BOWEN LIU

4. DIVISORS ON TORIC VARIETY

4.1. Some backgrounds. Let X be an irreducible variety. A prime divisor $D \subseteq X$ is an irreducible subvariety of codimension one. Any prime ideal D will gives a subring of rational function field $\mathbb{C}(X)$ as

 $\mathcal{O}_{X,D} = \{ \phi \in \mathbb{C}(X) \mid \phi \text{ is defined on } U \subseteq X \text{ open with } U \cap D \neq \emptyset \}.$

A simple observation is that if $U \subseteq X$ is an open subset such that $U \cap D \neq \emptyset$, then $\mathcal{O}_{X,D} = \mathcal{O}_{U,U\cap D}$. This shows we can reduce to the affine case when we consider the ring $\mathcal{O}_{X,D}$. Suppose $X = \operatorname{Spec} R$ for an integral domain R and given a prime divisor $D = V(\mathfrak{p})$. Then

$$\mathcal{O}_{X,D} = R_{\mathfrak{p}}$$

is a local ring.

Example 4.1.1. Let X be the affine space $\mathbb{C} = \operatorname{Spec} \mathbb{C}[x]$ with rational function field $\mathbb{C}(x)$. Then the prime divisor $\{0\} = V(x)$ has the local ring

$$\mathcal{O}_{\mathbb{C},\{0\}} = \mathbb{C}[x]_{\langle x \rangle}$$

which is a DVR.

Remark 4.1.1. More generally, for a normal variety X, the local ring $\mathcal{O}_{X,D}$ for a prime divisor is a DVR.

For convenience, in the remaining of this section, we always assume the variety X is normal. Let Div(X) denote the free abelian group generated by the prime divisors on X. A Weil divisor is an element in Div(X). Moreover, any $f \in \mathbb{C}(X)^*$ gives a Weil divisor

$$\operatorname{div}(f) := \sum_{D} \nu_{D}(f) D,$$

where ν_D is the valuation of DVR $\mathcal{O}_{X,D}$ and the sum⁴ is over all prime divisors $D \subseteq X$. Such a divisor is called a principal divisor, and the set of all principal divisors is denoted by $\text{Div}_0(X)$.

Let $D = \sum_i a_i D_i$ is a Weil divisor on X and $U \subseteq X$ be an open subset. Then

$$D|_U = \sum_{U \cap D_i \neq \emptyset} a_i U \cap D_i$$

is a Weil divisor on U called the restriction of D on U.

A Weil divisor D on X is called a Cartier divisor if there exists an open covering $\{U_i\}_{i\in I}$ of X such that $D|_{U_i}$ is principal in U_i for each $i \in I$. If $D|_{U_i} = \operatorname{div}(f_i)$ for $i \in I$, then $\{(U_i, f_i)\}$ is called the local data for D. The group of Cartier divisors is denoted by $\operatorname{CDiv}(X)$.

The class group $\operatorname{Cl}(X)$ is defined by $\operatorname{Div}(X)/\operatorname{Div}_0(X)$ and the picard group is defined by $\operatorname{Pic}(X) = \operatorname{CDiv}(X)/\operatorname{Div}_0(X)$. In general these groups are not easy to compute, here we list some results.

⁴A fact is that the sum is finite.

TORIC VARIETY

Theorem 4.1.1. Let R be a UFD and $X = \operatorname{Spec} R$. Then $\operatorname{Cl}(X) = 0$.

Example 4.1.2. $Cl(\mathbb{C}^n) = 0$ since $\mathbb{C}[x_1, \ldots, x_n]$ is a UFD.

Theorem 4.1.2. Let U be an open subset of a normal variety X and D_1, \ldots, D_s be the irreducible components of $X \setminus U$ that are prime divisors. Then the following sequence is exact

$$\bigoplus_{j=1}^{s} \mathbb{Z} D_j \to \operatorname{Cl}(X) \to \operatorname{Cl}(U) \to 0,$$

where the first map sends $\sum_{j} a_j D_j$ to its divisor class in Cl(X) and the second map is restriction.

For relations between Weil divisors and Cartier divisors, a fact is that if X is a smooth variety, then every Weil divisor is a Cartier divisor, and the converse statement also holds for a toric variety X_{Σ} , that if, if every Weil divisor of X_{Σ} is a Cartier divisor, then X_{Σ} is smooth.

