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Chapter 1

Preliminaries

1.1 Things about Projective Geometry
We assume the reader has know basic knowledge of projective geometry, e.g.
[1, pp8-14], [2, pp49-54].

1.1.1 Some Basic Constructions
Definition 1.1.1 (Veronese embedding). Fix n, d > 0, let M0, · · · ,MN be
all the monomials of degree d in the n + 1 variables x0, · · · , xn, where N =(
n+d
n

)
− 1. We have a map

vd : Pn → PN

a 7→ [M0(a), · · · ,MN(a)]

which defines a closed immersion of varieties. We call vd the d-uple embedding
or d-th Veronese embedding of Pn.

When n = 1, vd(P1) is a nonsingular curve in Pd, which is called the
rational normal curve of degree d. When n = 2, vd(P2) is a nonsingular
surface in P

d(d+3)
2 , which is called the Veronese surface of degree d.

Definition 1.1.2 (Segre embedding). The map

σ : Pm × Pn → Pmn+m+n

(a, b) 7→ [· · · aibj]0≤i≤m,0≤j≤n
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defines a closed immersion of varieties. We call σ the Segre embedding.

When m = n = 1, P1 × P1 is a quatric surface in P3, which is called the
Segre surface.

Definition 1.1.3 (weighted projective space). Let S = C[x0, · · · , xn] be the
graded polynomial ring with deg xi = di, then

P(d0, · · · , dn) := ProjS,

is called a weighted projective space.

We may always assume any n elements in {d0, · · · , dn} have no common
factor (why?), in which case such weighted projective space is well-formed.

Definition 1.1.4 (Grassmannian). The Grassmannian manifold (over C)
Gr(k, n), consists of linear subspace of dimension k of a given linear space of
dimension n ≥ k, is a projective variety via the morphism

Gr(k, n) → Gr

(
1,

(
n

k

))
= P(

n
k
)−1

W 7→ detW

which is called a Grassmannian variety.

1.1.2 Affine Cone and Projective Normality
Let X be a projective variety in Pn, and I(V ) be the ideal of C[x0, · · · , xn]

generated by homogeneous polynomials vanishing on X, we say

S(X) := C[x0, · · · , xn]/I(V ),

is the homogeneous coordinate ring of X (with respect to the embedding
X ⊂ Pn). For following discussion, we fix the notation as above.

Definition 1.1.5 (affine cone). There is an affine variety X̂ ⊂ An+1 corre-
sponds to I(X). We say X̂ is the affine cone of X. See exercise I.2.10 in [1,
p12].
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Definition 1.1.6 (projective normality). We say X ⊂ Pn is projectively
normal if its affine cone X̂ is a normal variety, i.e. S(X) is a normal ring.

Theorem 1.1.7. X ⊂ Pn is projectively normal, iff X is normal (as a variety)
and the natural maps

Γ(Pn,OPn(r)) → Γ(X,OX(r)),

are surjective for all r ≥ 0.

Proof. Omitted. This is exercise II.5.14(d) in [1, p126], which generalizes
exercise I.3.18 in [1, p23] and exercise 2.1.5 in [2, p62].

Remark 1.1.8. There is a normal projective variety which is not projectively
normal, see example 2.1.10 in [2, p61]. More generally, a nonsingular curve
of type (a, b) on the Segre surface xw = yz in P3 is projectively normal iff
|a− b| ≤ 1, see exercise III.5.6 in [1, p231].

Example 1.1.9 (rational normality). The images of Veronese embedding
and Segre embedding are both projectively normal in corresponding spaces.
They are both rational normal, where “rational” means they are birational
to projective space and “normal” means they are projectively normal. It is
interesting that

• A non-degenerate irreducible curve in Pn is rational normal iff it is of
degree n, iff it is the Veronese curve.

• A non-degenerate ruled surface in Pn is rational normal, then it is of
degree n− 1; conversely, a non-degenerate irreducible surface of degree
n− 1 in Pn is either a rational normal scroll or the Veronese surface.

1.2 Things about Combination Theory
We need some combinational concepts.
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1.2.1 Polytopes
See [2, pp63-67] for details.

