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Part 1. Basic theories of toric varieties
1. Preliminaries

1.1. Torus.
Definition 1.1.1 (torus). A torus T is an affine variety isomorphic to (C∗)n,
where T inherits a group structure from the isomorphism.
Definition 1.1.2 (character). A character of a torus T is a morphism
χ : T → C∗ that is a group homomorphism.

Definition 1.1.3 (one-parameter subgroup). A one-parameter subgroup of
a torus T is a morphism λ : C∗ → T that is a group homomorphism.

Example 1.1.1. All characters of (C∗)n arise from
χ(a1,...,an) : (t1, . . . , tn) "→ ta11 . . . tann ,

and all one-parameter subgroups of (C∗)n arise from
λ(b1,...,bn) : t "→ (tb1 , . . . , tbn),

where (a1, . . . , an), (b1, . . . , bn) ∈ Zn.
1.2. Affine semigroups.
Definition 1.2.1 (affine semigroup). An affine semigroup S is a semigroup
group such that
(1) The binary operation on S is commutative.
(2) The semigroup is finitely generated.
(3) The semigroup can be embedded in a lattice M .
Definition 1.2.2 (saturated). An affine semigroup S ⊆ M is saturated if
for all 0 ̸= k ∈ N and m ∈M , km ∈ S implies m ∈ S.
Example 1.2.1. Nn ⊆ Zn is an affine semigroup.

Example 1.2.2. Given a finite set A of a lattice M , NA ⊆M is an affine
semigroup.

Definition 1.2.3 (semigroup algebra). Let S ⊆M be an affine semigroup.
The semigroup algebra C[S] is the vector space over C with S as basis and
multiplication is induced by the semigroup structure.
Remark 1.2.1. To make this precise, we write

C[S] = {
∑

m∈S
cmχm | cm ∈ C and cm = 0 for all but finitely many m}

with multiplication given by
χm · χm′

= χm+m′
.

If S = NA for A = {m1, . . . ,ms}, then C[S] = C[χm1 , . . . ,χms ].
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Example 1.2.3. The affine semigroup Nn ⊆ Zn gives the polynomial ring
C[Nn] = C[x1, . . . , xn]

where xi = χei and {e1, . . . , en} is the standard basis of Zn.

Example 1.2.4. If e1, . . . , en is a basis of a lattice M , then M is generated
by A = {±e1, . . . ,±en} as an affine semigroup, and the semigroup algebra
gives the Laurent polynomial ring

C[M ] = C[x±1
1 , . . . , x±1

n ]

where xi = χei .

Theorem 1.2.1. Let TN be a n-torus with group M consisting of characters
and group N consisting of one-parameter subgroups. Then
(1) M,N are lattices of rank n.
(2) M,N are dual lattices, that is N ∼= Hom(M,Z) and N ∼= Hom(N,Z).
(3) TN

∼= SpecC[M ] as varieties.
(4) TN

∼= N ⊗Z C∗ ∼= Hom(M,C∗) as groups.

For torus TN with character group M , there is a natural action of TN on
the semigroup algebra C[M ] as follows: For t ∈ TN and χm ∈ M , t · χm is
defined by p "→ χm(t−1p) for p ∈ TN .

Theorem 1.2.2. Let A ⊆ C[M ] be a subspace stable under the action of
TN . Then

A =
⊕

χm∈A
C ·χm.

Proof. See Lemma 1.1.16 in [CLS11]. !

1.3. Strongly convex rational polyhedral cones. From now on, unless
otherwise specified, we always assume M,N are dual lattices with associated
R-vector spaces MR := M⊗ZR and NR := N⊗ZR, and the pairing between
M and N is denoted by ⟨-, -⟩.

1.3.1. Convex polyhedral cones.

Definition 1.3.1 (convex polyhedral cone). Let S ⊆ NR be a finite subset.
A convex polyhedral cone in NR generated by S is a set of the form

σ = ConeS = {
∑

u∈S
λuu | λu ≥ 0} ⊆ NR.

Notation 1.3.1. Cone(∅) = {0}.

