Note on Projective Toric Variety

ZCC

zcc22@mails.tsinghua.edu.cn

September 30, 2023

Contents

1	Pre	liminaries	1
	1.1	Things about Projective Geometry	1
		1.1.1 Some Basic Constructions	1
		1.1.2 Affine Cone and Projective Normality	2
	1.2	Things about Combination Theory	3
		1.2.1 Polytopes	4
		1.2.2 Normal Polytopes	5
		1.2.3 Very Ample Polytopes	5
		1.2.4 Fans	6
2	Con	structions of Projective Toric Variety	7
	2.1	Using Lattice Points	7
		2.1.1 Torus of Projective Space	7
		2.1.2 The Construction of $X_{\mathscr{A}}$	9
		2.1.3 Basic Properties of $X_{\mathscr{A}}$	10
	2.2	Using Polytopes	1
		2.2.1 The Very Ample Case	1

Chapter 1

Preliminaries

1.1 Things about Projective Geometry

We assume the reader has know basic knowledge of projective geometry, e.g. [1, pp8-14], [2, pp49-54].

1.1.1 Some Basic Constructions

Definition 1.1.1 (Veronese embedding). Fix n, d > 0, let M_0, \dots, M_N be all the monomials of degree d in the n + 1 variables x_0, \dots, x_n , where $N = \binom{n+d}{n} - 1$. We have a map

$$v_d \colon \mathbb{P}^n \to \mathbb{P}^N$$

 $a \mapsto [M_0(a), \cdots, M_N(a)]$

which defines a closed immersion of varieties. We call v_d the *d*-uple embedding or *d*-th Veronese embedding of \mathbb{P}^n .

When n = 1, $v_d(\mathbb{P}^1)$ is a nonsingular curve in \mathbb{P}^d , which is called the rational normal curve of degree d. When n = 2, $v_d(\mathbb{P}^2)$ is a nonsingular surface in $\mathbb{P}^{\frac{d(d+3)}{2}}$, which is called the Veronese surface of degree d.

Definition 1.1.2 (Segre embedding). The map

$$\sigma \colon \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{mn+m+n}$$
$$(a,b) \mapsto [\cdots a_i b_j]_{0 \le i \le m, 0 \le j \le n}$$

defines a closed immersion of varieties. We call σ the Segre embedding.

When m = n = 1, $\mathbb{P}^1 \times \mathbb{P}^1$ is a quatric surface in \mathbb{P}^3 , which is called the *Segre surface*.

Definition 1.1.3 (weighted projective space). Let $S = \mathbb{C}[x_0, \dots, x_n]$ be the graded polynomial ring with deg $x_i = d_i$, then

$$\mathbb{P}(d_0,\cdots,d_n):=\operatorname{Proj} S,$$

is called a *weighted projective space*.

We may always assume any n elements in $\{d_0, \dots, d_n\}$ have no common factor (why?), in which case such weighted projective space is well-formed.

Definition 1.1.4 (Grassmannian). The Grassmannian manifold (over \mathbb{C}) $\operatorname{Gr}(k, n)$, consists of linear subspace of dimension k of a given linear space of dimension $n \ge k$, is a projective variety via the morphism

$$\operatorname{Gr}(k,n) \to \operatorname{Gr}\left(1, \binom{n}{k}\right) = \mathbb{P}^{\binom{n}{k}-1}$$

 $W \mapsto \det W$

which is called a *Grassmannian variety*.

1.1.2 Affine Cone and Projective Normality

Let X be a projective variety in \mathbb{P}^n , and $\mathbf{I}(V)$ be the ideal of $\mathbb{C}[x_0, \cdots, x_n]$ generated by homogeneous polynomials vanishing on X, we say

$$S(X) := \mathbb{C}[x_0, \cdots, x_n]/\mathbf{I}(V),$$

is the homogeneous coordinate ring of X (with respect to the embedding $X \subset \mathbb{P}^n$). For following discussion, we fix the notation as above.

Definition 1.1.5 (affine cone). There is an affine variety $\widehat{X} \subset \mathbb{A}^{n+1}$ corresponds to $\mathbf{I}(X)$. We say \widehat{X} is the *affine cone* of X. See exercise I.2.10 in [1, p12].

