Intersection Theory of Toric varieties

ZCC

zcc22@mails.tsinghua.edu.cn

December 29, 2023

Contents

1	Chow Groups		1
	1.1	Algebraic Cycles	1
	1.2	Rational Equivalence	2
	1.3	Proper Pushforward	4
	1.4	Flat Pullback	5
2	Intersection Products		8
	2.1	Intersection with Cartier Divisors	8
	2.2	Geometric Intersection	9
	2.3	Chow Rings	10
3	Riemann-Roch Theorem		12
	3.1	Chern Class	12
	3.2	Hirzebruch-Riemann-Roch	13
4	Chow Groups of Toric Varieties		16
	4.1	Chow Groups of Tori	16
	4.2	Chow Groups of X_{Σ}	18
5	Toric Intersection Theory		22
	5.1	Intersection with Cartier Divisors	22
	5.2	Simplicial Case	23
	5.3	Chow Rings of Smooth Complete Toric Varieties	26
6	6 Toric Riemann-Roch		29
Reference			29

Chapter 1

Chow Groups

We may introduce the general theory of intersection. Our main reference are [2] and Stacks Project. All schemes are of finite type over a given field and all morphisms are over this field, unless specified otherwise.

1.1 Algebraic Cycles

Definition 1.1.1 (algebraic cycle) A *k*-cycle of a scheme X is an element of the free abelian group $Z_k(X)$ generated by the closed integral subschemes of dimension k.

We have the (N-)graded group $Z_{\bullet}(X) = \bigoplus_{k \ge 0} Z_k(X)$, and generally a *cycle* refers an element in $Z_{\bullet}(X)$. We also have the concept of *k*-cocycle, which is an element of $Z^{n-k}(X)$ if X has pure dimension n. An 1-cocycle is nothing else but a Weil divisor when X is integral.

For a cycle

$$\alpha = \sum n_Z Z,$$

we can define its support by supp $(\alpha) = \bigcup_{n_Z \neq 0} Z$.

Definition 1.1.2 (effective cycle) An *effective cycle* is a cycle of non-negative coeffecients. Any effective cycle is associated to a closed subscheme.

Let Z by a closed subscheme of X. We define the cycle associated to Z by

$$\sum_{\dim \mathscr{O}_{Z,\xi}=0} \operatorname{length}(\mathscr{O}_{Z,\xi}) \cdot \overline{\{\xi\}}$$

It is a cycle of support Z. Note that $\overline{\{\xi\}}$ runs through (finitely many) irreducible components of Z, and $\mathcal{O}_{Z,\xi}$ is an artinian local ring hence has finite length.

The pushforward of cycles are well-defined, makes Z_{\bullet} a functor.

Definition 1.1.3 (pushforward) For a morphism $f: X \to Y$ and an integral closed subscheme $V \subset X$ of dimension $k, W := \overline{f(V)}$ is an integral closed subscheme of Y. If dim $V = \dim W$, then K(V) is a finite extension of K(W) (see 02NX). We define

$$f_*V = \begin{cases} [K(V) : K(W)] \cdot W, & \dim V = \dim W, \\ 0, & \text{otherwise,} \end{cases}$$

which extends linearly to a homomorphism

 $f_* \colon Z_k(X) \to Z_k(Y).$

For example, if $i: V \to X$ is an closed immersion, then the pushforward i_* identifies $Z_k(V)$ as a subgroup of $Z_k(X)$ in an obvious way.

Definition 1.1.4 (exterier product) We have the obvious *exterier product* or *Künneth map*

$$Z_{\bullet}(X) \otimes Z_{\bullet}(Y) \to Z_{\bullet}(X \times Y)$$
$$(U, V) \mapsto U \times V$$

1.2 Rational Equivalence

Algebraic cycles generalize the concept of Weil divisors, and rational equivalence is the analog of linear equivalence. **Definition 1.2.1 (rational equivalence)** Suppose V is a (k+1)-dimensional integral closed subscheme V of X. For a nonzero rational function $f \in K(V)^*$, we can define its *principal divisor* $\operatorname{div}_V(f)$ by

$$\sum_{\dim \mathscr{O}_{V,z}=1} \operatorname{ord}_{z}(f) \cdot \overline{\{z\}}$$

as in 0BE3. We have the subgroup $R_k(X) \subset Z_k(X)$ generated by principal divisors of every (k + 1)-dimensional integral closed subschemes of X, and the graded subgroup $R_{\bullet}(X) = \bigoplus_k R_k(X)$.

Any tow cycles α, β with $\alpha - \beta \in R_{\bullet}(X)$ is called *rationally equivalent*, denoted by $\alpha \sim \beta$. The quotient groups

$$A_{\bullet}(X) = Z_{\bullet}(X) / R_{\bullet}(X),$$

is called the *Chow group* of X.

Remark. The Chow group of a scheme X is the analog of the singular homology of a topological space.

If X is an integral scheme of finite type over k, with $\dim X = n$, then there are some easy observations that

- $A_{n-1}(X) = \operatorname{Cl}(X)$ is just the Weil divisor class group,
- $A_n(X) = Z_n(X)$ is just the free abelian generated by X itself,
- $A_k(X) = Z_n(X) = 0$ for k > n.

However, it is difficult to determine $A_k(X)$ for k < n, even if X is affine or k = 0.

Proposition 1.2.2 The exterier product of two cycles rationally equivalent to zero is also rationally equivalent to zero. So we have exterier product

$$A_{\bullet}(X) \otimes A_{\bullet}(Y) \to A_{\bullet}(X \times Y),$$

of Chow groups.

1.3 Proper Pushforward

Suppose $f: X \to Y$ is a proper morphism, the pushforward f_* will behave well.

Proposition 1.3.1 If V is an integral closed subscheme of X and h is a nonzero rational function on V, then

$$f_* \operatorname{div}_V(h) = \begin{cases} \operatorname{div} \left(\operatorname{Norm}_{K(V)/K(f(V))}(h) \right), & \operatorname{dim} V = \operatorname{dim} f(V), \\ 0, & \operatorname{dim} V > \operatorname{dim} f(V). \end{cases}$$

Proof. This is not easy, see 02RT.

