Note on Projective Toric Variety

ZCC
zcc22@mails.tsinghua.edu.cn

September 30, 2023

Contents

1 Preliminaries 1
1.1 Things about Projective Geometry 1
1.1.1 Some Basic Constructions 1
1.1.2 Affine Cone and Projective Normality 2
1.2 Things about Combination Theory 3
1.2.1 Polytopes 4
1.2.2 Normal Polytopes 5
1.2.3 Very Ample Polytopes 5
1.2.4 Fans 6
2 Constructions of Projective Toric Variety 7
2.1 Using Lattice Points 7
2.1.1 Torus of Projective Space 7
2.1.2 The Construction of $X_{\mathscr{A}}$ 9
2.1.3 Basic Properties of $X_{\mathscr{A}}$ 10
2.2 Using Polytopes 11
2.2.1 The Very Ample Case 11
2.2.2 The Construction of X_{P} 12

Chapter 1

Preliminaries

1.1 Things about Projective Geometry

We assume the reader has know basic knowledge of projective geometry, e.g. [1, pp8-14], [2, pp49-54].

1.1.1 Some Basic Constructions

Definition 1.1.1 (Veronese embedding). Fix $n, d>0$, let M_{0}, \cdots, M_{N} be all the monomials of degree d in the $n+1$ variables x_{0}, \cdots, x_{n}, where $N=$ $\binom{n+d}{n}-1$. We have a map

$$
\begin{aligned}
v_{d}: \mathbb{P}^{n} & \rightarrow \mathbb{P}^{N} \\
a & \mapsto\left[M_{0}(a), \cdots, M_{N}(a)\right]
\end{aligned}
$$

which defines a closed immersion of varieties. We call v_{d} the d-uple embedding or d-th Veronese embedding of \mathbb{P}^{n}.

When $n=1, v_{d}\left(\mathbb{P}^{1}\right)$ is a nonsingular curve in \mathbb{P}^{d}, which is called the rational normal curve of degree d. When $n=2, v_{d}\left(\mathbb{P}^{2}\right)$ is a nonsingular surface in $\mathbb{P}^{\frac{d(d+3)}{2}}$, which is called the Veronese surface of degree d.

Definition 1.1.2 (Segre embedding). The map

$$
\begin{aligned}
\sigma: \mathbb{P}^{m} \times \mathbb{P}^{n} & \rightarrow \mathbb{P}^{m n+m+n} \\
(a, b) & \mapsto\left[\cdots a_{i} b_{j}\right]_{0 \leq i \leq m, 0 \leq j \leq n}
\end{aligned}
$$

defines a closed immersion of varieties. We call σ the Segre embedding.
When $m=n=1, \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a quatric surface in \mathbb{P}^{3}, which is called the Segre surface.

Definition 1.1.3 (weighted projective space). Let $S=\mathbb{C}\left[x_{0}, \cdots, x_{n}\right]$ be the graded polynomial ring with $\operatorname{deg} x_{i}=d_{i}$, then

$$
\mathbb{P}\left(d_{0}, \cdots, d_{n}\right):=\operatorname{Proj} S
$$

is called a weighted projective space.
We may always assume any n elements in $\left\{d_{0}, \cdots, d_{n}\right\}$ have no common factor (why?), in which case such weighted projective space is well-formed.

Definition 1.1.4 (Grassmannian). The Grassmannian manifold (over \mathbb{C}) $\operatorname{Gr}(k, n)$, consists of linear subspace of dimension k of a given linear space of dimension $n \geq k$, is a projective variety via the morphism

$$
\begin{aligned}
\operatorname{Gr}(k, n) & \rightarrow \operatorname{Gr}\left(1,\binom{n}{k}\right)=\mathbb{P}^{\binom{n}{k}-1} \\
W & \mapsto \operatorname{det} W
\end{aligned}
$$

which is called a Grassmannian variety.