Definition 1.1.6 (projective normality). We say $X \subset \mathbb{P}^n$ is projectively normal if its affine cone \widehat{X} is a normal variety, i.e. S(X) is a normal ring.

Theorem 1.1.7. $X \subset \mathbb{P}^n$ is projectively normal, iff X is normal (as a variety) and the natural maps

$$\Gamma(\mathbb{P}^n, \mathscr{O}_{\mathbb{P}^n}(r)) \to \Gamma(X, \mathscr{O}_X(r)),$$

are surjective for all $r \ge 0$.

Proof. Omitted. This is exercise II.5.14(d) in [1, p126], which generalizes exercise I.3.18 in [1, p23] and exercise 2.1.5 in [2, p62].

Remark 1.1.8. There is a normal projective variety which is not projectively normal, see example 2.1.10 in [2, p61]. More generally, a nonsingular curve of type (a, b) on the Segre surface xw = yz in \mathbb{P}^3 is projectively normal iff $|a - b| \leq 1$, see exercise III.5.6 in [1, p231].

Example 1.1.9 (rational normality). The images of Veronese embedding and Segre embedding are both projectively normal in corresponding spaces. They are both *rational normal*, where "rational" means they are birational to projective space and "normal" means they are projectively normal. It is interesting that

- A non-degenerate irreducible curve in \mathbb{P}^n is rational normal iff it is of degree n, iff it is the Veronese curve.
- A non-degenerate ruled surface in Pⁿ is rational normal, then it is of degree n − 1; conversely, a non-degenerate irreducible surface of degree n − 1 in Pⁿ is either a rational normal scroll or the Veronese surface.

1.2 Things about Combination Theory

We need some combinational concepts.

1.2.1 Polytopes

See [2, pp63-67] for details.

Definition 1.2.1 (cone,affine hull, convex hull). Suppose V is an \mathbb{R} -linear space of finite dimension and $S \subset V$ is a finite subset, then define its

• cone by

$$\operatorname{cone}(S) = \left\{ \sum_{u \in S} \lambda_u u : \lambda_u \ge 0 \right\},\$$

• affine hull by

$$\operatorname{aff}(S) = \left\{ \sum_{u \in S} \lambda_u u : \sum_{u \in S} \lambda_u = 1 \right\},\$$

• and convex hull by $\operatorname{conv}(S) = \operatorname{cone}(S) \cap \operatorname{aff}(S)$.

A polytope in V is a convex hull of some finite subset, and there is a reasonable way to define the *faces* and *dimension* of a polytope. A face of a polytope of dimension n is a facet(resp. edge, vertex) if it has dimension n - 1(resp. 1,0). One can also define the (Minkowsiki) sum, multiple and dual of a polytope.

Let M be a lattice with dual N, we may always consider the space $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ with dual $N_{\mathbb{R}}$. A *lattice polytope* in $M_{\mathbb{R}}$ is the convex hull of a finite subset of M.

Example 1.2.2 (Birkhoff polytope). Consider the case $M = \mathbb{Z}^{d \times d}$. A matrix $A \in \mathbb{R}^{d \times d}$ is *doubly-stochastic* if it has nonnegative entries and its row and column sums are all 1. Then the set \mathscr{M}_d of all doubly-stochastic matrices form a lattice polytope, of vertices all permutation matrices. See example 2.2.2 and 2.2.5 in [2, p64,p66].

Definition 1.2.3 (combinational equivalence). Two polytopes P_1, P_2 are *combinationally equivalent* if there is abijection

{faces of
$$P_1$$
} \simeq {faces of P_2 },

which preserves dimensions, intersections, and the face relation.

1.2.2 Normal Polytopes

The concepts of normality and ampleness of a polytope raises from the normality of the associated projective toric variety.

Definition 1.2.4 (normal polytope). A lattice polytope $P \subset M_{\mathbb{R}}$ is normal if

$$(kP) \cap M + (lP) \cap M = ((k+k)P) \cap M,$$

for all $k, l \in \mathbb{N}$.