This proposition shows that f can induce the morphism

$$f_* \colon A_{\bullet}(X) \to A_{\bullet}(Y),$$

of Chow groups, which is the so-called proper pushforward.

Remark. There are other advantages of proper morphism. For example, since f (in fact universally) closed, for any integral closed subscheme $V \subset X$, f(V) is already closed and dim $f(V) \leq \dim V$.

Remark. A closed immersion $i: V \to X$ is always proper, so it induces a morphism $i_*: A_k(V) \to A_k(X)$. This is not in general injective, even if $Z_k(V)$ is a subgroup of $Z_k(X)$.

Definition 1.3.2 (degree of 0-cycles) Consider the structure morphism $X \to \operatorname{Spec} k$, we have the induced morphism

$$Z_0(X) \to Z_0(\operatorname{Spec} k) = \mathbb{Z},$$

which defines the *degree* of 0-cycles. When X is proper over k, the degree morphism

deg: $A_0(X) \to \mathbb{Z}$,

is well-defined. If $\alpha = n_1 x_1 + \cdots + n_r x_r$, then we have explicitly

$$\deg \alpha = \sum_{i=1}^{r} n_i [\kappa(x_i)/k],$$

where $\kappa(x_i)$ is the residue field of \mathcal{O}_{X,x_i} .

Remark. When X is a smooth complete variety of dimension n, then we can define

$$\int_X : A^{\bullet}(X) \to \mathbb{Z},$$

which sends a cocycle to the degree of its component of degree n. The integral symbol comes from the Poincaré duality of a compact manifold.

1.4 Flat Pullback

There are various ways to define the pullback of a cycle. We first introduce the flat pullback.

Definition 1.4.1 (pullback) For a morphism $f: X \to Y$ and an integral closed subscheme $W \subset Y$, we can consider the scheme theoretic inverse image

$$f^*V := W \times_Y X,$$

which is a closed subscheme of X with underlying topological space $f^{-1}(V)$ (see exercise II.3.11(a) in [1, pp92]). This extends linearly to a map

$$f^* \colon Z_{\bullet}(Y) \to Z_{\bullet}(X).$$

When $f: X \to Y$ is flat which has relative dimension, this pullback f^* will behave well.

Proposition 1.4.2 If f is a flat morphism of relative dimension r, then

- 1. If W is a k-dimensional integral closed subscheme of Y, then $f^{-1}W$ has pure dimension k + r.
- 2. If $\alpha \sim \beta$, then $f^*\alpha \sim f^*\beta$.

```
Proof. See 02R8, 02S1.
```

This proposition shows that f can induce the morphism

$$f^*\colon A_k(Y)\to A_{k+r}(X),$$

of groups, which is the so-called *flat pullback*.

Example 1.4.3 If $f: X \to Y$ is finite locally free of degree d (e.g. nonconstant morphism of projective curves), then f is proper and flat of dimension 0, so we have morphism of graded rings

$$\begin{split} f_* \colon A_{\bullet}(X) \to A_{\bullet}(Y), \\ f^* \colon A_{\bullet}(Y) \to A_{\bullet}(X), \end{split}$$

and we have $f_*f^*\alpha = d\alpha$. See 02RH.

Example 1.4.4 (vector bundle) If $p: E \to X$ is a vector bundle of rank r, then it is flat of relative dimension r. The induced morhism

$$p^* \colon A_k(X) \to A_{k+r}(E),$$

is an isomorphism. See [2, pp64].

Example 1.4.5 (localization sequence) If $j: U \to X$ is an open immersion, then it is flat of relative dimension 0. We have the exact sequence

$$A_k(Z) \xrightarrow{i_*} A_k(X) \xrightarrow{j^*} A_k(U) \to 0,$$

where $i: Z \to X$ is a closed immersion of reduced closed subscheme Z = X - U. This is called *localization sequence*, which is often used to compute Chow groups. See [2, pp21].

Chapter 2

Intersection Products

2.1 Intersection with Cartier Divisors

We may introduce some facts about Cartier divisors, one can see e.g. section II.6 of [1] for details. Let X be an integral scheme, a *Cartier divisor* refers a global section of the quotient sheaf $\mathscr{K}^*/\mathscr{O}_X^*$. Cartier divisors form a group CaDiv(X), and has a quotient CaCl(X) modulo linear equivalence.

Each Cartier divisor D on X can associate to a Weil divisor, and this produces a homomorphism

$$\operatorname{CaCl}(X) \to \operatorname{Cl}(X).$$

This homomorphism is injective if X is normal, and is bijective if X is smooth.

Each Cartier divisor D on X can also associate to an invertible sheaf $\mathscr{O}_X(D)$, and this produces an isomomorphism

$$\operatorname{CaCl}(X) \xrightarrow{\sim} \operatorname{Pic}(X).$$

Definition 2.1.1 For a Cartier divisor D on X and a k-dimensional irreducible closed variety $V \subset X$, the restriction (or pullback) $\mathscr{O}_X(D)|_V$ in an invertible sheaf on V. So there is a unique Cartier divisor class D.V on V such that $\mathscr{O}_X(D)|_V \simeq \mathscr{O}_V(D.V)$. The map $(D, V) \mapsto D.V$ extends to a morphism

$$\operatorname{CaDiv}(X) \times Z_k(X) \to A_{k-1}(X),$$

which is the *intersection* of Cartier divisors and k-cycles.

Remark. If $V \not\subset \operatorname{supp}(D)$, then the restriction $D|_V$ is well-defined by restricting the local equations. For general case, one can also easily see that D.V is well-defined in $A_{k-1}(V \cap \operatorname{supp}(D))$.

We may introduce some facts about intersection of Cartier divisors and cycles, see [2] for details.

Proposition 2.1.2 • If $D_1 \sim D_2$, $\alpha_1 \sim \alpha_2$, then $D_1 \cdot \alpha_1 = D_2 \cdot \alpha_2$.

• For Cartier divisors D_1, D_2 , identifying D_2 as an 1-cocycle then we have $D_1.D_2 = D_2.D_1$ in $A^2(X)$.

