \beta$, then $f^{*} \alpha \sim f^{*} \beta$.

Proof. See 02R8, 02S1.

This proposition shows that f can induce the morphism

$$
f^{*}: A_{k}(Y) \rightarrow A_{k+r}(X)
$$

of groups, which is the so-called flat pullback.

Example 1.4.3 If $f: X \rightarrow Y$ is finite locally free of degree d (e.g. nonconstant morphism of projective curves), then f is proper and flat of dimension 0 , so we have morphism of graded rings

$$
\begin{aligned}
& f_{*}: A_{\bullet}(X) \rightarrow A_{\bullet}(Y), \\
& f^{*}: A_{\bullet}(Y) \rightarrow A_{\bullet}(X),
\end{aligned}
$$

and we have $f_{*} f^{*} \alpha=d \alpha$. See 02RH.

Example 1.4 .4 (vector bundle) If $p: E \rightarrow X$ is a vector bundle of rank r, then it is flat of relative dimension r. The induced morhism

$$
p^{*}: A_{k}(X) \rightarrow A_{k+r}(E)
$$

is an isomorphism. See [2, pp64].

Example 1.4.5 (localization sequence) If $j: U \rightarrow X$ is an open immersion, then it is flat of relative dimension 0 . We have the exact sequence

$$
A_{k}(Z) \xrightarrow{i_{*}} A_{k}(X) \xrightarrow{j^{*}} A_{k}(U) \rightarrow 0
$$

where $i: Z \rightarrow X$ is a closed immersion of reduced closed subscheme $Z=X-U$. This is called localization sequence, which is often used to compute Chow groups. See [2, pp21].

Chapter 2

Intersection Products

2.1 Intersection with Cartier Divisors

We may introduce some facts about Cartier divisors, one can see e.g. section II. 6 of [1] for details. Let X be an integral scheme, a Cartier divisor refers a global section of the quotient sheaf $\mathscr{K}^{*} / \mathscr{O}_{X}^{*}$. Cartier divisors form a group $\operatorname{CaDiv}(X)$, and has a quotient $\mathrm{CaCl}(X)$ modulo linear equivalence.

Each Cartier divisor D on X can associate to a Weil divisor, and this produces a homomorphism

$$
\mathrm{CaCl}(X) \rightarrow \mathrm{Cl}(X)
$$

This homomorphism is injective if X is normal, and is bijective if X is smooth.
Each Cartier divisor D on X can also associate to an invertible sheaf $\mathscr{O}_{X}(D)$, and this produces an isomomorphism

$$
\mathrm{CaCl}(X) \xrightarrow{\sim} \operatorname{Pic}(X) .
$$

Definition 2.1.1 For a Cartier divisor D on X and a k-dimensional irreducible closed variety $V \subset X$, the restriction (or pullback) $\left.\mathscr{O}_{X}(D)\right|_{V}$ in an invertible sheaf on V. So there is a unique Cartier divisor class $D . V$ on V such that $\left.\mathscr{O}_{X}(D)\right|_{V} \simeq \mathscr{O}_{V}(D . V)$. The map $(D, V) \mapsto D . V$ extends to a morphism

$$
\operatorname{CaDiv}(X) \times Z_{k}(X) \rightarrow A_{k-1}(X),
$$

which is the intersection of Cartier divisors and k-cycles.

Remark. If $V \not \subset \operatorname{supp}(D)$, then the restriction $\left.D\right|_{V}$ is well-defined by restricting the local equations. For general case, one can also easily see that $D . V$ is well-defined in $A_{k-1}(V \cap \operatorname{supp}(D))$.

We may introduce some facts about intersection of Cartier divisors and cycles, see [2] for details.

Proposition 2.1.2 - If $D_{1} \sim D_{2}, \alpha_{1} \sim \alpha_{2}$, then $D_{1} \cdot \alpha_{1}=D_{2} \cdot \alpha_{2}$.

- For Cartier divisors D_{1}, D_{2}, identifying D_{2} as an 1-cocycle then we have $D_{1} \cdot D_{2}=D_{2} . D_{1}$ in $A^{2}(X)$.

Thus the intersection can induce morphism

$$
\operatorname{Pic}(X) \times A_{k}(X) \rightarrow A_{k-1}(X)
$$

and a symmetric bilinear map

$$
\operatorname{Pic}(X) \times \operatorname{Pic}(X) \rightarrow A^{k-2}(X)
$$

Sometimes we also treat with \mathbb{Q}-Cartier divisors, i.e., elements in $\operatorname{Div}(X)_{\mathbb{Q}}$ with some multiple Cartier. In this case we can define the intersection of a \mathbb{Q}-Cartier and a \mathbb{Q}-cycle, which is also a \mathbb{Q}-cycle, and we have the bilinear map

$$
\operatorname{Pic}(X)_{\mathbb{Q}} \times A_{k}(X)_{\mathbb{Q}} \rightarrow A_{k-1}(X)_{\mathbb{Q}} .
$$

2.2 Geometric Intersection

Let X be an irreducible variety over an algebraically closed field (e.g. \mathbb{C}), and Y_{1}, \cdots, Y_{r} be irreducible closed subvarieties.

Definition 2.2.1 (proper intersection) We say Y_{1}, \cdots, Y_{r} intersect properly if

$$
\operatorname{codim}\left(\bigcap_{i=1}^{r} Y_{i}\right)=\sum_{i=1}^{r} \operatorname{codim}\left(Y_{i}\right) .
$$

Here the codim is the codimension of a closed subvariety in X.

