6. CANONICAL DIVISORS OF TORIC VARIETY

6.1. Some backgrounds. Suppose R is a \mathbb{C}-algebra. The module of Kähler differentials of R over \mathbb{C}, denoted by $\Omega_{R / \mathbb{C}}^{1}$, is the R-module generated by the formal symbols $\mathrm{d} f$ for $f \in R$, modulo the relations
(1) $\mathrm{d}(c f+g)=c \mathrm{~d} f+\mathrm{d} g$ for all $c \in \mathbb{C}, f, g \in R$.
(2) $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f$ for all $f, g \in R$.

Example 6.1.1. If $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\Omega_{R / \mathbb{C}}^{1} \cong \bigoplus_{i=1}^{n} R \mathrm{~d} x_{i}
$$

Proposition 6.1.1. Let R_{f} be the localization of \mathbb{C}-algebra R with respect to the non-nilpotent element $f \in R$. Then $\Omega_{R_{f} / \mathbb{C}}^{1} \cong \Omega_{R / \mathbb{C}}^{1} \otimes R_{f}$.

Let X be a variety. Then the cotangent sheaf Ω_{X}^{1} is the sheaf of \mathcal{O}_{X}-modules defined by

$$
\Omega_{X}^{1}(U)=\Omega_{\mathcal{O}_{X}^{1}(U) / \mathbb{C}}
$$

on affine open subsets U, and the tangent sheaf \mathscr{T}_{X} is the dual sheaf of Ω_{X}^{1}. More generally, the sheaf of p-forms is defined by $\bigwedge^{p} \Omega_{X}^{1}$.

A non-trivial fact is that X is smooth if and only if Ω_{X}^{1} is locally free, and thus Ω_{X}^{p} is locally free when X is smooth. But the sheaf of p-forms may behave badly when X is just normal, thought it's locally free on the smooth locus $j: U \hookrightarrow X$. One way to handle this is to consider the Zariski p-forms, defined by $\widehat{\Omega}_{X}^{p}:=\left.j_{*} \Omega_{X}^{p}\right|_{U}$, which gives a reflexive version of Ω_{X}^{p}.

For a reflexive sheaf \mathscr{L} of rank one, there exists some Weil divisor D such that $\mathscr{L} \cong \mathcal{O}_{X}(D)$. In particular, for a normal variety X, the canonical sheaf

$$
\omega_{X}=\widehat{\Omega}_{X}^{n}
$$

is a reflexive sheaf of rank one, and the Weil divisor corresponding to ω_{X} is called the canonical divisor, denoted by K_{X}.
6.2. One-forms on toric varieties. In this section we wil study the sheaves $\Omega_{X_{\Sigma}}^{1}$ and $\widehat{\Omega}_{X_{\Sigma}}^{1}$ on a normal toric variety.
6.2.1. The first exact sequence. Firstly note that the coordinate ring of the torus T_{N} is the semigroup $\mathbb{C}[M]$. Then the map

$$
\begin{aligned}
& \Omega_{\mathbb{C}[M] / \mathbb{C}} \rightarrow M \otimes_{\mathbb{Z}} \mathbb{C}[M] \\
& \mathrm{d} \chi^{m} \mapsto m \otimes \chi^{m}
\end{aligned}
$$

gives an isomorphism of $\mathbb{C}[M]$-modules, and thus

$$
\Omega_{T_{N}}^{1} \cong M \otimes_{\mathbb{Z}} \mathcal{O}_{T_{N}}
$$

Remark 6.2.1. As a consequence, $\mathrm{d} \chi^{m} / \chi^{m}$ is a global section of $\Omega_{T_{N}}^{1}$ that maps to $m \otimes 1$, and hence is invariant under the action of T_{N}.

Now consider the toric variety X_{Σ}. For $\rho \in \Sigma(1)$, the inclusion $i: D_{\rho} \hookrightarrow$ X_{Σ} gives the sheaf $i_{*} \mathcal{O}_{D_{\rho}}$ on X, and for convenience we just denote it by $\mathcal{O}_{D_{\rho}}$. Using the map $M \rightarrow \mathbb{Z}$ given by $m \mapsto\left\langle m, u_{\rho}\right\rangle$, there is the following composition

$$
M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow \mathcal{O}_{X_{\Sigma}} \rightarrow \mathcal{O}_{D_{\rho}}
$$