Example 1.2.5 (1-dimensional polytope). An 1-dimensional polytope must be a (single closed) line segment, and it is a lattice polytope iff its two endpoints are lattice points. Let L be such a line segment in $M_{\mathbb{R}}$ joint two lattice points m_1, m_2 , then kL is the line segment joint km_1, km_2 , which is just the k-uple sum $L + L + \cdots + L$. This shows that L is normal.

Theorem 1.2.6. If $P \subset M_{\mathbb{R}}$ is a full dimensional lattice polytope of dimension $n \geq 2$, then kP is normal for all $k \geq n-1$.

Proof. See theorem 2.2.12 in [2, p69].

Remark 1.2.7. The bound $k \ge n - 1$ can be strengthen, see lemma 2.2.16 in [2, p71].

Corollary 1.2.8. All lattice polygon in \mathbb{R}^2 is normal.

1.2.3 Very Ample Polytopes

In algebraic geometry, the very ampleness of a sheaf, roughly speaking, means that it has enough sections. As for polytopes, the very-ampleness means it has enough lattice points.

Definition 1.2.9 (very-ampleness). A lattice polytope $P \subset M_{\mathbb{R}}$ is very ample if for every vertex $m \in P$ the semigroup $S_{P,m}$ generated by

$$P \cap M - m := \{m' - m : m' \in P \cap M\},\$$

is saturated in M, i.e. $kp \in S_{P,m}$ implies $p \in S_{P,m}$ for all positive integer kand lattice point $p \in M$.

Theorem 1.2.10. A normal lattice polytope is very ample.

Proof. See proposition 2.2.18 in [2, p71].

1.2.4 Fans

See [2, p106]. We do not need the general terminology "fan", which will be used in the construction of toric abstract variety. In the construction of projective toric variety, we will use *normal fans* of a lattice polytope, see [2, pp76-83].

Chapter 2

Constructions of Projective Toric Variety

2.1 Using Lattice Points

We first construct various examples of projective toric variety by an algebraic way. The main reference is [2, pp54-62]

2.1.1 Torus of Projective Space

It is known that the affine space \mathbb{C}^n has a standard torus $(\mathbb{C}^*)^n$, making it a toric variety. As for the projective space \mathbb{P}^n , there is a nonempty open subset defined by $x_0 \cdots x_n \neq 0$, which is

$$T_{\mathbb{P}^n} := \{ [t_0, \cdots, t_n] \in \mathbb{P}^n : t_i \in \mathbb{C}^* \}.$$

Theorem 2.1.1. \mathbb{P}^n is a toric variety.

Proof. We have the isomorphism

$$T_{\mathbb{P}^n} \to (\mathbb{C}^*)^n$$
$$[t_0, \cdots, t_n] \to (t_1/t_0, \cdots, t_n/t_0)$$

so $T_{\mathbb{P}^n}$ is indeed a torus. The multiplication of $T_{\mathbb{P}^n}$ is defined by

$$[s_0,\cdots,s_n]\cdot[t_0,\cdots,t_n]=[s_0t_0,\cdots,s_nt_n],$$

which obviously extends an algebraic action $T_{\mathbb{P}^n} \times \mathbb{P}^n \to \mathbb{P}^n$. So \mathbb{P}^n is a toric variety.

Note that $T_{\mathbb{P}^n}$ can be identified with the quotient group $(\mathbb{C}^*)^{n+1}/\Delta(\mathbb{C}^*)$, where

$$\Delta \colon \mathbb{C}^* \to (\mathbb{C}^*)^{n+1}$$
$$t \mapsto (t, t, \cdots, t)$$

is the diagonal morphism, it has character lattice

$$\mathscr{M}_n = \{(a_0, \cdots, a_n) \in \mathbb{Z}^{n+1} : \sum a_i = 0\},\$$

and lattice of one-parameter subgroups

$$\mathcal{N}_n = \mathbb{Z}^{n+1}/\mathbb{Z}(1,\cdots,1).$$

Lemma 2.1.2. Suppose V is a (locally closed) subvariety of \mathbb{P}^n containing $T_{\mathbb{P}^n}$, and is toric under the natural action of $T_{\mathbb{P}^n}$ (e.g. the affine piece $x_0 \neq 0$). If T is an irreducible closed subgroup of $T_{\mathbb{P}^n}$, then it is a torus and its Zariski closure in V is a toric variety.

