TORIC VARIETY

6. CANONICAL DIVISORS OF TORIC VARIETY

6.1. Some backgrounds. Suppose R is a \mathbb{C} -algebra. The module of Kähler differentials of R over \mathbb{C} , denoted by $\Omega^1_{R/\mathbb{C}}$, is the R-module generated by the formal symbols df for $f \in R$, modulo the relations

- (1) d(cf+g) = cdf + dg for all $c \in \mathbb{C}, f, g \in R$.
- (2) d(fg) = f dg + g df for all $f, g \in R$.

Example 6.1.1. If $R = \mathbb{C}[x_1, \ldots, x_n]$, then

$$\Omega^1_{R/\mathbb{C}} \cong \bigoplus_{i=1}^n R \mathrm{d} x_i.$$

Proposition 6.1.1. Let R_f be the localization of \mathbb{C} -algebra R with respect to the non-nilpotent element $f \in R$. Then $\Omega^1_{R_f/\mathbb{C}} \cong \Omega^1_{R/\mathbb{C}} \otimes R_f$.

Let X be a variety. Then the cotangent sheaf Ω^1_X is the sheaf of \mathcal{O}_X -modules defined by

$$\Omega^1_X(U) = \Omega_{\mathcal{O}^1_X(U)/\mathbb{C}}$$

on affine open subsets U, and the tangent sheaf \mathscr{T}_X is the dual sheaf of Ω^1_X . More generally, the sheaf of *p*-forms is defined by $\bigwedge^p \Omega^1_X$.

A non-trivial fact is that X is smooth if and only if Ω_X^1 is locally free, and thus Ω_X^p is locally free when X is smooth. But the sheaf of p-forms may behave badly when X is just normal, thought it's locally free on the smooth locus $j: U \hookrightarrow X$. One way to handle this is to consider the Zariski p-forms, defined by $\widehat{\Omega}_X^p := j_* \Omega_X^p |_U$, which gives a reflexive version of Ω_X^p .

For a reflexive sheaf \mathscr{L} of rank one, there exists some Weil divisor D such that $\mathscr{L} \cong \mathcal{O}_X(D)$. In particular, for a normal variety X, the canonical sheaf

$$\omega_X = \Omega_X^n$$

is a reflexive sheaf of rank one, and the Weil divisor corresponding to ω_X is called the canonical divisor, denoted by K_X .

6.2. **One-forms on toric varieties.** In this section we will study the sheaves $\Omega^1_{X_{\Sigma}}$ and $\widehat{\Omega}^1_{X_{\Sigma}}$ on a normal toric variety.

6.2.1. The first exact sequence. Firstly note that the coordinate ring of the torus T_N is the semigroup $\mathbb{C}[M]$. Then the map

$$\Omega_{\mathbb{C}[M]/\mathbb{C}} \to M \otimes_{\mathbb{Z}} \mathbb{C}[M]$$
$$d\chi^m \mapsto m \otimes \chi^m$$

gives an isomorphism of $\mathbb{C}[M]$ -modules, and thus

$$\Omega^1_{T_N} \cong M \otimes_{\mathbb{Z}} \mathcal{O}_{T_N}.$$

Remark 6.2.1. As a consequence, $d\chi^m/\chi^m$ is a global section of $\Omega^1_{T_N}$ that maps to $m \otimes 1$, and hence is invariant under the action of T_N .

BOWEN LIU

Now consider the toric variety X_{Σ} . For $\rho \in \Sigma(1)$, the inclusion $i: D_{\rho} \hookrightarrow X_{\Sigma}$ gives the sheaf $i_*\mathcal{O}_{D_{\rho}}$ on X, and for convenience we just denote it by $\mathcal{O}_{D_{\rho}}$. Using the map $M \to \mathbb{Z}$ given by $m \mapsto \langle m, u_{\rho} \rangle$, there is the following composition

$$M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to \mathcal{O}_{X_{\Sigma}} \to \mathcal{O}_{D_{\rho}}.$$

This gives a natural map

$$\beta \colon M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{D_{\rho}}.$$

On the other hand, on the affine piece $U_{\sigma} = \operatorname{Spec}(\mathbb{C}[\sigma^{\vee} \cap M])$, one can define

$$\Omega^{1}_{\mathbb{C}[\sigma^{\vee}\cap M]/\mathbb{C}} \to M \otimes_{\mathbb{Z}} \mathbb{C}[\sigma^{\vee} \cap M]$$
$$d\chi^{m} \mapsto m \otimes \chi^{m},$$

and these affine pieces patch together to give a map $\alpha \colon \Omega^1_{X_{\Sigma}} \to M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}}$. **Theorem 6.2.1.** For a smooth toric variety X_{Σ} , the sequence

$$0 \to \Omega^1_{X_{\Sigma}} \xrightarrow{\alpha} M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \xrightarrow{\beta} \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{D_{\rho}} \to 0.$$

is exact.

