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4. Divisors on toric variety
4.1. Some backgrounds. Let X be an irreducible variety. A prime divisor
D ⊆ X is an irreducible subvariety of codimension one. Any prime ideal D
will gives a subring of rational function field C(X) as

OX,D = {φ ∈ C(X) | φ is defined on U ⊆ X open with U ∩D ̸= ∅}.
A simple observation is that if U ⊆ X is an open subset such that U∩D ̸= ∅,
then OX,D = OU,U∩D. This shows we can reduce to the affine case when we
consider the ring OX,D. Suppose X = SpecR for an integral domain R and
given a prime divisor D = V (p). Then

OX,D = Rp

is a local ring.
Example 4.1.1. Let X be the affine space C = SpecC[x] with rational
function field C(x). Then the prime divisor {0} = V (x) has the local ring

OC,{0} = C[x]⟨x⟩,
which is a DVR.
Remark 4.1.1. More generally, for a normal variety X, the local ring OX,D

for a prime divisor is a DVR.
For convenience, in the remaining of this section, we always assume the

variety X is normal. Let Div(X) denote the free abelian group generated by
the prime divisors on X. A Weil divisor is an element in Div(X). Moreover,
any f ∈ C(X)∗ gives a Weil divisor

div(f) :=
∑

D

νD(f)D,

where νD is the valuation of DVR OX,D and the sum4 is over all prime
divisors D ⊆ X. Such a divisor is called a principal divisor, and the set of
all principal divisors is denoted by Div0(X).

Let D =
∑

i aiDi is a Weil divisor on X and U ⊆ X be an open subset.
Then

D|U =
∑

U∩Di ̸=∅
aiU ∩Di

is a Weil divisor on U called the restriction of D on U .
A Weil divisor D on X is called a Cartier divisor if there exists an open

covering {Ui}i∈I of X such that D|Ui is principal in Ui for each i ∈ I. If
D|Ui = div(fi) for i ∈ I, then {(Ui, fi)} is called the local data for D. The
group of Cartier divisors is denoted by CDiv(X).

The class group Cl(X) is defined by Div(X)/Div0(X) and the picard
group is defined by Pic(X) = CDiv(X)/Div0(X). In general these groups
are not easy to compute, here we list some results.

4A fact is that the sum is finite.
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Theorem 4.1.1. Let R be a UFD and X = SpecR. Then Cl(X) = 0.

Example 4.1.2. Cl(Cn) = 0 since C[x1, . . . , xn] is a UFD.

Theorem 4.1.2. Let U be an open subset of a normal variety X and
D1, . . . , Ds be the irreducible components of X \ U that are prime divisors.
Then the following sequence is exact

s⊕

j=1

ZDj → Cl(X)→ Cl(U)→ 0,

where the first map sends
∑

j ajDj to its divisor class in Cl(X) and the
second map is restriction.

For relations between Weil divisors and Cartier divisors, a fact is that if
X is a smooth variety, then every Weil divisor is a Cartier divisor, and the
converse statement also holds for a toric variety XΣ, that if, if every Weil
divisor of XΣ is a Cartier divisor, then XΣ is smooth.

Finally we introduce the sheaf of a Weil divisor D on X, denoted by
OX(D), which is defined by

U &→ OX(D) := {f ∈ C(X)∗ | (div(f)D)|U ≥ 0} ∪ {0}.

In fact, it’s a coherent OX -modules.

4.2. Weil divisors on toric varieties. Let XΣ be the toric variety of fan
in NR with dimNR = n. In this section we will use torus-invariant prime
divisors and characters to give a lovely description of class group of XΣ.

4.2.1. The divisor of a character. By the orbit-cone correspondence, ρ ∈
Σ(1) gives the codimension one orbit O(ρ) whose closure O(ρ) admits a
codimension one toric subvariety structure by Proposition 3.2.1. Thus O(ρ)
gives a TN -invariant prime divisor on XΣ. To emphasize that O(ρ) is a
divisor we will denote it by Dρ for convenience. Then Dρ gives the DVR
OXΣ,Dρ with valuation

νρ : C(XΣ)
∗ → Z .