Definition 1.2.1 (cone,affine hull, convex hull). Suppose V is an R-linear
space of finite dimension and S ⊂ V is a finite subset, then define its

• cone by

cone(S) =

{∑
u∈S

λuu : λu ≥ 0

}
,

• affine hull by

aff(S) =

{∑
u∈S

λuu :
∑
u∈S

λu = 1

}
,

• and convex hull by conv(S) = cone(S) ∩ aff(S).

A polytope in V is a convex hull of some finite subset, and there is a
reasonable way to define the faces and dimension of a polytope. A face of
a polytope of dimension n is a facet(resp. edge, vertex) if it has dimension
n − 1(resp. 1, 0). One can also define the (Minkowsiki) sum, multiple and
dual of a polytope.

Let M be a lattice with dual N , we may always consider the space MR :=

M ⊗Z R with dual NR. A lattice polytope in MR is the convex hull of a finite
subset of M .

Example 1.2.2 (Birkhoff polytope). Consider the case M = Zd×d. A matrix
A ∈ Rd×d is doubly-stochastic if it has nonnegative entries and its row and
column sums are all 1. Then the set Md of all doubly-stochastic matrices
form a lattice polytope, of vertices all permutation matrices. See example
2.2.2 and 2.2.5 in [2, p64,p66].

Definition 1.2.3 (combinational equivalence). Two polytopes P1, P2 are
combinationally equivalent if there is abijection

{faces of P1} ' {faces of P2},

which preserves dimensions, intersections, and the face relation.
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1.2.2 Normal Polytopes
The concepts of normality and ampleness of a polytope raises from the nor-
mality of the associated projective toric variety.

Definition 1.2.4 (normal polytope). A lattice polytope P ⊂ MR is normal
if

(kP ) ∩M + (lP ) ∩M = ((k + k)P ) ∩M,

for all k, l ∈ N.

Example 1.2.5 (1-dimensional polytope). An 1-dimensional polytope must
be a (single closed) line segment, and it is a lattice polytope iff its two
endpoints are lattice points. Let L be such a line segment in MR joint two
lattice points m1,m2, then kL is the line segment joint km1, km2, which is
just the k-uple sum L+ L+ · · ·+ L. This shows that L is normal.

Theorem 1.2.6. If P ⊂ MR is a full dimensional lattice polytope of dimen-
sion n ≥ 2, then kP is normal for all k ≥ n− 1.

Proof. See theorem 2.2.12 in [2, p69].

Remark 1.2.7. The bound k ≥ n− 1 can be strengthen, see lemma 2.2.16
in [2, p71].

Corollary 1.2.8. All lattice polygon in R2 is normal.

1.2.3 Very Ample Polytopes
In algebraic geometry, the very ampleness of a sheaf, roughly speaking, means
that it has enough sections. As for polytopes, the very-ampleness means it
has enough lattice points.

Definition 1.2.9 (very-ampleness). A lattice polytope P ⊂ MR is very am-
ple if for every vertex m ∈ P the semigroup SP,m generated by

P ∩M −m := {m′ −m : m′ ∈ P ∩M},

is saturated in M , i.e. kp ∈ SP,m implies p ∈ SP,m for all positive integer k

and lattice point p ∈ M .

Theorem 1.2.10. A normal lattice polytope is very ample.

Proof. See proposition 2.2.18 in [2, p71].
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1.2.4 Fans
See [2, p106]. We do not need the general terminology “fan”, which will
be used in the construction of toric abstract variety. In the construction of
projective toric variety, we will use normal fans of a lattice polytope, see [2,
pp76-83].
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Chapter 2

Constructions of Projective
Toric Variety

2.1 Using Lattice Points
We first construct various examples of projective toric variety by an algebraic
way. The main reference is [2, pp54-62]

2.1.1 Torus of Projective Space
It is known that the affine space Cn has a standard torus (C∗)n, making it a
toric variety. As for the projective space Pn, there is a nonempty open subset
defined by x0 · · · xn 6= 0, which is

TPn := {[t0, · · · , tn] ∈ Pn : ti ∈ C∗}.

Theorem 2.1.1. Pn is a toric variety.

Proof. We have the isomorphism

TPn → (C∗)n

[t0, · · · , tn] → (t1/t0, · · · , tn/t0)

so TPn is indeed a torus. The multiplication of TPn is defined by

[s0, · · · , sn] · [t0, · · · , tn] = [s0t0, · · · , sntn],

7



which obviously extends an algebraic action TPn × Pn → Pn. So Pn is a toric
variety.