Proof. Firstly let's show $\beta \circ \alpha = 0$. On the affine piece $U_{\sigma} \subseteq X_{\Sigma}$, one has $\mathcal{O}_{X_{\Sigma}}(-D_{\rho})|_{U_{\rho}}$ is the ideal sheaf of the subvariety $D_{\rho} \cap U_{\sigma}$ by Proposition 4.1.1, and thus the subvariety $D_{\rho} \cap U_{\rho}$ is defined by the ideal

$$I_{\rho} = \Gamma(U_{\sigma}, \mathcal{O}_{X_{\Sigma}}(-D_{\rho})) = \bigoplus_{\operatorname{div}(\chi^m)|_{U_{\rho}} \ge D_{\rho}|_{U_{\rho}}} \mathbb{C} \cdot \chi^m = \bigoplus_{\substack{m \in \sigma^{\vee} \cap M \\ \langle m, u_{\rho} \rangle \ge 1}} \mathbb{C} \cdot \chi^m.$$

Over U_{σ} , the composition $\Omega^{1}_{X_{\Sigma}} \to M \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to \mathcal{O}_{D_{\rho}}$ is given by sending 1form $d\chi^{m}, m \in \sigma^{\vee} \cap M$ to the equivalent class of $\langle m, u_{\rho} \rangle \chi^{m}$ in $\mathbb{C}[\sigma^{\vee} \cap M]/I_{\rho}$. It's clear zero if $\langle m, u_{\rho} \rangle = 0$, and if $\langle m, u_{\rho} \rangle \neq 0$, $\langle m, u_{\rho} \rangle \chi^{m}$ lies in I_{ρ} .

Now let's show the sequence is exact over affine piece U_{σ} . Since σ is smooth, we may assume $\sigma = \text{Cone}(e_1, \ldots, e_r)$, where $r \leq n$ and e_1, \ldots, e_n is a basis of N. Then $U_{\sigma} = \mathbb{C}^r \times (\mathbb{C}^*)^{n-r}$. Let x_1, \ldots, x_n denote the characters of the corresponding dual basis of M. The coordinate ring of U_{σ} is $R = \mathbb{C}[x_1, \ldots, x_r, x_{r+1}^{\pm}, \ldots, x_n^{\pm}]$. By Example 6.1.1 and Proposition 6.1.1, the 1-forms on U_{σ} is given by

$$\Omega^1_{R/\mathbb{C}} = \bigoplus_{i=1}^n R \mathrm{d} x_i.$$

Then the map α is given by

$$\alpha \colon \Omega^{1}_{R/\mathbb{C}} = \bigoplus_{i=1}^{n} R \mathrm{d} x_{i} \to M \otimes_{\mathbb{Z}} R = \bigoplus_{i=1}^{n} R$$
$$\sum_{i=1}^{n} f_{i} \mathrm{d} x_{i} \mapsto (f_{1}x_{1}, \dots, f_{n}x_{n}).$$

20

This gives the exact sequence

$$0 \to \Omega^1_{R/\mathbb{C}} \to \bigoplus_{i=1}^n R \to \bigoplus_{i=1}^r R/\langle x_i \rangle \to 0$$

since x_{r+1}, \ldots, x_n are units in R. This completes the proof.

Remark 6.2.2. Replacing $\Omega^1_{X_{\Sigma}}$ by the Zariski 1-form $\widehat{\Omega}^1_X$, the same result still holds for simplical toric variety X_{Σ} .

6.2.2. The Euler sequence. For the projective space \mathbb{P}^n , there is a famous exact sequence

$$0 \to \Omega^1_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(-1)^{n+1} \to \mathcal{O}_{\mathbb{P}^n} \to 0,$$

called the Euler sequence. Here is a toric generalization of this result.

Theorem 6.2.2. Let X_{Σ} be a simplical toric variety with no torus factors. Then there is an exact sequence

$$0 \to \widehat{\Omega}^1_{X_{\Sigma}} \to \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}(-D_{\rho}) \to \operatorname{Cl}(X_{\Sigma}) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to 0.$$

Moreover, if X_{Σ} is smooth, this reduces to

$$0 \to \Omega^1_{X_{\Sigma}} \to \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}(-D_{\rho}) \to \operatorname{Pic}(X_{\Sigma}) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to 0.$$

Proof. Consider the following commutative diagram

It's clear the third row is exact, and the first row is exact by Remark 6.2.2. By Proposition 4.1.1 we have the following exact sequence

$$0 \to \mathcal{O}_{X_{\Sigma}}(-D_{\rho}) \to \mathcal{O}_{X_{\Sigma}} \to \mathcal{O}_{D_{\rho}} \to 0,$$

and thus the third row is exact. Since X_{Σ} has no torus factors, by Theorem 4.2.1 one has the middle column is exact. Then the five lemma yields the desired result.

