Part 1. Basic theories of toric varieties

1. Preliminaries

1.1. Torus.

Definition 1.1.1 (torus). A torus T is an affine variety isomorphic to $\left(\mathbb{C}^{*}\right)^{n}$, where T inherits a group structure from the isomorphism.

Definition 1.1 .2 (character). A character of a torus T is a morphism $\chi: T \rightarrow \mathbb{C}^{*}$ that is a group homomorphism.

Definition 1.1 .3 (one-parameter subgroup). A one-parameter subgroup of a torus T is a morphism $\lambda: \mathbb{C}^{*} \rightarrow T$ that is a group homomorphism.

Example 1.1.1. All characters of $\left(\mathbb{C}^{*}\right)^{n}$ arise from

$$
\chi^{\left(a_{1}, \ldots, a_{n}\right)}:\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}
$$

and all one-parameter subgroups of $\left(\mathbb{C}^{*}\right)^{n}$ arise from

$$
\lambda^{\left(b_{1}, \ldots, b_{n}\right)}: t \mapsto\left(t^{b_{1}}, \ldots, t^{b_{n}}\right)
$$

where $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}$.

1.2. Affine semigroups.

Definition 1.2.1 (affine semigroup). An affine semigroup S is a semigroup group such that
(1) The binary operation on S is commutative.
(2) The semigroup is finitely generated.
(3) The semigroup can be embedded in a lattice M.

Definition 1.2.2 (saturated). An affine semigroup $S \subseteq M$ is saturated if for all $0 \neq k \in \mathbb{N}$ and $m \in M, k m \in S$ implies $m \in S$.

Example 1.2.1. $\mathbb{N}^{n} \subseteq \mathbb{Z}^{n}$ is an affine semigroup.
Example 1.2.2. Given a finite set \mathscr{A} of a lattice $M, \mathbb{N} \mathscr{A} \subseteq M$ is an affine semigroup.

Definition 1.2 .3 (semigroup algebra). Let $S \subseteq M$ be an affine semigroup. The semigroup algebra $\mathbb{C}[S]$ is the vector space over \mathbb{C} with S as basis and multiplication is induced by the semigroup structure.

Remark 1.2.1. To make this precise, we write

$$
\mathbb{C}[S]=\left\{\sum_{m \in S} c_{m} \chi^{m} \mid c_{m} \in C \text { and } c_{m}=0 \text { for all but finitely many } m\right\}
$$

with multiplication given by

$$
\chi^{m} \cdot \chi^{m^{\prime}}=\chi^{m+m^{\prime}}
$$

If $S=\mathbb{N} \mathscr{A}$ for $\mathscr{A}=\left\{m_{1}, \ldots, m_{s}\right\}$, then $\mathbb{C}[S]=\mathbb{C}\left[\chi^{m_{1}}, \ldots, \chi^{m_{s}}\right]$.

Example 1.2.3. The affine semigroup $\mathbb{N}^{n} \subseteq \mathbb{Z}^{n}$ gives the polynomial ring

$$
\mathbb{C}\left[\mathbb{N}^{n}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

where $x_{i}=\chi^{e_{i}}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{Z}^{n}.
Example 1.2.4. If e_{1}, \ldots, e_{n} is a basis of a lattice M, then M is generated by $\mathscr{A}=\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}$ as an affine semigroup, and the semigroup algebra gives the Laurent polynomial ring

$$
\mathbb{C}[M]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

where $x_{i}=\chi^{e_{i}}$.
Theorem 1.2.1. Let T_{N} be a n-torus with group M consisting of characters and group N consisting of one-parameter subgroups. Then
(1) M, N are lattices of rank n.
(2) M, N are dual lattices, that is $N \cong \operatorname{Hom}(M, \mathbb{Z})$ and $N \cong \operatorname{Hom}(N, \mathbb{Z})$.
(3) $T_{N} \cong \operatorname{Spec} \mathbb{C}[M]$ as varieties.
(4) $T_{N} \cong N \otimes_{\mathbb{Z}} \mathbb{C}^{*} \cong \operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$ as groups.

For torus T_{N} with character group M, there is a natural action of T_{N} on the semigroup algebra $\mathbb{C}[M]$ as follows: For $t \in T_{N}$ and $\chi^{m} \in M, t \cdot \chi^{m}$ is defined by $p \mapsto \chi^{m}\left(t^{-1} p\right)$ for $p \in T_{N}$.