Remark 1.3.1. A convex polyhedral cone is convex, that is x, y ∈ σ implies
λx + (1 − λ)y ∈ σ for all 0 ≤ σ ≤ 1, and it’s a cone, that is x ∈ σ implies
λx ∈ σ for all λ ≥ 0. Since we will only consider convex cones, the cones
satisfying Definition 1.3.1 will be called polyhedral cone for convenience.
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Definition 1.3.2 (dimension). The dimension of a polyhedral cone σ ⊆ NR
is the dimension of the smallest subspace W ⊆ NR containing σ, and such
W is called the span of σ.
Definition 1.3.3 (dual cone). Let σ ⊆ NR be a polyhedral. The dual cone
is defined by

σ∨ := {u ∈MR | ⟨m,u⟩ ≥ 0 for all u ∈ σ}.

Definition 1.3.4 (hyperplane). Given m ∈ MR, the hyperplane given by
m is defined by

Hm := {u ∈ NR | ⟨m,u⟩ = 0} ⊆ NR,

and the closed half-space given by m is defined by
H+

m := {u ∈ NR | ⟨m,u⟩ ≥ 0} ⊆ NR.

Definition 1.3.5 (supporting hyperplane). The supporting hyperplane of
a polyhedral cone σ ⊆ NR is a hyperplane Hm such that σ ⊆ H+

m, and H+
m

is called a supporting half-space.
Remark 1.3.2. Hm is a supporting hyperplane of σ if and only if m ∈ σ∨,
and if m1, . . . ,ms generates σ∨, then

σ = H+
m1
∩ · · · ∩H+

ms
.

Thus every polyhedral cone is an intersection of finitely many closed half-
spaces.
Definition 1.3.6 (face). A face of a polyhedral cone σ is τ = Hm ∩ σ for
some m ∈ σ∨, written τ ≼ σ. Faces τ ̸= σ are called proper faces, written
τ ≺ σ.
Definition 1.3.7 (facet and edge). A facet of a polyhedral cone σ is a face
of codimension one, and an edge of σ is a face of dimension one.
Theorem 1.3.1. Suppose σ is a polyhedral cone. Then
(1) Every face of σ is a polyhedral cone.
(2) An intersection of two faces of σ is again a face of σ.
(3) A face of a face of σ is again a face of σ.
(4) If τ ≼ σ, v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ .
(5) Every face of σ∨ can be uniquely written as σ∨ ∩ τ⊥, where τ ≼ σ and

τ⊥ = {m ∈MR | ⟨m,u⟩ = 0, ∀u ∈ τ}

1.3.2. Strongly convex.
Definition 1.3.8 (strongly convex). A polyhedral cone σ ⊆ NR is strongly
convex if {0} is a face of σ.
Theorem 1.3.2. Let σ ⊆ NR be a polyhedral cone. Then the following
statements are equivalent:
(1) σ is strongly convex.
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(2) {0} is a face of σ.
(3) σ contains no positive-dimensional subspace of NR.
(4) σ ∩ (−σ) = {0}.
(5) dimσ∨ = n.
1.3.3. Rational polyhedral cones.
Definition 1.3.9 (rational). A polyhedral cone σ ⊆ NR is rational if σ =
Cone(S) for some finite subset S ⊆ N .
Definition 1.3.10 (ray generator). Let σ ⊆ NR be a strongly convex ra-
tional polyhedral cone and ρ be an edge of σ. The unique generator of
semigroup ρ ∩N is called ray generator of ρ, written uρ.
Remark 1.3.3. The ray generator is well-defined: Since σ is strongly convex,
one has edge of σ is a ray as {0} is its face, and since σ is rational, the
semigroup ρ∩N is generated by a unique element, otherwise contradicts to
the fact ρ is an edge, that is it’s of dimension one.
Lemma 1.1. A strongly convex rational polyhedral cone is generated by
the ray generators of its edges.
1.3.4. Other properties.
Definition 1.3.11 (smooth and simplicial). Let σ ⊆ NR be a strongly
convex rational polyhedral cone.
(1) σ is smooth if its ray generators form part of a Z-basis of N .
(2) σ is simplical if its ray generators are linearly independent over R.
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2. Toric variety
2.1. Cones and affine toric varieties.

2.1.1. Construction.

Definition 2.1.1 (affine toric variety). An affine toric variety is an irre-
ducible affine variety V containing a torus TN

∼= (C∗)n as a Zariski open
subset such that the action of TN on itself extends to an algebraic action of
TN on V .
Proposition 2.1.1 (Gordan’s lemma). Let σ ⊆ NR be a rational polyhedral
cone. The semigroup Sσ := σ∨ ∩M is finitely generated.
Proof. See Proposition 1.2.17 in [CLS11]. !
Theorem 2.1.1. Let σ ⊆ NR be a strongly convex rational polyhedral cone
with semigroup Sσ = σ∨ ∩M . Then

Uσ := Spec(C[Sσ])

is a normal affine toric variety with torus TN
∼= SpecC[M ].