This gives a natural map

$$
\beta: M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{D_{\rho}}
$$

On the other hand, on the affine piece $U_{\sigma}=\operatorname{Spec}\left(\mathbb{C}\left[\sigma^{\vee} \cap M\right]\right)$, one can define

$$
\begin{aligned}
\Omega_{\mathbb{C}\left[\sigma^{\vee} \cap M\right] / \mathbb{C}}^{1} & \rightarrow M \otimes_{\mathbb{Z}} \mathbb{C}\left[\sigma^{\vee} \cap M\right] \\
\mathrm{d} \chi^{m} & \mapsto m \otimes \chi^{m}
\end{aligned}
$$

and these affine pieces patch together to give a map $\alpha: \Omega_{X_{\Sigma}}^{1} \rightarrow M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}}$.
Theorem 6.2.1. For a smooth toric variety X_{Σ}, the sequence

$$
0 \rightarrow \Omega_{X_{\Sigma}}^{1} \xrightarrow{\alpha} M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \xrightarrow{\beta} \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{D_{\rho}} \rightarrow 0
$$

is exact.
Proof. Firstly let's show $\beta \circ \alpha=0$. On the affine piece $U_{\sigma} \subseteq X_{\Sigma}$, one has $\left.\mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right)\right|_{U_{\rho}}$ is the ideal sheaf of the subvariety $D_{\rho} \cap U_{\sigma}$ by Proposition 4.1.1, and thus the subvariety $D_{\rho} \cap U_{\rho}$ is defined by the ideal

$$
I_{\rho}=\Gamma\left(U_{\sigma}, \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right)\right)=\bigoplus_{\left.\operatorname{div}\left(\chi^{m}\right)\right|_{U_{\rho} \geq D_{\rho}} D_{U_{\rho}}} \mathbb{C} \cdot \chi^{m}=\bigoplus_{\substack{m \in \sigma \vee \cap M \\\left\langle m, u_{\rho}\right\rangle \geq 1}} \mathbb{C} \cdot \chi^{m}
$$

Over U_{σ}, the composition $\Omega_{X_{\Sigma}}^{1} \rightarrow M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow \mathcal{O}_{D_{\rho}}$ is given by sending 1form $\mathrm{d} \chi^{m}, m \in \sigma^{\vee} \cap M$ to the equivalent class of $\left\langle m, u_{\rho}\right\rangle \chi^{m}$ in $\mathbb{C}\left[\sigma^{\vee} \cap M\right] / I_{\rho}$. It's clear zero if $\left\langle m, u_{\rho}\right\rangle=0$, and if $\left\langle m, u_{\rho}\right\rangle \neq 0,\left\langle m, u_{\rho}\right\rangle \chi^{m}$ lies in I_{ρ}.

Now let's show the sequence is exact over affine piece U_{σ}. Since σ is smooth, we may assume $\sigma=\operatorname{Cone}\left(e_{1}, \ldots, e_{r}\right)$, where $r \leq n$ and e_{1}, \ldots, e_{n} is a basis of N. Then $U_{\sigma}=\mathbb{C}^{r} \times\left(\mathbb{C}^{*}\right)^{n-r}$. Let x_{1}, \ldots, x_{n} denote the characters of the corresponding dual basis of M. The coordinate ring of U_{σ} is $R=$ $\mathbb{C}\left[x_{1}, \ldots, x_{r}, x_{r+1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$. By Example 6.1.1 and Proposition 6.1.1, the 1-forms on U_{σ} is given by

$$
\Omega_{R / \mathbb{C}}^{1}=\bigoplus_{i=1}^{n} R \mathrm{~d} x_{i}
$$

Then the map α is given by

$$
\begin{aligned}
\alpha: \Omega_{R / \mathbb{C}}^{1}= & \bigoplus_{i=1}^{n} R \mathrm{~d} x_{i} \rightarrow M \otimes_{\mathbb{Z}} R=\bigoplus_{i=1}^{n} R \\
& \sum_{i=1}^{n} f_{i} \mathrm{~d} x_{i} \mapsto\left(f_{1} x_{1}, \ldots, f_{n} x_{n}\right)
\end{aligned}
$$

This gives the exact sequence

$$
0 \rightarrow \Omega_{R / \mathbb{C}}^{1} \rightarrow \bigoplus_{i=1}^{n} R \rightarrow \bigoplus_{i=1}^{r} R /\left\langle x_{i}\right\rangle \rightarrow 0
$$

since x_{r+1}, \ldots, x_{n} are units in R. This completes the proof.
Remark 6.2.2. Replacing $\Omega_{X_{\Sigma}}^{1}$ by the Zariski 1-form $\widehat{\Omega}_{X}^{1}$, the same result still holds for simplical toric variety X_{Σ}.
6.2.2. The Euler sequence. For the projective space \mathbb{P}^{n}, there is a famous exact sequence

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}}^{1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{n+1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow 0
$$

called the Euler sequence. Here is a toric generalization of this result.
Theorem 6.2.2. Let X_{Σ} be a simplical toric variety with no torus factors. Then there is an exact sequence

$$
0 \rightarrow \widehat{\Omega}_{X_{\Sigma}}^{1} \rightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right) \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow 0
$$

Moreover, if X_{Σ} is smooth, this reduces to

$$
0 \rightarrow \Omega_{X_{\Sigma}}^{1} \rightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right) \rightarrow \operatorname{Pic}\left(X_{\Sigma}\right) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow 0
$$

Proof. Consider the following commutative diagram

It's clear the third row is exact, and the first row is exact by Remark 6.2.2. By Proposition 4.1.1 we have the following exact sequence

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right) \rightarrow \mathcal{O}_{X_{\Sigma}} \rightarrow \mathcal{O}_{D_{\rho}} \rightarrow 0
$$

and thus the third row is exact. Since X_{Σ} has no torus factors, by Theorem 4.2.1 one has the middle column is exact. Then the five lemma yields the desired result.