1.1.2 Affine Cone and Projective Normality

Let X be a projective variety in \mathbb{P}^{n}, and $\mathbf{I}(V)$ be the ideal of $\mathbb{C}\left[x_{0}, \cdots, x_{n}\right]$ generated by homogeneous polynomials vanishing on X, we say

$$
S(X):=\mathbb{C}\left[x_{0}, \cdots, x_{n}\right] / \mathbf{I}(V),
$$

is the homogeneous coordinate ring of X (with respect to the embedding $\left.X \subset \mathbb{P}^{n}\right)$. For following discussion, we fix the notation as above.

Definition 1.1.5 (affine cone). There is an affine variety $\widehat{X} \subset \mathbb{A}^{n+1}$ corresponds to $\mathbf{I}(X)$. We say \widehat{X} is the affine cone of X. See exercise I.2.10 in [1, p12].

Definition 1.1.6 (projective normality). We say $X \subset \mathbb{P}^{n}$ is projectively normal if its affine cone \widehat{X} is a normal variety, i.e. $S(X)$ is a normal ring.

Theorem 1.1.7. $X \subset \mathbb{P}^{n}$ is projectively normal, iff X is normal (as a variety) and the natural maps

$$
\Gamma\left(\mathbb{P}^{n}, \mathscr{O}_{\mathbb{P}^{n}}(r)\right) \rightarrow \Gamma\left(X, \mathscr{O}_{X}(r)\right),
$$

are surjective for all $r \geq 0$.
Proof. Omitted. This is exercise II.5.14(d) in [1, p126], which generalizes exercise I.3.18 in [1, p23] and exercise 2.1.5 in [2, p62].

Remark 1.1.8. There is a normal projective variety which is not projectively normal, see example 2.1.10 in [2, p61]. More generally, a nonsingular curve of type (a, b) on the Segre surface $x w=y z$ in \mathbb{P}^{3} is projectively normal iff $|a-b| \leq 1$, see exercise III.5.6 in [1, p231].

Example 1.1.9 (rational normality). The images of Veronese embedding and Segre embedding are both projectively normal in corresponding spaces. They are both rational normal, where "rational" means they are birational to projective space and "normal" means they are projectively normal. It is interesting that

- A non-degenerate irreducible curve in \mathbb{P}^{n} is rational normal iff it is of degree n, iff it is the Veronese curve.
- A non-degenerate ruled surface in \mathbb{P}^{n} is rational normal, then it is of degree $n-1$; conversely, a non-degenerate irreducible surface of degree $n-1$ in \mathbb{P}^{n} is either a rational normal scroll or the Veronese surface.

1.2 Things about Combination Theory

We need some combinational concepts.

1.2.1 Polytopes

See [2, pp63-67] for details.
Definition 1.2.1 (cone,affine hull, convex hull). Suppose V is an \mathbb{R}-linear space of finite dimension and $S \subset V$ is a finite subset, then define its

- cone by

$$
\operatorname{cone}(S)=\left\{\sum_{u \in S} \lambda_{u} u: \lambda_{u} \geq 0\right\}
$$

- affine hull by

$$
\operatorname{aff}(S)=\left\{\sum_{u \in S} \lambda_{u} u: \sum_{u \in S} \lambda_{u}=1\right\}
$$

- and convex hull by $\operatorname{conv}(S)=\operatorname{cone}(S) \cap \operatorname{aff}(S)$.

A polytope in V is a convex hull of some finite subset, and there is a reasonable way to define the faces and dimension of a polytope. A face of a polytope of dimension n is a facet(resp. edge, vertex) if it has dimension $n-1$ (resp. 1,0). One can also define the (Minkowsiki) sum, multiple and dual of a polytope.

Let M be a lattice with dual N, we may always consider the space $M_{\mathbb{R}}:=$ $M \otimes_{\mathbb{Z}} \mathbb{R}$ with dual $N_{\mathbb{R}}$. A lattice polytope in $M_{\mathbb{R}}$ is the convex hull of a finite subset of M.