Definition 2.2.2 (transversal intersection) If X, Y_{i} are all smooth, we say Y_{1}, \cdots, Y_{r} intersect transversally if for each $p \in \bigcap_{i=1}^{r} Y_{i}$ we have

$$
\operatorname{codim}\left(\bigcap_{i=1}^{r} T_{p} Y_{i}\right)=\sum_{i=1}^{r} \operatorname{codim}\left(T_{p} Y_{i}\right)
$$

Here the codim is the codimension of a linear subspace in $T_{p} X$.

Definition 2.2.3 (Serre's intersection multiplicity) If Y, Z intersect properly, let W be an irreducible component of $Y \cap Z$ with regular generic point. We define the intersection multiplicity of Y, Z at W to be

$$
i(Y, Z ; W)=\sum_{i}(-1)^{i} \text { length } \operatorname{Tor}_{i}^{A}(A / I, A / J)
$$

where $A=\mathscr{O}_{X, W}$ is the local ring of X at the generic point of W, and I, J be the ideals of Y, Z respectively. Note that A is a regular local ring hence has finite global dimension.

Remark. If Y intersects Z transversally, then $i(Y, Z ; W)=1$ for each component W.

2.3 Chow Rings

Now let X be an irreducible smooth variety over an algebraically closed field k. Fulton constructed an intersection product on $A^{\bullet}(X)$ such that $A^{\bullet}(X)$ is a commutative associative graded ring, and such ring $A^{\bullet}(X)$ is called the Chow ring of X. The intersection product satisfis some expected properties.

Proposition 2.3.1 In the Chow ring $A^{\bullet}(X)$ of X, we have

- If Y, Z are irreducible smooth closed subvarieties of X intersects properly, then

$$
[Y] \cdot[Z]=\sum_{W} i(Y, Z ; W)[W]
$$

where the sum runs over all components of $Y \cap Z$.

- If V is an irreducible closed subvariety and D is an effective Cartier divisor, then $[D] \cdot[V]$ is just the intersection $D . V$ defined before.
- A^{\bullet} defines a contravariant functor from the category of irreducible smooth varieties to the category of commutative associative graded rings, and the pullback f^{*} is just the flat pullback when f is flat (of relative dimension 0).

Remark. By Chow's moving lemma, if X is moreover quasi-projective, the intersection product is uniquely determined by above proposition.

It is difficult to compute Chow rings in general, here are some selected facts.

Example 2.3.2 $A \cdot\left(\mathbb{A}^{n}\right)=\mathbb{Z} \cdot\left[\mathbb{A}^{n}\right]$ with $\operatorname{deg}\left[\mathbb{A}^{n}\right]=n$.

Example 2.3.3 By the classical Bézout theorem, one has

$$
A^{\bullet}\left(\mathbb{P}^{2}\right)=\mathbb{Z}[h] /\left(h^{3}\right),
$$

is the truncated polynomial ring, where h is the class of any line.

Remark. For some special singular varieties, the rational Chow ring $A_{\mathbb{Q}}^{\bullet}$ can be defined. In toric world, we are intersted in rational Chow ring of a simplicial toric variety.

Chapter 3

Riemann-Roch Theorem

See appendix A of [1] for details. Let X be a smooth variety (over \mathbb{C}).

3.1 Chern Class

Definition 3.1.1 (Chern class) For a locally free sheaf \mathscr{E} on X, there is a projective bundle $\pi: \mathbb{P}(\mathscr{E}) \rightarrow X$. The invertible sheaf $\mathscr{O}_{\mathbb{P}(\mathscr{E})}(1)$ corresponds to an 1-cocycle $\xi \in A^{1}(\mathbb{P}(\mathscr{E}))$. One defines the Chern class $c(\mathscr{E}) \in A^{\bullet}(X)$ by

- $c_{0}(\mathscr{E})=1$.
- $c_{i}(\mathscr{E})=0$ for $i>r$.
- $\sum_{i=0}^{r}(-1)^{i}\left(\pi^{*} c_{i}(\mathscr{E})\right) \cdot \xi^{r-i}$.
- $c(\mathscr{E})=\sum_{i \geq 0} c_{i}(\mathscr{E})$.

Proposition 3.1.2 Chern classes of locally free sheaves have the following properties.

- $c\left(\mathscr{O}_{X}(D)\right)=1+D$ for Cartier divisor $D \in A^{1}(X)$.
- If $f: X \rightarrow Y$ is a morphism of smooth varieties and \mathscr{E} is a locally free sheaf on Y, then $c\left(f^{*} \mathscr{E}\right)=f^{*} c(\mathscr{E})$.
- If $0 \rightarrow \mathscr{E} \rightarrow \mathscr{F} \rightarrow \mathscr{G} \rightarrow 0$ is an exact sequence of locally free sheaves, then $c(\mathscr{F})=c(\mathscr{E}) \cdot c(\mathscr{G})$.

Lemma 3.1.3 (splitting principle) For a locally free sheaf \mathscr{E} of rank r on X, there is a morphism $f: X^{\prime} \rightarrow X$ such that $f^{*}: A^{\bullet}(X) \rightarrow A^{\bullet}\left(X^{\prime}\right)$ is injective and there is a filtration

$$
0=\mathscr{F}_{0} \subset \cdots \subset \mathscr{F}_{r}=f^{*} \mathscr{E}
$$

such that $\mathscr{F}_{i} / \mathscr{F}_{i-1}$ is an invertible sheaf for each i.

The splitting principle shows that the Chern class can be uniquely defined by proposition 3.1.2. Moreover, if \mathscr{E} is locally free of rank r, then there are $\xi_{i} \in A^{1}(X)$ such that

$$
c(\mathscr{E})=\prod_{i=1}^{r}\left(1+\xi_{i}\right)
$$

and we say ξ_{i} 's are Chern roots of \mathscr{E}.