Finally we introduce the sheaf of a Weil divisor D on X, denoted by $\mathcal{O}_X(D)$, which is defined by

$$U \mapsto \mathcal{O}_X(D) := \{ f \in \mathbb{C}(X)^* \mid (\operatorname{div}(f)_D)|_U \ge 0 \} \cup \{0\}.$$

In fact, it's a coherent \mathcal{O}_X -modules.

4.2. Weil divisors on toric varieties. Let X_{Σ} be the toric variety of fan in $N_{\mathbb{R}}$ with dim $N_{\mathbb{R}} = n$. In this section we will use torus-invariant prime divisors and characters to give a lovely description of class group of X_{Σ} .

4.2.1. The divisor of a character. By the orbit-cone correspondence, $\rho \in \Sigma(1)$ gives the codimension one orbit $O(\rho)$ whose closure $\overline{O(\rho)}$ admits a codimension one toric subvariety structure by Proposition 3.2.1. Thus $\overline{O(\rho)}$ gives a T_N -invariant prime divisor on X_{Σ} . To emphasize that $\overline{O(\rho)}$ is a divisor we will denote it by D_{ρ} for convenience. Then D_{ρ} gives the DVR $\mathcal{O}_{X_{\Sigma}, D_{\rho}}$ with valuation

$$\nu_{\rho} \colon \mathbb{C}(X_{\Sigma})^* \to \mathbb{Z}.$$

Recall that any ray $\rho \in \Sigma(1)$ has a minimal generator $u_{\rho} \in \rho \cap N$, and also note that when $m \in M$, the character $\chi^m \colon T_N \to \mathbb{C}^*$ is a rational function in $\mathbb{C}(X_{\Sigma})^*$ since T_N is Zariski open in X_{Σ} .

Proposition 4.2.1. Let u_{ρ} be the minimal generator of ray $\rho \in \Sigma(1)$ and χ^m be a character corresponding to $m \in M$. Then

$$\nu_{\rho}(\chi^m) = \langle m, u_{\rho} \rangle.$$

Proof. Firstly we extend u_{ρ} to a basis $e_1 = \rho, e_2, \ldots, e_n$ of N, and then we may assume $N = \mathbb{Z}^n$ and $\rho = \text{Cone}(e_1) \subseteq \mathbb{R}^n$. Then the corresponding affine toric variety is

$$U_{\rho} = \operatorname{Spec}(\mathbb{C}[x_1, x_2^{\pm}, \dots, x_n^{\pm}]) = \mathbb{C} \times (\mathbb{C}^*)^{n-1},$$

and $D_{\rho} \cap U_{\rho}$ is defined by $x_1 = 0$. Then as we have seen in Example 4.1.1, one has

$$\mathcal{O}_{X_{\Sigma},D_{\rho}} = \mathcal{O}_{U_{\rho},U_{\rho}\cap D_{\rho}} = \mathbb{C}[x_1,\ldots,x_n]_{\langle x_1 \rangle}.$$

For $f \in \mathbb{C}(x_1, \ldots, x_n)^*$, the valuation $\nu_{\rho}(f)$ is given by $\nu_{\rho}(f) = \ell$ when

$$f = x_1^{\ell} \frac{g}{h}, \quad g, h \in \mathbb{C}[x_1, \dots, x_n] \setminus \langle x_1 \rangle.$$

Then the formula for $\nu_{\rho}(\chi^m)$ can be seen from

$$\chi^m = x_1^{\langle m, e_1 \rangle} \cdots x_n^{\langle m, e_n \rangle} = x_1^{\langle m, u_\rho \rangle} \cdots x_n^{\langle m, e_n \rangle}.$$

Proposition 4.2.2. For $m \in M$, the divisor of character χ^m is given by

$$\operatorname{div}(\chi^m) = \sum_{\rho \in \Sigma(1)} \langle m, u_\rho \rangle D_\rho.$$

Proof. Note that D_{ρ} are irreducible components of $X \setminus T_N$, and χ^m is nonzero on T_N . Thus $\operatorname{div}(\chi^m)$ is supported on $\bigcup_{\rho \in \Sigma(1)} D_{\rho}$ and thus

$$\operatorname{div}(\chi^m) = \sum_{\rho \in \Sigma(1)} \nu_{\rho}(\chi^m) D_{\rho} = \sum_{\rho \in \Sigma(1)} \langle m, u_{\rho} \rangle D_{\rho}.$$

4.2.2. Computing the class group. Divisors of the form $\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$ are precisely the divisors invariant under the torus action. Thus

$$\operatorname{Div}_{T_N}(X_{\Sigma}) = \bigoplus_{\rho \in \Sigma(1)} \mathbb{Z} D_{\rho} \subseteq \operatorname{Div}(X)$$

is the group of T_N -invariant Weil divisors on X_{Σ} .