Theorem 1.2.2. Let $A \subseteq \mathbb{C}[M]$ be a subspace stable under the action of T_{N}. Then

$$
A=\bigoplus_{\chi^{m} \in A} \mathbb{C} \cdot \chi^{m}
$$

Proof. See Lemma 1.1.16 in [CLS11].
1.3. Strongly convex rational polyhedral cones. From now on, unless otherwise specified, we always assume M, N are dual lattices with associated \mathbb{R}-vector spaces $M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$, and the pairing between M and N is denoted by $\langle-,-\rangle$.

1.3.1. Convex polyhedral cones.

Definition 1.3.1 (convex polyhedral cone). Let $S \subseteq N_{\mathbb{R}}$ be a finite subset. A convex polyhedral cone in $N_{\mathbb{R}}$ generated by S is a set of the form

$$
\sigma=\text { Cone } S=\left\{\sum_{u \in S} \lambda_{u} u \mid \lambda_{u} \geq 0\right\} \subseteq N_{\mathbb{R}}
$$

Notation 1.3.1. Cone $(\varnothing)=\{0\}$.
Remark 1.3.1. A convex polyhedral cone is convex, that is $x, y \in \sigma$ implies $\lambda x+(1-\lambda) y \in \sigma$ for all $0 \leq \sigma \leq 1$, and it's a cone, that is $x \in \sigma$ implies $\lambda x \in \sigma$ for all $\lambda \geq 0$. Since we will only consider convex cones, the cones satisfying Definition 1.3.1 will be called polyhedral cone for convenience.

Definition 1.3.2 (dimension). The dimension of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is the dimension of the smallest subspace $W \subseteq N_{\mathbb{R}}$ containing σ, and such W is called the span of σ.

Definition 1.3.3 (dual cone). Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral. The dual cone is defined by

$$
\sigma^{\vee}:=\left\{u \in M_{\mathbb{R}} \mid\langle m, u\rangle \geq 0 \text { for all } u \in \sigma\right\} .
$$

Definition 1.3.4 (hyperplane). Given $m \in M_{\mathbb{R}}$, the hyperplane given by m is defined by

$$
H_{m}:=\left\{u \in N_{\mathbb{R}} \mid\langle m, u\rangle=0\right\} \subseteq N_{\mathbb{R}}
$$

and the closed half-space given by m is defined by

$$
H_{m}^{+}:=\left\{u \in N_{\mathbb{R}} \mid\langle m, u\rangle \geq 0\right\} \subseteq N_{\mathbb{R}}
$$

Definition 1.3.5 (supporting hyperplane). The supporting hyperplane of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is a hyperplane H_{m} such that $\sigma \subseteq H_{m}^{+}$, and H_{m}^{+} is called a supporting half-space.

Remark 1.3.2. H_{m} is a supporting hyperplane of σ if and only if $m \in \sigma^{\vee}$, and if m_{1}, \ldots, m_{s} generates σ^{\vee}, then

$$
\sigma=H_{m_{1}}^{+} \cap \cdots \cap H_{m_{s}}^{+} .
$$

Thus every polyhedral cone is an intersection of finitely many closed halfspaces.

Definition 1.3.6 (face). A face of a polyhedral cone σ is $\tau=H_{m} \cap \sigma$ for some $m \in \sigma^{\vee}$, written $\tau \preceq \sigma$. Faces $\tau \neq \sigma$ are called proper faces, written $\tau \prec \sigma$.

Definition 1.3.7 (facet and edge). A facet of a polyhedral cone σ is a face of codimension one, and an edge of σ is a face of dimension one.
Theorem 1.3.1. Suppose σ is a polyhedral cone. Then
(1) Every face of σ is a polyhedral cone.
(2) An intersection of two faces of σ is again a face of σ.
(3) A face of a face of σ is again a face of σ.
(4) If $\tau \preceq \sigma, v, w \in \sigma$ and $v+w \in \tau$, then $v, w \in \tau$.
(5) Every face of σ^{\vee} can be uniquely written as $\sigma^{\vee} \cap \tau^{\perp}$, where $\tau \preceq \sigma$ and

$$
\tau^{\perp}=\left\{m \in M_{\mathbb{R}} \mid\langle m, u\rangle=0, \forall u \in \tau\right\}
$$

1.3.2. Strongly convex.

Definition 1.3.8 (strongly convex). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is strongly convex if $\{0\}$ is a face of σ.