Corollary 3.1.4 Let \mathscr{E}, \mathscr{F} are locally free sheaf, with Chern roots ξ_{i}, η_{j} respectively. Then

- $\mathscr{E} \otimes \mathscr{F}$ has Chern roots $\xi_{i}+\eta_{j}$.
- $\mathscr{H} \operatorname{om}(\mathscr{F}, \mathscr{E})$ has Chern roots $\xi_{i}-\eta_{j}$.
- $\bigwedge^{p} \mathscr{E}$ has Chern roots $\sum_{k=1}^{p} \xi_{i_{k}}$, where $i_{1}<i_{2}<\cdots<i_{p}$.

3.2 Hirzebruch-Riemann-Roch

Suppose \mathscr{E} is a locally free sheaf of rank r on X, with Chern roots ξ_{i}.

Definition 3.2.1 (Chern character) The Chern character $\operatorname{ch}(\mathscr{E}) \in A_{\mathbb{Q}}^{\bullet}(X)$ is defined by

$$
\operatorname{ch}(\mathscr{E})=\sum_{i=1}^{r} e^{\xi_{i}}
$$

where $e^{\xi}=\sum_{n \geq 0} \frac{\xi^{n}}{n!}$ for $\xi \in A^{1}(X)$.

Definition 3.2.2 (Todd class) The Todd class $\operatorname{td}(\mathscr{E}) \in A_{\mathbb{Q}}^{\bullet}(X)$ is defined by

$$
\operatorname{td}(\mathscr{E})=\prod_{i=1}^{r} \frac{\xi_{i}}{1-e^{\xi_{i}}}
$$

where

$$
\frac{\xi}{1-e^{\xi}}=1+\frac{1}{2} \xi+\sum_{n \geq 1}(-1)^{n-1} \frac{B_{n}}{(2 n)!} \xi^{2 n}
$$

and B_{n} is the n-th Bernoulli number.

It is tedious to calculate general Chern character and Todd class. For example, if \mathscr{E} has i-th Chern class c_{i}, then

$$
\begin{aligned}
\operatorname{ch}(\mathscr{E}) & =r+c_{1}+\frac{1}{2}\left(c_{1}^{2}-2 c_{2}\right)+\frac{1}{6}\left(c_{1}^{3}-3 c_{1} c_{2}+3 c_{3}\right)+\cdots \\
\operatorname{td}(\mathscr{E}) & =1+\frac{1}{2} c_{1}+\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)+\frac{1}{24} c_{1} c_{2}+\cdots
\end{aligned}
$$

Theorem 3.2.3 (Hirzebruch-Riemann-Roch) For a locally free sheaf \mathscr{E} over a smooth complete variety X of dimension n, and suppose \mathscr{T} is the tangent sheaf of X (dual of the sheaf $\Omega_{X / \mathbb{C}}$ of differentials), we have

$$
\chi(\mathscr{E})=\int_{X} \operatorname{ch}(\mathscr{E}) \cdot \operatorname{td}(\mathscr{T})
$$

where the integral symbol means taking the degree of the component of degree n in $A_{\mathbb{Q}}^{\bullet}(X)$.

Remark. There is a relative version of Riemann-Roch, which is stated by Grothendieck in 1957.

Example 3.2.4 (algebraic curves) Assume X is a smooth projective curve, with canonical divisor K. Then $\mathscr{T} \simeq \mathscr{O}_{X}(-K)$, so

$$
\operatorname{td}(\mathscr{T})=1-\frac{1}{2} K .
$$

For an invertible sheaf $\mathscr{O}_{X}(D)$, we have $\operatorname{ch}\left(\mathscr{O}_{X}(D)\right)=1+D$, so the HRR is just

$$
\chi\left(\mathscr{O}_{X}(D)\right)=\int_{X}(1+D)\left(1-\frac{1}{2} K\right)=\operatorname{deg}(D-K / 2)=\operatorname{deg} D+1-g,
$$

where g is the genus of X, and this is the classical Riemann-Roch for curves.

Chapter 4

Chow Groups of Toric Varieties

We now compute the Chow group $A_{\bullet}\left(X_{\Sigma}\right)$ for some fan Σ.

4.1 Chow Groups of Tori

Recall that the Weil class group of an affine space is always trivial, since a polynomial ring over field is a UFD (see [1, pp132]).

Proposition 4.1.1 $A_{0}\left(\mathbb{A}^{n}\right)=0$ for $n>0$.

Proof. For a closed point p in \mathbb{A}^{n}, there is a line $L \simeq \mathbb{A}^{1}$ passing through p when $n>0$. Since the class group of L is trivial, there is a rational function f on L such that $p=\operatorname{div}_{L}(f)$, which shows that p is rationally equivalent to 0 . Thus $A_{0}\left(\mathbb{A}^{n}\right)=0$ for $n>0$.

However, for a general integral closed subvariety Z of \mathbb{A}^{n}, it is hopeless to find a $Y \subset \mathbb{A}^{n}$ on which Z is a principal divisor. We may use the big theorem 1.4.4 to deduce the isomorphism

$$
A_{k}\left(\mathbb{A}^{n}\right) \simeq A_{0}\left(\mathbb{A}^{n-k}\right)=0, \quad k<n,
$$

since \mathbb{A}^{n} is a trivial bundle of rank k over \mathbb{A}^{n-k}. We would rather give another proof here.

