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Part 1. Preliminaries
1. CATEGORY THEORY

1.1. Category.
1.1.1. Category and Functors.

1.1.2. Morphisms.

Definition 1.1.1 (monomorphism). A morphism f: A — B in C is called
a monomorphism (or injective) if for any two morphisms «, §: C' — A sat-
isfying foa = f o3, we have a = 3.

Definition 1.1.2 (epimorphism). A morphism f: A — B in C is called a
epimorphism (or surjective) if for any two morphisms o, 8: A — C satisfying
ao f=pFof, wehave a = .

Definition 1.1.3 (bijective). A morphism is called bijective if it’s both
monomorphism and epimorphism.

Definition 1.1.4 (isomorphism). A morphism is called an isomorphism if
it admits two-sided inverse.

Remark 1.1.1. Any isomorphism is bijective, but in general a bijective mor-
phism may not be an isomorphism. For example, in the category of topo-
logical spaces, it’s easy to construct a morphism (continuous map) which is
a bijective map, but it’s not an isomorphism.

1.1.3. Categorical objects.

Definition 1.1.5 (direct product). Let {A;}ier be a family of objects in
category C. The direct product of A; is tuple (J[,c; As,pi), where [],c; As
is an object in C, and p;: [[;c; Ai — A; is a family of morphisms called
projections, such that the following universal property: For any object C
and any family of morphisms f;: C — A;, there exists a unique morphism
[+ C — Tl;cr Ai such that p; o f = f; for all i € I.

Definition 1.1.6 (direct sum). Let {A4;}ier be a family of objects in cate-
gory C. The direct sum of A; is tuple (P,c; Ai, ki), where ;. A; is an ob-
ject in C, and k;: A; — @, Ai is a family of morphisms called projections,
such that the following universal property: For any object C and any family
of morphisms f;: A — C, there exists a unique morphism f: @, ; A; = C
such that fok; = f; for all < € I.
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1.2. Abelian category.

1.2.1. Additive category.

Definition 1.2.1 (additive category). A category C is called an additive
category if for any objects A, B,C in C,
(1) the direct product of A and B exists;
(2) Hom(A, B) is an abelian group, and 0 € Hom(A, B) is called zero mor-
phism;
(3) the map
Hom(A, B) x Hom(B,C) — Hom(A, C)
(fr9)=gof

is bilinear.

Definition 1.2.2. Let C be an additive category and f: A — B be a mor-

phism in C.

(1) A morphism K — A is the kernel of f if the composite K —+ A — B is
0, and for any morphism K’ — A such that the composite K’ — A — B
is 0, there exists a unique morphism K’ — K such that the diagram

K/

LN

K—— A
commutes. For convenience we often denote K by ker f and call it the
kernel of f.
(2) A morphism B — C'is the cokernel of f if the composite A — B — C'is
0, and for any morphism B — C’ such that the composite A -+ B — C
is 0, there exists a unique morphism C' — C’ such that the diagram

Bii

commutes. For convenience we often denote C' by coker f and call it the
cokernel of f.

(3) The image of f is defined to be the kernel of the cokernel of f, and the
coimage of f is defined to be the cokernel of the kernel of f.

Remark 1.2.1. A kernel is neccessarily a monomorphism, and a cokernel is
neccessarily an epimorphism.

Remark 1.2.2. There is a natural morphism coim f — im f induced by uni-
versal property
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ker f A B coker f
coim f ----- > im f

Definition 1.2.3 (zero object). Let C be an additive category. A zero object
0 in C is an object such that Hom(0,0) = {0}.

1.2.2. Abelian category.

Definition 1.2.4 (abelian category). An abelian category C is an additive
category with zero objects such that for every morphism f in C, the kernel
and the cokernel of f exist, and the canonical morphism coim f — im f is
an isomorphism.

Proposition 1.2.1. In abelian category, a bijective morphism is an isomor-

phism.

Definition 1.2.5 (exact). In an abelian category, a sequence of morphisms
A B-5C

is called exact if v ou = 0 and the canonical morphism from coimu — ker v

is an isomorphism.

Definition 1.2.6 (short exact sequence). An exact sequence of the form
0—+A—=B—-C—=0

is called a short exact sequence.

Definition 1.2.7 (split). A short exact sequence 0 - A — B — C — 0 is
called split if it’s isomorphic to

0>A—=ApC —C—0,
where A > A® C and A @ C — C are the canonical morphisms.
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2. SHEAF AND COHOMOLOGY
2.1. Sheaves. Along this section, X denotes a topological space.

2.1.1. Definitions and Examples.

Definition 2.1.1 (sheaf). A presheaf of abelian group .% on X consisting
of the following data:

(1) For any open subset U of X, .#(U) is an abelian group.
(2) If U C V are two open subsets of X, then there is a group homomor-
phism ryy: . # (V) — Z#(U). Moreover, above data satisfy
I Z(@)=0.
11 rvuv = id.
III If W C U C V are open subsets of X, then ryw = ryw oryy.
Moreover, % is called a sheaf if it satisfies the following extra conditions

IV Let {V;}icr be an open covering of open subset U C X and s €
F(U). If sy, :=ryv,(s) =0forall i € I, then s = 0.

V Let {V;}ier be an open covering of open subset U C X and s; €
F(Vi). It silvinv; = sjlviny; for all 4,5 € I, then there exists s €
Z(U) such that s|y, = s; for all ¢ € I.

Example 2.1.1 (constant presheaf). For an abelian group G, the constant
presheaf assign each open subset U the group G itself, but in general it’s
not a sheaf.

