4. Divisors on toric variety

4.1. Some backgrounds. Let X be an irreducible variety. A prime divisor $D \subseteq X$ is an irreducible subvariety of codimension one. Any prime ideal D will gives a subring of rational function field $\mathbb{C}(X)$ as

$$
\mathcal{O}_{X, D}=\{\phi \in \mathbb{C}(X) \mid \phi \text { is defined on } U \subseteq X \text { open with } U \cap D \neq \varnothing\} .
$$

A simple observation is that if $U \subseteq X$ is an open subset such that $U \cap D \neq \varnothing$, then $\mathcal{O}_{X, D}=\mathcal{O}_{U, U \cap D}$. This shows we can reduce to the affine case when we consider the ring $\mathcal{O}_{X, D}$. Suppose $X=\operatorname{Spec} R$ for an integral domain R and given a prime divisor $D=V(\mathfrak{p})$. Then

$$
\mathcal{O}_{X, D}=R_{\mathfrak{p}}
$$

is a local ring.
Example 4.1.1. Let X be the affine space $\mathbb{C}=\operatorname{Spec} \mathbb{C}[x]$ with rational function field $\mathbb{C}(x)$. Then the prime divisor $\{0\}=V(x)$ has the local ring

$$
\mathcal{O}_{\mathbb{C},\{0\}}=\mathbb{C}[x]_{\langle x\rangle},
$$

which is a DVR.
Remark 4.1.1. More generally, for a normal variety X, the local ring $\mathcal{O}_{X, D}$ for a prime divisor is a DVR.

For convenience, in the remaining of this section, we always assume the variety X is normal. Let $\operatorname{Div}(X)$ denote the free abelian group generated by the prime divisors on X. A Weil divisor is an element in $\operatorname{Div}(X)$. Moreover, any $f \in \mathbb{C}(X)^{*}$ gives a Weil divisor

$$
\operatorname{div}(f):=\sum_{D} \nu_{D}(f) D
$$

where ν_{D} is the valuation of $\operatorname{DVR} \mathcal{O}_{X, D}$ and the sum ${ }^{4}$ is over all prime divisors $D \subseteq X$. Such a divisor is called a principal divisor, and the set of all principal divisors is denoted by $\operatorname{Div}_{0}(X)$.

Let $D=\sum_{i} a_{i} D_{i}$ is a Weil divisor on X and $U \subseteq X$ be an open subset. Then

$$
\left.D\right|_{U}=\sum_{U \cap D_{i} \neq \varnothing} a_{i} U \cap D_{i}
$$

is a Weil divisor on U called the restriction of D on U.
A Weil divisor D on X is called a Cartier divisor if there exists an open covering $\left\{U_{i}\right\}_{i \in I}$ of X such that $\left.D\right|_{U_{i}}$ is principal in U_{i} for each $i \in I$. If $\left.D\right|_{U_{i}}=\operatorname{div}\left(f_{i}\right)$ for $i \in I$, then $\left\{\left(U_{i}, f_{i}\right)\right\}$ is called the local data for D. The group of Cartier divisors is denoted by $\operatorname{CDiv}(X)$.

The class group $\mathrm{Cl}(X)$ is defined by $\operatorname{Div}(X) / \operatorname{Div}_{0}(X)$ and the picard group is defined by $\operatorname{Pic}(X)=\operatorname{CDiv}(X) / \operatorname{Div}_{0}(X)$. In general these groups are not easy to compute, here we list some results.

[^0]Theorem 4.1.1. Let R be a UFD and $X=\operatorname{Spec} R$. Then $\operatorname{Cl}(X)=0$.
Example 4.1.2. $\mathrm{Cl}\left(\mathbb{C}^{n}\right)=0$ since $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a UFD.
Theorem 4.1.2. Let U be an open subset of a normal variety X and D_{1}, \ldots, D_{s} be the irreducible components of $X \backslash U$ that are prime divisors. Then the following sequence is exact

$$
\bigoplus_{j=1}^{s} \mathbb{Z} D_{j} \rightarrow \mathrm{Cl}(X) \rightarrow \mathrm{Cl}(U) \rightarrow 0
$$

where the first map sends $\sum_{j} a_{j} D_{j}$ to its divisor class in $\mathrm{Cl}(X)$ and the second map is restriction.

For relations between Weil divisors and Cartier divisors, a fact is that if X is a smooth variety, then every Weil divisor is a Cartier divisor, and the converse statement also holds for a toric variety X_{Σ}, that if, if every Weil divisor of X_{Σ} is a Cartier divisor, then X_{Σ} is smooth.