Theorem 4.2.1. There is the following exact sequence

$$M \to \operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}) \to 0,$$

where the first map is $m \mapsto \operatorname{div}(\chi^m)$ and the second sends a T_N -invariant divisor to its divisor class in $\operatorname{Cl}(X_{\Sigma})$. Furthermore, one has the following exact sequence

$$0 \to M \to \operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}) \to 0$$

if and only if $\{u_{\rho} \mid \rho \in \Sigma(1)\}$ spans $N_{\mathbb{R}}$.

Proof. Since the D_{ρ} are the irreducible components of $X_{\Sigma} \setminus T_N$, then by Theorem 4.1.2 one has the following exact sequence

$$\operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}) \to \operatorname{Cl}(T_N) \to 0.$$

Note that $\mathbb{C}[x_1, \ldots, x_n]$ is a UFD, the same is true for $\mathbb{C}[x_1^{\pm}, \ldots, x_n^{\pm}]$ since UFD is preserved under localization. This shows $\operatorname{Cl}(T_N) = 0$ since the coordinate ring of T_N is isomorphic to $\mathbb{C}[x_1^{\pm}, \ldots, x_n^{\pm}]$. As a consequence, one has $\operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Div}(X_{\Sigma})$ is surjective.

14

TORIC VARIETY

The composition $M \to \operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}$ is clearly zero since the first map maps m to the principal divisor $\operatorname{div}(\chi^m)$. Now suppose $D \in \operatorname{Div}_{T_N}(X_{\Sigma})$ maps to 0 in $\operatorname{Cl}(X_{\Sigma})$. Then $D = \operatorname{div}(f)$ for some $f \in \mathbb{C}(X_{\Sigma})^*$. Since the support of D misses T_N , this implies $\operatorname{div}(f) = 0$ on T_N , and thus f is in fact a character $T_N \to \mathbb{C}^*$. Since all characters of T_N are of the form $c\chi^m$ for some $m \in M$, this shows

$$D = \operatorname{div}(f) = \operatorname{div}(c\chi^m) = \operatorname{div}(\chi^m)$$

as desired.

Finally, suppose $m \in M$ with $\operatorname{div}(\chi^m) = \sum_{\rho \in \Sigma(1)} D_{\rho}$ is the zero divisor. Then $\langle m, u_{\rho} \rangle = 0$ for all $\rho \in \Sigma(1)$, which forces m = 0 if $\{u_{\rho}\}$ spans $N_{\mathbb{R}}$. This gives the desired exact sequence. Conversely it's also easy to see if the sequence is exact, then $\{u_{\rho}\}$ spans $N_{\mathbb{R}}$.

Example 4.2.1. The fan of the blowup of \mathbb{C}^2 at the origin has ray generators $u_1 = e_1, u_2 = e_2$ and $u_3 = e_1 + e_2$, corresponding to the divisors D_1, D_2, D_0 . Then the class group is generated by the classes of the D_i with the following relations

$$0 \sim \operatorname{div}(\chi^{e_1}) = D_1 + D_0$$

$$0 \sim \operatorname{div}(\chi^{e_2}) = D_2 + D_0.$$

Thus the class group is \mathbb{Z} with generators $[D_1] = [D_2] = -[D_0]$.

Example 4.2.2. The fan of projective space \mathbb{P}^n has ray generators given by $u_0 = -e_1 - \cdots - e_n$ and $u_1 = e_1, \ldots, u_n = e_n$. Thus the map $M \to \text{Div}_{T_N}(\mathbb{P}^n)$ can be written as

$$\mathbb{Z}^n \to \mathbb{Z}^{n+1}$$
$$(a_1, \dots, a_n) \mapsto (-a_1 - \dots - a_n, a_1, \dots, a_n).$$

Using the map

$$\mathbb{Z}^{n+1} \to \mathbb{Z}$$
$$(b_0, \dots, b_n) \mapsto b_0 + \dots + b_n,$$

one gets the exact sequence

$$0 \to \mathbb{Z}^n \to \mathbb{Z}^{n+1} \to \mathbb{Z} \to 0$$

which proves $\operatorname{Cl}(\mathbb{P}^n) \cong \mathbb{Z}$.