Definition 2.1.2 (morphism of presheaves). A morphism ¢: F — ¢ be-
tween presheaves consisting of the following data:

(1) For any open subset U of X, there is a group homomorphism p(U): #(U) —
G (U).

(2) If U C V are two open subsets of X, then the following diagram com-
mutes

Fv) 29, g
r U

l VU \LTV
7)) 2 ¢

Notation 2.1.1. For convenience, for s € .% (U), we often write ¢(s) instead
of p(U)(s).
Remark 2.1.1. The morphisms between sheaves are defined as morphisms of
presheaves.

Definition 2.1.3 (isomorphism). A morphism of presheaves ¢: . % — ¢
is called an isomorphism if it has two-sided inverse, that is, there exists a
morphism of presheaves 1: ¢ — % such that ¢ o p =idg and g o) = idy.

Remark 2.1.2. A morphism of presheaves ¢: % — ¢ is an isomorphism if
and only if for every open subset U C X, o(U) — ¢(U) is an isomorphism
of abelian groups.
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2.1.2. Stalks.

Definition 2.1.4 (stalks). For a presheaf .# and p € X, the stalk at p is
defined as
Fp = hg Z(U)
pelU

Remark 2.1.3 (alternative definition). In order to avoid language of direct
limit, we give a more useful but equivalent description of stalk: Forp € UNV,
sy € Z(U) and sy € Z (V) are equivalent if there exists t €¢ W CUNV
such that sy|w = sy|w. An element s, € .%,, which is called a germ, is an
equivalence class [sy], and for s € . (U), the germ given by s is denoted by

sp.
Notation 2.1.2.

(1) For s € F(U) and p € U, s|, denotes the equivalent class it gives.
(2) For s, € %y, s € #(U) denotes the section such that s, = s,,.

Definition 2.1.5 (morphisms on stalks). Given a morphism of sheaves
p: F — ¢, it induces a morphism of abelian groups ¢,: #, — ¥, as
follows:
opt Fp =9
sp = @(8)]p-

Remark 2.1.4. It’s neccessary to check the ¢, is well-defined since there are
different choices s such that s|, = s,,.

Proposition 2.1.1. Let ¢: .% — ¢ be a morphism between sheaves. Then
¢ is an isomorphism if and only if the induced map ¢,: .%#, — ¥, is an
isomorphism for every p € X.

Proof. 1t’s clear if ¢ is an isomorphism between sheaves, then it induces an
isomorphism between stalks. Conversely, it suffices to show p(U): F(U) —
¢ (U) is an isomorphism for every open subset U C X.

(1) Injectivity: For s,s" € % (U) such that ¢(s) = ¢(s’), by passing to stalks
one has ¢, (s|,) = @p(s'|p) for every p € U, and thus s|, = §'|, since ¢,
is an isomorphism. By definition of stalks there exists an open subset
V, C U containing p such that s agrees with s’ on V,,. Then it gives an
open covering {V,,} of U, and by axiom (IV) one has s = s’ on U.

(2) Surjectivity: Fort € 4 (U), by passing to stalks there exists s, € ., such
that ¢,(s,) = t|, for every p € U since ¢, is surjective. By definition of
stalks there exists an open subset V,, C U containing p and s € .#(V})
such that ¢(s) = t on V,. This gives a collection of sections defined
on an open covering {V,,} of U, and by injectivity we proved above one
has these sections agree with each other on the intersections. Then by
axiom (V) there exists a section s € .#(U) such that p(s) = t.

O
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2.1.3. Sheafification. In Example 2.1.1, we come across a presheaf that is
not a sheaf. To obtain a sheaf from a presheaf, we require a process known
as sheafification. One approach to defining sheafification is through its uni-
versal property.

Definition 2.1.6 (sheafification). Given a presheaf .7 there is a sheaf "
and a morphism 6: . — . with the property that for any sheaf ¢ and
any morphism ¢: .# — ¢ there is a unique morphism @: 1T — ¢ such
that the following diagram commutes:

F 259
lo >~
g-&-

The universal property shows that if the sheafification exists, then it’s
unique up to a unique isomorphism. One way to give an explicit construction
of sheafification is to glue stalks together in a suitable way. Let .Z(U) be
a set of functions

f:U— H Fp
peU
such that f(p) € %, and for every p € U there is an open subset V,, C U
containing p and t € .%(V}) such that t|, = f(q) for all g € V,.

Proposition 2.1.2. .7 is the sheafication of .%.

Proof. Firstly let’s show .Z T is a sheaf: It’s clear .#Z ' is a presheaf, so it
suffices to check conditions (IV) and (V) in the definition. Let U C X be
an open subset and {V;} be an open covering of U.

(1) If s € FT(U) such that s|y; = 0 for all ¢, then s must be zero: It suffices
to show s(p) =0 for all p € U. For any p € U, then there exists an open
subset V; contains p, hence s(p) = s|y;(p) = 0.

(2) Suppose there exists a collection of sections {s; € #T(V;)}icr such that

silvinv; = sjlviny;

holds for all 4, j € I. Now we construct s € #*(U) as follows: For p € U
and V; containing p, we define s(p) = s;(p). This is well-defined since s;
agree on the intersections, so it remains to show s € Z+(U). It’s clear
s(p) € #p. For p € U, there exists V; containing p, and thus there exists
W; C V; containing p and ¢ € .Z#(W;) such that t|, = s;(¢) = s(¢) for all
q€Vp.