Proof. By proposition 1.1.1(b) in [2, p11], T is indeed a torus. Denote by \overline{T} for the closure of T in V, then since T is closed in $T_{\mathbb{P}^n}$ we have

$$T = \overline{T} \cap T_{\mathbb{P}^n}.$$

Since $T_{\mathbb{P}^n}$ is open in \mathbb{P}^n , it is also open in \overline{T} . For each $t \in T$, its action on V is well-defined, and takes closed subvarieties to closed subvarieties (because it is an automorphism of V with the inverse defined by the action by t^{-1}). Thus

$$T = t \cdot T \subset t \cdot \overline{T},$$

i.e. $t \cdot \overline{T}$ is a closed subvariety contains T. So we have $\overline{T} \subset t \cdot \overline{T}$. Replace t by t^{-1} , it then follows that $\overline{T} = t \cdot \overline{T}$, i.e. the action of T on itself extends to its closure \overline{T} . So \overline{T} is toric.

2.1.2 The Construction of $X_{\mathscr{A}}$

Let T_N be a torus with character lattice M and $\mathscr{A} = \{m_1, \dots, m_s\}$ be a finite subset of M, then there is a morphism

$$\Phi_{\mathscr{A}} \colon T_N \to (\mathbb{C}^*)^s$$
$$t \mapsto (\chi^{m_1}(t), \cdots, \chi^{m_s}(t))$$

and a natural projection

 $\pi\colon (\mathbb{C}^*)^s \to T_{\mathbb{P}^{s-1}}.$

Lemma 2.1.3. The image of $\Phi_{\mathscr{A}}$ is a torus in $(\mathbb{C}^*)^s \subset \mathbb{C}^s$, and its Zariski closure $Y_{\mathscr{A}}$ in \mathbb{C}^s is toric. The image of $\pi \circ \Phi_{\mathscr{A}}$ is also a torus $T_{\mathscr{A}}$ in $T_{\mathbb{P}^{s-1}} \subset \mathbb{P}^{s-1}$, and its Zariski closure $X_{\mathscr{A}}$ in \mathbb{P}^{s-1} is toric.

Proof. Just combine proposition 1.1.1(a) in [2, p11] and lemma 2.1.2.

Definition 2.1.4. $Y_{\mathscr{A}}$ is called the *affine toric variety associated to* \mathscr{A} , and $X_{\mathscr{A}}$ is called the *projective toric variety associated to* \mathscr{A} .

Example 2.1.5 (cuspidal cubic curve). Let $T_N = \mathbb{C}^*$ then $M = \mathbb{Z}$. Consider $\mathscr{A} = \{3, 4, 1\}$, then the corresponding map $\pi \circ \Phi_{\mathscr{A}}$ is defined by

$$t \mapsto (t^3, t^4, t) \mapsto [t^2, t^3, 1].$$

One can see that $Y_{\mathscr{A}}$ is the affine cubic curve in \mathbb{C}^3 defined by $x = z^3, y = z^4$, and $X_{\mathscr{A}}$ is the cuspidal cubic curve defined by $x^3 = y^2 z$ and the torus $T_{\mathscr{A}}$ is just the complement of the cusp [0, 0, 1].

Example 2.1.6. Let T_N be the space of all $n \times n$ matrices with nonzero entries, then $M = \mathbb{Z}^{n \times n}$. Consider

 $\mathscr{A} = \mathscr{P}_n = \{n \times n \text{ permutation matrices}\} \subset M,$

then the corresponding map $\pi \circ \Phi_{\mathscr{A}}$ is defined by

$$T_N \to \mathbb{P}^{n!-1}$$
$$(t_{ij})_{1 \le i,j \le n} \mapsto \left[\prod_{i=1}^n t_{i\sigma(i)}\right]_{\sigma \in S_n}$$

One can see that

$$\prod_{\sigma \text{ even}} x_{\sigma} - \prod_{\sigma \text{ odd}} x_{\sigma} \in \mathbf{I}(X_{\mathscr{A}}),$$

but it is not easy to determine $I(X_{\mathscr{A}})$ and the cooresponding torus.

