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6. Canonical divisors of toric variety
6.1. Some backgrounds. Suppose R is a C-algebra. The module of Kähler
differentials of R over C, denoted by Ω1

R/C, is the R-module generated by
the formal symbols df for f ∈ R, modulo the relations
(1) d(cf + g) = cdf + dg for all c ∈ C, f, g ∈ R.
(2) d(fg) = fdg + gdf for all f, g ∈ R.
Example 6.1.1. If R = C[x1, . . . , xn], then

Ω1
R/C
∼=

n⊕

i=1

Rdxi.

Proposition 6.1.1. Let Rf be the localization of C-algebra R with respect
to the non-nilpotent element f ∈ R. Then Ω1

Rf/C
∼= Ω1

R/C ⊗Rf .

Let X be a variety. Then the cotangent sheaf Ω1
X is the sheaf of OX -modules

defined by
Ω1
X(U) = ΩO1

X(U)/C

on affine open subsets U , and the tangent sheaf TX is the dual sheaf of Ω1
X .

More generally, the sheaf of p-forms is defined by
∧pΩ1

X .
A non-trivial fact is that X is smooth if and only if Ω1

X is locally free,
and thus Ωp

X is locally free when X is smooth. But the sheaf of p-forms may
behave badly when X is just normal, thought it’s locally free on the smooth
locus j : U ↪→ X. One way to handle this is to consider the Zariski p-forms,
defined by Ω̂p

X := j∗Ω
p
X |U , which gives a reflexive version of Ωp

X .
For a reflexive sheaf L of rank one, there exists some Weil divisor D such

that L ∼= OX(D). In particular, for a normal variety X, the canonical sheaf
ωX = Ω̂n

X

is a reflexive sheaf of rank one, and the Weil divisor corresponding to ωX is
called the canonical divisor, denoted by KX .

6.2. One-forms on toric varieties. In this section we wil study the sheaves
Ω1
XΣ

and Ω̂1
XΣ

on a normal toric variety.

6.2.1. The first exact sequence. Firstly note that the coordinate ring of the
torus TN is the semigroup C[M ]. Then the map

ΩC[M ]/C →M ⊗Z C[M ]

dχm %→ m⊗ χm

gives an isomorphism of C[M ]-modules, and thus
Ω1
TN
∼= M ⊗Z OTN .

Remark 6.2.1. As a consequence, dχm/χm is a global section of Ω1
TN

that
maps to m⊗ 1, and hence is invariant under the action of TN .
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Now consider the toric variety XΣ. For ρ ∈ Σ(1), the inclusion i : Dρ ↪→
XΣ gives the sheaf i∗ODρ on X, and for convenience we just denote it by
ODρ . Using the map M → Z given by m %→ ⟨m,uρ⟩, there is the following
composition

M ⊗Z OXΣ → OXΣ → ODρ .

This gives a natural map
β : M ⊗Z OXΣ →

⊕

ρ∈Σ(1)

ODρ .

On the other hand, on the affine piece Uσ = Spec(C[σ∨∩M ]), one can define
Ω1
C[σ∨∩M ]/C →M ⊗Z C[σ∨ ∩M ]

dχm %→ m⊗ χm,

and these affine pieces patch together to give a map α : Ω1
XΣ
→M ⊗Z OXΣ .

Theorem 6.2.1. For a smooth toric variety XΣ, the sequence

0→ Ω1
XΣ

α−→M ⊗Z OXΣ

β−→
⊕

ρ∈Σ(1)

ODρ → 0.

is exact.
Proof. Firstly let’s show β ◦ α = 0. On the affine piece Uσ ⊆ XΣ, one has
OXΣ(−Dρ)|Uρ is the ideal sheaf of the subvariety Dρ ∩ Uσ by Proposition
4.1.1, and thus the subvariety Dρ ∩ Uρ is defined by the ideal

Iρ = Γ(Uσ,OXΣ(−Dρ)) =
⊕

div(χm)|Uρ≥Dρ|Uρ

C ·χm =
⊕

m∈σ∨∩M
⟨m,uρ⟩≥1

C ·χm.

Over Uσ, the composition Ω1
XΣ
→M ⊗Z OXΣ → ODρ is given by sending 1-

form dχm,m ∈ σ∨∩M to the equivalent class of ⟨m,uρ⟩χm in C[σ∨∩M ]/Iρ.
It’s clear zero if ⟨m,uρ⟩ = 0, and if ⟨m,uρ⟩ ̸= 0, ⟨m,uρ⟩χm lies in Iρ.

Now let’s show the sequence is exact over affine piece Uσ. Since σ is
smooth, we may assume σ = Cone(e1, . . . , er), where r ≤ n and e1, . . . , en is
a basis of N . Then Uσ = Cr ×(C∗)n−r. Let x1, . . . , xn denote the characters
of the corresponding dual basis of M . The coordinate ring of Uσ is R =
C[x1, . . . , xr, x±r+1, . . . , x

±
n ]. By Example 6.1.1 and Proposition 6.1.1, the

1-forms on Uσ is given by

Ω1
R/C =

n⊕

i=1

Rdxi.