There is a canonical morphism 6: .# — Z T as follows: For open subset

UCX, and s € .Z(U), 6(s) is defined by

0(s): U — [ %
peU
D Sp.
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Note that if .7 is a sheaf, the canonical morphism 6: . % — .Z 7T is an iso-

morphism.

(1) Injectivity: If s € #(U) such that s|, = 0 for all p € U, then there
exists an open covering {V;}ier of U such that s|y, = 0, by axiom (IV)
of sheaf one has s = 0.

(2) Surjectivity: For f € .Z7(U) and p € U, there exists p € V,, C U and
t € F (V) such that f(p) = t|, by construction of .Z*. Then glue these
sections together to get our desired s such that 6(s) = f.

Finally let’s show .Z* statisfies the universal property of sheafification.

A morphism of presheaves ¢: % — ¢ induces a map on stalks

op: Fp — Y.
For f € Z#1(U), the composite of f with the map
H ©p: H Fp — H <,
peU peU pelU
gives a map @(f): U — [[,cyy %, and in fact ¢(f) € 47 (U): For p € U,
o(f)(p) € 9, since f(p) € Fp and p,: F, — 4,. If for all ¢ € V,, we have
t’q = f(Q)a then

P()(@) = pa(f(@) = ¢q(tly) = ©(t)lg-

Since ¥ is a sheaf, the canonical morphism ¢': 4 — 47 is an isomorphism,
so we can define : = 0'~! 0 5. Now let’s show o = o =60 "1opo.
It’s easy to show they coincide on each stalk since ¢, = 9]’3*1 © pp o 6, and
thus ¢ = @ o 6§ by Proposition 2.1.1. Furthermore, uniqueness follows from
the fact that @, is uniquely determined by . (]

Remark 2.1.5. From the construction, one can see the stalk of .Z 1 at p is
exactly .Z,.

Remark 2.1.6. The sheafification can be described in a more fancy language:
Since we have sheaf of abelian groups on X as a category, denote it by Aby,
and presheaf is a full subcategory of Aby, there is a natural inclusion functor
¢ from category of sheaf to category of presheaf. The sheafification is the
adjoint functor of «.

Example 2.1.2 (constant sheaf). For an abelian group G, the associated
constant sheaf G is the sheafication of the constant presheaf. By the con-
struction of sheafification, G can be explicitly expressed as

G(U) = {locally constant function f: U — G}

2.1.4. Ezact sequence of sheaf. Given a morphism ¢: . F — ¥ between
sheaves of abelian groups, there are the following presheaves

U — ker p(U)
U imp(U)
U +— coker p(U),
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since p(U): F(U) — 4(U) is a group homomorphism.
Proposition 2.1.3. Kernel of a morphism between sheaves is a sheaf.

Proof. Let {V;}ier be an open covering of U.
(1) For s € ker p(U), if s|y; = 0, then s = 0 since s is also in .Z(U).
i i ilvnv; = Sjlvinv;
(2) If there exists s; € ker ¢(V;) such that s;|v;nv; = s;|v;ny;, then they glue
together to get s € . (U). Note that

e(U)(s)lv; = (Vi) (slv;) = ¢(Vi)(si) = 0
Then s € ker o(U).
]

But the image of morphism may not be a sheaf. Although we can prove
the first requirement in the same way, the proof for the second requirement
fails: If there exists s; € im ¢(V;), and we can glue them together to get a
s € 9(U), but s may not be the image of some t € .#(U). The cokernel fails
to be a sheaf for the same reason.

Definition 2.1.7 (image and cokernel). Let ¢: . % — ¢ be a morphism
between sheaves of abelian groups. Then the image and cokernel of ¢ is
defined to be the sheafification of the following presheaves

U imp(U)

U — coker p(U)
respectively.

Definition 2.1.8 (exact). For a sequence of sheaves:

. i—1 . i .
L FILE gt By it
—1

It’s called exact at .#, if ker o' = im ¢*~!. If a sequence is exact at every-

where, then it’s an exact sequence of sheaves.

Definition 2.1.9 (short exact sequence). An exact sequence of sheaves is
called a short exact sequence if it looks like

0.7 29 Y w50

Proposition 2.1.4. Let ¢: . % — ¢ be a morphism between sheaves of
abelian groups. Then for any p € X, one has

(ker @), = ker ¢,

(im ), = im gy,
Proof. For (1). It’s clear (ker ), C ker,. Conversely, if s, € ker ¢, then
©p(sp) = 0 € 94,. In other words, there exists an open subset U containing
p and s € #(U) such that s|, = s, and ¢(s)|, = 0, which implies there is
another open subset V' containing p such that ¢(s)|y = 0. Hence ¢(s|y) =0,
that is, s|y € ker p(V'). Thus s, = (s|v)|p € (ker ¢),.
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For (2). It’s clear (im¢), C im¢), since the sheafication doesn’t change
stalk. Conversely, if s, € im ¢, then there exists ¢, € .%, such that ¢,(t,) =
sp. Suppose t € .Z (U) is a section of some open subset U containing p such
that t|, = t,. Then ¢(t)|, = ¢p(tp) = sp. In other words, s, is in the stalk
of the image presheaf at p, but the sheafication doesn’t change stalk, so we
have s, € (im¢),,. O

Corollary 2.1.1. The sequence of sheaves

i

Ly gl 2N Fi P gitl
is exact if and only if the sequence of abelian groups are exact

1—1 0
e TN T D T

for all p € X.

Corollary 2.1.2. The the sequence of sheaves
0=+ =9

is exact if and only if for any open subset U, the following sequence of abelian
groups is exact
0—ZU)—9).