2.1.3 Basic Properties of $X_{\mathscr{A}}$

In general, $Y_{\mathscr{A}} \neq \widehat{X}_{\mathscr{A}}$, and example 2.1.5 shows that they can even have the same dimension.

Theorem 2.1.7. $Y_{\mathscr{A}} = \widehat{X}_{\mathscr{A}}$ iff the ideal

$$I_{\mathscr{A}} = \langle \prod x_i^{a_i} - \prod x_i^{b_i} \Big| a_i, b_i \in \mathbb{N}, \sum (a_i - b_i) m_i = 0 \rangle,$$

is homogeneous in $\mathbb{C}[x_0, \cdots, x_n]$, iff there is a one parameter subgroup u and positive integer k such that $\langle m_i, u \rangle = k$ for $i = 1, \cdots, s$.

Proof. See [2, p56].

Another task is to determine the dimension of $X_{\mathscr{A}}$. Consider the subgroup of $\mathbb{Z}\mathscr{A}$ defined by

$$\mathbb{Z}'\mathscr{A} = \left\{ \sum a_i m_i \mid a_i \in \mathbb{Z}, \sum a_i = 0 \right\},\$$

then

Theorem 2.1.8. $\mathbb{Z}' \mathscr{A}$ is the character lattice of $X_{\mathscr{A}}$, and its rank is the dimension of the samllest affine subspace of $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ containing \mathscr{A} .

Proof. Omitted in this note, I will explain offline.

Corollary 2.1.9. The following numbers equal:

- (1) dim $X_{\mathscr{A}}$,
- (2) dim $T_{\mathscr{A}}$,
- (3) dimension of the samllest affine subspace of $M_{\mathbb{R}}$ containing \mathscr{A} ,
- (4) rank $\mathbb{Z}' \mathscr{A}$,
- (5) rank $\mathbb{Z}\mathscr{A} \epsilon$, where

$$\epsilon = \begin{cases} 1, & Y_{\mathscr{A}} = \widehat{X}_{\mathscr{A}}, \\ 0, & \text{otherwise.} \end{cases}$$

Example 2.1.10. Recall example 2.1.6. It is known that the permutation metrices span a linear subspace of $\mathbb{C}^{n \times n}$ of dimension $(n-1)^2 - 1$. Then one can easily see that $\mathbb{Z}\mathscr{P}_n$ is of rank $(n-1)^2 - 1$. One can also easily see that $I_{\mathscr{P}_n}$ is homogeneous, so dim $X_{\mathscr{P}_n} = (n-1)^2 - 1$. In particular, if n = 3, then $X_{\mathscr{P}_3}$ is a hypersurface in \mathbb{P}^4 , so $X_{\mathscr{P}_3}$ is just defined by $x_{123}x_{231}x_{312} = x_{132}x_{213}x_{321}$.

Now suppose U_i is the *i*-th affine piece of \mathbb{P}^{s-1} defined by $x_i \neq 0$, then

$$T_{\mathscr{A}} = X_{\mathscr{A}} \cap T_{\mathbb{P}^{s-1}} \subset X_{\mathscr{A}} \cap U_i$$

This shows that $X_{\mathscr{A}} \cap U_i$ is the Zariski closure of $T_{\mathscr{A}}$ in $U_i \simeq \mathbb{C}^{s-1}$ and is an affine toric variety.

Theorem 2.1.11. Let

$$\mathscr{A}_i = \mathscr{A} - m_i = \{m_j - m_i : j \neq i\},\$$

then there is an isomorphism $X_{\mathscr{A}} \cap U_i \simeq Y_{\mathscr{A}_i}$.

Proof. Easy.

2.2 Using Polytopes

The construction by lattice points also determine a specified embedding in some projective space, and we want an intrinsic way to construct projective toic variety.