Example 1.2.2 (Birkhoff polytope). Consider the case $M=\mathbb{Z}^{d \times d}$. A matrix $A \in \mathbb{R}^{d \times d}$ is doubly-stochastic if it has nonnegative entries and its row and column sums are all 1 . Then the set \mathscr{M}_{d} of all doubly-stochastic matrices form a lattice polytope, of vertices all permutation matrices. See example 2.2.2 and 2.2.5 in [2, p64,p66].

Definition 1.2.3 (combinational equivalence). Two polytopes P_{1}, P_{2} are combinationally equivalent if there is abijection

$$
\left\{\text { faces of } P_{1}\right\} \simeq\left\{\text { faces of } P_{2}\right\}
$$

which preserves dimensions, intersections, and the face relation.

1.2.2 Normal Polytopes

The concepts of normality and ampleness of a polytope raises from the normality of the associated projective toric variety.

Definition 1.2.4 (normal polytope). A lattice polytope $P \subset M_{\mathbb{R}}$ is normal if

$$
(k P) \cap M+(l P) \cap M=((k+k) P) \cap M,
$$

for all $k, l \in \mathbb{N}$.
Example 1.2.5 (1-dimensional polytope). An 1-dimensional polytope must be a (single closed) line segment, and it is a lattice polytope iff its two endpoints are lattice points. Let L be such a line segment in $M_{\mathbb{R}}$ joint two lattice points m_{1}, m_{2}, then $k L$ is the line segment joint $k m_{1}, k m_{2}$, which is just the k-uple sum $L+L+\cdots+L$. This shows that L is normal.

Theorem 1.2.6. If $P \subset M_{\mathbb{R}}$ is a full dimensional lattice polytope of dimension $n \geq 2$, then $k P$ is normal for all $k \geq n-1$.
Proof. See theorem 2.2.12 in [2, p69].
Remark 1.2.7. The bound $k \geq n-1$ can be strengthen, see lemma 2.2.16 in [2, p71].

Corollary 1.2 .8 . All lattice polygon in \mathbb{R}^{2} is normal.

1.2.3 Very Ample Polytopes

In algebraic geometry, the very ampleness of a sheaf, roughly speaking, means that it has enough sections. As for polytopes, the very-ampleness means it has enough lattice points.

Definition 1.2 .9 (very-ampleness). A lattice polytope $P \subset M_{\mathbb{R}}$ is very ample if for every vertex $m \in P$ the semigroup $\mathrm{S}_{P, m}$ generated by

$$
P \cap M-m:=\left\{m^{\prime}-m: m^{\prime} \in P \cap M\right\},
$$

is saturated in M, i.e. $k p \in \mathrm{~S}_{P, m}$ implies $p \in \mathrm{~S}_{P, m}$ for all positive integer k and lattice point $p \in M$.

Theorem 1.2.10. A normal lattice polytope is very ample.
Proof. See proposition 2.2.18 in [2, p71].

1.2.4 Fans

See [2, p106]. We do not need the general terminology "fan", which will be used in the construction of toric abstract variety. In the construction of projective toric variety, we will use normal fans of a lattice polytope, see [2, pp76-83].

Chapter 2

Constructions of Projective Toric Variety

2.1 Using Lattice Points

We first construct various examples of projective toric variety by an algebraic way. The main reference is [2, pp54-62]

2.1.1 Torus of Projective Space

It is known that the affine space \mathbb{C}^{n} has a standard torus $\left(\mathbb{C}^{*}\right)^{n}$, making it a toric variety. As for the projective space \mathbb{P}^{n}, there is a nonempty open subset defined by $x_{0} \cdots x_{n} \neq 0$, which is

$$
T_{\mathbb{P}^{n}}:=\left\{\left[t_{0}, \cdots, t_{n}\right] \in \mathbb{P}^{n}: t_{i} \in \mathbb{C}^{*}\right\}
$$