Recall that any ray ρ ∈ Σ(1) has a minimal generator uρ ∈ ρ ∩N , and also
note that when m ∈ M , the character χm : TN → C∗ is a rational function
in C(XΣ)∗ since TN is Zariski open in XΣ.

Proposition 4.2.1. Let uρ be the minimal generator of ray ρ ∈ Σ(1) and
χm be a character corresponding to m ∈M . Then

νρ(χ
m) = ⟨m,uρ⟩.

Proof. Firstly we extend uρ to a basis e1 = ρ, e2, . . . , en of N , and then we
may assume N = Zn and ρ = Cone(e1) ⊆ Rn. Then the corresponding
affine toric variety is

Uρ = Spec(C[x1, x±2 , . . . , x±n ]) = C×(C∗)n−1,
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and Dρ ∩ Uρ is defined by x1 = 0. Then as we have seen in Example 4.1.1,
one has

OXΣ,Dρ = OUρ,Uρ∩Dρ = C[x1, . . . , xn]⟨x1⟩.

For f ∈ C(x1, . . . , xn)∗, the valuation νρ(f) is given by νρ(f) = ℓ when

f = xℓ1
g

h
, g, h ∈ C[x1, . . . , xn] \ ⟨x1⟩.

Then the formula for νρ(χm) can be seen from

χm = x⟨m,e1⟩
1 · · ·x⟨m,en⟩

n = x
⟨m,uρ⟩
1 · · ·x⟨m,en⟩

n .

!
Proposition 4.2.2. For m ∈M , the divisor of character χm is given by

div(χm) =
∑

ρ∈Σ(1)

⟨m,uρ⟩Dρ.

Proof. Note that Dρ are irreducible components of X \ TN , and χm is non-
zero on TN . Thus div(χm) is supported on

⋃
ρ∈Σ(1)Dρ and thus

div(χm) =
∑

ρ∈Σ(1)

νρ(χ
m)Dρ =

∑

ρ∈Σ(1)

⟨m,uρ⟩Dρ.

!
4.2.2. Computing the class group. Divisors of the form

∑
ρ∈Σ(1) aρDρ are

precisely the divisors invariant under the torus action. Thus
DivTN (XΣ) =

⊕

ρ∈Σ(1)

ZDρ ⊆ Div(X)

is the group of TN -invariant Weil divisors on XΣ.
Theorem 4.2.1. There is the following exact sequence

M → DivTN (XΣ)→ Cl(XΣ)→ 0,

where the first map is m &→ div(χm) and the second sends a TN -invariant
divisor to its divisor class in Cl(XΣ). Furthermore, one has the following
exact sequence

0→M → DivTN (XΣ)→ Cl(XΣ)→ 0

if and only if {uρ | ρ ∈ Σ(1)} spans NR.
Proof. Since the Dρ are the irreducible components of XΣ \ TN , then by
Theorem 4.1.2 one has the following exact sequence

DivTN (XΣ)→ Cl(XΣ)→ Cl(TN )→ 0.

Note that C[x1, . . . , xn] is a UFD, the same is true for C[x±1 , . . . , x±n ] since
UFD is preserved under localization. This shows Cl(TN ) = 0 since the
coordinate ring of TN is isomorphic to C[x±1 , . . . , x±n ]. As a consequence,
one has DivTN (XΣ)→ Div(XΣ) is surjective.
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The composition M → DivTN (XΣ)→ Cl(XΣ is clearly zero since the first
map maps m to the principal divisor div(χm). Now suppose D ∈ DivTN (XΣ)
maps to 0 in Cl(XΣ). Then D = div(f) for some f ∈ C(XΣ)∗. Since the
support of D misses TN , this implies div(f) = 0 on TN , and thus f is in fact
a character TN → C∗. Since all characters of TN are of the form cχm for
some m ∈M , this shows

D = div(f) = div(cχm) = div(χm)

as desired.
Finally, suppose m ∈ M with div(χm) =

∑
ρ∈Σ(1)Dρ is the zero divisor.

Then ⟨m,uρ⟩ = 0 for all ρ ∈ Σ(1), which forces m = 0 if {uρ} spans NR.
This gives the desired exact sequence. Conversely it’s also easy to see if the
sequence is exact, then {uρ} spans NR. !