Thus the intersection can induce morphism

$$\operatorname{Pic}(X) \times A_k(X) \to A_{k-1}(X),$$

and a symmetric bilinear map

$$\operatorname{Pic}(X) \times \operatorname{Pic}(X) \to A^{k-2}(X).$$

Sometimes we also treat with \mathbb{Q} -Cartier divisors, i.e., elements in $\text{Div}(X)_{\mathbb{Q}}$ with some multiple Cartier. In this case we can define the intersection of a \mathbb{Q} -Cartier and a \mathbb{Q} -cycle, which is also a \mathbb{Q} -cycle, and we have the bilinear map

 $\operatorname{Pic}(X)_{\mathbb{Q}} \times A_k(X)_{\mathbb{Q}} \to A_{k-1}(X)_{\mathbb{Q}}.$

2.2 Geometric Intersection

Let X be an irreducible variety over an algebraically closed field (e.g. \mathbb{C}), and Y_1, \dots, Y_r be irreducible closed subvarieties.

Definition 2.2.1 (proper intersection) We say Y_1, \dots, Y_r intersect properly if

$$\operatorname{codim}\left(\bigcap_{i=1}^{r} Y_{i}\right) = \sum_{i=1}^{r} \operatorname{codim}(Y_{i}).$$

Here the codim is the codimension of a closed subvariety in X.

Definition 2.2.2 (transversal intersection) If X, Y_i are all smooth, we say Y_1, \dots, Y_r intersect transversally if for each $p \in \bigcap_{i=1}^r Y_i$ we have

$$\operatorname{codim}\left(\bigcap_{i=1}^{r} T_{p} Y_{i}\right) = \sum_{i=1}^{r} \operatorname{codim}(T_{p} Y_{i}).$$

Here the codim is the codimension of a linear subspace in T_pX .

Definition 2.2.3 (Serre's intersection multiplicity) If Y, Z intersect properly, let W be an irreducible component of $Y \cap Z$ with regular generic point. We define the *intersection multiplicity* of Y, Z at W to be

$$i(Y,Z;W) = \sum_{i} (-1)^{i} \text{length Tor}_{i}^{A}(A/I, A/J),$$

where $A = \mathcal{O}_{X,W}$ is the local ring of X at the generic point of W, and I, J be the ideals of Y, Z respectively. Note that A is a regular local ring hence has finite global dimension.

Remark. If Y intersects Z transversally, then i(Y, Z; W) = 1 for each component W.

2.3 Chow Rings

Now let X be an irreducible smooth variety over an algebraically closed field k. Fulton constructed an *intersection product* on $A^{\bullet}(X)$ such that $A^{\bullet}(X)$ is a commutative associative graded ring, and such ring $A^{\bullet}(X)$ is called the *Chow ring* of X. The intersection product satisfies some expected properties.

Proposition 2.3.1 In the Chow ring $A^{\bullet}(X)$ of X, we have

- If Y, Z are irreducible smooth closed subvarieties of X intersects properly, then

$$[Y] \cdot [Z] = \sum_{W} i(Y, Z; W)[W],$$

where the sum runs over all components of $Y \cap Z$.

- If V is an irreducible closed subvariety and D is an effective Cartier divisor, then $[D] \cdot [V]$ is just the intersection D.V defined before.
- A^{\bullet} defines a contravariant functor from the category of irreducible smooth varieties to the category of commutative associative graded rings, and the pullback f^* is just the flat pullback when f is flat (of relative dimension 0).

Remark. By Chow's moving lemma, if X is moreover quasi-projective, the intersection product is uniquely determined by above proposition.

It is difficult to compute Chow rings in general, here are some selected facts.

Example 2.3.2
$$A^{\bullet}(\mathbb{A}^n) = \mathbb{Z} \cdot [\mathbb{A}^n]$$
 with deg $[\mathbb{A}^n] = n$.

Example 2.3.3 By the classical Bézout theorem, one has

$$A^{\bullet}(\mathbb{P}^2) = \mathbb{Z}[h]/(h^3),$$

is the truncated polynomial ring, where h is the class of any line.

Remark. For some special singular varieties, the *rational Chow ring* $A^{\bullet}_{\mathbb{Q}}$ can be defined. In toric world, we are intersted in rational Chow ring of a simplicial toric variety.

Chapter 3

Riemann-Roch Theorem

See appendix A of [1] for details. Let X be a smooth variety (over \mathbb{C}).

3.1**Chern Class**

Definition 3.1.1 (Chern class) For a locally free sheaf \mathscr{E} on X, there is a projective bundle $\pi \colon \mathbb{P}(\mathscr{E}) \to X$. The invertible sheaf $\mathscr{O}_{\mathbb{P}(\mathscr{E})}(1)$ corresponds to an 1-cocycle $\xi \in A^1(\mathbb{P}(\mathscr{E}))$. One defines the Chern class $c(\mathscr{E}) \in A^{\bullet}(X)$ by

- $c_0(\mathscr{E}) = 1.$ $c_i(\mathscr{E}) = 0$ for i > r.• $\sum_{i=0}^r (-1)^i (\pi^* c_i(\mathscr{E})) \cdot \xi^{r-i}.$ $c(\mathscr{E}) = \sum_{i \ge 0} c_i(\mathscr{E}).$

Proposition 3.1.2 Chern classes of locally free sheaves have the following properties.

- $c(\mathscr{O}_X(D)) = 1 + D$ for Cartier divisor $D \in A^1(X)$.
- If $f: X \to Y$ is a morphism of smooth varieties and $\mathscr E$ is a locally free sheaf on Y, then $c(f^*\mathscr{E}) = f^*c(\mathscr{E}).$

• If $0 \to \mathscr{E} \to \mathscr{F} \to \mathscr{G} \to 0$ is an exact sequence of locally free sheaves, then $c(\mathscr{F}) = c(\mathscr{E}) \cdot c(\mathscr{G}).$

Lemma 3.1.3 (splitting principle) For a locally free sheaf \mathscr{E} of rank r on X, there is a morphism $f: X' \to X$ such that $f^*: A^{\bullet}(X) \to A^{\bullet}(X')$ is injective and there is a filtration

$$0 = \mathscr{F}_0 \subset \cdots \subset \mathscr{F}_r = f^* \mathscr{E},$$

such that $\mathscr{F}_i/\mathscr{F}_{i-1}$ is an invertible sheaf for each i.