Theorem 2.1.1. \mathbb{P}^{n} is a toric variety.
Proof. We have the isomorphism

$$
\begin{aligned}
T_{\mathbb{P}^{n}} & \rightarrow\left(\mathbb{C}^{*}\right)^{n} \\
{\left[t_{0}, \cdots, t_{n}\right] } & \rightarrow\left(t_{1} / t_{0}, \cdots, t_{n} / t_{0}\right)
\end{aligned}
$$

so $T_{\mathbb{P}^{n}}$ is indeed a torus. The multiplication of $T_{\mathbb{P}^{n}}$ is defined by

$$
\left[s_{0}, \cdots, s_{n}\right] \cdot\left[t_{0}, \cdots, t_{n}\right]=\left[s_{0} t_{0}, \cdots, s_{n} t_{n}\right],
$$

which obviously extends an algebraic action $T_{\mathbb{P}^{n}} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$. So \mathbb{P}^{n} is a toric variety.

Note that $T_{\mathbb{P}^{n}}$ can be identified with the quotient group $\left(\mathbb{C}^{*}\right)^{n+1} / \Delta\left(\mathbb{C}^{*}\right)$, where

$$
\begin{aligned}
\Delta: \mathbb{C}^{*} & \rightarrow\left(\mathbb{C}^{*}\right)^{n+1} \\
t & \mapsto(t, t, \cdots, t)
\end{aligned}
$$

is the diagonal morphism, it has character lattice

$$
\mathscr{M}_{n}=\left\{\left(a_{0}, \cdots, a_{n}\right) \in \mathbb{Z}^{n+1}: \sum a_{i}=0\right\},
$$

and lattice of one-parameter subgroups

$$
\mathscr{N}_{n}=\mathbb{Z}^{n+1} / \mathbb{Z}(1, \cdots, 1)
$$

Lemma 2.1.2. Suppose V is a (locally closed) subvariety of \mathbb{P}^{n} containing $T_{\mathbb{P}^{n}}$, and is toric under the natural action of $T_{\mathbb{P}^{n}}$ (e.g. the affine piece $x_{0} \neq 0$). If T is an irreducible closed subgroup of $T_{\mathbb{P}^{n}}$, then it is a torus and its Zariski closure in V is a toric variety.

Proof. By proposition 1.1.1(b) in [2, p11], T is indeed a torus. Denote by \bar{T} for the closure of T in V, then since T is closed in $T_{\mathbb{P}^{n}}$ we have

$$
T=\bar{T} \cap T_{\mathbb{P}^{n}} .
$$

Since $T_{\mathbb{P}^{n}}$ is open in \mathbb{P}^{n}, it is also open in \bar{T}. For each $t \in T$, its action on V is well-defined, and takes closed subvarieties to closed subvarieties (because it is an automorphism of V with the inverse defined by the action by t^{-1}). Thus

$$
T=t \cdot T \subset t \cdot \bar{T}
$$

i.e. $t \cdot \bar{T}$ is a closed subvariety contains T. So we have $\bar{T} \subset t \cdot \bar{T}$. Replace t by t^{-1}, it then follows that $\bar{T}=t \cdot \bar{T}$, i.e. the action of T on itself extends to its closure \bar{T}. So \bar{T} is toric.

2.1.2 The Construction of $X_{\mathscr{A}}$

Let T_{N} be a torus with character lattice M and $\mathscr{A}=\left\{m_{1}, \cdots, m_{s}\right\}$ be a finite subset of M, then there is a morphism

$$
\begin{aligned}
\Phi_{\mathscr{A}}: T_{N} & \rightarrow\left(\mathbb{C}^{*}\right)^{s} \\
t & \mapsto\left(\chi^{m_{1}}(t), \cdots, \chi^{m_{s}}(t)\right)
\end{aligned}
$$

