Part 1. Basic theories of toric varieties

1. Preliminaries

1.1. **Torus.**

Definition 1.1.1 (torus). A torus T is an affine variety isomorphic to $(\mathbb{C}^*)^n$, where T inherits a group structure from the isomorphism.

Definition 1.1.2 (character). A character of a torus T is a morphism $\chi: T \to \mathbb{C}^*$ that is a group homomorphism.

Definition 1.1.3 (one-parameter subgroup). A one-parameter subgroup of a torus T is a morphism $\lambda \colon \mathbb{C}^* \to T$ that is a group homomorphism.

Example 1.1.1. All characters of $(\mathbb{C}^*)^n$ arise from

 $\chi^{(a_1,\ldots,a_n)}\colon (t_1,\ldots,t_n)\mapsto t_1^{a_1}\ldots t_n^{a_n},$

and all one-parameter subgroups of $(\mathbb{C}^*)^n$ arise from

 $\lambda^{(b_1,\ldots,b_n)} \colon t \mapsto (t^{b_1},\ldots,t^{b_n}),$

where $(a_1, ..., a_n), (b_1, ..., b_n) \in \mathbb{Z}^n$.

1.2. Affine semigroups.

Definition 1.2.1 (affine semigroup). An affine semigroup S is a semigroup group such that

- (1) The binary operation on S is commutative.
- (2) The semigroup is finitely generated.
- (3) The semigroup can be embedded in a lattice M.

Definition 1.2.2 (saturated). An affine semigroup $S \subseteq M$ is saturated if for all $0 \neq k \in \mathbb{N}$ and $m \in M$, $km \in S$ implies $m \in S$.

Example 1.2.1. $\mathbb{N}^n \subseteq \mathbb{Z}^n$ is an affine semigroup.

Example 1.2.2. Given a finite set \mathscr{A} of a lattice M, $\mathbb{N}\mathscr{A} \subseteq M$ is an affine semigroup.

Definition 1.2.3 (semigroup algebra). Let $S \subseteq M$ be an affine semigroup. The semigroup algebra $\mathbb{C}[S]$ is the vector space over \mathbb{C} with S as basis and multiplication is induced by the semigroup structure.

Remark 1.2.1. To make this precise, we write

$$\mathbb{C}[S] = \{ \sum_{m \in S} c_m \chi^m \mid c_m \in C \text{ and } c_m = 0 \text{ for all but finitely many } m \}$$

with multiplication given by

$$\chi^m \cdot \chi^{m'} = \chi^{m+m'}.$$

If $S = \mathbb{N} \mathscr{A}$ for $\mathscr{A} = \{m_1, \dots, m_s\}$, then $\mathbb{C}[S] = \mathbb{C}[\chi^{m_1}, \dots, \chi^{m_s}]$.

Example 1.2.3. The affine semigroup $\mathbb{N}^n \subseteq \mathbb{Z}^n$ gives the polynomial ring

 $\mathbb{C}[\mathbb{N}^n] = \mathbb{C}[x_1, \dots, x_n]$

where $x_i = \chi^{e_i}$ and $\{e_1, \ldots, e_n\}$ is the standard basis of \mathbb{Z}^n .

Example 1.2.4. If e_1, \ldots, e_n is a basis of a lattice M, then M is generated by $\mathscr{A} = \{\pm e_1, \ldots, \pm e_n\}$ as an affine semigroup, and the semigroup algebra gives the Laurent polynomial ring

$$\mathbb{C}[M] = \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

where $x_i = \chi^{e_i}$.

Theorem 1.2.1. Let T_N be a *n*-torus with group M consisting of characters and group N consisting of one-parameter subgroups. Then

- (1) M, N are lattices of rank n.
- (2) M, N are dual lattices, that is $N \cong \operatorname{Hom}(M, \mathbb{Z})$ and $N \cong \operatorname{Hom}(N, \mathbb{Z})$.
- (3) $T_N \cong \operatorname{Spec} \mathbb{C}[M]$ as varieties.
- (4) $T_N \cong N \otimes_{\mathbb{Z}} \mathbb{C}^* \cong \text{Hom}(M, \mathbb{C}^*)$ as groups.