Method one. For any open subset U C X, one has
eU): F(U) =4 (U)
is injective, since by definition we have for any open subset U C X, ker o(U) =
0, that is injectivity. O
Method two. Or from another point of view, for each p € U, we have
opt Fp =9

is injective. That is ker ¢, = 0. So we obtain (ker ¢(U)), =0 for all p € U.
But for a section s € .#(U) if we have s, = 0, then we must have s = 0. So
we obtain ker (U) = 0. O

Example 2.1.3 (exponential sequence). Let X be a complex manifold and
Ox be its holomorphic function sheaf. Then

0— 2mV/—1Z — Ox 2B 0% -0
is an exact sequence of sheaves, called exponential sequence.

Proof. The difficulty is to show exp is surjective on stalks at p € X. That
is we need to construct logarithms of functions g € O% (U) for U, a neigh-
borhood of p. We may choose U is simply-connected, then define
dg
logg(q) =logg(p) + | —
Yaq

for ¢ € U, where 7, is a path from p to ¢ in U, and the definition is inde-
pendent of the choice of ~, since U is simply-connected. (|
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Remark 2.1.7. In fact, U is simply-connected is crucial for constructing log-
arithm. If we consider X = C and U = C\{0}, then

exp: Ox(U) — Ox(U)
cannot be surjective.

2.2. Derived functor formulation of sheaf cohomology. The category
Aby: sheaves of abelian groups on X. In this section we will introduce sheaf
cohomology by considering it as a derived functor.

Given an exact sequence of sheaf as follows

07 L7 g
By taking its section over open subset U, we obtain a sequence of abelian

groups

U U
0—.7'(U) Y 2) 18 27 w).
Above sequence is not only exact at .Z#'(U), but also is exact at .Z(U). In
other words, the functor given by taking section over open subset is a left

exact functor.

(1) Firstly let’s show ker)(U) 2 im¢(U). For s € .ZF'(U), if we want to
show ¢ o ¢(s) = 0, it suffices to show (1) 0 ¢(s))|, = 0 for all p € U since
Z" is a sheaf. For any p € U, by considering stalk at p we obtain an
exact sequence of abelian groups

0— 7, 2 7, 205 7.
Then we obtain 1, o ¢p(s|,) = 0, which implies (1) o ¢(s))|, = 0.

(2) Conversely, Given s € ker)(U), we have s, € ker, for any p € U. By
exactness of stalks, there exists t, € .7, such that ¢,(t,) = s|,. Thus
there exists an open subset V; containing p and ¢; € #'(V;) such that
o(ti) = s|lv,. Now it suffices to show these t; can be glued together to
obtain t € % (U), and since .7 is a shealf, it suffices to check these t; agree
on intersections V;NVj. Note that ¢(t; —t;|v;nv;) = slvinv; —slviny, = 0,
then these ¢; agree on intersections since ¢ is injective.

Remark 2.2.1. From above argument, we can see that
0= 7 27 Y g
is exact if and only if for any open subset U C X

0— 7/ "D zw) "D 7w

is exact.

In homological algebra, we always consider the derived functor of a left
or right-exact functor. In particular, the functor of taking global section is
a left exact functor, and its right derived functor defines the cohomology of
a sheaf. Before we come into the definition of derived functor, firstly let’s
define the injective resolution of a sheaf.
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Definition 2.2.1 (injective). A sheaf 7 is injective if Hom(—,Z) is an exact
functor.

Definition 2.2.2 (injective resolution). Let .# be a sheaf. An injective
resolution of % is an exact sequence

0=+F =10 T -T2 - ..
where Z' are injective for all 1.
Theorem 2.2.1. Every sheaf admits an injective resolution.

Theorem 2.2.2. Let .% — 7°® and ¢4 — G°® are two resolutions aNnd ¢: F —
% be a morphism of sheaves. Then there exists a morphism ¢: Z®* — G*
which lifts ¢, which is unique up to homotopy.

Definition 2.2.3 (sheaf cohomology). Let .% be a sheaf of abelian groups.
Then

HP(X, F) := HP(I*(X)).

Remark 2.2.2. The Theorem 2.2.2 shows that the definition of sheaf coho-
mology is independent of the choice of injective resolution.

Example 2.2.1. By definition, the 0-th cohomology is exact the global
section

HY(X, ) =ker {I°(X) = I'(X)}.
Thus H°(X,.#) = .7 (X), the global sections of sheaf.

Example 2.2.2. If . is a injective sheaf, then H*(X,.#) = 0 for all i > 0,
since the sheaf cohomology of injective sheaf can be computed by using the
following special injective resolution

07 4% 7 00—,
Theorem 2.2.3 (zig-zag). If
0=>F 9 —>H—0

is a short sequence of sheaves, then there is an induced long exact sequence
of abelian groups

0— H'(X,Z) - H"X,9) — H' (X, #) - H'(X,Z) - H(X,9) — ...

Definition 2.2.4 (direct image). Let f: X — Y be continuous map between
topological spaces and .# be a sheaf of abelian groups on X. The direct
image of .%, denoted by f..%, is a sheaf on Y defined by

fFU) = Z(f71U)).

Proposition 2.2.1. f,: Aby — Aby is a left exact functor.
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Proof. Given an exact sequence of sheaves on X
0~ F -7 —F"
Then we need to show
0— fuiF — fi.F — fF"

is also an exact sequence of sheaves on Y. By Remark 2.2.1 it suffices to
show that for any open subset V' C Y, we have the following exact sequence

0= fuF' (V)= L Z(V) = fLF"(V),
and that’s exactly
0= Z'(f7(V) = Z(fH V) = F"(fH(V)).
Since f is continuous, then f~!(V) is an open subset in X, and thus above

sequence of abelian is exact since 0 — %' — .% — %" is exact. O

2.3. Acyclic resolution. In practice it may be difficult for us to choose
an injective resolution, so we usual other resolutions to compute sheaf co-
homology.