and a natural projection

$$
\pi:\left(\mathbb{C}^{*}\right)^{s} \rightarrow T_{\mathbb{P}^{s-1}}
$$

Lemma 2.1.3. The image of $\Phi_{\mathscr{A}}$ is a torus in $\left(\mathbb{C}^{*}\right)^{s} \subset \mathbb{C}^{s}$, and its Zariski closure $Y_{\mathscr{A}}$ in \mathbb{C}^{s} is toric. The image of $\pi \circ \Phi_{\mathscr{A}}$ is also a torus $T_{\mathscr{A}}$ in $T_{\mathbb{P}^{s}-1} \subset$ \mathbb{P}^{s-1}, and its Zariski closure $X_{\mathscr{A}}$ in \mathbb{P}^{s-1} is toric.

Proof. Just combine proposition 1.1.1(a) in [2, p11] and lemma 2.1.2.
Definition 2.1.4. $Y_{\mathscr{A}}$ is called the affine toric variety associated to \mathscr{A}, and $X_{\mathscr{A}}$ is called the projective toric variety associated to \mathscr{A}.

Example 2.1.5 (cuspidal cubic curve). Let $T_{N}=\mathbb{C}^{*}$ then $M=\mathbb{Z}$. Consider $\mathscr{A}=\{3,4,1\}$, then the corresponding map $\pi \circ \Phi_{\mathscr{A}}$ is defined by

$$
t \mapsto\left(t^{3}, t^{4}, t\right) \mapsto\left[t^{2}, t^{3}, 1\right] .
$$

One can see that $Y_{\mathscr{A}}$ is the affine cubic curve in \mathbb{C}^{3} defined by $x=z^{3}, y=z^{4}$, and $X_{\mathscr{A}}$ is the cuspidal cubic curve defined by $x^{3}=y^{2} z$ and the torus $T_{\mathscr{A}}$ is just the complement of the cusp $[0,0,1]$.

Example 2.1.6. Let T_{N} be the space of all $n \times n$ matrices with nonzero entries, then $M=\mathbb{Z}^{n \times n}$. Consider

$$
\mathscr{A}=\mathscr{P}_{n}=\{n \times n \text { permutation matrices }\} \subset M,
$$

then the corresponding map $\pi \circ \Phi_{\mathscr{A}}$ is defined by

$$
\begin{aligned}
T_{N} & \rightarrow \mathbb{P}^{n!-1} \\
\left(t_{i j}\right)_{1 \leq i, j \leq n} & \mapsto\left[\prod_{i=1}^{n} t_{i \sigma(i)}\right]_{\sigma \in S_{n}}
\end{aligned}
$$

One can see that

$$
\prod_{\sigma \text { even }} x_{\sigma}-\prod_{\sigma \text { odd }} x_{\sigma} \in \mathbf{I}\left(X_{\mathscr{A}}\right),
$$

but it is not easy to determine $\mathbf{I}\left(X_{\mathscr{A}}\right)$ and the cooresponding torus.

2.1.3 Basic Properties of $X_{\mathscr{A}}$

In general, $Y_{\mathscr{A}} \neq \widehat{X}_{\mathscr{A}}$, and example 2.1.5 shows that they can even have the same dimension.

Theorem 2.1.7. $Y_{\mathscr{A}}=\widehat{X}_{\mathscr{A}}$ iff the ideal

$$
I_{\mathscr{A}}=\left\langle\prod x_{i}^{a_{i}}-\prod x_{i}^{b_{i}} \mid a_{i}, b_{i} \in \mathbb{N}, \sum\left(a_{i}-b_{i}\right) m_{i}=0\right\rangle,
$$

is homogeneous in $\mathbb{C}\left[x_{0}, \cdots, x_{n}\right]$, iff there is a one parameter subgroup u and positive integer k such that $\left\langle m_{i}, u\right\rangle=k$ for $i=1, \cdots, s$.