Note that TPn can be identified with the quotient group (C∗)n+1/∆(C∗),
where

∆: C∗ → (C∗)n+1

t 7→ (t, t, · · · , t)

is the diagonal morphism, it has character lattice

Mn = {(a0, · · · , an) ∈ Zn+1 :
∑

ai = 0},

and lattice of one-parameter subgroups

Nn = Zn+1/Z(1, · · · , 1).

Lemma 2.1.2. Suppose V is a (locally closed) subvariety of Pn containing
TPn , and is toric under the natural action of TPn (e.g. the affine piece x0 6= 0).
If T is an irreducible closed subgroup of TPn , then it is a torus and its Zariski
closure in V is a toric variety.

Proof. By proposition 1.1.1(b) in [2, p11], T is indeed a torus. Denote by T

for the closure of T in V , then since T is closed in TPn we have

T = T ∩ TPn .

Since TPn is open in Pn, it is also open in T . For each t ∈ T , its action on V

is well-defined, and takes closed subvarieties to closed subvarieties (because
it is an automorphism of V with the inverse defined by the action by t−1).
Thus

T = t · T ⊂ t · T ,

i.e. t · T is a closed subvariety contains T . So we have T ⊂ t · T . Replace t

by t−1, it then follows that T = t · T , i.e. the action of T on itself extends to
its closure T . So T is toric.
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2.1.2 The Construction of XA

Let TN be a torus with character lattice M and A = {m1, · · · ,ms} be a
finite subset of M , then there is a morphism

ΦA : TN → (C∗)s

t 7→ (χm1(t), · · · , χms(t))

and a natural projection
π : (C∗)s → TPs−1 .

Lemma 2.1.3. The image of ΦA is a torus in (C∗)s ⊂ Cs, and its Zariski
closure YA in Cs is toric. The image of π ◦ΦA is also a torus TA in TPs−1 ⊂
Ps−1, and its Zariski closure XA in Ps−1 is toric.

Proof. Just combine proposition 1.1.1(a) in [2, p11] and lemma 2.1.2.

Definition 2.1.4. YA is called the affine toric variety associated to A , and
XA is called the projective toric variety associated to A .

Example 2.1.5 (cuspidal cubic curve). Let TN = C∗ then M = Z. Consider
A = {3, 4, 1}, then the corresponding map π ◦ ΦA is defined by

t 7→ (t3, t4, t) 7→ [t2, t3, 1].

One can see that YA is the affine cubic curve in C3 defined by x = z3, y = z4,
and XA is the cuspidal cubic curve defined by x3 = y2z and the torus TA is
just the complement of the cusp [0, 0, 1].

Example 2.1.6. Let TN be the space of all n × n matrices with nonzero
entries, then M = Zn×n. Consider

A = Pn = {n× n permutation matrices} ⊂ M,

then the corresponding map π ◦ ΦA is defined by

TN → Pn!−1

(tij)1≤i,j≤n 7→

[
n∏

i=1

tiσ(i)

]
σ∈Sn

One can see that ∏
σ even

xσ −
∏
σ odd

xσ ∈ I(XA ),

but it is not easy to determine I(XA ) and the cooresponding torus.
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2.1.3 Basic Properties of XA

In general, YA 6= X̂A , and example 2.1.5 shows that they can even have the
same dimension.

Theorem 2.1.7. YA = X̂A iff the ideal

IA = 〈
∏

xai
i −

∏
xbi
i

∣∣∣ ai, bi ∈ N,
∑

(ai − bi)mi = 0〉,

is homogeneous in C[x0, · · · , xn], iff there is a one parameter subgroup u and
positive integer k such that 〈mi, u〉 = k for i = 1, · · · , s.

Proof. See [2, p56].

Another task is to determine the dimension of XA . Consider the subgroup
of ZA defined by

Z′A =
{∑

aimi | ai ∈ Z,
∑

ai = 0
}
,

then

Theorem 2.1.8. Z′A is the character lattice of XA , and its rank is the
dimension of the samllest affine subspace of MR = M ⊗Z R containing A .

Proof. Omitted in this note, I will explain offline.