Definition 2.3.1 (acyclic sheaf). A sheaf .# is acyclic if H'(X,.%#) = 0 for
all 7 > 0.

Example 2.3.1. Injective sheaf is acyclic.

Definition 2.3.2 (acyclic resolution). Let .# be a sheaf. An acyclic reso-
lution of .% is an exact sequence

0.7 A" 5 A 5 A2 .
where A’ is acyclic for all i.

Proposition 2.3.1. The cohomology of sheaf .# can be computed using
acyclic resolution.

In fact, it’s a quite homological techniques, called dimension shifting, so
we will state this technique in language of homological algebra. Let’s see a
baby version of it.

Example 2.3.2. Let F be a left exact functor and 0 + A — M; — B — 0
be an exact sequence with M is F-acyclic. Then R F(A) = R'F(B) for
i >0, and R'F(A) is the cokernel of F(M;) — F(B).

Proof. By considering the long exact sequence induced by 0 — A — M —
B — 0, one has

R\ F(M') - R'F(B) = R F(A) — R F(MY)

(1) If i > 0, then R*F(M') = R F(M?') = 0 since M' is F-acyclic, and
thus R F(A) = RIF(B) for i > 0.
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(2) If i =0, then
0— F(M") — F(B) = R'"F(A) =0
implies R'F(A) = coker{F(M') — F(B)}.

Now let’s prove dimension shifting in a general setting.
Lemma 2.3.1 (dimension shifting). If
0 A-M - M?>—5... 5 M™ > B—0

is exact with M* is F-acyclic, then R F(A) = R'F(B) for i > 0, and
R™F(A) is the cokernel of F(M™) — F(B).

Proof. Prove it by induction on m. For m = 1, we already see it in Example
2.3.2. Assume it holds for m < k, then for m = k, let’s split 0 —» A —

d .
M' = M? — ... - M* =5 B — 0 into two exact sequences

0 A M - M?>— ... 5 M1 S kerdy, — 0

0 — kerd, — M* %5 B 0.
Then by induction hypothesis, for i > 0 we have
RHF1F(A) = R F(ker dy,)
R F(kerd;,) = R'F(B).

Combine these two isomorphisms together we obtain R'TFF (A) = R'F(B
for ¢ > 0, as desired. For i = 0, it suffices to let 7 = 1 in RFF-LF(A) =
R'F(ker dy), then we obtain

RFF(A) = R'F(kerd;) = coker{F(M*) — F(B)}.
This completes the proof.

Corollary 2.3.1. If 0 -+ A — M?* is a F-acyclic resolution, then R\F(A) =
HY (F(M?*)).

O

Proof. Truncate the resolution as
0A—-M M - .. M~ 5 B—0
0—=B— M — M - .

Since we already have R'F(A) = coker{F(M*~') — F(B)}, and F is left
exact, one has ' .
F(B) = ker{F(M") — F(M"1)}.
Thus we obtain
R'F(A) = coker{ F(M"™) — ker{F(M") — F(M"™)}} = H(F(M*)).
O

2.4. Examples about acyclic sheaf.
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2.4.1. Flabby sheaf. First kind of acyclic sheaf is flabby' sheaf.

Definition 2.4.1 (flabby). A sheaf .Z is flabby if for all open U C V, the
restriction map # (V) — .Z(U) is surjective.

Now let’s see some examples about flabby sheaves.

Example 2.4.1. A constant sheaf on an irreducible topological space is
flabby.

Proof. Note that the constant presheaf on a irreducible topological space is
a sheaf in fact, and it’s easy to see this constant presheaf is flabby. O

In particular, we have

Example 2.4.2. Let X be an algebraic variety. Then constant sheaf Zx is
flabby.

Example 2.4.3. If . is a flabby sheaf on X, and f: X — Y is a continuous
map, then f,.% is a flabby sheaf on Y.

Proof. For V.C W in Y, it suffices to show f,.# (W) — f..# (V) is surjective,
and that’s
F(fTW) = Z(f7'V)

it’s surjective since .% is flabby. ([
Example 2.4.4. An injective sheaf is flabby.

Proof. Let T be an injective sheaf and V' C U be open subsets. Now we
define sheaf Z;; on X by

Z(W) WcCU
ZU = .
0 otherwise

where Z is constant sheaf valued in Z, and similarly we define sheaf Z,,. By
construction one has Zy (W) = Zy (W) unless W C U and W ¢ V. Thus
we obtain an exact sequence

0—=Zy — Zy.
Applying the functor Hom(—, Z), which is exact, we obtain an exact sequence
Hom(Z;,Z) — Hom(Zy,,Z) — 0.

Now let’s explain why we need such a weird sheaf Z;;. In fact, we will prove
Hom(Z;;,Z) = Z(U). Indeed since ¢: Z;; — Z is a sheaf morphism. Then if
W ¢ U, then ¢(U) must be zero. If W = U, then the group of sections of
Zy(U) over any connected component is simply Z and hence ¢(U) on this
connected component is determined by the image of 1 € Z. Thus ¢(U) can
be thought of an element of Z(U). Now on any proper open subset of U, ¢
is determined by restriction maps. Hence Hom(Z;;,Z) = Z(U), as desired.