Proof. See [2, p56].
Another task is to determine the dimension of $X_{\mathscr{A}}$. Consider the subgroup of $\mathbb{Z} \mathscr{A}$ defined by

$$
\mathbb{Z}^{\prime} \mathscr{A}=\left\{\sum a_{i} m_{i} \mid a_{i} \in \mathbb{Z}, \sum a_{i}=0\right\}
$$

then

Theorem 2.1.8. $\mathbb{Z}^{\prime} \mathscr{A}$ is the character lattice of $X_{\mathscr{A}}$, and its rank is the dimension of the samllest affine subspace of $M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$ containing \mathscr{A}.

Proof. Omitted in this note, I will explain offline.
Corollary 2.1.9. The following numbers equal:
(1) $\operatorname{dim} X_{\mathscr{A}}$,
(2) $\operatorname{dim} T_{\mathscr{A}}$,
(3) dimension of the samllest affine subspace of $M_{\mathbb{R}}$ containing \mathscr{A},
(4) $\operatorname{rank} \mathbb{Z}^{\prime} \mathscr{A}$,
(5) $\operatorname{rank} \mathbb{Z} \mathscr{A}-\epsilon$, where

$$
\epsilon= \begin{cases}1, & Y_{\mathscr{A}}=\widehat{X}_{\mathscr{A}} \\ 0, & \text { otherwise }\end{cases}
$$

Example 2.1.10. Recall example 2.1.6. It is known that the permutation metrices span a linear subspace of $\mathbb{C}^{n \times n}$ of dimension $(n-1)^{2}-1$. Then one can easily see that $\mathbb{Z} \mathscr{P}_{n}$ is of rank $(n-1)^{2}-1$. One can also easily see that $I_{\mathscr{P}_{n}}$ is homogeneous, so $\operatorname{dim} X_{\mathscr{P}_{n}}=(n-1)^{2}-1$. In particular, if $n=3$, then $X_{\mathscr{P}_{3}}$ is a hypersurface in \mathbb{P}^{4}, so $X_{\mathscr{P}_{3}}$ is just defined by $x_{123} x_{231} x_{312}=x_{132} x_{213} x_{321}$.

Now suppose U_{i} is the i-th affine piece of \mathbb{P}^{s-1} defined by $x_{i} \neq 0$, then

$$
T_{\mathscr{A}}=X_{\mathscr{A}} \cap T_{\mathbb{P}^{s-1}} \subset X_{\mathscr{A}} \cap U_{i} .
$$

This shows that $X_{\mathscr{A}} \cap U_{i}$ is the Zariski closure of $T_{\mathscr{A}}$ in $U_{i} \simeq \mathbb{C}^{s-1}$ and is an affine toric variety.

Theorem 2.1.11. Let

$$
\mathscr{A}_{i}=\mathscr{A}-m_{i}=\left\{m_{j}-m_{i}: j \neq i\right\},
$$

then there is an isomorphism $X_{\mathscr{A}} \cap U_{i} \simeq Y_{\mathscr{A}_{i}}$.
Proof. Easy.

2.2 Using Polytopes

The construction by lattice points also determine a specified embedding in some projective space, and we want an intrinsic way to construct projective toic variety.

2.2.1 The Very Ample Case

Lemma 2.2.1. Let $\mathscr{A}=\left\{m_{1}, \cdots, m_{s}\right\} \subset M$ be a set of lattice points and $P=\operatorname{conv}(\mathscr{A}) \subset M_{\mathbb{R}}$ be its convex hull. Then all vertices of P lie in \mathscr{A}. Moreover, consider

$$
J=\left\{j: m_{j} \text { is a vertex of } P\right\}
$$

then $X_{\mathscr{A}}=\bigcup_{j \in J}\left(X_{\mathscr{A}} \cap U_{j}\right)$, where U_{j} is the j-th affine piece of \mathbb{P}^{s-1}.