Example 4.2.3. The fan of Hirzebruch surface \mathscr{H}_n has ray generators given by $u_1 = -e_1 + re_2, u_2 = e_2, u_3 = e_1, u_4 = -e_2$. The class group is generated by the classes of D_1, D_2, D_3, D_4 with relations

$$0 \sim \operatorname{div}(\chi^{e_1}) = -D_1 + D_3$$

$$0 \sim \operatorname{div}(\chi^{e_2}) = rD_1 + D_2 - D_4.$$

Thus $\operatorname{Cl}(\mathscr{H}_r) = \mathbb{Z} \times \mathbb{Z}$.

4.3. The sheaf of a torus-invariant divisor. Let D be a T_N -invariant divisor on a toric variety X_{Σ} . In this section we will give descriptions of the global sections $H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))$.

Proposition 4.3.1. If D is a T_N -invariant Weil divisor on X_{Σ} , then

$$H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) = \bigoplus_{\operatorname{div}(\chi^m) + D \ge 0} \mathbb{C} \cdot \chi^m$$

Proof. Suppose $f \in \Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))$, then $\operatorname{div}(f) + D \ge 0$ implies $\operatorname{div}(f)|_{T_N} \ge 0$ since $D|_{T_N} = 0$. Then one has $f \in \mathbb{C}[M]$, that is,

$$\Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) \subseteq \mathbb{C}[M].$$

Moreover, $\Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))$ is T_N -invariant since D is T_N -invariant. By Theorem 1.2.2 one has

$$\Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) = \bigoplus_{\chi^m \in \Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))} \mathbb{C} \cdot \chi^m.$$

Since $\chi^m \in \Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))$ if and only if $\operatorname{div}(\chi^m) + D \ge 0$, as desired. \square Remark 4.3.1. For $D = \sum_{\rho} a_{\rho} D_{\rho}$ and $m \in M$, $\operatorname{div}(\chi^m) + D \ge 0$ is equivalent to

$$\langle m, u_{\rho} \rangle + a_{\rho} \ge 0$$

for all $\rho \in \Sigma(1)$. If we define

$$P_D = \{ m \in M_{\mathbb{R}} \mid \langle m, u_\rho \rangle \ge -a_\rho \text{ for all } \rho \in \Sigma(1) \},\$$

then above proposition can be written as

$$H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) = \bigoplus_{m \in P_D \cap M} \mathbb{C} \cdot \chi^m$$

Example 4.3.1. In Example 4.2.2 we show that $\operatorname{Cl}(\mathbb{P}^n) = \mathbb{Z}$, and thus divisors D_1, D_2, \ldots, D_n corresponding to the ray generators give the same sheaf, which is denoted by $\mathcal{O}_{\mathbb{P}^n}(1)$, and similarly the sheaves given by kD_i , where $k \in \mathbb{Z}$, is denoted by $\mathcal{O}_{\mathbb{P}^n}(k)$. For $D = kD_0$, a direct computation shows that

$$P_D = \begin{cases} \varnothing & k < 0\\ k\Delta_n & k \ge 0, \end{cases}$$

where Δ_n is the standard *n*-simplex.

If we think characters as Laurent monomials $t^m = t_1^{a_1} \dots t_n^{a_n}$, where $m = (a_1, \dots, a_n)$. It follows that

$$H^{0}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)) \cong \{ f \in \mathbb{C}[t_{1}, \dots, t_{n}] \mid \deg(f) \leq k \}.$$

By considering the homogenization of such a polynomial, one has

$$H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \cong \{ f \in \mathbb{C}[x_0, \dots, x_n] \mid f \text{ is homogenous with } \deg(f) \le k \}.$$

Example 4.3.2. In this example we compute the effective cone of Hirzebruch surface \mathscr{H}_r . Recall Example 4.2.3 implies that the classes of $\{D_2, D_3\}$ gives a basis of $\operatorname{Cl}(\mathscr{H}_2) \cong \mathbb{Z}^2$. For divisor $D = aD_3 + bD_2$, the picture of P_D is given by

This shows $P_D \cap M \neq \emptyset$ if and only if a > 0 and b > 0, and thus the effective cone of \mathscr{H}_r looks like