The splitting principle shows that the Chern class can be uniquely defined by proposition 3.1.2. Moreover, if \mathscr{E} is locally free of rank r, then there are $\xi_i \in A^1(X)$ such that

$$c(\mathscr{E}) = \prod_{i=1}^{r} (1+\xi_i),$$

and we say ξ_i 's are *Chern roots* of \mathscr{E} .

Corollary 3.1.4 Let \mathscr{E}, \mathscr{F} are locally free sheaf, with Chern roots ξ_i, η_j respectively. Then

- & ⊗ ℱ has Chern roots ξ_i + η_j.
 ℋom(ℱ, ℰ) has Chern roots ξ_i η_j.
 ∧^p ℰ has Chern roots Σ^p_{k=1} ξ_{ik}, where i₁ < i₂ < ··· < i_p.

Hirzebruch-Riemann-Roch 3.2

Suppose \mathscr{E} is a locally free sheaf of rank r on X, with Chern roots ξ_i .

Definition 3.2.1 (Chern character) The Chern character $ch(\mathscr{E}) \in A^{\bullet}_{\mathbb{Q}}(X)$ is defined by

$$\operatorname{ch}(\mathscr{E}) = \sum_{i=1}^{r} e^{\xi_i},$$

 $\label{eq:ch} \begin{array}{l} \mathrm{ch}(\mathscr{E}\\ \end{array}$ where $e^{\xi}=\sum_{n\geq 0}\frac{\xi^n}{n!} \text{ for } \xi\in A^1(X). \end{array}$

Definition 3.2.2 (Todd class) The *Todd class* $td(\mathscr{E}) \in A^{\bullet}_{\mathbb{Q}}(X)$ is defined by

$$\mathrm{td}(\mathscr{E}) = \prod_{i=1}^{r} \frac{\xi_i}{1 - e^{\xi_i}},$$

where

$$\frac{\xi}{1-e^{\xi}} = 1 + \frac{1}{2}\xi + \sum_{n \ge 1} (-1)^{n-1} \frac{B_n}{(2n)!} \xi^{2n},$$

and B_n is the *n*-th Bernoulli number.

It is tedious to calculate general Chern character and Todd class. For example, if \mathscr{E} has *i*-th Chern class c_i , then

$$ch(\mathscr{E}) = r + c_1 + \frac{1}{2}(c_1^2 - 2c_2) + \frac{1}{6}(c_1^3 - 3c_1c_2 + 3c_3) + \cdots$$
$$td(\mathscr{E}) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \cdots$$

Theorem 3.2.3 (Hirzebruch-Riemann-Roch) For a locally free sheaf \mathscr{E} over a smooth complete variety X of dimension n, and suppose \mathscr{T} is the tangent sheaf of X (dual of the sheaf $\Omega_{X/\mathbb{C}}$ of differentials), we have

$$\chi(\mathscr{E}) = \int_X \mathrm{ch}(\mathscr{E}) \cdot \mathrm{td}(\mathscr{T}),$$

where the integral symbol means taking the degree of the component of degree n in $A^{\bullet}_{\mathbb{Q}}(X)$.

Remark. There is a relative version of Riemann-Roch, which is stated by Grothendieck in 1957.

Example 3.2.4 (algebraic curves) Assume X is a smooth projective curve, with canonical divisor K. Then $\mathscr{T} \simeq \mathscr{O}_X(-K)$, so

$$\operatorname{td}(\mathscr{T}) = 1 - \frac{1}{2}K.$$

For an invertible sheaf $\mathscr{O}_X(D)$, we have $\operatorname{ch}(\mathscr{O}_X(D)) = 1 + D$, so the HRR is just

$$\chi(\mathscr{O}_X(D)) = \int_X (1+D)\left(1 - \frac{1}{2}K\right) = \deg(D - K/2) = \deg D + 1 - g,$$

where g is the genus of X, and this is the classical Riemann-Roch for curves.

Chapter 4

Chow Groups of Toric Varieties

We now compute the Chow group $A_{\bullet}(X_{\Sigma})$ for some fan Σ .

4.1 Chow Groups of Tori

Recall that the Weil class group of an affine space is always trivial, since a polynomial ring over field is a UFD (see [1, pp132]).

Proposition 4.1.1 $A_0(\mathbb{A}^n) = 0$ for n > 0.

Proof. For a closed point p in \mathbb{A}^n , there is a line $L \simeq \mathbb{A}^1$ passing through p when n > 0. Since the class group of L is trivial, there is a rational function f on L such that $p = \operatorname{div}_L(f)$, which shows that p is rationally equivalent to 0. Thus $A_0(\mathbb{A}^n) = 0$ for n > 0.

However, for a general integral closed subvariety Z of \mathbb{A}^n , it is hopeless to find a $Y \subset \mathbb{A}^n$ on which Z is a principal divisor. We may use the big theorem 1.4.4 to deduce the isomorphism

$$A_k(\mathbb{A}^n) \simeq A_0(\mathbb{A}^{n-k}) = 0, \quad k < n,$$

since \mathbb{A}^n is a trivial bundle of rank k over \mathbb{A}^{n-k} . We would rather give another proof here.

Lemma 4.1.2 For any variety X the flat pullback

$$A_k(X) \to A_{k+1}(X \times \mathbb{A}^1),$$

is surjective.

Proof. Let $V \subset X \times \mathbb{A}^1$ be an integral closed subvariety of dimension k + 1, and $W = \overline{p(V)}$ be the Zariski closure of the projection of V in X. One can easily see that dim W = k or k + 1:

- If dim W = k, then $p^*W = W \times \mathbb{A}^1$ is a (k + 1)-dimensional closed subvariety contains V. In this case we have $V = p^*W$.
- If $\dim W = k + 1$, then by the theory of Weil divisors, the pullback

$$A_k(W) \to A_{k+1}(W \times \mathbb{A}^1),$$

is an isomorphism. In this case, $[V] \in A_{k+1}(W \times \mathbb{A}^1)$ corresponds to a subvariety $Z \subset W$ with $[V] = p^*[Z]$.