Proof. For each i the lattice point m_{i} lies in $P \cap M$, so there exsit $k, k_{j} \in \mathbb{N}$ such that

$$
k m_{i}=\sum_{j \in J} k_{j} m_{j}, \text { and } k=\sum_{j \in J} k_{j} .
$$

There is a $k_{j_{0}}$ which is nonzero, hence

$$
m_{i}-m_{j_{0}}=\left(k_{j_{0}}-1\right)\left(m_{j_{0}}-m_{i}\right)+\sum_{j \in J, j \neq j_{0}} k_{j}\left(m_{j}-m_{i}\right)
$$

lie in the smeigroup generated by $\mathscr{A}_{i}=\mathscr{A}-m_{i}$ and is the inverse of $m_{j_{0}}-m_{i}$. It follows that

$$
X_{\mathscr{A}} \cap U_{i} \cap U_{j_{0}}=X_{\mathscr{A}} \cap U_{i},
$$

hence $X_{\mathscr{A}} \cap U_{i} \subset X_{\mathscr{A}} \cap U_{j_{0}}$. So any affine piece of $X_{\mathscr{A}}$ in 2.1.11 is contained in some affine piece determined by a vertex of P.

Now suppose P is a full dimensional very ample lattice polytope in M, of dimension n. Then $P \cap M=\left\{m_{1}, \cdots, m_{s}\right\}$ are a finite set of lattice points and we can define the projective toric variety $X_{P \cap M}$ associated to it. By above lemma 2.2.1, we have

$$
X_{P \cap M}=\bigcup_{m_{i} \text { vertex of } P}\left(X_{P \cap M} \cap U_{i}\right)
$$

Lemma 2.2.2. For each vertex m_{i} of P the corresponding affine piece $X_{P \cap M} \cap U_{i}$ is just the affine toric variety associated to the strongly convex rational cone σ_{i} dual to the cone

$$
\operatorname{cone}\left(P \cap M-m_{i}\right),
$$

with character lattice M. As a corollary, such $X_{P \cap M}$ is a normal variety.
Proof. Easy. See [2, p75].

2.2.2 The Construction of X_{P}

We may first throw out the definition.

Definition 2.2.3. Let P be a full dimensional lattice polytope, and k be a positive integer such that $k P$ is very ample, then

$$
X_{P}=X_{(k P) \cap M},
$$

is called the projective toric variety associated to P.
By theorems 1.2.6 and 1.2.10, such integer k exsits (and not unique) and for any two integers k, l satisfy this condition there exists an isomorphism $X_{(k P) \cap M} \simeq X_{(l P) \cap M}$. Thus X_{P} is well-defined.

Example 2.2.4 (Veronese embedding). Consider the standard n-simplex $\Delta_{n}=\operatorname{conv}\left(0, e_{1}, \cdots, e_{n}\right)$ in \mathbb{R}^{n}, one can see that

$$
k \Delta_{n}=\operatorname{conv}\left(0, k e_{1}, \cdots, k e_{n}\right),
$$

and $k \Delta_{n} \cap \mathbb{Z}^{n}$ has $N=\binom{k+n}{k}$ lattice points. Moreover, $k \Delta_{n}$ is a fulldimensional normal polytope, and the variety $X_{\left(k \Delta_{n}\right) \cap \mathbb{Z}^{n}}$ is just the image of the Veronese embedding

$$
v_{k}: \mathbb{P}^{n} \mapsto \mathbb{P}^{N-1} .
$$

Thus $X_{\Delta_{n}}$ is just \mathbb{P}^{n}.
By definition, and theorem 1.3.5 in [2, p37], one can see that
Theorem 2.2.5. Let P be a full dimensional lattice polytope. Then
(a) X_{P} is a normal projective toric variety.
(b) X_{P} is projectively normal under the embedding given by $k P$ iff $k P$ is a normal polytope.

Bibliography

[1] Robin Hartshorne. (1977) Algebraic Geometry, Springer-Verlag, New York.
[2] David A. Cox, John B. Little, Henry K. Schenck. (2011) Toric Variety, American Mathematical Society.