Proof. If σ ⊆ NR is a strongly convex rational polyhedral cone, then by
Proposition 2.1.1 one has Sσ is finitely generated. Suppose A = {m1, . . . ,ms}
is a generator of Sσ. Then the strongly convexity implies ZA = M . If we
define TN = SpecC[M ], then M and N can be viewed as characters and one
one-parameter subgroups of TN respectively. Consider

ΦA : TN → (C∗)s

t "→ (χm1(t), . . . ,χms(t)).

It’s clear to see ΦA gives a closed immersion from TN to (C∗)s by checking
the induced morphism on coordinate rings. If we use T to denote the image
of TN in (C∗)s and use YA to denote the Zariski closure of T in Cs, then
YA ∩ (C∗)s = T . Moreover, T is irreducible since it’s a torus, so the same is
true for its Zariski closure YA . Consider the morphism on coordinate rings
corresponding to ΦA : TN → Cs

Φ♯
A : C[x1, . . . , xs]→ C[M ]

xi "→ χmi .

Since YA is the Zariski closure of T , the coordinate ring of YA is given by
C[x1, . . . , xn]/ kerΦ♯

A = imΦ♯
A = C[Sσ].

Thus YA
∼= Uσ

∼= SpecC[Sσ].
To see Uσ is normal, it suffices to show C[Sσ] is integrally closed. Suppose

ρ1, . . . , ρr are rays of σ. Then by Lemma 1.1 one has

σ∨ =
r⋂

i=1

ρ∨i .
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Intersecting with M gives Sσ =
⋃r

i=1 Sρi , which easily implies

C[Sσ] =
r⋂

i=1

C[Sρi ].

Thus it suffices to show each strongly convex rational cone ρ of dimension
one, C[Sρ is integrally closed. Suppose uρ is the ray generators of ρ, and
extends uρ to a basis of N as e1 = uρ, e2, . . . , en with dual basis x1, . . . , xn
in M . Then

C[Sρ] = C[x1, x±2 , . . . , x±n ].
It’s clear C[Sρ] is integrally closed. !
Remark 2.1.1. In fact, for any normal affine toric variety X, there exists a
strongly convex rational polyhedral cone σ ⊆ NR such that X ∼= Uσ.
Remark 2.1.2 (lattice point construction). More generally, given a torus TN

with character lattice M , a set A = {m1, . . . ,ms} ⊆M gives the characters
χmi : TN → C∗, and thus the following map

ΦA : TN → Cs

t "→ (χm1(t), . . . ,χms(t)).

By the same argument, one can see the Zariski closure of the image of the
map ΦA , denoted by YA , is an affine toric variety whose torus has character
lattice ZA . Moreover, YA is normal if and only if A is the set of generators
of Sσ for some strongly convex rational polyhedral cone σ ⊆ NR.
Remark 2.1.3 (affine semigroup construction). Let S ⊆M be an affine semi-
group with generators A = {m1, . . . ,ms}. Then consider

Φ♯
A : C[x1, . . . , xs]→ C[M ]

xi "→ χmi ,

which corresponds to a morphism ΦA : TN → Cs. Then Spec(C[S]) is an
affine toric variety, which is isomorphic to YA , and Spec(C[S]) is normal if
and only if S is saturated1.
2.1.2. Examples.
2.1.3. Properties.
Theorem 2.1.2. Let σ ⊆ NR be a strongly convex polyhedral cone. Then
Uσ is smooth if and only if σ is smooth2. Moreover, all smooth affine toric
varieties are of this form.
Proposition 2.1.2. Let σ ⊆ NR be a strongly convex rational polyhedral
cone and σ be a face of σ written as τ = Hm ∩ σ, where m ∈ σ∨ ∩M . Then
the semigroup algebra C[Sτ ] is the localization of C[Sσ] at χm ∈ C[Sσ].
Proof. See Proposition 1.3.16 in [CLS11]. !

1See Definition 1.2.2.
2See Definition 1.3.11.
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