Lemma 4.1.2 For any variety X the flat pullback

$$
A_{k}(X) \rightarrow A_{k+1}\left(X \times \mathbb{A}^{1}\right)
$$

is surjective.

Proof. Let $V \subset X \times \mathbb{A}^{1}$ be an integral closed subvariety of dimension $k+1$, and $W=\overline{p(V)}$ be the Zariski closure of the projection of V in X. One can easily see that $\operatorname{dim} W=k$ or $k+1$:

- If $\operatorname{dim} W=k$, then $p^{*} W=W \times \mathbb{A}^{1}$ is a $(k+1)$-dimensional closed subvariety contains V. In this case we have $V=p^{*} W$.
- If $\operatorname{dim} W=k+1$, then by the theory of Weil divisors, the pullback

$$
A_{k}(W) \rightarrow A_{k+1}\left(W \times \mathbb{A}^{1}\right)
$$

is an isomorphism. In this case, $[V] \in A_{k+1}\left(W \times \mathbb{A}^{1}\right)$ corresponds to a subvariety $Z \subset W$ with $[V]=p^{*}[Z]$.

Above all, p^{*} is surjective.

By the above lemma, the composition

$$
A_{0}\left(\mathbb{A}^{n-k}\right) \rightarrow A_{1}\left(\mathbb{A}^{n-k+1}\right) \rightarrow \cdots \rightarrow A_{k}\left(\mathbb{A}^{n}\right)
$$

is surjective, and it follows that

Theorem 4.1.3 $A_{k}\left(\mathbb{A}^{n}\right)= \begin{cases}0, & k \neq n, \\ \mathbb{Z} \cdot\left[\mathbb{A}^{n}\right], & k=n .\end{cases}$

Corollary 4.1.4 For an n-torus T, we have

$$
A_{k}(T)= \begin{cases}0, & k \neq n \\ \mathbb{Z} \cdot[T], & k=n\end{cases}
$$

Proof. There is an affine space \mathbb{A}^{n} such that T is an open subvariety of \mathbb{A}^{n}. The flat pullback $A_{k}\left(\mathbb{A}^{n}\right) \rightarrow A_{k}(T)$ is surjective, yields that $A_{k}(T)=0$ for $k<n$ by above theorem.

4.2 Chow Groups of X_{Σ}

Now suppose T is an n-torus with dual lattices M, N, and Σ is a fan in $N_{\mathbb{R}}$. From [4, pp172], we know that there is an exact sequence for class group:

$$
M \rightarrow \mathbb{Z}^{\Sigma(1)} \rightarrow A_{n-1}\left(X_{\Sigma}\right) \rightarrow 0
$$

In fact, there is a similar exact sequence for general Chow groups. Note that there is a filtration

$$
\varnothing=X_{-1} \subset X_{0} \subset \cdots \subset X_{n}=X_{\Sigma}
$$

where $X_{i}=\bigcup_{\sigma \in \Sigma(n-i)} V(\sigma)$.

Proposition 4.2.1 Then the group $A^{k}\left(X_{\Sigma}\right)=A_{n-k}(X)$ is generated by $\{[V(\sigma)]: \sigma \in \Sigma(k)\}$.

Proof. Using localization sequence 1.4.5, we have the exact sequence

$$
A_{k}\left(X_{i-1}\right) \rightarrow A_{k}\left(X_{i}\right) \rightarrow A_{k}\left(X_{i}-X_{i-1}\right) \rightarrow 0
$$

Note that

$$
X_{i}-X_{i-1}=\bigcup_{\sigma \in \Sigma(n-i)} O(\sigma),
$$

is a disjoint union of i-tori, for $k<i$ we have

$$
A_{k}\left(X_{i}-X_{i-1}\right)=\bigoplus_{\sigma \in \Sigma(n-i)} A_{k}(O(\sigma))=0
$$

Let $i=k+1, k+2, \cdots, n$ we then have surjections

$$
A_{k}\left(X_{k}\right) \rightarrow A_{k}\left(X_{k+1}\right) \rightarrow \cdots \rightarrow A_{k}\left(X_{n}\right)=A_{k}\left(X_{\Sigma}\right)
$$

Note that X_{k} has irreducible components $V(\sigma)$ for $\sigma \in \Sigma(n-k)$, so

$$
A_{k}\left(X_{k}\right)=\bigoplus_{\sigma \in \Sigma(n-k)} \mathbb{Z} \cdot[V(\sigma)]
$$

So $A_{k}\left(X_{\Sigma}\right)$ can be generated by $\{[V(\sigma)]: \sigma \in \Sigma(k)\}$.
Thus, $A_{\bullet}\left(X_{\Sigma}\right)$ is generated by T-invariant cycles, i.e. cycles of form $\sum_{\sigma \in \Sigma} a_{\sigma} \cdot V(\sigma)$. And our next step is to determine when a T-invariant cycle is rationally equivalent to 0 .

Proposition 4.2.2 Suppose $\sigma \in \Sigma(k)$. An element $m \in M(\sigma)$ can be identified with a nonzero rational function on $V(\sigma)$, and

$$
\operatorname{div}_{V(\sigma)}(m)=\sum_{\sigma \prec \tau \in \Sigma(k+1)}\left\langle m, u_{\tau, \sigma}\right\rangle \cdot V(\tau) .
$$

Here $u_{\tau, \sigma} \in \sigma$ represents the ray generator of $\bar{\tau} \in \operatorname{Star}(\sigma)$.