21

6.3. Differential forms on toric varieties.

6.3.1. Properties of wedge product.

Proposition 6.3.1. Let $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ be an exact sequence of locally free sheaves on a variety X with $\operatorname{rk} \mathscr{F} = m$ and $\operatorname{rk} \mathscr{H} = n$. Then $\operatorname{rk} \mathscr{G} = m + n$ and there is an isomorphism

$$\bigwedge^{m+n} \mathscr{G} \cong \bigwedge^m \mathscr{F} \otimes_{\mathcal{O}_X} \bigwedge^n \mathscr{H}.$$

Corollary 6.3.1 (adjunction formula). Let $Y \subseteq X$ be a smooth subvariety of a smooth variety X with dim Y = m and dim X = n. Then

$$\omega_Y \cong \omega_X \otimes \bigwedge^{n-m} \mathscr{N}_{Y/X}.$$

Proof. Consider the following exact sequence

$$0 \to \mathscr{I}_Y / \mathscr{I}_Y^2 \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{O}_Y \to \Omega^1_Y \to 0.$$

_

6.3.2. The canonical sheaf of toric varieties.

Theorem 6.3.1. For a toric variety X_{Σ} , the canonical sheaf $\omega_{X_{\Sigma}}$ is given by

$$\omega_{X_{\Sigma}} \cong \mathcal{O}_{X_{\Sigma}}(-\sum_{\rho} D_{\rho}).$$

Thus $K_{X_{\Sigma}} = -\sum_{\rho} D_{\rho}$ is a torus-invariant canonical divisor on X_{Σ} .

Proof. For convenience here we only give a proof with the assumption X_{Σ} is smooth and without torus factors. By Theorem 6.2.2 there is the following exact sequence

$$0 \to \Omega^1_{X_{\Sigma}} \to \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}(-D_{\rho}) \to \operatorname{Pic}(X_{\Sigma}) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} \to 0.$$

Note that each $\mathcal{O}_{X_{\Sigma}}(-D_{\rho})$ is a line bundle since X_{Σ} is smooth, and if we set $r = |\Sigma(1)|$, then it's easy to see $\operatorname{Pic}(X_{\Sigma}) \otimes_{\mathbb{Z}} \mathcal{O}_{X_{\Sigma}} = \mathcal{O}_{X_{\Sigma}}^{r-n}$. Thus by Proposition 6.3.1 one has

$$\bigwedge^{n} \Omega^{1}_{X_{\Sigma}} \otimes_{\mathcal{O}_{X_{\Sigma}}} \bigwedge^{r-n} \mathcal{O}^{r-n}_{X_{\Sigma}} \cong \bigwedge^{r} (\bigoplus_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}(-D_{\rho})).$$

The right hand is isomorphic to

$$\bigotimes_{\rho \in \Sigma(1)} \mathcal{O}_{X_{\Sigma}}(-D_{\rho}) \cong \mathcal{O}_{X_{\Sigma}}(-\sum_{\rho \in \Sigma(1)} D_{\rho})$$

The left hand is isomorphic to $\bigwedge^n \Omega^1_{X_{\Sigma}} = \omega_X$, since $\bigwedge^{r-n} \Omega^{r-n}_{X_{\Sigma}} \cong \mathcal{O}_{X_{\Sigma}}$. This completes the proof for the case X_{Σ} is smooth without torus factor. \Box

Example 6.3.1. The canonical bundle of \mathbb{P}^n is

$$\omega_{\mathbb{P}^n} \cong \mathcal{O}_{\mathbb{P}^n}(-n-1)$$

for all $n \ge 1$ since $\operatorname{Cl}(\mathbb{P}^n) \cong \mathbb{Z}$ and thus $D_0 \sim D_1 \sim \cdots \sim D_n$.

Example 6.3.2. In Example 4.2.3, when we computed the class group of Hirzebruch surface, we wrote divisors D_{ρ} as D_1, \ldots, D_4 and showed that

$$\begin{aligned} D_3 &\sim D_1 \\ D_4 &\sim r D_1 + D_2. \end{aligned}$$

Thus the canonical bundle can be written as

$$\omega_{\mathscr{H}_r} = \mathcal{O}_{\mathscr{H}_r}(-D_1 - D_2 - D_3 - D_4) = \mathcal{O}_{\mathscr{H}_r}(-(r+2)D_1 - 2D_2).$$