2.2.1 The Very Ample Case

Lemma 2.2.1. Let $\mathscr{A} = \{m_1, \cdots, m_s\} \subset M$ be a set of lattice points and $P = \operatorname{conv}(\mathscr{A}) \subset M_{\mathbb{R}}$ be its convex hull. Then all vertices of P lie in \mathscr{A} . Moreover, consider

$$J = \{j : m_j \text{ is a vertex of } P\},\$$

then $X_{\mathscr{A}} = \bigcup_{i \in J} (X_{\mathscr{A}} \cap U_j)$, where U_j is the *j*-th affine piece of \mathbb{P}^{s-1} .

Proof. For each *i* the lattice point m_i lies in $P \cap M$, so there exsit $k, k_j \in \mathbb{N}$ such that

$$km_i = \sum_{j \in J} k_j m_j$$
, and $k = \sum_{j \in J} k_j$.

There is a k_{j_0} which is nonzero, hence

$$m_i - m_{j_0} = (k_{j_0} - 1)(m_{j_0} - m_i) + \sum_{j \in J, j \neq j_0} k_j(m_j - m_i),$$

lie in the smeigroup generated by $\mathscr{A}_i = \mathscr{A} - m_i$ and is the inverse of $m_{j_0} - m_i$. It follows that

$$X_{\mathscr{A}} \cap U_i \cap U_{j_0} = X_{\mathscr{A}} \cap U_i,$$

hence $X_{\mathscr{A}} \cap U_i \subset X_{\mathscr{A}} \cap U_{j_0}$. So any affine piece of $X_{\mathscr{A}}$ in 2.1.11 is contained in some affine piece determined by a vertex of P.

Now suppose P is a full dimensional very ample lattice polytope in M, of dimension n. Then $P \cap M = \{m_1, \dots, m_s\}$ are a finite set of lattice points and we can define the projective toric variety $X_{P \cap M}$ associated to it. By above lemma 2.2.1, we have

$$X_{P \cap M} = \bigcup_{m_i \text{ vertex of } P} (X_{P \cap M} \cap U_i).$$

Lemma 2.2.2. For each vertex m_i of P the corresponding affine piece $X_{P \cap M} \cap U_i$ is just the affine toric variety associated to the strongly convex rational cone σ_i dual to the cone

$$\operatorname{cone}(P \cap M - m_i),$$

with character lattice M. As a corollary, such $X_{P \cap M}$ is a normal variety.

Proof. Easy. See [2, p75].

2.2.2 The Construction of X_P

We may first throw out the definition.

Definition 2.2.3. Let P be a full dimensional lattice polytope, and k be a positive integer such that kP is very ample, then

$$X_P = X_{(kP)\cap M},$$

is called the projective toric variety associated to P.

By theorems 1.2.6 and 1.2.10, such integer k exsits (and not unique) and for any two integers k, l satisfy this condition there exists an isomorphism $X_{(kP)\cap M} \simeq X_{(lP)\cap M}$. Thus X_P is well-defined.

Example 2.2.4 (Veronese embedding). Consider the standard *n*-simplex $\Delta_n = \operatorname{conv}(0, e_1, \cdots, e_n)$ in \mathbb{R}^n , one can see that

$$k\Delta_n = \operatorname{conv}(0, ke_1, \cdots, ke_n)$$

and $k\Delta_n \cap \mathbb{Z}^n$ has $N = \binom{k+n}{k}$ lattice points. Moreover, $k\Delta_n$ is a fulldimensional normal polytope, and the variety $X_{(k\Delta_n)\cap\mathbb{Z}^n}$ is just the image of the Veronese embedding

$$v_k \colon \mathbb{P}^n \mapsto \mathbb{P}^{N-1}.$$

Thus X_{Δ_n} is just \mathbb{P}^n .

By definition, and theorem 1.3.5 in [2, p37], one can see that

Theorem 2.2.5. Let P be a full dimensional lattice polytope. Then

- (a) X_P is a normal projective toric variety.
- (b) X_P is projectively normal under the embedding given by kP iff kP is a normal polytope.

Bibliography

- [1] Robin Hartshorne. (1977) Algebraic Geometry, Springer-Verlag, New York.
- [2] David A. Cox, John B. Little, Henry K. Schenck. (2011) Toric Variety, American Mathematical Society.