For torus T_N with character group M, there is a natural action of T_N on the semigroup algebra $\mathbb{C}[M]$ as follows: For $t \in T_N$ and $\chi^m \in M$, $t \cdot \chi^m$ is defined by $p \mapsto \chi^m(t^{-1}p)$ for $p \in T_N$.

Theorem 1.2.2. Let $A \subseteq \mathbb{C}[M]$ be a subspace stable under the action of T_N . Then

$$A = \bigoplus_{\chi^m \in A} \mathbb{C} \cdot \chi^m.$$

Proof. See Lemma 1.1.16 in [CLS11].

1.3. Strongly convex rational polyhedral cones. From now on, unless otherwise specified, we always assume M, N are dual lattices with associated \mathbb{R} -vector spaces $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, and the pairing between M and N is denoted by $\langle -, - \rangle$.

1.3.1. Convex polyhedral cones.

Definition 1.3.1 (convex polyhedral cone). Let $S \subseteq N_{\mathbb{R}}$ be a finite subset. A convex polyhedral cone in $N_{\mathbb{R}}$ generated by S is a set of the form

$$\sigma = \operatorname{Cone} S = \{ \sum_{u \in S} \lambda_u u \mid \lambda_u \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Notation 1.3.1. $Cone(\emptyset) = \{0\}.$

Remark 1.3.1. A convex polyhedral cone is convex, that is $x, y \in \sigma$ implies $\lambda x + (1 - \lambda)y \in \sigma$ for all $0 \leq \sigma \leq 1$, and it's a cone, that is $x \in \sigma$ implies $\lambda x \in \sigma$ for all $\lambda \geq 0$. Since we will only consider convex cones, the cones satisfying Definition 1.3.1 will be called polyhedral cone for convenience.

Definition 1.3.2 (dimension). The dimension of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is the dimension of the smallest subspace $W \subseteq N_{\mathbb{R}}$ containing σ , and such W is called the span of σ .

Definition 1.3.3 (dual cone). Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral. The dual cone is defined by

$$\sigma^{\vee} := \{ u \in M_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \text{ for all } u \in \sigma \}.$$

Definition 1.3.4 (hyperplane). Given $m \in M_{\mathbb{R}}$, the hyperplane given by m is defined by

$$H_m := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle = 0 \} \subseteq N_{\mathbb{R}},$$

and the closed half-space given by m is defined by

$$H_m^+ := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Definition 1.3.5 (supporting hyperplane). The supporting hyperplane of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is a hyperplane H_m such that $\sigma \subseteq H_m^+$, and H_m^+ is called a supporting half-space.

Remark 1.3.2. H_m is a supporting hyperplane of σ if and only if $m \in \sigma^{\vee}$, and if m_1, \ldots, m_s generates σ^{\vee} , then

$$\sigma = H_{m_1}^+ \cap \dots \cap H_{m_s}^+$$

Thus every polyhedral cone is an intersection of finitely many closed halfspaces.

Definition 1.3.6 (face). A face of a polyhedral cone σ is $\tau = H_m \cap \sigma$ for some $m \in \sigma^{\vee}$, written $\tau \preceq \sigma$. Faces $\tau \neq \sigma$ are called proper faces, written $\tau \prec \sigma$.

Definition 1.3.7 (facet and edge). A facet of a polyhedral cone σ is a face of codimension one, and an edge of σ is a face of dimension one.

Theorem 1.3.1. Suppose σ is a polyhedral cone. Then

- (1) Every face of σ is a polyhedral cone.
- (2) An intersection of two faces of σ is again a face of σ .
- (3) A face of a face of σ is again a face of σ .
- (4) If $\tau \preceq \sigma$, $v, w \in \sigma$ and $v + w \in \tau$, then $v, w \in \tau$.
- (5) Every face of σ^{\vee} can be uniquely written as $\sigma^{\vee} \cap \tau^{\perp}$, where $\tau \preceq \sigma$ and

$$\tau^{\perp} = \{ m \in M_{\mathbb{R}} \mid \langle m, u \rangle = 0, \forall u \in \tau \}$$

1.3.2. Strongly convex.

Definition 1.3.8 (strongly convex). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is strongly convex if $\{0\}$ is a face of σ .