6.3. Differential forms on toric varieties.

6.3.1. Properties of wedge product.

Proposition 6.3.1. Let $0 \rightarrow \mathscr{F} \rightarrow \mathscr{G} \rightarrow \mathscr{H} \rightarrow 0$ be an exact sequence of locally free sheaves on a variety X with rk $\mathscr{F}=m$ and rk $\mathscr{H}=n$. Then $\mathrm{rk} \mathscr{G}=m+n$ and there is an isomorphism

$$
\bigwedge^{m+n} \mathscr{G} \cong \bigwedge^{m} \mathscr{F} \otimes_{\mathcal{O}_{X}} \bigwedge^{n} \mathscr{H}
$$

Corollary 6.3.1 (adjunction formula). Let $Y \subseteq X$ be a smooth subvariety of a smooth variety X with $\operatorname{dim} Y=m$ and $\operatorname{dim} X=n$. Then

$$
\omega_{Y} \cong \omega_{X} \otimes \bigwedge^{n-m} \mathscr{N}_{Y / X}
$$

Proof. Consider the following exact sequence

$$
0 \rightarrow \mathscr{I}_{Y} / \mathscr{I}_{Y}^{2} \rightarrow \Omega_{X}^{1} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{Y} \rightarrow \Omega_{Y}^{1} \rightarrow 0
$$

6.3.2. The canonical sheaf of toric varieties.

Theorem 6.3.1. For a toric variety X_{Σ}, the canonical sheaf $\omega_{X_{\Sigma}}$ is given by

$$
\omega_{X_{\Sigma}} \cong \mathcal{O}_{X_{\Sigma}}\left(-\sum_{\rho} D_{\rho}\right)
$$

Thus $K_{X_{\Sigma}}=-\sum_{\rho} D_{\rho}$ is a torus-invariant canonical divisor on X_{Σ}.
Proof. For convenience here we only give a proof with the assumption X_{Σ} is smooth and without torus factors. By Theorem 6.2.2 there is the following exact sequence

$$
0 \rightarrow \Omega_{X_{\Sigma}}^{1} \rightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right) \rightarrow \operatorname{Pic}\left(X_{\Sigma}\right) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \rightarrow 0
$$

Note that each $\mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right)$ is a line bundle since X_{Σ} is smooth, and if we set $r=|\Sigma(1)|$, then it's easy to see $\operatorname{Pic}\left(X_{\Sigma}\right) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}}=\mathcal{O}_{X_{\Sigma}}^{r-n}$. Thus by Proposition 6.3.1 one has

$$
\bigwedge^{n} \Omega_{X_{\Sigma}}^{1} \otimes_{\mathcal{O}_{X_{\Sigma}}}^{r-n} \bigwedge^{r-\mathcal{O}_{X_{\Sigma}}^{r-n}} \cong \bigwedge_{\rho \in \Sigma(1)}^{r}\left(\bigoplus_{\mathcal{O}_{X_{\Sigma}}}\left(-D_{\rho}\right)\right)
$$

The right hand is isomorphic to

$$
\bigotimes_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}\left(-D_{\rho}\right) \cong \mathcal{O}_{X_{\Sigma}}\left(-\sum_{\rho \in \Sigma(1)} D_{\rho}\right)
$$

The left hand is isomorphic to $\bigwedge^{n} \Omega_{X_{\Sigma}}^{1}=\omega_{X}$, since $\bigwedge^{r-n} \Omega_{X_{\Sigma}}^{r-n} \cong \mathcal{O}_{X_{\Sigma}}$. This completes the proof for the case X_{Σ} is smooth without torus factor.

Example 6.3.1. The canonical bundle of \mathbb{P}^{n} is

$$
\omega_{\mathbb{P}^{n}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-1)
$$

for all $n \geq 1$ since $\mathrm{Cl}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$ and thus $D_{0} \sim D_{1} \sim \cdots \sim D_{n}$.
Example 6.3.2. In Example 4.2.3, when we computed the class group of Hirzebruch surface, we wrote divisors D_{ρ} as D_{1}, \ldots, D_{4} and showed that

$$
\begin{aligned}
& D_{3} \sim D_{1} \\
& D_{4} \sim r D_{1}+D_{2} .
\end{aligned}
$$

Thus the canonical bundle can be written as

$$
\omega_{\mathscr{H}_{r}}=\mathcal{O}_{\mathscr{H}_{r}}\left(-D_{1}-D_{2}-D_{3}-D_{4}\right)=\mathcal{O}_{\mathscr{H}_{r}}\left(-(r+2) D_{1}-2 D_{2}\right) .
$$