Finally we introduce the sheaf of a Weil divisor D on X, denoted by $\mathcal{O}_{X}(D)$, which is defined by

$$
U \mapsto \mathcal{O}_{X}(D):=\left\{f \in \mathbb{C}(X)^{*}\left|\left(\operatorname{div}(f)_{D}\right)\right|_{U} \geq 0\right\} \cup\{0\}
$$

In fact, it's a coherent \mathcal{O}_{X}-modules.
4.2. Weil divisors on toric varieties. Let X_{Σ} be the toric variety of fan in $N_{\mathbb{R}}$ with $\operatorname{dim} N_{\mathbb{R}}=n$. In this section we will use torus-invariant prime divisors and characters to give a lovely description of class group of X_{Σ}.
4.2.1. The divisor of a character. By the orbit-cone correspondence, $\rho \in$ $\Sigma(1)$ gives the codimension one orbit $O(\rho)$ whose closure $\overline{O(\rho)}$ admits a codimension one toric subvariety structure by Proposition 3.2.1. Thus $\overline{O(\rho)}$ gives a T_{N}-invariant prime divisor on X_{Σ}. To emphasize that $\overline{O(\rho)}$ is a divisor we will denote it by D_{ρ} for convenience. Then D_{ρ} gives the DVR $\mathcal{O}_{X_{\Sigma}, D_{\rho}}$ with valuation

$$
\nu_{\rho}: \mathbb{C}\left(X_{\Sigma}\right)^{*} \rightarrow \mathbb{Z} .
$$

Recall that any ray $\rho \in \Sigma(1)$ has a minimal generator $u_{\rho} \in \rho \cap N$, and also note that when $m \in M$, the character $\chi^{m}: T_{N} \rightarrow \mathbb{C}^{*}$ is a rational function in $\mathbb{C}\left(X_{\Sigma}\right)^{*}$ since T_{N} is Zariski open in X_{Σ}.

Proposition 4.2.1. Let u_{ρ} be the minimal generator of ray $\rho \in \Sigma(1)$ and χ^{m} be a character corresponding to $m \in M$. Then

$$
\nu_{\rho}\left(\chi^{m}\right)=\left\langle m, u_{\rho}\right\rangle .
$$

Proof. Firstly we extend u_{ρ} to a basis $e_{1}=\rho, e_{2}, \ldots, e_{n}$ of N, and then we may assume $N=\mathbb{Z}^{n}$ and $\rho=\operatorname{Cone}\left(e_{1}\right) \subseteq \mathbb{R}^{n}$. Then the corresponding affine toric variety is

$$
U_{\rho}=\operatorname{Spec}\left(\mathbb{C}\left[x_{1}, x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right]\right)=\mathbb{C} \times\left(\mathbb{C}^{*}\right)^{n-1}
$$

and $D_{\rho} \cap U_{\rho}$ is defined by $x_{1}=0$. Then as we have seen in Example 4.1.1, one has

$$
\mathcal{O}_{X_{\Sigma}, D_{\rho}}=\mathcal{O}_{U_{\rho}, U_{\rho} \cap D_{\rho}}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\left\langle x_{1}\right\rangle} .
$$

For $f \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{*}$, the valuation $\nu_{\rho}(f)$ is given by $\nu_{\rho}(f)=\ell$ when

$$
f=x_{1}^{\ell} \frac{g}{h}, \quad g, h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \backslash\left\langle x_{1}\right\rangle .
$$

Then the formula for $\nu_{\rho}\left(\chi^{m}\right)$ can be seen from

$$
\chi^{m}=x_{1}^{\left\langle m, e_{1}\right\rangle} \cdots x_{n}^{\left\langle m, e_{n}\right\rangle}=x_{1}^{\left\langle m, u_{\rho}\right\rangle} \cdots x_{n}^{\left\langle m, e_{n}\right\rangle} .
$$

Proposition 4.2.2. For $m \in M$, the divisor of character χ^{m} is given by

$$
\operatorname{div}\left(\chi^{m}\right)=\sum_{\rho \in \Sigma(1)}\left\langle m, u_{\rho}\right\rangle D_{\rho} .
$$

Proof. Note that D_{ρ} are irreducible components of $X \backslash T_{N}$, and χ^{m} is nonzero on T_{N}. Thus $\operatorname{div}\left(\chi^{m}\right)$ is supported on $\bigcup_{\rho \in \Sigma(1)} D_{\rho}$ and thus

$$
\operatorname{div}\left(\chi^{m}\right)=\sum_{\rho \in \Sigma(1)} \nu_{\rho}\left(\chi^{m}\right) D_{\rho}=\sum_{\rho \in \Sigma(1)}\left\langle m, u_{\rho}\right\rangle D_{\rho} .
$$

