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7. Sheaf cohomology of toric varieties
7.1. Some backgrounds. Roughly speaking, the cohomology of a sheaf F
on a variety X is the right derived functor of Γ(X,F ).

7.1.1. Computation. Although the abstract definition of the sheaf cohomol-
ogy has nice properties, it’s not useful for explicit computation. One down-
earth way of viewing sheaf cohomology is to use Čech complex. To be
precise, given an open covering U = {Ui} of X, the p-th Čech cochain is

Čp(U,F ) =
⊕

(i0,...,ip)∈[ℓ]p

F (Ui0 ∩ · · · ∩ Uip).

For α ∈ Čp(U,F ), the differential is given by

dp(α)(i0, . . . , ip+1) =
p+1∑

k=0

(−1)kα(i0, . . . , îk, . . . , ip+1)|Ui0∩···∩Uip+1
.

The Čech cochain together with above differential is a complex, and the p-th
Čech cohomology Ȟ(U,F ) is defined to be the cohomology of this complex.
Theorem 7.1.1 (Serre). Let F be a quasi-coherent sheaf on an affine va-
riety U . Then Hp(U,F ) = 0 for all p > 0.

By a standard argument of spectral sequence, this suggests the following
result.
Theorem 7.1.2. Let U be an affine open covering of a variety X and let
F be a quasi-coherent sheaf on X. Then there are natural isomorphisms

Ȟp(U,F ) ∼= Hp(X,F )

for all p ≥ 0.
7.1.2. Higher direct image. Given a morphism f : X → Y of varieties and
a sheaf F of OX -modules on X, the direct image is the sheaf f∗F on Y
defined by

U '→ F (f−1(U)).

It’s clear there is an isomorphism H0(Y, f∗F ) = H0(X,F ) since f−1(Y ) =
X. More generally, there are natural homomorphisms Hp(Y, f∗F )→ Hp(X,F ),
which may not be an isomorphism. One obstruction comes from the higer
direct image Rpf∗F , which is the sheaf on Y associated to the presheaf
defined by

U '→ Hp(f−1(U),F ).

Proposition 7.1.1. Suppose f : X → Y is a morphism and F is a quasi-
coherent sheaf on X such that Rqf∗F = 0 for all q > 0. Then

Hp(Y, f∗F ) ∼= Hp(X,F )

for all p ≥ 0.
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7.1.3. Serre’s result.
Theorem 7.1.3 (Serre vanishing). Let L be an ample line bundle on a
projective variety X. Then for any coherent sheaf F on X, one has

Hp(X,F ⊗L ⊗ℓ) = 0

for all p > 0 and ℓ≫ 0.
Theorem 7.1.4 (Serre duality). Let ωX be the canonical sheaf of a complete
normal Cohen-Macaulay variety X of dimension n. Then for every locally
free sheaf F of finite rank on X, there are natural isomorphisms

Hp(X,F )∨ ∼= Hn−p(X,ωX ⊗OX F∨).

7.2. Cohomology of toric divisors. For Čech cohomology of toric variety,
there is an obvious choice of affine open covering, that is, U = {Uσ}σ∈Σmax ,
where Σmax is the set of maximal cones in Σ. Given a torus-invariant Cartier
divisor D =

∑
ρ aρDρ, the Čech complex is given by

Čp(U,OXΣ(D)) =
⊕

γ=(i0,...,ip)∈[ℓ]p

H0(Uσi0
∩ · · · ∩ Uσip

,OXΣ(D)).

For convenience we always write σγ = σi0 ∩ · · · ∩ σi1 , and denote

Čp(U,OXΣ(D)) =
⊕

γ∈[ℓ]p

H0(Uσγ ,OXΣ(D)).

By Proposition 4.4.1, there is a grading on the cohomology as follows
H0(Uσ,OXΣ(D)) =

⊕

m

H0(Uσ,OXΣ(D))m,

where for m ∈M ,

H0(Uσ,OXΣ(D))m =

{
C ·χm, ⟨m,uρ⟩ ≥ −aρ
0, otherwise.

Thus it suffices to compute the Čech cohomology for each weight m ∈M .
Theorem 7.2.1. Let D =

∑
ρ aρDρ be a Weil divisor on XΣ. Fix m ∈ M

and p ≥ 0.
(1) Hp(XΣ,OXΣ(D))m ∼= H̃p−1(VD,m,C), where VD,m =

⋃
σ∈ΣConv{uρ |

ρ ∈ σ(1), ⟨m,uρ⟩ ≥ −1}.
(2) If D is Q-Cartier, then Hp(XΣ,OXΣ(D))m ∼= H̃p−1(V supp

D,m ,C), where
V supp
D,m = {u ∈ |Σ| | ⟨m,u⟩ < ϕD(u)} and ϕD is support function of D.

7.3. Vanishing theorems I.
7.4. Vanishing theorems II.
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