Above all, p^* is surjective.

By the above lemma, the composition

$$A_0(\mathbb{A}^{n-k}) \to A_1(\mathbb{A}^{n-k+1}) \to \dots \to A_k(\mathbb{A}^n),$$

is surjective, and it follows that

Theorem 4.1.3
$$A_k(\mathbb{A}^n) = \begin{cases} 0, & k \neq n, \\ \mathbb{Z} \cdot [\mathbb{A}^n], & k = n. \end{cases}$$

Corollary 4.1.4 For an n-torus T, we have

$$A_k(T) = \begin{cases} 0, & k \neq n, \\ \mathbb{Z} \cdot [T], & k = n. \end{cases}$$

Proof. There is an affine space \mathbb{A}^n such that T is an open subvariety of \mathbb{A}^n . The flat pullback $A_k(\mathbb{A}^n) \to A_k(T)$ is surjective, yields that $A_k(T) = 0$ for k < n by above theorem.

4.2 Chow Groups of X_{Σ}

Now suppose T is an n-torus with dual lattices M, N, and Σ is a fan in $N_{\mathbb{R}}$. From [4, pp172], we know that there is an exact sequence for class group:

$$M \to \mathbb{Z}^{\Sigma(1)} \to A_{n-1}(X_{\Sigma}) \to 0.$$

In fact, there is a similar exact sequence for general Chow groups. Note that there is a filtration

$$\emptyset = X_{-1} \subset X_0 \subset \cdots \subset X_n = X_{\Sigma},$$

where $X_i = \bigcup_{\sigma \in \Sigma(n-i)} V(\sigma)$.

Proposition 4.2.1 Then the group $A^k(X_{\Sigma}) = A_{n-k}(X)$ is generated by $\{[V(\sigma)] : \sigma \in \Sigma(k)\}.$

Proof. Using localization sequence 1.4.5, we have the exact sequence

$$A_k(X_{i-1}) \to A_k(X_i) \to A_k(X_i - X_{i-1}) \to 0.$$

Note that

$$X_i - X_{i-1} = \bigcup_{\sigma \in \Sigma(n-i)} O(\sigma),$$

is a disjoint union of *i*-tori, for k < i we have

$$A_k(X_i - X_{i-1}) = \bigoplus_{\sigma \in \Sigma(n-i)} A_k(O(\sigma)) = 0.$$

Let $i = k + 1, k + 2, \dots, n$ we then have surjections

$$A_k(X_k) \to A_k(X_{k+1}) \to \dots \to A_k(X_n) = A_k(X_{\Sigma}).$$

Note that X_k has irreducible components $V(\sigma)$ for $\sigma \in \Sigma(n-k)$, so

$$A_k(X_k) = \bigoplus_{\sigma \in \Sigma(n-k)} \mathbb{Z} \cdot [V(\sigma)].$$

So $A_k(X_{\Sigma})$ can be generated by $\{[V(\sigma)] : \sigma \in \Sigma(k)\}.$

Thus, $A_{\bullet}(X_{\Sigma})$ is generated by *T*-invariant cycles, i.e. cycles of form $\sum_{\sigma \in \Sigma} a_{\sigma} \cdot V(\sigma)$. And our next step is to determine when a *T*-invariant cycle is rationally equivalent to 0.

Proposition 4.2.2 Suppose $\sigma \in \Sigma(k)$. An element $m \in M(\sigma)$ can be identified with a nonzero rational function on $V(\sigma)$, and

$$\operatorname{div}_{V(\sigma)}(m) = \sum_{\sigma \prec \tau \in \Sigma(k+1)} \langle m, u_{\tau,\sigma} \rangle \cdot V(\tau).$$

Here $u_{\tau,\sigma} \in \sigma$ represents the ray generator of $\overline{\tau} \in \text{Star}(\sigma)$.

Proof. By orbit-cone correspondence, we know that $V(\sigma)$ is a toric variety associated to fan

$$\operatorname{Star}(\sigma) = \{ \overline{\tau} \subset N(\sigma)_{\mathbb{R}} : \sigma \prec \tau \in \Sigma \},\$$

whose torus is $O(\sigma)$ with dual lattices

$$M(\sigma) = \sigma^{\perp} \cap M$$
, and $N(\sigma) = N/\operatorname{span}(\sigma \cap N)$.

So it is just [4, pp171].

Theorem 4.2.3 There is an exact sequence

$$\bigoplus_{\tau \in \Sigma(k-1)} M(\sigma) \to \mathbb{Z}^{\Sigma(k)} \to A^k(X_{\Sigma}) \to 0.$$

The first map sends a rational function on $V(\sigma)$ to its principal divisor, and the second map is just taking the rationally equivalent class of a *T*-invariant cycle.

Proof. We only need to show that every *T*-invariant cycle $\alpha \in \mathbb{Z}^{\Sigma(k)}$ rationally equivalent to 0 comes from combinations of $\operatorname{div}_{V(\sigma)}(m)$. I can't prove this...

Remark. There is a general theorem about spherical varieties. See [3, Theorem 1].

Proposition 4.2.4 Let Σ_i be two fans in $(N_i)_{\mathbb{R}}$, i = 1, 2. The exterior product

$$A_{\bullet}(X_{\Sigma_1}) \otimes A_{\bullet}(X_{\Sigma_2}) \to A_{\bullet}(X_{\Sigma_1 \times \Sigma_2}),$$

is an isomorphism of graded groups.