Theorem 1.3.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral cone. Then the following statements are equivalent:

(1) σ is strongly convex.

- (2) $\{0\}$ is a face of σ .
- (3) σ contains no positive-dimensional subspace of $N_{\mathbb{R}}$.
- (4) $\sigma \cap (-\sigma) = \{0\}.$
- (5) $\dim \sigma^{\vee} = n$.

1.3.3. Rational polyhedral cones.

Definition 1.3.9 (rational). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite subset $S \subseteq N$.

Definition 1.3.10 (ray generator). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and ρ be an edge of σ . The unique generator of semigroup $\rho \cap N$ is called ray generator of ρ , written u_{ρ} .

Remark 1.3.3. The ray generator is well-defined: Since σ is strongly convex, one has edge of σ is a ray as $\{0\}$ is its face, and since σ is rational, the semigroup $\rho \cap N$ is generated by a unique element, otherwise contradicts to the fact ρ is an edge, that is it's of dimension one.

Lemma 1.1. A strongly convex rational polyhedral cone is generated by the ray generators of its edges.

1.3.4. Other properties.

Definition 1.3.11 (smooth and simplicial). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone.

(1) σ is smooth if its ray generators form part of a \mathbb{Z} -basis of N.

(2) σ is simplical if its ray generators are linearly independent over \mathbb{R} .

BOWEN LIU

2. Toric variety

2.1. Cones and affine toric varieties.

2.1.1. Construction.

Definition 2.1.1 (affine toric variety). An affine toric variety is an irreducible affine variety V containing a torus $T_N \cong (\mathbb{C}^*)^n$ as a Zariski open subset such that the action of T_N on itself extends to an algebraic action of T_N on V.

Proposition 2.1.1 (Gordan's lemma). Let $\sigma \subseteq N_{\mathbb{R}}$ be a rational polyhedral cone. The semigroup $S_{\sigma} := \sigma^{\vee} \cap M$ is finitely generated.

Proof. See Proposition 1.2.17 in [CLS11].

Theorem 2.1.1. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone with semigroup $S_{\sigma} = \sigma^{\vee} \cap M$. Then

$$U_{\sigma} := \operatorname{Spec}(\mathbb{C}[S_{\sigma}])$$

is a normal affine toric variety with torus $T_N \cong \operatorname{Spec} \mathbb{C}[M]$.

Proof. If $\sigma \subseteq N_{\mathbb{R}}$ is a strongly convex rational polyhedral cone, then by Proposition 2.1.1 one has S_{σ} is finitely generated. Suppose $\mathscr{A} = \{m_1, \ldots, m_s\}$ is a generator of S_{σ} . Then the strongly convexity implies $\mathbb{Z} \mathscr{A} = M$. If we define $T_N = \operatorname{Spec} \mathbb{C}[M]$, then M and N can be viewed as characters and one one-parameter subgroups of T_N respectively. Consider

$$\Phi_{\mathscr{A}} \colon T_N \to (\mathbb{C}^*)^s$$
$$t \mapsto (\chi^{m_1}(t), \dots, \chi^{m_s}(t)).$$

It's clear to see $\Phi_{\mathscr{A}}$ gives a closed immersion from T_N to $(\mathbb{C}^*)^s$ by checking the induced morphism on coordinate rings. If we use T to denote the image of T_N in $(\mathbb{C}^*)^s$ and use $Y_{\mathscr{A}}$ to denote the Zariski closure of T in \mathbb{C}^s , then $Y_{\mathscr{A}} \cap (\mathbb{C}^*)^s = T$. Moreover, T is irreducible since it's a torus, so the same is true for its Zariski closure $Y_{\mathscr{A}}$. Consider the morphism on coordinate rings corresponding to $\Phi_{\mathscr{A}}: T_N \to \mathbb{C}^s$

$$\Phi^{\sharp}_{\mathscr{A}} \colon \mathbb{C}[x_1, \dots, x_s] \to \mathbb{C}[M]$$
$$x_i \mapsto \chi^{m_i}.$$