Proof. By orbit-cone correspondence, we know that $V(\sigma)$ is a toric variety associated to fan

$$
\operatorname{Star}(\sigma)=\left\{\bar{\tau} \subset N(\sigma)_{\mathbb{R}}: \sigma \prec \tau \in \Sigma\right\},
$$

whose torus is $O(\sigma)$ with dual lattices

$$
M(\sigma)=\sigma^{\perp} \cap M, \text { and } N(\sigma)=N / \operatorname{span}(\sigma \cap N)
$$

So it is just [4, pp171].

Theorem 4.2.3 There is an exact sequence

$$
\bigoplus_{\tau \in \Sigma(k-1)} M(\sigma) \rightarrow \mathbb{Z}^{\Sigma(k)} \rightarrow A^{k}\left(X_{\Sigma}\right) \rightarrow 0
$$

The first map sends a rational function on $V(\sigma)$ to its principal divisor, and the second map is just taking the rationally equivalent class of a T-invariant cycle.

Proof. We only need to show that every T-invariant cycle $\alpha \in \mathbb{Z}^{\Sigma(k)}$ rationally equivalent to 0 comes from combinations of $\operatorname{div}_{V(\sigma)}(m)$. I can't prove this...

Remark. There is a general theorem about spherical varieties. See [3, Theorem 1].

Proposition 4.2.4 Let Σ_{i} be two fans in $\left(N_{i}\right)_{\mathbb{R}}, i=1,2$. The exterier product

$$
A_{\bullet}\left(X_{\Sigma_{1}}\right) \otimes A_{\bullet}\left(X_{\Sigma_{2}}\right) \rightarrow A_{\bullet}\left(X_{\Sigma_{1} \times \Sigma_{2}}\right),
$$

is an isomorphism of graded groups.

Proof. Note that all cones of dimension r in $\Sigma_{1} \times \Sigma_{2}$ are of form $\sigma_{1} \times \sigma_{2}$ with $\operatorname{dim} \sigma_{1}+\operatorname{dim} \sigma_{2}=r$, things are trivial by previous theorem.

Example 4.2.5 (projective toric surface) If Σ is a smooth, complete fan in \mathbb{R}^{2}, then we may assume

$$
\begin{aligned}
& \Sigma(1)=\left\{\rho_{1}, \cdots, \rho_{r}\right\}, \\
& \Sigma(2)=\left\{\sigma_{1}, \cdots, \sigma_{r}\right\},
\end{aligned}
$$

where $\sigma_{i}=\rho_{i}+\rho_{i+1}\left(\rho_{n+1}=\rho_{1}\right)$. Denoted by D_{i} for $V\left(\rho_{i}\right), \gamma_{i}$ for $V\left(\sigma_{i}\right)$, and $u_{i}=\left(a_{i}, b_{i}\right)$ for the ray generator of ρ_{i}. We know that $A_{1}\left(X_{\Sigma}\right)$ is generated by D_{i}, with relations

$$
\sum_{i=1}^{r} a_{i} D_{i}=0, \text { and } \sum_{i=1}^{r} b_{i} D_{i}=0 .
$$

For each i, there are just tow cones σ_{i-1}, σ_{i} contains ρ_{i}. Since all cones are smooth, we can just choose

$$
u_{\sigma_{i-1}, \rho_{i}}=u_{i-1}, \text { and } u_{\sigma_{i}, \rho_{i}}=u_{i+1} .
$$

On the other hand, ρ_{i}^{\perp} is generated by $m_{i}=\left(b_{i},-a_{i}\right)$. Thus for each i there is a relation in $A_{0}\left(X_{\Sigma}\right)$ determined by

$$
\operatorname{div}_{V\left(\rho_{i}\right)}\left(m_{i}\right)=\left\langle m_{i}, u_{i-1}\right\rangle \gamma_{i-1}+\left\langle m_{i}, u_{i+1}\right\rangle \gamma_{i+1}
$$

Note that $\left\{u_{i-1}, u_{i}\right\}$ forms a basis of \mathbb{Z}^{2}, we then have $a_{i-1} b_{i}-a_{i} b_{i-1}=1$ for $i=1, \cdots, r$. Thus $A_{0}\left(X_{\Sigma}\right)$ is freely generated by each one of γ_{i}, and each pair γ_{i}, γ_{j} are rationally equivalent.

In fact, the smooth condition is superfluous: the vectors in \mathbb{R}^{2} defined by

$$
v_{\sigma_{i-1}, \rho_{i}}=\frac{1}{a_{i-1} b_{i}-a_{i} b_{i-1}} u_{i-1}, \text { and } v_{\sigma_{i+1}, \rho_{i}}=\frac{1}{a_{i} b_{i+1}-a_{i+1} b_{i}} u_{i+1}
$$

will satisfy that $\left\langle m_{i}, v_{\sigma_{i-1}, \rho_{i}}\right\rangle=\left\langle m_{i}, u_{\sigma_{i-1}, \rho_{i}}\right\rangle$ and $\left\langle m_{i}, v_{\sigma_{i+1}, \rho_{i}}\right\rangle=\left\langle m_{i}, u_{\sigma_{i+1}, \rho_{i}}\right\rangle$, So

$$
\operatorname{div}_{V\left(\rho_{i}\right)}\left(m_{i}\right)=\gamma_{i-1}-\gamma_{i+1}, \quad i=1, \cdots, r
$$

Chapter 5

Toric Intersection Theory

5.1 Intersection with Cartier Divisors

For a T-invariant Cartier divisor $D=\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$ on X_{Σ}, it associates to data $\left\{m_{\sigma}\right\}_{\sigma \in \Sigma}$, where $m_{\sigma} \in M$ such that

$$
\left.D\right|_{U_{\sigma}}+\operatorname{div}_{U_{\sigma}}\left(m_{\sigma}\right)=0 .
$$

One can easily check that m_{σ} is unique modulo $M(\sigma)$. What we want to do is to determine the intersection $D . \alpha$ for a T-invariant cycle.