Proof. Note that all cones of dimension r in $\Sigma_1 \times \Sigma_2$ are of form $\sigma_1 \times \sigma_2$ with $\dim \sigma_1 + \dim \sigma_2 = r$, things are trivial by previous theorem. \Box

Example 4.2.5 (projective toric surface) If Σ is a smooth, complete fan in \mathbb{R}^2 , then we may assume

$$\Sigma(1) = \{\rho_1, \cdots, \rho_r\},\$$

$$\Sigma(2) = \{\sigma_1, \cdots, \sigma_r\},\$$

where $\sigma_i = \rho_i + \rho_{i+1}$ ($\rho_{n+1} = \rho_1$). Denoted by D_i for $V(\rho_i)$, γ_i for $V(\sigma_i)$, and $u_i = (a_i, b_i)$ for the ray generator of ρ_i . We know that $A_1(X_{\Sigma})$ is generated by D_i , with relations

$$\sum_{i=1}^{r} a_i D_i = 0, \text{ and } \sum_{i=1}^{r} b_i D_i = 0.$$

For each *i*, there are just tow cones σ_{i-1}, σ_i contains ρ_i . Since all cones are smooth, we can just choose

$$u_{\sigma_{i-1},\rho_i} = u_{i-1}$$
, and $u_{\sigma_i,\rho_i} = u_{i+1}$.

On the other hand, ρ_i^{\perp} is generated by $m_i = (b_i, -a_i)$. Thus for each *i* there is a relation in $A_0(X_{\Sigma})$ determined by

$$\operatorname{div}_{V(\rho_i)}(m_i) = \langle m_i, u_{i-1} \rangle \gamma_{i-1} + \langle m_i, u_{i+1} \rangle \gamma_{i+1}$$

Note that $\{u_{i-1}, u_i\}$ forms a basis of \mathbb{Z}^2 , we then have $a_{i-1}b_i - a_ib_{i-1} = 1$ for $i = 1, \dots, r$. Thus $A_0(X_{\Sigma})$ is freely generated by each one of γ_i , and each pair γ_i, γ_j are rationally equivalent.

In fact, the smooth condition is superfluous: the vectors in \mathbb{R}^2 defined by

$$v_{\sigma_{i-1},\rho_i} = \frac{1}{a_{i-1}b_i - a_ib_{i-1}}u_{i-1}$$
, and $v_{\sigma_{i+1},\rho_i} = \frac{1}{a_ib_{i+1} - a_{i+1}b_i}u_{i+1}$,

will satisfy that $\langle m_i, v_{\sigma_{i-1}, \rho_i} \rangle = \langle m_i, u_{\sigma_{i-1}, \rho_i} \rangle$ and $\langle m_i, v_{\sigma_{i+1}, \rho_i} \rangle = \langle m_i, u_{\sigma_{i+1}, \rho_i} \rangle$, so

$$\operatorname{div}_{V(\rho_i)}(m_i) = \gamma_{i-1} - \gamma_{i+1}, \quad i = 1, \cdots, r.$$

Chapter 5

Toric Intersection Theory

5.1 Intersection with Cartier Divisors

For a *T*-invariant Cartier divisor $D = \sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$ on X_{Σ} , it associates to data $\{m_{\sigma}\}_{\sigma \in \Sigma}$, where $m_{\sigma} \in M$ such that

$$D|_{U_{\sigma}} + \operatorname{div}_{U_{\sigma}}(m_{\sigma}) = 0.$$

One can easily check that m_{σ} is unique modulo $M(\sigma)$. What we want to do is to determine the intersection $D.\alpha$ for a *T*-invariant cycle.

Proposition 5.1.1 Suppose $\tau \in \Sigma$, $V(\tau) \not\subset \operatorname{supp}(D)$ iff $a_{\rho} = 0$ for each $\rho \in \tau(1)$. In this case $m_{\sigma} \in M(\tau)$ for each $\sigma \in \Sigma$, and the restriction $D|_{V(\tau)}$ is well-defined, with data $\{m_{\sigma}\}_{\overline{\sigma}\in\operatorname{Star}(\tau)}$.

Proof. Straightforward.

Corollary 5.1.2 If $a_{\rho} = 0$ for each $\rho \in \tau(1)$, then

$$D.V(\tau) = -\sum \langle m_{\sigma}, u_{\sigma,\tau} \rangle [V(\sigma)],$$

where the sum runs over all cones $\sigma \in \Sigma$ such that τ is a facet of σ .

Now what if $a_{\rho} \neq 0$ for some $\rho \in \tau(1)$? We expect to find some $m \in M$ such that $D + \operatorname{div}_{X_{\Sigma}}(m)$ will satisfy the condition.

Lemma 5.1.3 Let $D' = D + \operatorname{div}_{X_{\Sigma}}(m_{\tau})$, then $V(\tau) \not\subset \operatorname{supp}(D')$.

Proof. Note that D' has data $\{m_{\sigma} - m_{\tau}\}_{\sigma \in \Sigma}$, and one can directly show that $\langle m_{\sigma} - m_{\tau}, u_{\rho} \rangle = 0$ for $\rho \in \tau(1)$.

Then we can deduce the general formula.

Theorem 5.1.4 For $\tau \in \Sigma$ we have

$$D.V(\tau) = -\sum \langle m_{\sigma} - m_{\tau}, u_{\sigma,\tau} \rangle [V(\sigma)],$$

where the sum runs over all cones $\sigma \in \Sigma$ such that τ is a facet of σ .

5.2 Simplicial Case

Recall that a simplicial cone is a cone σ with dim $\sigma = |\sigma(1)|$, and a simplicial fan refers a fan consists of simplicial cones. Also note that in a simplicial toric variety, each Weil divisor is Q-Cartier (c.f. [4, pp180]).

Definition 5.2.1 (multiplicity of simplicial cones) Let σ is a simplicial cone in $N_{\mathbb{R}}$, with ray generators u_1, \dots, u_r . Then $\bigoplus_{i=1}^r \mathbb{Z}u_i$ is a subgroup of span $(\sigma) \cap N$ of finite index mult (σ) , which is called the *multiplicity* of σ .

Remark. $\operatorname{mult}(\sigma) = 1$ iff σ is smooth.