1Some authors also call this flasque.
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The same argument shows Hom(Z;;,Z) = Z(V'), and thus we obtain an exact
sequence

Z(U) - Z(V) — 0,
which shows 7 is flabby. O

Our goal is to prove a flabby sheaf is acyclic, but we still need some
property of flabby sheaves.

Proposition 2.4.1. If 0 — %’ Oy 7 Yy 27 5 0is an exact sequence of
sheaves, and .%’ is flabby, then for any open subset U, the sequence

o(U)

0.7 "D zw) "D 2wy >0

is exact.

Proof. 1t suffices to show % (U) — .Z#"(U) — 0 is exact. Here we only gives
a sketch of the proof. Since we have exact sequence on stalks for each p € U
as follows
0= 7, 25 7, 0 Z 0

Then for each s € Z"(U), there exists t, € %, such that ,(t,) = s|p,
so there exists open subset V), C U containing p and ¢t € .# (V) such that
Y(t) = s|y,. If we can glue these t together then we get a section in .7 (U)
and is mapped to s, which completes the proof. However, they may not equal
on the intersection. But things are not too bad, consider another point ¢
and t' € F(V,) such that ¥(t") = s|v,, (t' = t)lv,ny, € ker)(V,NV,) =
im ¢(V, N V). So there exists " € .#'(V, N'V,) such that

¢(t") = (' = )y,
Now since .#" is flabby, then there exists ¢ € .7 (V},) such that t"'|y, v, = t".

And consider t+¢(t"") € F(V,), which will coincide with ¢’ on V,NV,. After
above corrections, we can glue t after correction together. O

Proposition 2.4.2. If 0 — %' — .7 — .Z#” — 0 is an exact sequence of
sheaves, and if .#’ and . are flabby, then .#" is flabby.

Proof. Take V' C U and consider the following diagram
0
0

Then the desired result follows from five lemma. O

— F'U) —— F(U) —— F"(U) —
F

L] J

— F (V) — F(V) —— F'(V) ——

Proposition 2.4.3. A flabby sheaf is acyclic.

Proof. Let % be a flabby sheaf. Since there are enough injective objects in
the category of sheaf of abelian groups, there is an exact sequence

0= -7 —-2-=0
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with Z is injective. By Example 2.4.4 we have Z is flabby, and thus by
Proposition 2.4.2 we have 2 is flabby. Consider the long exact sequence
induced from above short exact sequence

F(X) = I(X) = 2(X) - H(X,Z) - H (X,T) — ...

Note that H!(X,Z) = 0 since T is injective, and thus acyclic. Then H(X,.%) =
coker{Z(X) — 2(X)}. But Proposition 2.4.1 shows that Z(X) — 2(X) is
surjective since . is flabby, so H'(X,.7) = 0.

Now let’s prove H*(X,.#) = 0 for k > 0 by induction on k, and above
argument shows it’s true for £ = 1. Assume this holds for £ < n, and
consider

= HY(X,2) - H'(X,Z) - H'(X,I) » H'(X,2) — ...
By induction hypothesis, we can reduce above sequence to
= 0—->H"(X,7)—>0—-H"(X,2)— ...
which implies H"(X,.%#) = 0. This completes the proof. O

2.4.2. Soft sheaf. The second kind of acyclic sheaves is called soft sheaves,
which is quit similar to flabby.

Definition 2.4.2 (soft). A sheaf .# over X is soft if for any closed subset
S C X the restriction map .#(X) — .#(5) is surjective.

Remark 2.4.1. For closed subset S, the section over it is defined by
F(S) = hﬂ F(U)
SCU
Parallel to Proposition 2.4.1 and Proposition 2.4.2, soft sheaf has the
following properties:

Proposition 2.4.4. If 0 — %’ 7 Y 27 5 0is an exact sequence of

sheaves, and .%’ is soft, then the following sequence

) 25y P

0— 2'(X) "N 7x) "N 27x) = 0

is exact.

Proposition 2.4.5. If 0 - .%' — .% — #” — 0 is an exact sequence of
sheaves, and if .%’ and .# are soft, then .#” is soft.

Proposition 2.4.6. A soft sheaf is acyclic.

So you may wonder, what’s the difference between flabby and soft since
the definitions are quite similar, and both of them are acyclic. Clearly by
definition of sections over a closed subset, we know that every flabby sheaf
is soft, but converse fails

Example 2.4.5. The sheaf of smooth functions on a smooth manifold is
soft but not flabby.
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Lemma 2.4.1. If ./Z is a sheaf of modules over a soft sheaf of rings %, then
A is a soft sheaf.

Proof. Let s € 4 (K) for some closed subset X C X. Then s extends to
some open neighborhood U of K. Let p € Z(K U (X \ U)) be defined by

_J1, on K
=0, onXx\U

Since Z is soft, then p extends to a section over X, then po s is the desired
extension of s. O

2.4.3. Fine sheaf. Another important kind of acyclic sheaves, which behaves
like sheaf of differential forms Q])“( is called fine sheaf. Recall what is a
partition of unity: Let U = {U,;}ier be a locally finite open covering of
topological space X. A partition of unity subordinate to U is a collection of
continuous functions f;: U; — [0, 1] for each ¢ € I such that its support lies

in U;, and for any x € X
> filw) =1.

el
Definition 2.4.3 (fine sheaf). A fine sheaf .# on X is a sheaf of &/-modules,

where 7 is a sheaf of rings such that for every locally finite open covering
{Ui}ier of X, there is a partition of unity

> pi=1
i€l
where p; € o/ (X) and supp(p;) C U;.