Proposition 5.1.1 Suppose $\tau \in \Sigma, V(\tau) \not \subset \operatorname{supp}(D)$ iff $a_{\rho}=0$ for each $\rho \in$ $\tau(1)$. In this case $m_{\sigma} \in M(\tau)$ for each $\sigma \in \Sigma$, and the restriction $\left.D\right|_{V(\tau)}$ is well-defined, with data $\left\{m_{\sigma}\right\}_{\bar{\sigma} \in \operatorname{Star}(\tau)}$.

Proof. Straightforward.

Corollary 5.1.2 If $a_{\rho}=0$ for each $\rho \in \tau(1)$, then

$$
D . V(\tau)=-\sum\left\langle m_{\sigma}, u_{\sigma, \tau}\right\rangle[V(\sigma)],
$$

where the sum runs over all cones $\sigma \in \Sigma$ such that τ is a facet of σ.

Now what if $a_{\rho} \neq 0$ for some $\rho \in \tau(1)$? We expect to find some $m \in M$ such that $D+\operatorname{div}_{X_{\Sigma}}(m)$ will satisfy the condition.

Lemma 5.1.3 Let $D^{\prime}=D+\operatorname{div}_{X_{\Sigma}}\left(m_{\tau}\right)$, then $V(\tau) \not \subset \operatorname{supp}\left(D^{\prime}\right)$.

Proof. Note that D^{\prime} has data $\left\{m_{\sigma}-m_{\tau}\right\}_{\sigma \in \Sigma}$, and one can directly show that $\left\langle m_{\sigma}-m_{\tau}, u_{\rho}\right\rangle=0$ for $\rho \in \tau(1)$.

Then we can deduce the general formula.

Theorem 5.1.4 For $\tau \in \Sigma$ we have

$$
D . V(\tau)=-\sum\left\langle m_{\sigma}-m_{\tau}, u_{\sigma, \tau}\right\rangle[V(\sigma)],
$$

where the sum runs over all cones $\sigma \in \Sigma$ such that τ is a facet of σ.

5.2 Simplicial Case

Recall that a simplicial cone is a cone σ with $\operatorname{dim} \sigma=|\sigma(1)|$, and a simplicial fan refers a fan consists of simplicial cones. Also note that in a simplicial toric variety, each Weil divisor is \mathbb{Q}-Cartier (c.f. [4, pp180]).

Definition 5.2.1 (multiplicity of simplicial cones) Let σ is a simplicial cone in $N_{\mathbb{R}}$, with ray generators u_{1}, \cdots, u_{r}. Then $\bigoplus_{i=1}^{r} \mathbb{Z} u_{i}$ is a subgroup of $\operatorname{span}(\sigma) \cap N$ of finite index mult (σ), which is called the multiplicity of σ.

Remark. $\operatorname{mult}(\sigma)=1$ iff σ is smooth.

Lemma 5.2.2 Let σ is a simplicial cone in $N_{\mathbb{R}}$, with ray generators u_{1}, \cdots, u_{r}. For the facet $\tau=\operatorname{cone}\left(u_{2}, \cdots, u_{r}\right)$, one can pick $u_{\sigma, \tau}=\frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)} u_{1}$.

Proof. We may assume $u_{\sigma, \tau} \in \sigma \cap N$ first. Combine $u_{\sigma, \tau}$ with a basis of $N_{\tau}=\operatorname{span}(\tau) \cap N$ we can get a basis of N_{σ}. One can then see that there is a unique (positive) integer a such that

$$
u_{1}=a u_{\sigma, \tau}+v, \quad v \in N_{\tau} .
$$

By considering the sublattices

$$
\bigoplus_{i=1}^{r} \mathbb{Z} u_{i} \subset \mathbb{Z} u_{1}+N_{\tau} \subset \mathbb{Z} u+N_{\tau}=N_{\sigma}
$$

one can see that a is the index of $\mathbb{Z} u_{1}+N_{\tau}$ in $\mathbb{Z} u+N_{\tau}$, which is $\frac{\operatorname{mult}(\sigma)}{\operatorname{mult}(\tau)}$. Thus $u_{\sigma, \tau}=\frac{\operatorname{mult}(\sigma)}{\operatorname{mult}(\tau)} u_{1}+v$. Since $v \in N_{\tau}$ does not influence the projection in $N(\tau)$, we can then pick $u_{\sigma, \tau}=\frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)} u_{1}$ as desired.

Theorem 5.2.3 Suppose Σ is a simplicial fan. For $\tau \in \sigma$ and $\rho \in \Sigma(1)-\tau(1)$, we have

$$
V(\rho) \cdot V(\tau)= \begin{cases}\frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}[V(\sigma)], & \sigma=\rho+\tau \in \Sigma, \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. Suppose ρ has ray generator u and τ has ray generators u_{1}, \cdots, u_{r}. Since $V(\rho)$ is \mathbb{Q}-Cartier, we can find a positive integer l such that $l \cdot V(\rho)$ is Cartier, with data $\left\{m_{\sigma}\right\}_{\sigma \in \Sigma}$.