Lemma 5.2.2 Let σ is a simplicial cone in $N_{\mathbb{R}}$, with ray generators u_1, \dots, u_r . For the facet $\tau = \operatorname{cone}(u_2, \dots, u_r)$, one can pick $u_{\sigma,\tau} = \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}u_1$. *Proof.* We may assume $u_{\sigma,\tau} \in \sigma \cap N$ first. Combine $u_{\sigma,\tau}$ with a basis of $N_{\tau} = \operatorname{span}(\tau) \cap N$ we can get a basis of N_{σ} . One can then see that there is a unique (positive) integer a such that

$$u_1 = a u_{\sigma,\tau} + v, \quad v \in N_\tau.$$

By considering the sublattices

$$\bigoplus_{i=1}^{r} \mathbb{Z}u_i \subset \mathbb{Z}u_1 + N_\tau \subset \mathbb{Z}u + N_\tau = N_\sigma,$$

one can see that a is the index of $\mathbb{Z}u_1 + N_{\tau}$ in $\mathbb{Z}u + N_{\tau}$, which is $\frac{\operatorname{mult}(\sigma)}{\operatorname{mult}(\tau)}$. Thus $u_{\sigma,\tau} = \frac{\operatorname{mult}(\sigma)}{\operatorname{mult}(\tau)}u_1 + v$. Since $v \in N_{\tau}$ does not influence the projection in $N(\tau)$, we can then pick $u_{\sigma,\tau} = \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}u_1$ as desired.

Theorem 5.2.3 Suppose Σ is a simplicial fan. For $\tau \in \sigma$ and $\rho \in \Sigma(1) - \tau(1)$, we have

$$V(\rho).V(\tau) = \begin{cases} \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}[V(\sigma)], & \sigma = \rho + \tau \in \Sigma, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Suppose ρ has ray generator u and τ has ray generators u_1, \dots, u_r . Since $V(\rho)$ is Q-Cartier, we can find a positive integer l such that $l \cdot V(\rho)$ is Cartier, with data $\{m_{\sigma}\}_{\sigma \in \Sigma}$.

If $\sigma = \rho + \tau \in \Sigma$, then by definition we have $\langle m_{\sigma}, u \rangle = -l$. Thus $\langle m_{\sigma}, u_{\sigma,\tau} \rangle = -l$ by 5.2.2. For $\sigma' \neq \sigma$ such that τ is a facet of σ' , there is a ray ρ' with generator u' such that $\sigma' = \rho' + \tau$. By definition we also have $\langle m_{\sigma'}, u' \rangle = 0$, hence $\langle m_{\sigma'}, u_{\sigma',\tau} \rangle = 0$. Note that $V(\tau) \not\subset V(\rho)$, by 5.1.2 we can deduce that

$$(l \cdot V(\rho)).V(\tau) = l \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)} [V(\sigma)],$$

i.e. $V(\rho).V(\tau) = \frac{\operatorname{mult}(\tau)}{\operatorname{mult}(\sigma)}[V(\sigma)].$

Otherwise $\langle m_{\sigma}, u' \rangle = 0$ for any $\sigma \succ \tau$ and ray ρ' with generator u' such that $\sigma = \rho' + \tau$, so $V(\rho) \cdot V(\tau) = 0$.

Remark. If $\sigma = \rho + \tau \in \Sigma$, then $V(\rho) \cap V(\tau) = V(\sigma)$ is a proper intersection. If moreover σ is smooth, then $V(\rho), V(\tau)$ intersect transversally. If $\rho + \tau \notin \Sigma$, then $V(\rho) \cap V(\tau) = \emptyset$.

Example 5.2.4 (projective toric surface) Recall example 4.2.5. Let Σ be a complete fan in \mathbb{R}^2 (hence simplicial), and assume

$$\Sigma(1) = \{\rho_1, \cdots, \rho_r\},\$$

$$\Sigma(2) = \{\sigma_1, \cdots, \sigma_r\},\$$

as before. Note that $A_0(X_{\Sigma}) = \mathbb{Z} \cdot [\gamma]$ where $[\gamma] \sim [V(\sigma_i)]$ for each *i*. By above theorem, for $i \neq j$ we have

$$D_i \cdot D_j = \begin{cases} \frac{1}{|a_i b_j - a_j b_i|} [\gamma], & |i - j| = 1, \\ 0, & \text{otherwise.} \end{cases}$$

So it remains to compute the "self intersection" $D_i D_i$. Note that $\langle u_i, u_i \rangle \neq 0$, then we have

$$D_i = \frac{1}{\langle u_i, u_i \rangle} \left(\operatorname{div}(m) - \sum_{j \neq i} \langle u_i, u_j \rangle D_j \right).$$

Thus

$$D_{i}.D_{i} = D_{i}.\frac{1}{\langle u_{i}, u_{i} \rangle} \left(\operatorname{div}(m) - \sum_{j \neq i} \langle u_{i}, u_{j} \rangle D_{j} \right)$$

= $-\frac{1}{a_{i}^{2} + b_{i}^{2}} \sum_{j \neq i} (a_{i}a_{j} + b_{i}b_{j})D_{i}.D_{j}$
= $-\frac{1}{a_{i}^{2} + b_{i}^{2}} ((a_{i}a_{i-1} + b_{i}b_{i-1})D_{i}.D_{i-1} + (a_{i}a_{i+1} + b_{i}b_{i+1})D_{i}.D_{i+1})$
= $-\frac{1}{(a_{i}^{2} + b_{i}^{2})} \left(\frac{a_{i}a_{i-1} + b_{i}b_{i-1}}{|a_{i}b_{i-1} - a_{i-1}b_{i}|} + \frac{a_{i}a_{i+1} + b_{i}b_{i+1}}{|a_{i}b_{i+1} - a_{i+1}b_{i}|} \right) [\gamma].$

From this, one can check that X_{Σ} has rational Chow ring

$$A^{\bullet}_{\mathbb{Q}}(X_{\Sigma}) = \frac{\mathbb{Q}[x_1, \cdots, x_i]}{\left(\sum_{i=1}^r a_i x_i, \sum_{i=1}^r b_i x_i, \{x_i x_j\}_{|i-j|>1}\right)}$$

Example 5.2.5 (quadratic cone) In real plane \mathbb{R}^2 , the triangle *T* with vertices (0,0), (2,0), (0,1) is a very ample (in fact normal) polytope. The associated toric variety is just the weighted projective plane $Q = \mathbb{P}(1,1,2)$, and *T* gives a closed immersion

$$\label{eq:Q} \begin{split} Q \to \mathbb{P}^3 \\ [a,b,c] \mapsto [a^2,b^2,ab,c] \end{split}$$

realizing Q as the quadratic cone $xy = z^2$ in \mathbb{P}^3 .