Since $Y_{\mathscr{A}}$ is the Zariski closure of T, the coordinate ring of $Y_{\mathscr{A}}$ is given by

$$\mathbb{C}[x_1,\ldots,x_n]/\ker\Phi_{\mathscr{A}}^{\sharp}=\operatorname{im}\Phi_{\mathscr{A}}^{\sharp}=\mathbb{C}[S_{\sigma}].$$

Thus $Y_{\mathscr{A}} \cong U_{\sigma} \cong \operatorname{Spec} \mathbb{C}[S_{\sigma}].$

To see U_{σ} is normal, it suffices to show $\mathbb{C}[S_{\sigma}]$ is integrally closed. Suppose ρ_1, \ldots, ρ_r are rays of σ . Then by Lemma 1.1 one has

$$\sigma^{\vee} = \bigcap_{i=1}^{r} \rho_i^{\vee}.$$

Intersecting with M gives $S_{\sigma} = \bigcup_{i=1}^{r} S_{\rho_i}$, which easily implies

$$\mathbb{C}[S_{\sigma}] = \bigcap_{i=1}^{r} \mathbb{C}[S_{\rho_i}].$$

Thus it suffices to show each strongly convex rational cone ρ of dimension one, $\mathbb{C}[S_{\rho}]$ is integrally closed. Suppose u_{ρ} is the ray generators of ρ , and extends u_{ρ} to a basis of N as $e_1 = u_{\rho}, e_2, \ldots, e_n$ with dual basis x_1, \ldots, x_n in M. Then

$$\mathbb{C}[S_{\rho}] = \mathbb{C}[x_1, x_2^{\pm}, \dots, x_n^{\pm}].$$

lly closed.

It's clear $\mathbb{C}[S_{\rho}]$ is integrally closed.

Remark 2.1.1. In fact, for any normal affine toric variety X, there exists a strongly convex rational polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ such that $X \cong U_{\sigma}$.

Remark 2.1.2 (lattice point construction). More generally, given a torus T_N with character lattice M, a set $\mathscr{A} = \{m_1, \ldots, m_s\} \subseteq M$ gives the characters $\chi^{m_i}: T_N \to \mathbb{C}^*$, and thus the following map

$$\Phi_{\mathscr{A}} \colon T_N \to \mathbb{C}^s$$
$$t \mapsto (\chi^{m_1}(t), \dots, \chi^{m_s}(t)).$$

By the same argument, one can see the Zariski closure of the image of the map $\Phi_{\mathscr{A}}$, denoted by $Y_{\mathscr{A}}$, is an affine toric variety whose torus has character lattice $\mathbb{Z}\mathscr{A}$. Moreover, $Y_{\mathscr{A}}$ is normal if and only if \mathscr{A} is the set of generators of S_{σ} for some strongly convex rational polyhedral cone $\sigma \subseteq \mathbb{N}_{\mathbb{R}}$.

Remark 2.1.3 (affine semigroup construction). Let $S \subseteq M$ be an affine semigroup with generators $\mathscr{A} = \{m_1, \ldots, m_s\}$. Then consider

$$\Phi^{\sharp}_{\mathscr{A}} \colon \mathbb{C}[x_1, \dots, x_s] \to \mathbb{C}[M]$$
$$x_i \mapsto \chi^{m_i},$$

which corresponds to a morphism $\Phi_{\mathscr{A}}: T_N \to \mathbb{C}^s$. Then $\operatorname{Spec}(\mathbb{C}[S])$ is an affine toric variety, which is isomorphic to $Y_{\mathscr{A}}$, and $\operatorname{Spec}(\mathbb{C}[S])$ is normal if and only if S is saturated¹.

2.1.2. Examples.

2.1.3. Properties.

Theorem 2.1.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex polyhedral cone. Then U_{σ} is smooth if and only if σ is smooth². Moreover, all smooth affine toric varieties are of this form.

Proposition 2.1.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and σ be a face of σ written as $\tau = H_m \cap \sigma$, where $m \in \sigma^{\vee} \cap M$. Then the semigroup algebra $\mathbb{C}[S_{\tau}]$ is the localization of $\mathbb{C}[S_{\sigma}]$ at $\chi^m \in \mathbb{C}[S_{\sigma}]$.

Proof. See Proposition 1.3.16 in [CLS11].

²See Definition 1.3.11.