4.2.2. Computing the class group. Divisors of the form $\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$ are precisely the divisors invariant under the torus action. Thus

$$
\operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right)=\bigoplus_{\rho \in \Sigma(1)} \mathbb{Z} D_{\rho} \subseteq \operatorname{Div}(X)
$$

is the group of T_{N}-invariant Weil divisors on X_{Σ}.
Theorem 4.2.1. There is the following exact sequence

$$
M \rightarrow \operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right) \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right) \rightarrow 0,
$$

where the first map is $m \mapsto \operatorname{div}\left(\chi^{m}\right)$ and the second sends a T_{N}-invariant divisor to its divisor class in $\operatorname{Cl}\left(X_{\Sigma}\right)$. Furthermore, one has the following exact sequence

$$
0 \rightarrow M \rightarrow \operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right) \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right) \rightarrow 0
$$

if and only if $\left\{u_{\rho} \mid \rho \in \Sigma(1)\right\}$ spans $N_{\mathbb{R}}$.
Proof. Since the D_{ρ} are the irreducible components of $X_{\Sigma} \backslash T_{N}$, then by Theorem 4.1.2 one has the following exact sequence

$$
\operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right) \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right) \rightarrow \mathrm{Cl}\left(T_{N}\right) \rightarrow 0
$$

Note that $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a UFD, the same is true for $\mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$since UFD is preserved under localization. This shows $\mathrm{Cl}\left(T_{N}\right)=0$ since the coordinate ring of T_{N} is isomorphic to $\mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$. As a consequence, one has $\operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right) \rightarrow \operatorname{Div}\left(X_{\Sigma}\right)$ is surjective.

The composition $M \rightarrow \operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right) \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right.$ is clearly zero since the first map maps m to the principal divisor $\operatorname{div}\left(\chi^{m}\right)$. Now suppose $D \in \operatorname{Div}_{T_{N}}\left(X_{\Sigma}\right)$ maps to 0 in $\mathrm{Cl}\left(X_{\Sigma}\right)$. Then $D=\operatorname{div}(f)$ for some $f \in \mathbb{C}\left(X_{\Sigma}\right)^{*}$. Since the support of D misses T_{N}, this implies $\operatorname{div}(f)=0$ on T_{N}, and thus f is in fact a character $T_{N} \rightarrow \mathbb{C}^{*}$. Since all characters of T_{N} are of the form $c \chi^{m}$ for some $m \in M$, this shows

$$
D=\operatorname{div}(f)=\operatorname{div}\left(c \chi^{m}\right)=\operatorname{div}\left(\chi^{m}\right)
$$

as desired.
Finally, suppose $m \in M$ with $\operatorname{div}\left(\chi^{m}\right)=\sum_{\rho \in \Sigma(1)} D_{\rho}$ is the zero divisor. Then $\left\langle m, u_{\rho}\right\rangle=0$ for all $\rho \in \Sigma(1)$, which forces $m=0$ if $\left\{u_{\rho}\right\}$ spans $N_{\mathbb{R}}$. This gives the desired exact sequence. Conversely it's also easy to see if the sequence is exact, then $\left\{u_{\rho}\right\}$ spans $N_{\mathbb{R}}$.

Example 4.2.1. The fan of the blowup of \mathbb{C}^{2} at the origin has ray generators $u_{1}=e_{1}, u_{2}=e_{2}$ and $u_{3}=e_{1}+e_{2}$, corresponding to the divisors D_{1}, D_{2}, D_{0}. Then the class group is generated by the classes of the D_{i} with the following relations

$$
\begin{gathered}
0 \sim \operatorname{div}\left(\chi^{e_{1}}\right)=D_{1}+D_{0} \\
0 \sim \operatorname{div}\left(\chi^{e_{2}}\right)=D_{2}+D_{0}
\end{gathered}
$$

Thus the class group is \mathbb{Z} with generators $\left[D_{1}\right]=\left[D_{2}\right]=-\left[D_{0}\right]$.
Example 4.2.2. The fan of projective space \mathbb{P}^{n} has ray generators given by $u_{0}=-e_{1}-\cdots-e_{n}$ and $u_{1}=e_{1}, \ldots, u_{n}=e_{n}$. Thus the map $M \rightarrow \operatorname{Div}_{T_{N}}\left(\mathbb{P}^{n}\right)$ can be written as

$$
\begin{aligned}
\mathbb{Z}^{n} & \rightarrow \mathbb{Z}^{n+1} \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(-a_{1}-\cdots-a_{n}, a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Using the map

$$
\begin{aligned}
\mathbb{Z}^{n+1} & \rightarrow \mathbb{Z} \\
\left(b_{0}, \ldots, b_{n}\right) & \mapsto b_{0}+\cdots+b_{n}
\end{aligned}
$$

one gets the exact sequence

$$
0 \rightarrow \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+1} \rightarrow \mathbb{Z} \rightarrow 0
$$