Then the map α is given by

α : Ω1
R/C =

n⊕

i=1

Rdxi →M ⊗Z R =
n⊕

i=1

R

n∑

i=1

fidxi %→ (f1x1, . . . , fnxn).
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This gives the exact sequence

0→ Ω1
R/C →

n⊕

i=1

R→
r⊕

i=1

R/⟨xi⟩ → 0

since xr+1, . . . , xn are units in R. This completes the proof. !
Remark 6.2.2. Replacing Ω1

XΣ
by the Zariski 1-form Ω̂1

X , the same result
still holds for simplical toric variety XΣ.
6.2.2. The Euler sequence. For the projective space Pn, there is a famous
exact sequence

0→ Ω1
Pn → OPn(−1)n+1 → OPn → 0,

called the Euler sequence. Here is a toric generalization of this result.
Theorem 6.2.2. Let XΣ be a simplical toric variety with no torus factors.
Then there is an exact sequence

0→ Ω̂1
XΣ
→

⊕

ρ∈Σ(1)

OXΣ(−Dρ)→ Cl(XΣ)⊗Z OXΣ → 0.

Moreover, if XΣ is smooth, this reduces to
0→ Ω1

XΣ
→

⊕

ρ∈Σ(1)

OXΣ(−Dρ)→ Pic(XΣ)⊗Z OXΣ → 0.

Proof. Consider the following commutative diagram

0 0 0

0 Ω̂1
XΣ

M ⊗Z OXΣ

⊕
ρ∈Σ(1)ODρ 0

0
⊕

ρ∈Σ(1)OXΣ(−Dρ)
⊕

ρ∈Σ(1)OXΣ

⊕
ρ∈Σ(1)ODρ 0

0 Cl(XΣ)⊗Z OXΣ Cl(XΣ)⊗Z OXΣ 0 0

0 0 0

It’s clear the third row is exact, and the first row is exact by Remark 6.2.2.
By Proposition 4.1.1 we have the following exact sequence

0→ OXΣ(−Dρ)→ OXΣ → ODρ → 0,

and thus the third row is exact. Since XΣ has no torus factors, by Theorem
4.2.1 one has the middle column is exact. Then the five lemma yields the
desired result. !
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6.3. Differential forms on toric varieties.

6.3.1. Properties of wedge product.

Proposition 6.3.1. Let 0 → F → G → H → 0 be an exact sequence of
locally free sheaves on a variety X with rkF = m and rkH = n. Then
rkG = m+ n and there is an isomorphism

m+n∧
G ∼=

m∧
F ⊗OX

n∧
H .

Corollary 6.3.1 (adjunction formula). Let Y ⊆ X be a smooth subvariety
of a smooth variety X with dimY = m and dimX = n. Then

ωY
∼= ωX ⊗

n−m∧
NY/X .

Proof. Consider the following exact sequence
0→ IY /I

2
Y → Ω1

X ⊗OX OY → Ω1
Y → 0.

!

6.3.2. The canonical sheaf of toric varieties.

Theorem 6.3.1. For a toric variety XΣ, the canonical sheaf ωXΣ is given
by

ωXΣ
∼= OXΣ(−

∑

ρ

Dρ).

Thus KXΣ = −
∑

ρDρ is a torus-invariant canonical divisor on XΣ.

Proof. For convenience here we only give a proof with the assumption XΣ is
smooth and without torus factors. By Theorem 6.2.2 there is the following
exact sequence

0→ Ω1
XΣ
→

⊕

ρ∈Σ(1)

OXΣ(−Dρ)→ Pic(XΣ)⊗Z OXΣ → 0.

Note that each OXΣ(−Dρ) is a line bundle since XΣ is smooth, and if we
set r = |Σ(1)|, then it’s easy to see Pic(XΣ) ⊗Z OXΣ = Or−n

XΣ
. Thus by

Proposition 6.3.1 one has
n∧
Ω1
XΣ
⊗OXΣ

r−n∧
Or−n

XΣ
∼=

r∧
(
⊕

ρ∈Σ(1)

OXΣ(−Dρ)).

The right hand is isomorphic to
⊗

ρ∈Σ(1)

OXΣ(−Dρ) ∼= OXΣ(−
∑

ρ∈Σ(1)

Dρ)

The left hand is isomorphic to
∧nΩ1

XΣ
= ωX , since

∧r−nΩr−n
XΣ
∼= OXΣ . This

completes the proof for the case XΣ is smooth without torus factor. !
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Example 6.3.1. The canonical bundle of Pn is
ωPn ∼= OPn(−n− 1)

for all n ≥ 1 since Cl(Pn) ∼= Z and thus D0 ∼ D1 ∼ · · · ∼ Dn.
Example 6.3.2. In Example 4.2.3, when we computed the class group of
Hirzebruch surface, we wrote divisors Dρ as D1, . . . , D4 and showed that

D3 ∼ D1

D4 ∼ rD1 +D2.

Thus the canonical bundle can be written as
ωHr = OHr(−D1 −D2 −D3 −D4) = OHr(−(r + 2)D1 − 2D2).
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