Example 4.2.1. The fan of the blowup of C2 at the origin has ray generators
u1 = e1, u2 = e2 and u3 = e1 + e2, corresponding to the divisors D1, D2, D0.
Then the class group is generated by the classes of the Di with the following
relations

0 ∼ div(χe1) = D1 +D0

0 ∼ div(χe2) = D2 +D0.

Thus the class group is Z with generators [D1] = [D2] = −[D0].

Example 4.2.2. The fan of projective space Pn has ray generators given by
u0 = −e1−· · ·−en and u1 = e1, . . . , un = en. Thus the map M → DivTN (Pn)
can be written as

Zn → Zn+1

(a1, . . . , an) &→ (−a1 − · · ·− an, a1, . . . , an).

Using the map
Zn+1 → Z

(b0, . . . , bn) &→ b0 + · · ·+ bn,

one gets the exact sequence

0→ Zn → Zn+1 → Z→ 0

which proves Cl(Pn) ∼= Z.

Example 4.2.3. The fan of Hirzebruch surface Hn has ray generators given
by u1 = −e1 + re2, u2 = e2, u3 = e1, u4 = −e2. The class group is generated
by the classes of D1, D2, D3, D4 with relations

0 ∼ div(χe1) = −D1 +D3

0 ∼ div(χe2) = rD1 +D2 −D4.

Thus Cl(Hr) = Z×Z.
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4.3. The sheaf of a torus-invariant divisor. Let D be a TN -invariant
divisor on a toric variety XΣ. In this section we will give descriptions of the
global sections H0(XΣ,OXΣ(D)).

Proposition 4.3.1. If D is a TN -invariant Weil divisor on XΣ, then

H0(XΣ,OXΣ(D)) =
⊕

div(χm)+D≥0

C ·χm

Proof. Suppose f ∈ Γ(XΣ,OXΣ(D)), then div(f)+D ≥ 0 implies div(f)|TN ≥
0 since D|TN = 0. Then one has f ∈ C[M ], that is,

Γ(XΣ,OXΣ(D)) ⊆ C[M ].

Moreover, Γ(XΣ,OXΣ(D)) is TN -invariant since D is TN -invariant. By The-
orem 1.2.2 one has

Γ(XΣ,OXΣ(D)) =
⊕

χm∈Γ(XΣ,OXΣ
(D))

C ·χm.

Since χm ∈ Γ(XΣ,OXΣ(D)) if and only if div(χm) +D ≥ 0, as desired. !

Remark 4.3.1. For D =
∑

ρ aρDρ and m ∈M , div(χm)+D ≥ 0 is equivalent
to

⟨m,uρ⟩+ aρ ≥ 0

for all ρ ∈ Σ(1). If we define
PD = {m ∈MR | ⟨m,uρ⟩ ≥ −aρ for all ρ ∈ Σ(1)},

then above proposition can be written as

H0(XΣ,OXΣ(D)) =
⊕

m∈PD∩M
C ·χm

Example 4.3.1. In Example 4.2.2 we show that Cl(Pn) = Z, and thus
divisors D1, D2, . . . , Dn corresponding to the ray generators give the same
sheaf, which is denoted by OPn(1), and similarly the sheaves given by kDi,
where k ∈ Z, is denoted by OPn(k). For D = kD0, a direct computation
shows that

PD =

{
∅ k < 0

k∆n k ≥ 0,

where ∆n is the standard n-simplex.
If we think characters as Laurent monomials tm = ta11 . . . tann , where m =

(a1, . . . , an). It follows that

H0(Pn,OPn(k)) ∼= {f ∈ C[t1, . . . , tn] | deg(f) ≤ k}.

By considering the homogenization of such a polynomial, one has
H0(Pn,OPn(k)) ∼= {f ∈ C[x0, . . . , xn] | f is homogenous with deg(f) ≤ k}.
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Example 4.3.2. In this example we compute the effective cone of Hirze-
bruch surface Hr. Recall Example 4.2.3 implies that the classes of {D2, D3}
gives a basis of Cl(H2) ∼= Z2. For divisor D = aD3+ bD2, the picture of PD

is given by

This shows PD ∩M ≠ ∅ if and only if a > 0 and b > 0, and thus the
effective cone of Hr looks like
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