In the normal fan Σ_T of T, there are 3 ray generators $u_1 = (1,0), u_2 = (0,1), u_3 = (-1,-2)$. The 3 rays correspond to 3 divisors D_1, D_2, D_3 . Applying previous discussion to the normal fan Σ_T , one can see that $A_1(Q)$ is freely generated by D_2 , with self intersection $D_2.D_2 = 2[\gamma]$.

In \mathbb{P}^3 , D_1 is the line y = z = 0, D_2 is the conic (which is a hyperplane section) $w = 0, xy = z^2$, and D_3 is the line x = z = 0. One can see that D_1, D_2 intersect transversally at [1, 0, 0, 0], and $D_1.D_2 = [\gamma]$ as expected. One can also see that D_1, D_3 intersect properly at the singularity [0, 0, 0, 1], but $D_1.D_3 = \frac{1}{2}[\gamma]$ is not an integral cycle. Note that $D_1 \sim D_3$ are not Cartier, while $2D_1 \sim 2D_3 \sim D_2$ are.

This is an example from [1, pp428], which shows that the intersection on a singular variety may not behave well.

5.3 Chow Rings of Smooth Complete Toric Varieties

Now suppose Σ is a smooth complete fan, we now come to our goal to compute $A^{\bullet}(X_{\Sigma})$. By the discussion in simplicial case, we have

Lemma 5.3.1 For distinct rays ρ_1, \dots, ρ_r in $\Sigma(1)$, we have

$$[V(\rho_1)] \cdot [V(\rho_2)] \cdots [V(\rho_2)] = \begin{cases} [V(\sigma)], & \sum_{i=1}^r \rho_i = \sigma \in \Sigma, \\ 0, & \text{otherwise,} \end{cases}$$

in the Chow ring $A^{\bullet}(X_{\Sigma})$.

Also note that $A^{\bullet}(X_{\Sigma})$ is generated by $\{V(\rho) : \rho \in \Sigma(1)\}$ as a commutative ring, so $A^{\bullet}(X_{\Sigma})$ is a quotient of the *total coordinate ring* $\mathbb{Z}[x_{\rho} : \rho \in \Sigma(1)]$. We define

$$\mathcal{I} = \left(x_{\rho_1} \cdots x_{\rho_r} : \rho_1, \cdots, \rho_r \text{ are distinct rays in } \Sigma, \sum \rho_i \notin \Sigma \right),$$

to be the *Stanley-Reisner ideal*. And the principal divisors also generate the graded ideal

$$\mathcal{J} = \left(\sum_{\rho} \langle m, u_{\rho} \rangle x_{\rho} : m \in M\right).$$

Definition 5.3.2 We say the quotient ring

$$R(\Sigma) := \frac{\mathbb{Z}[x_{\rho} : \rho \in \Sigma(1)]}{\mathcal{I} + \mathcal{J}},$$

I is the Chow ring of fan Σ .

One can see that there is a surjective morphism $R(\Sigma) \to A^{\bullet}(X_{\Sigma})$ defined by $x_{\rho} \mapsto [V_{\rho}]$. For $\tau \in \Sigma(k), m \in M(\tau)$ we have

$$\sum_{\rho \in \Sigma(1)} \langle m, u_{\rho} \rangle x_{\rho} \prod_{\varrho \in \tau(1)} x_{\varrho}$$
$$= \sum_{\rho \in \Sigma(1) - \tau(1)} \langle m, u_{\rho} \rangle x_{\rho} \prod_{\rho \neq \varrho \in \tau(1)} x_{\varrho}$$
$$= \sum_{\rho + \tau \in \Sigma(k+1)} \langle m, u_{\rho} \rangle \prod_{\varrho \in (\rho + \tau)(1)} x_{\varrho}$$

in $R(\Sigma)$. It follows that

Theorem 5.3.3 $R(\Sigma) \simeq A^{\bullet}(X_{\Sigma})$ as graded rings.

Remark. We also have $A^{\bullet}(X_{\Sigma}) \simeq H^{2\bullet}(X_{\Sigma}^{an}, \mathbb{Z})$, where X_{Σ}^{an} carries the analytic topology. And one can check that

$$\operatorname{rank}\left(A_k(X_{\Sigma})\right) = \sum_{i=k}^n (-1)^{i-k} \binom{i}{k} N_i,$$

where $n = \operatorname{rank}(N)$ and $N_i = |\Sigma(i)|$. It is surprising that such a rank only depends on N_i .

Example 5.3.4 $A^{\bullet}(\mathbb{P}^n) = \mathbb{Z}[h]/(h^{n+1}).$

Example 5.3.5 $A^{\bullet}(\mathbb{F}_r) = \mathbb{Z}[h, \zeta]/(h^2, \zeta^2 + rh\zeta).$

Remark. It can be shown that if Σ is simplicial and complete, then

 $A^{\bullet}_{\mathbb{Q}}(X_{\Sigma}) = R(\Sigma) \otimes \mathbb{Q}.$

See [4, pp616-617].

Chapter 6

Toric Riemann-Roch

To be continued...

Bibliography

- [1] Robin Hartshorne. (1977) Algebraic Geometry, Springer-Verlag, New York.
- [2] William Fulton. (1998) Intersection Theory, Springer-Verlag, New York.
- [3] W. Fulton, R. Macpherson, F. Sottile, B. Sturmfels. Intersection Theory on Spherical Varieties. Journal of Algebraic Geometry, 4 (1994), 181-193.
- [4] David A. Cox, John B. Little, Henry K. Schenck. (2011) *Toric Variety*, American Mathematical Society.