Remark 2.4.2. For a sheaf .% on X and a section s € .% (X), its support is
defined as

supp(s) :={z € X : s|, # 0}.
Proposition 2.4.7. A fine sheaf is acyclic.

Proof. Let % be a sheaf of o/-modules and a fine sheaf. And choose a
injective resolution

0.7 470 4,70 41 d

such that Z* are injective sheaves of .&7-modules. Let s € ZP(X) such that
ds = 0. Then by exactness of injective resolution we have X is covered by
open subsets U; such that for each 7 there is an element ¢; € Ip_l(Ui) such
that dt; = s|y,. By passing to a refinement we may assume that the cover
{Ui} is locally finite. Let {p;} be a partition of unity subordinate to {U;}.
Then we have t = 3" p;t; € .#P~1(X) such that dt = s. This completes the
proof. O
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Example 2.4.6. Let M be a smooth manifold and 7: E — M be a vector
bundle. Then the sheaf of smooth sections of E is a C°°(M)-module sheaf,
which is a fine sheaf. In particular, the sheaf of tangent bundle, sheaf of
differential forms Q,; and k-forms Q’fw are fine sheaves.

Remark 2.4.3. As a consequence, it’s meaningless to compute cohomology of
sheaf of differential k-forms, or any other vector bundle over a smooth man-
ifold. But in complex version, something interesting happens: Let (X, Ox)
be a complex manifold and 7: £ — X be a holomorphic vector bundle.
Then the sheaf of holomorphic sections of E' is not a fine sheaf since there
is no partition of unity may not be holomorphic, so the cohomology of holo-
morphic vector bundle is not trivial, and that’s what Dolbeault cohomology
computes.

For fine sheaf and soft sheaf, we have
Lemma 2.4.2. Fine sheaf is soft.

Proof. Let .7 be a fine sheaf, S C X closed and s € .Z(S). Let {U;} be an
open covering of S and s; € .#(U;) such that

silsnu; = slsnu;-
Let Uy = X — S, and sg = 0. Then {U;}[[{Uo} is an open covering of X.
Without lose of generality, we assume this open covering is locally finite and
choose a partition of unity {p;} subordinate to it. Then

5:= Z pi(si)

is a section in .% (X) which extends s. O

Remark 2.4.4. Until now, we have shown that soft, fine and flabby sheaves
are acyclic. Lemma 2.4.2 shows fine sheaf is soft, and by definition a flabby
sheaf is soft. The Example 2.4.5 shows that soft sheaf may not be flabby, and
constant sheaf on an irreducible space is flabby but not fine. In a summary,

we have the following relations:
Acyclic

Soft
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2.5. Proof of de Rham theorem using sheaf cohomology. As we al-
ready know, for constant sheaf R over a smooth manifold M, we have the
following fine resolution

0-R-509, Lo, 402, 4

And de Rham cohomology computes the sheaf cohomology of R. de Rham
theorem implies that de Rham cohomology equals to the singular cohomol-
ogy with real coefficient. So if we can give constant sheaf another resolution
using singular cochains, we may derive the de Rham cohomology.

We state this in a general setting: Let X be a topological manifold, and
a constant sheaf G over X, where G is an abelian group. Let SP(U,G) be
the group of singular cochains in U with coefficients in GG, and let § denote
the coboundary operator.

Let .#P(G) be the sheaf over X generated by the presheaf U — SP(U, G),

with induced differential mapping .#?(G) N SPHH@).
Similar to Poincaré lemma, we have for a unit ball U in Euclidean space,
we have the following sequence

o 8 NU,G) L s, G L ST ULG)
is exact. So we have the following resolution of the constant sheaf G
0= G — . 7%G) -5 246 L 72G) — . ..

Remark 2.5.1. If M is a smooth manifold, then we can consider smooth
chains, that is f: AP — U, where f is a smooth function. The corresponding
results above still hold, and we have a resolution by smooth cochains with
coefficients in G:
0—G— 7% (G)

So if we choose G = R, then it suffices to show 0 — R — .2 (R) is an
acyclic resolution, then we obtain de Rham theorem.

First, note that .#% is a #2-module, given by cup product on open
subsets. Then by Lemma 2.4.1 and the fact 2 is soft we know that it’s a
soft resolution. This completes the proof.

2.6. Hypercohomology. In homological algebra, the hypercohomology is
a generalization of cohomology functor which takes as input not objects in
abelian category but instead chain complexes of objects.

One of the motivations for hypercohomology is to generalize the zig-zag
lemma, that is, the short exact sequence of sheaves induces a long exact
sequence of cohomology groups. It turns out hypercohomology gives tech-
niques for constructing a similar cohomological associated long exact se-
quence from an arbitrary long exact sequence

0% P9 — - —F.—0

Now let’s give the definition of hypercohomology: Let F#®: --- — F =1
Ft — FH1 5 ... be a complex of sheaves of abelian groups, which is
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bounded from below, that is, %™ = 0 for n <« 0. Then .#°® admits an
injective resolution .#® — Z°. In other words,

L Fi Fil
. Ii—l Iz I’H—l

such that
(1) All 7% are injective sheaves.

(2) The induced homomorphism H'(.#*) — H*(Z*) is an isomorphism.
The hypercohomology of .#* is defined by

H'(X,7*) = H(I'(X,I%))
Definition 2.6.1. For a sheaf .7, .%°*[n] is a sheaf of complex defined by

(#*n)) = {‘3; .

0 otherwise.