If $\sigma=\rho+\tau \in \Sigma$, then by definition we have $\left\langle m_{\sigma}, u\right\rangle=-l$. Thus $\left\langle m_{\sigma}, u_{\sigma, \tau}\right\rangle=-l$ by 5.2.2. For $\sigma^{\prime} \neq \sigma$ such that τ is a facet of σ^{\prime}, there is a ray ρ^{\prime} with generator u^{\prime} such that $\sigma^{\prime}=\rho^{\prime}+\tau$. By definition we also have $\left\langle m_{\sigma^{\prime}}, u^{\prime}\right\rangle=0$, hence $\left\langle m_{\sigma^{\prime}}, u_{\sigma^{\prime}, \tau}\right\rangle=0$. Note that $V(\tau) \not \subset V(\rho)$, by 5.1.2 we can deduce that

$$
(l \cdot V(\rho)) \cdot V(\tau)=l \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}[V(\sigma)],
$$

i.e. $V(\rho) . V(\tau)=\frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}[V(\sigma)]$.

Otherwise $\left\langle m_{\sigma}, u^{\prime}\right\rangle=0$ for any $\sigma \succ \tau$ and ray ρ^{\prime} with generator u^{\prime} such that $\sigma=\rho^{\prime}+\tau$, so $V(\rho) . V(\tau)=0$.

Remark. If $\sigma=\rho+\tau \in \Sigma$, then $V(\rho) \cap V(\tau)=V(\sigma)$ is a proper intersection. If moreover σ is smooth, then $V(\rho), V(\tau)$ intersect transversally. If $\rho+\tau \notin \Sigma$, then $V(\rho) \cap V(\tau)=\varnothing$.

Example 5.2.4 (projective toric surface) Recall example 4.2.5. Let Σ be a complete fan in \mathbb{R}^{2} (hence simplicial), and assume

$$
\begin{aligned}
& \Sigma(1)=\left\{\rho_{1}, \cdots, \rho_{r}\right\}, \\
& \Sigma(2)=\left\{\sigma_{1}, \cdots, \sigma_{r}\right\},
\end{aligned}
$$

as before. Note that $A_{0}\left(X_{\Sigma}\right)=\mathbb{Z} \cdot[\gamma]$ where $[\gamma] \sim\left[V\left(\sigma_{i}\right)\right]$ for each i. By above theorem, for $i \neq j$ we have

$$
D_{i} \cdot D_{j}= \begin{cases}\frac{1}{\left|a_{i} b_{j}-a_{j} b_{i}\right|}[\gamma], & |i-j|=1 \\ 0, & \text { otherwise }\end{cases}
$$

So it remains to compute the "self intersection" $D_{i} . D_{i}$. Note that $\left\langle u_{i}, u_{i}\right\rangle \neq 0$, then we have

$$
D_{i}=\frac{1}{\left\langle u_{i}, u_{i}\right\rangle}\left(\operatorname{div}(m)-\sum_{j \neq i}\left\langle u_{i}, u_{j}\right\rangle D_{j}\right) .
$$

Thus

$$
\begin{aligned}
D_{i} \cdot D_{i} & =D_{i} \cdot \frac{1}{\left\langle u_{i}, u_{i}\right\rangle}\left(\operatorname{div}(m)-\sum_{j \neq i}\left\langle u_{i}, u_{j}\right\rangle D_{j}\right) \\
& =-\frac{1}{a_{i}^{2}+b_{i}^{2}} \sum_{j \neq i}\left(a_{i} a_{j}+b_{i} b_{j}\right) D_{i} \cdot D_{j} \\
& =-\frac{1}{a_{i}^{2}+b_{i}^{2}}\left(\left(a_{i} a_{i-1}+b_{i} b_{i-1}\right) D_{i} \cdot D_{i-1}+\left(a_{i} a_{i+1}+b_{i} b_{i+1}\right) D_{i} . D_{i+1}\right) \\
& =-\frac{1}{\left(a_{i}^{2}+b_{i}^{2}\right)}\left(\frac{a_{i} a_{i-1}+b_{i} b_{i-1}}{\left|a_{i} b_{i-1}-a_{i-1} b_{i}\right|}+\frac{a_{i} a_{i+1}+b_{i} b_{i+1}}{\left|a_{i} b_{i+1}-a_{i+1} b_{i}\right|}\right)[\gamma] .
\end{aligned}
$$

From this, one can check that X_{Σ} has rational Chow ring

$$
A_{\mathbb{Q}}^{\bullet}\left(X_{\Sigma}\right)=\frac{\mathbb{Q}\left[x_{1}, \cdots, x_{i}\right]}{\left(\sum_{i=1}^{r} a_{i} x_{i}, \sum_{i=1}^{r} b_{i} x_{i},\left\{x_{i} x_{j}\right\}_{|i-j|>1}\right)} .
$$

Example 5.2.5 (quadratic cone) In real plane \mathbb{R}^{2}, the triangle T with vertices $(0,0),(2,0),(0,1)$ is a very ample (in fact normal) polytope. The associated toric variety is just the weighted projective plane $Q=\mathbb{P}(1,1,2)$, and T gives a closed immersion

$$
\begin{aligned}
Q & \rightarrow \mathbb{P}^{3} \\
{[a, b, c] } & \mapsto\left[a^{2}, b^{2}, a b, c\right]
\end{aligned}
$$

realizing Q as the quadratic cone $x y=z^{2}$ in \mathbb{P}^{3}.
In the normal fan Σ_{T} of T, there are 3 ray generators $u_{1}=(1,0), u_{2}=$ $(0,1), u_{3}=(-1,-2)$. The 3 rays correspond to 3 divisors D_{1}, D_{2}, D_{3}. Applying previous discussion to the normal fan Σ_{T}, one can see that $A_{1}(Q)$ is freely generated by D_{2}, with self intersection $D_{2} \cdot D_{2}=2[\gamma]$.