Theorem 1.3.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral cone. Then the following statements are equivalent:
(1) σ is strongly convex.
(2) $\{0\}$ is a face of σ.
(3) σ contains no positive-dimensional subspace of $N_{\mathbb{R}}$.
(4) $\sigma \cap(-\sigma)=\{0\}$.
(5) $\operatorname{dim} \sigma^{\vee}=n$.
1.3.3. Rational polyhedral cones.

Definition 1.3 .9 (rational). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma=$ Cone (S) for some finite subset $S \subseteq N$.

Definition 1.3 .10 (ray generator). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and ρ be an edge of σ. The unique generator of semigroup $\rho \cap N$ is called ray generator of ρ, written u_{ρ}.
Remark 1.3.3. The ray generator is well-defined: Since σ is strongly convex, one has edge of σ is a ray as $\{0\}$ is its face, and since σ is rational, the semigroup $\rho \cap N$ is generated by a unique element, otherwise contradicts to the fact ρ is an edge, that is it's of dimension one.

Lemma 1.1. A strongly convex rational polyhedral cone is generated by the ray generators of its edges.

1.3.4. Other properties.

Definition 1.3.11 (smooth and simplicial). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone.
(1) σ is smooth if its ray generators form part of a \mathbb{Z}-basis of N.
(2) σ is simplical if its ray generators are linearly independent over \mathbb{R}.

2. Toric variety

2.1. Cones and affine toric varieties.

2.1.1. Construction.

Definition 2.1.1 (affine toric variety). An affine toric variety is an irreducible affine variety V containing a torus $T_{N} \cong\left(\mathbb{C}^{*}\right)^{n}$ as a Zariski open subset such that the action of T_{N} on itself extends to an algebraic action of T_{N} on V.

Proposition 2.1.1 (Gordan's lemma). Let $\sigma \subseteq N_{\mathbb{R}}$ be a rational polyhedral cone. The semigroup $S_{\sigma}:=\sigma^{\vee} \cap M$ is finitely generated.

Proof. See Proposition 1.2.17 in [CLS11].
Theorem 2.1.1. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone with semigroup $S_{\sigma}=\sigma^{\vee} \cap M$. Then

$$
U_{\sigma}:=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)
$$

is a normal affine toric variety with torus $T_{N} \cong \operatorname{Spec} \mathbb{C}[M]$.
Proof. If $\sigma \subseteq N_{\mathbb{R}}$ is a strongly convex rational polyhedral cone, then by Proposition 2.1.1 one has S_{σ} is finitely generated. Suppose $\mathscr{A}=\left\{m_{1}, \ldots, m_{s}\right\}$ is a generator of S_{σ}. Then the strongly convexity implies $\mathbb{Z} \mathscr{A}=M$. If we define $T_{N}=\operatorname{Spec} \mathbb{C}[M]$, then M and N can be viewed as characters and one one-parameter subgroups of T_{N} respectively. Consider

$$
\begin{aligned}
\Phi_{\mathscr{A}}: T_{N} & \rightarrow\left(\mathbb{C}^{*}\right)^{s} \\
t & \mapsto\left(\chi^{m_{1}}(t), \ldots, \chi^{m_{s}}(t)\right) .
\end{aligned}
$$

It's clear to see $\Phi_{\mathscr{A}}$ gives a closed immersion from T_{N} to $\left(\mathbb{C}^{*}\right)^{s}$ by checking the induced morphism on coordinate rings. If we use T to denote the image of T_{N} in $\left(\mathbb{C}^{*}\right)^{s}$ and use $Y_{\mathscr{A}}$ to denote the Zariski closure of T in \mathbb{C}^{s}, then $Y_{\mathscr{A}} \cap\left(\mathbb{C}^{*}\right)^{s}=T$. Moreover, T is irreducible since it's a torus, so the same is true for its Zariski closure $Y_{\mathscr{A}}$. Consider the morphism on coordinate rings corresponding to $\Phi_{\mathscr{A}}: T_{N} \rightarrow \mathbb{C}^{s}$

$$
\begin{aligned}
\Phi_{\mathscr{A}}^{\sharp}: \mathbb{C}\left[x_{1}, \ldots, x_{s}\right] & \rightarrow \mathbb{C}[M] \\
x_{i} & \mapsto \chi^{m_{i}} .
\end{aligned}
$$

Since $Y_{\mathscr{A}}$ is the Zariski closure of T, the coordinate ring of $Y_{\mathscr{A} \text { 我 is given by }}$

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{ker} \Phi_{\mathscr{A}}^{\sharp}=\operatorname{im} \Phi_{\mathscr{A}}^{\sharp}=\mathbb{C}\left[S_{\sigma}\right] .
$$