Corollary 2.1.9. The following numbers equal:

(1) dimXA ,

(2) dimTA ,

(3) dimension of the samllest affine subspace of MR containing A ,

(4) rankZ′A ,

(5) rankZA − ϵ, where

ϵ =

1, YA = X̂A ,

0, otherwise.
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Example 2.1.10. Recall example 2.1.6. It is known that the permutation
metrices span a linear subspace of Cn×n of dimension (n− 1)2− 1. Then one
can easily see that ZPn is of rank (n−1)2−1. One can also easily see that IPn

is homogeneous, so dimXPn = (n−1)2−1. In particular, if n = 3, then XP3

is a hypersurface in P4, so XP3 is just defined by x123x231x312 = x132x213x321.

Now suppose Ui is the i-th affine piece of Ps−1 defined by xi 6= 0, then

TA = XA ∩ TPs−1 ⊂ XA ∩ Ui.

This shows that XA ∩ Ui is the Zariski closure of TA in Ui ' Cs−1 and is an
affine toric variety.

Theorem 2.1.11. Let

Ai = A −mi = {mj −mi : j 6= i},

then there is an isomorphism XA ∩ Ui ' YAi
.

Proof. Easy.

2.2 Using Polytopes
The construction by lattice points also determine a specified embedding in
some projective space, and we want an intrinsic way to construct projective
toic variety.

2.2.1 The Very Ample Case
Lemma 2.2.1. Let A = {m1, · · · ,ms} ⊂ M be a set of lattice points and
P = conv(A ) ⊂ MR be its convex hull. Then all vertices of P lie in A .
Moreover, consider

J = {j : mj is a vertex of P},

then XA =
⋃

j∈J(XA ∩ Uj), where Uj is the j-th affine piece of Ps−1.
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Proof. For each i the lattice point mi lies in P ∩M , so there exsit k, kj ∈ N
such that

kmi =
∑
j∈J

kjmj, and k =
∑
j∈J

kj.

There is a kj0 which is nonzero, hence

mi −mj0 = (kj0 − 1)(mj0 −mi) +
∑

j∈J,j ̸=j0

kj(mj −mi),

lie in the smeigroup generated by Ai = A −mi and is the inverse of mj0−mi.
It follows that

XA ∩ Ui ∩ Uj0 = XA ∩ Ui,

hence XA ∩ Ui ⊂ XA ∩ Uj0 . So any affine piece of XA in 2.1.11 is contained
in some affine piece determined by a vertex of P .

Now suppose P is a full dimensional very ample lattice polytope in M , of
dimension n. Then P ∩M = {m1, · · · ,ms} are a finite set of lattice points
and we can define the projective toric variety XP∩M associated to it. By
above lemma 2.2.1, we have

XP∩M =
⋃

mi vertex of P

(XP∩M ∩ Ui).

Lemma 2.2.2. For each vertex mi of P the corresponding affine piece
XP∩M ∩ Ui is just the affine toric variety associated to the strongly convex
rational cone σi dual to the cone

cone(P ∩M −mi),

with character lattice M . As a corollary, such XP∩M is a normal variety.

Proof. Easy. See [2, p75].

2.2.2 The Construction of XP

We may first throw out the definition.
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Definition 2.2.3. Let P be a full dimensional lattice polytope, and k be a
positive integer such that kP is very ample, then

XP = X(kP )∩M ,

is called the projective toric variety associated to P .

By theorems 1.2.6 and 1.2.10, such integer k exsits (and not unique) and
for any two integers k, l satisfy this condition there exists an isomorphism
X(kP )∩M ' X(lP )∩M . Thus XP is well-defined.

Example 2.2.4 (Veronese embedding). Consider the standard n-simplex
∆n = conv(0, e1, · · · , en) in Rn, one can see that

k∆n = conv(0, ke1, · · · , ken),

and k∆n ∩ Zn has N =
(
k+n
k

)
lattice points. Moreover, k∆n is a full-

dimensional normal polytope, and the variety X(k∆n)∩Zn is just the image
of the Veronese embedding

vk : Pn 7→ PN−1.

Thus X∆n is just Pn.

By definition, and theorem 1.3.5 in [2, p37], one can see that

Theorem 2.2.5. Let P be a full dimensional lattice polytope. Then

(a) XP is a normal projective toric variety.

(b) XP is projectively normal under the embedding given by kP iff kP is a
normal polytope.
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