In \mathbb{P}^{3}, D_{1} is the line $y=z=0, D_{2}$ is the conic (which is a hyperplane section) $w=0, x y=z^{2}$, and D_{3} is the line $x=z=0$. One can see that D_{1}, D_{2} intersect transversally at $[1,0,0,0]$, and $D_{1} . D_{2}=[\gamma]$ as expected. One can also see that D_{1}, D_{3} intersect properly at the singularity $[0,0,0,1]$, but $D_{1} \cdot D_{3}=\frac{1}{2}[\gamma]$ is not an integral cycle. Note that $D_{1} \sim D_{3}$ are not Cartier, while $2 D_{1} \sim 2 D_{3} \sim D_{2}$ are.

This is an example from [1, pp428], which shows that the intersection on a singular variety may not behave well.

5.3 Chow Rings of Smooth Complete Toric Varieties

Now suppose Σ is a smooth complete fan, we now come to our goal to compute $A^{\bullet}\left(X_{\Sigma}\right)$. By the discussion in simplicial case, we have

Lemma 5.3.1 For distinct rays $\rho_{1}, \cdots, \rho_{r}$ in $\Sigma(1)$, we have

$$
\left[V\left(\rho_{1}\right)\right] \cdot\left[V\left(\rho_{2}\right)\right] \cdots\left[V\left(\rho_{2}\right)\right]= \begin{cases}{[V(\sigma)],} & \sum_{i=1}^{r} \rho_{i}=\sigma \in \Sigma, \\ 0, & \text { otherwise }\end{cases}
$$

in the Chow ring $A^{\bullet}\left(X_{\Sigma}\right)$.

Also note that $A^{\bullet}\left(X_{\Sigma}\right)$ is generated by $\{V(\rho): \rho \in \Sigma(1)\}$ as a commutative ring, so $A^{\bullet}\left(X_{\Sigma}\right)$ is a quotient of the total coordinate ring $\mathbb{Z}\left[x_{\rho}: \rho \in \Sigma(1)\right]$. We define

$$
\mathcal{I}=\left(x_{\rho_{1}} \cdots x_{\rho_{r}}: \rho_{1}, \cdots, \rho_{r} \text { are distinct rays in } \Sigma, \sum \rho_{i} \notin \Sigma\right),
$$

to be the Stanley-Reisner ideal. And the principal divisors also generate the graded ideal

$$
\mathcal{J}=\left(\sum_{\rho}\left\langle m, u_{\rho}\right\rangle x_{\rho}: m \in M\right) .
$$

Definition 5.3.2 We say the quotient ring

$$
R(\Sigma):=\frac{\mathbb{Z}\left[x_{\rho}: \rho \in \Sigma(1)\right]}{\mathcal{I}+\mathcal{J}},
$$

is the Chow ring of fan Σ.

One can see that there is a surjective morphism $R(\Sigma) \rightarrow A^{\bullet}\left(X_{\Sigma}\right)$ defined by $x_{\rho} \mapsto\left[V_{\rho}\right]$. For $\tau \in \Sigma(k), m \in M(\tau)$ we have

$$
\begin{aligned}
& \sum_{\rho \in \Sigma(1)}\left\langle m, u_{\rho}\right\rangle x_{\rho} \prod_{\varrho \in \tau(1)} x_{\varrho} \\
= & \sum_{\rho \in \Sigma(1)-\tau(1)}\left\langle m, u_{\rho}\right\rangle x_{\rho} \prod_{\rho \neq \varrho \in \tau(1)} x_{\varrho} \\
= & \sum_{\rho+\tau \in \Sigma(k+1)}\left\langle m, u_{\rho}\right\rangle \prod_{\varrho \in(\rho+\tau)(1)} x_{\varrho}
\end{aligned}
$$

in $R(\Sigma)$. It follows that

Theorem 5.3.3 $R(\Sigma) \simeq A^{\bullet}\left(X_{\Sigma}\right)$ as graded rings.

Remark. We also have $A^{\bullet}\left(X_{\Sigma}\right) \simeq H^{2 \bullet}\left(X_{\Sigma}^{\text {an }}, \mathbb{Z}\right)$, where $X_{\Sigma}^{\text {an }}$ carries the analytic topology. And one can check that

$$
\operatorname{rank}\left(A_{k}\left(X_{\Sigma}\right)\right)=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k} N_{i},
$$

where $n=\operatorname{rank}(N)$ and $N_{i}=|\Sigma(i)|$. It is surprising that such a rank only depends on N_{i}.

Example 5.3.4 $A^{\bullet}\left(\mathbb{P}^{n}\right)=\mathbb{Z}[h] /\left(h^{n+1}\right)$.

Example 5.3.5 $A^{\bullet}\left(\mathbb{F}_{r}\right)=\mathbb{Z}[h, \zeta] /\left(h^{2}, \zeta^{2}+r h \zeta\right)$.

Remark. It can be shown that if Σ is simplicial and complete, then

$$
A_{\mathbb{Q}}^{\bullet}\left(X_{\Sigma}\right)=R(\Sigma) \otimes \mathbb{Q} .
$$

See [4, pp616-617].

Chapter 6

Toric Riemann-Roch

To be continued...

Bibliography

[1] Robin Hartshorne. (1977) Algebraic Geometry, Springer-Verlag, New York.
[2] William Fulton. (1998) Intersection Theory, Springer-Verlag, New York.
[3] W. Fulton, R. Macpherson, F. Sottile, B. Sturmfels. Intersection Theory on Spherical Varieties. Journal of Algebraic Geometry, 4 (1994), 181-193.
[4] David A. Cox, John B. Little, Henry K. Schenck. (2011) Toric Variety, American Mathematical Society.