Thus $Y_{\mathscr{A}} \cong U_{\sigma} \cong \operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$.
To see U_{σ} is normal, it suffices to show $\mathbb{C}\left[S_{\sigma}\right]$ is integrally closed. Suppose $\rho_{1}, \ldots, \rho_{r}$ are rays of σ. Then by Lemma 1.1 one has

$$
\sigma^{\vee}=\bigcap_{i=1}^{r} \rho_{i}^{\vee} .
$$

Intersecting with M gives $S_{\sigma}=\bigcup_{i=1}^{r} S_{\rho_{i}}$, which easily implies

$$
\mathbb{C}\left[S_{\sigma}\right]=\bigcap_{i=1}^{r} \mathbb{C}\left[S_{\rho_{i}}\right] .
$$

Thus it suffices to show each strongly convex rational cone ρ of dimension one, $\mathbb{C}\left[S_{\rho}\right.$ is integrally closed. Suppose u_{ρ} is the ray generators of ρ, and extends u_{ρ} to a basis of N as $e_{1}=u_{\rho}, e_{2}, \ldots, e_{n}$ with dual basis x_{1}, \ldots, x_{n} in M. Then

$$
\mathbb{C}\left[S_{\rho}\right]=\mathbb{C}\left[x_{1}, x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right] .
$$

It's clear $\mathbb{C}\left[S_{\rho}\right]$ is integrally closed.
Remark 2.1.1. In fact, for any normal affine toric variety X, there exists a strongly convex rational polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ such that $X \cong U_{\sigma}$.
Remark 2.1.2 (lattice point construction). More generally, given a torus T_{N} with character lattice M, a set $\mathscr{A}=\left\{m_{1}, \ldots, m_{s}\right\} \subseteq M$ gives the characters $\chi^{m_{i}}: T_{N} \rightarrow \mathbb{C}^{*}$, and thus the following map

$$
\begin{aligned}
\Phi_{\mathscr{A}}: T_{N} & \rightarrow \mathbb{C}^{s} \\
t & \mapsto\left(\chi^{m_{1}}(t), \ldots, \chi^{m_{s}}(t)\right) .
\end{aligned}
$$

By the same argument, one can see the Zariski closure of the image of the map $\Phi_{\mathscr{A}}$, denoted by $Y_{\mathscr{A}}$, is an affine toric variety whose torus has character lattice $\mathbb{Z} \mathscr{A}$. Moreover, $Y_{\mathscr{A}}$ is normal if and only if \mathscr{A} is the set of generators of S_{σ} for some strongly convex rational polyhedral cone $\sigma \subseteq \mathbb{N}_{\mathbb{R}}$.
Remark 2.1.3 (affine semigroup construction). Let $S \subseteq M$ be an affine semigroup with generators $\mathscr{A}=\left\{m_{1}, \ldots, m_{s}\right\}$. Then consider

$$
\begin{aligned}
\Phi_{\mathscr{A}}^{\sharp}: \mathbb{C}\left[x_{1}, \ldots, x_{s}\right] & \rightarrow \mathbb{C}[M] \\
x_{i} & \mapsto \chi^{m_{i}},
\end{aligned}
$$

which corresponds to a morphism $\Phi_{\mathscr{A}}: T_{N} \rightarrow \mathbb{C}^{s}$. Then $\operatorname{Spec}(\mathbb{C}[S])$ is an affine toric variety, which is isomorphic to $Y_{\mathscr{A}}$, and $\operatorname{Spec}(\mathbb{C}[S])$ is normal if and only if S is saturated ${ }^{1}$.
2.1.2. Examples.

2.1.3. Properties.

Theorem 2.1.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex polyhedral cone. Then U_{σ} is smooth if and only if σ is smooth ${ }^{2}$. Moreover, all smooth affine toric varieties are of this form.
Proposition 2.1.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and σ be a face of σ written as $\tau=H_{m} \cap \sigma$, where $m \in \sigma^{\vee} \cap M$. Then the semigroup algebra $\mathbb{C}\left[S_{\tau}\right]$ is the localization of $\mathbb{C}\left[S_{\sigma}\right]$ at $\chi^{m} \in \mathbb{C}\left[S_{\sigma}\right]$.
Proof. See Proposition 1.3.16 in [CLS11].

[^0]
[^0]: ${ }^{1}$ See Definition 1.2.2.
 ${ }^{2}$ See Definition 1.3.11.