which proves $\mathrm{Cl}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$.
Example 4.2.3. The fan of Hirzebruch surface \mathscr{H}_{n} has ray generators given by $u_{1}=-e_{1}+r e_{2}, u_{2}=e_{2}, u_{3}=e_{1}, u_{4}=-e_{2}$. The class group is generated by the classes of $D_{1}, D_{2}, D_{3}, D_{4}$ with relations

$$
\begin{aligned}
& 0 \sim \operatorname{div}\left(\chi^{e_{1}}\right)=-D_{1}+D_{3} \\
& 0 \sim \operatorname{div}\left(\chi^{e_{2}}\right)=r D_{1}+D_{2}-D_{4}
\end{aligned}
$$

Thus $\mathrm{Cl}\left(\mathscr{H}_{r}\right)=\mathbb{Z} \times \mathbb{Z}$.
4.3. The sheaf of a torus-invariant divisor. Let D be a T_{N}-invariant divisor on a toric variety X_{Σ}. In this section we will give descriptions of the global sections $H^{0}\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)$.

Proposition 4.3.1. If D is a T_{N}-invariant Weil divisor on X_{Σ}, then

$$
H^{0}\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)=\bigoplus_{\operatorname{div}\left(\chi^{m}\right)+D \geq 0} \mathbb{C} \cdot \chi^{m}
$$

Proof. Suppose $f \in \Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)$, then $\operatorname{div}(f)+D \geq 0$ implies $\left.\operatorname{div}(f)\right|_{T_{N}} \geq$ 0 since $\left.D\right|_{T_{N}}=0$. Then one has $f \in \mathbb{C}[M]$, that is,

$$
\Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right) \subseteq \mathbb{C}[M]
$$

Moreover, $\Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)$ is T_{N}-invariant since D is T_{N}-invariant. By Theorem 1.2.2 one has

$$
\Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)=\bigoplus_{\chi^{m} \in \Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)} \mathbb{C} \cdot \chi^{m}
$$

Since $\chi^{m} \in \Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)$ if and only if $\operatorname{div}\left(\chi^{m}\right)+D \geq 0$, as desired.
Remark 4.3.1. For $D=\sum_{\rho} a_{\rho} D_{\rho}$ and $m \in M, \operatorname{div}\left(\chi^{m}\right)+D \geq 0$ is equivalent to

$$
\left\langle m, u_{\rho}\right\rangle+a_{\rho} \geq 0
$$

for all $\rho \in \Sigma(1)$. If we define

$$
P_{D}=\left\{m \in M_{\mathbb{R}} \mid\left\langle m, u_{\rho}\right\rangle \geq-a_{\rho} \text { for all } \rho \in \Sigma(1)\right\}
$$

then above proposition can be written as

$$
H^{0}\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right)=\bigoplus_{m \in P_{D} \cap M} \mathbb{C} \cdot \chi^{m}
$$

Example 4.3.1. In Example 4.2 .2 we show that $\mathrm{Cl}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$, and thus divisors $D_{1}, D_{2}, \ldots, D_{n}$ corresponding to the ray generators give the same sheaf, which is denoted by $\mathcal{O}_{\mathbb{P}^{n}}(1)$, and similarly the sheaves given by $k D_{i}$, where $k \in \mathbb{Z}$, is denoted by $\mathcal{O}_{\mathbb{P}^{n}}(k)$. For $D=k D_{0}$, a direct computation shows that

$$
P_{D}= \begin{cases}\varnothing & k<0 \\ k \Delta_{n} & k \geq 0\end{cases}
$$

where Δ_{n} is the standard n-simplex.
If we think characters as Laurent monomials $t^{m}=t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}$, where $m=$ $\left(a_{1}, \ldots, a_{n}\right)$. It follows that

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right) \cong\left\{f \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right] \mid \operatorname{deg}(f) \leq k\right\}
$$

By considering the homogenization of such a polynomial, one has $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right) \cong\left\{f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \mid f\right.$ is homogenous with $\left.\operatorname{deg}(f) \leq k\right\}$.

Example 4.3.2. In this example we compute the effective cone of Hirzebruch surface \mathscr{H}_{r}. Recall Example 4.2.3 implies that the classes of $\left\{D_{2}, D_{3}\right\}$ gives a basis of $\mathrm{Cl}\left(\mathscr{H}_{2}\right) \cong \mathbb{Z}^{2}$. For divisor $D=a D_{3}+b D_{2}$, the picture of P_{D} is given by

This shows $P_{D} \cap M \neq \varnothing$ if and only if $a>0$ and $b>0$, and thus the effective cone of \mathscr{H}_{r} looks like

[^0]: ${ }^{4} \mathrm{~A}$ fact is that the sum is finite.