Example 2.6.1. Let .% be a sheaf and 0 = .% — I° — Z! — ... be an
injective resolution of .%. Then

0 F 0 0
0 70 ! 7?°

is an injective resolution of .#°[0]. Indeed, Z* are injective for all i > 0, and
H'(I®) = {
So by definition of hypercohomology, we have H'(X,.#*[0]) = H(I'(X,Z°*)) =
H'(X,.Z*). In general, one has
HY(X,Z*n]) = H™(X, 7).

Theorem 2.6.1 (zig-zag). Let 0 — .Z* — ¥* — J°* — 0 be a short exact
sequence of complexes of sheaves which are bounded from below. Then there
is an induced long exact sequence

F, n=0

= H{(ZF0)
0, otherwise

= HTYX, %) = HY(X,.7°%) = H(X,9°) —» H'(X, #°) - HY(X,.7°*) — ...
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Part 2. Schemes
3. SCHEMES AND MORPHISMS

3.1. Schemes. Throughout this lecture, all rings are assumed to be commu-
tative with identity element, and all homomorphisms of rings are assumed
to map 1 to 1.

3.1.1. Ringed space.

Definition 3.1.1 (ringed space). A ringed space is a pair (X, Ox) consisting
of a topological space X and a sheaf of rings Ox on X.

Definition 3.1.2 (locally ringed space). A ringed space (X, Ox) is a locally
ringed space if for every p € X, the stalk Ox ), is a local ring.

Definition 3.1.3 (morphisms between ringed space). Let (X,Ox) and
(Y,Oy) be two ringed space. A morphism from (X,Ox) to (Y,0Oy) is a
pair (f, f*) consisting of a continuous map f: X — Y and a morphism of
sheaves ff: Oy — f.Ox.

Remark 3.1.1. Let (f, f*) be a morphism between ringed spaces (X, Ox) and
(Y,Oy). For every point p € X, there is a homomorphism (f«Ox)fp) —
Ox p defined by

(f:Ox)ppy = lm (LOx)(V)= lim  Ox(f'(V)) = lim Ox(U) = Ox,.
f(p)eV pef~1(V) peU

On the other hand, the morphism of sheaves ff: Oy — f,Ox induces a
homeomorphism between stalks

(Fp: Ov,s) = (1:0x) 1)
By composing above two homomorphisms, there is a homomorphism
ff,i Ov.sw) = Oxp-
Definition 3.1.4 (morphisms between locally ringed space). A morphism
(f, %) between locally ringed spaces (X,0x) and (Y,Oy) is a morphism
between ringed spaces, and for each p € X, the morphism
I3+ Ovsp) = Oxp

is a local homomorphism of local rings.

Definition 3.1.5 (isomorphism). A isomorphism of locally ringed space is
a morphism with a two-side inverse.

3.1.2. Affine schemes.

Definition 3.1.6 (prime spectrum). Let A be a ring. The spectrum of A

is a locally ringed space, consisting of the following data:

(1) A topological space Spec A, which is the set of all prime ideals of A,
equipped with Zariski topology, that is, all closed subsets of Spec A are
of the form V(a) = {p € Spec A | a C p}.
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(2) A structure sheaf Ogpec 4, which is defined as follows: For every open
subset U of Spec A, Ogpec 4(U) consists of mappings s: U — HpespecA A,
satisfying the following two conditions:

(a) For every p € U, one has s(p) € A,.

(b) For every p € U, there exists a neighborhood U, of p contained in
U and a, f € A such that for every q € Uy, one has f ¢ q and
s(q) =a/f in A,.

Definition 3.1.7 (affine scheme). A locally ringed space that is isomorphic
to (Spec A, Ospec 4) for some ring A is called an affine scheme.

Definition 3.1.8 (distinguished open subset). Let A be a ring and f € A.
The distinguished open subset D(f) is defined by Spec A\ V().

Proposition 3.1.1. The distinguished open subsets form a topology basis
of Zariski topology.

Corollary 3.1.1. The affine scheme is quasi-compact.

Proposition 3.1.2. Let A be a ring.

(1) For every p € Spec A, there is a canonical isomorphism O, = A,.
(2) For every f € A, there is a canonical isomorphism O(D(f)) = Ay. In
particular, O(Spec A) = A.

Proof. See Proposition 1.2.4 in [Fu06]. O

Proposition 3.1.3.

(1) Let ¢: A — B be a homomorphism of rings. Then ¢ induces a canonical
morphism of locally ringed spaces

(fa fﬁ) : (Spec B, OSpecB) — (SpeCAa OSpecA>'

(2) Any morphism (f, f¥) between (Spec B, Ogpec ) and (Spec A, Ospec 4)
is obtained this way.

Proof. See Proposition 1.2.5 in [Fu06]. O

Proposition 3.1.4. For any f € A, there is a canonical isomorphism of
locally ringed spaces

(D(f)a OSpecA|D(f)) = (Spec Afa OSpecAf)~
Proof. See Proposition 1.2.6 in [Fu06]. O
3.1.3. Schemes.

Definition 3.1.9 (scheme). A scheme (X, Ox) is a locally ringed space for
which there exists an open covering {U; };er of X such that each (U;, Ox|,)
is an affine scheme.

Notation 3.1.1. For convenience, if there is no ambiguity of the underlying
topological space, we will simply write O instead of Ox.
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Proposition 3.1.5. Let (X, Ox) be a scheme and U be an open subset of
X. Then (U,Ox|y) is a scheme.

Proof. It follows from Proposition 3.1.4. O

Proposition 3.1.6. Let X be a scheme and A be a ring. Then there is a
one-to-one correspondence between the set of morphisms of schemes from
X to Spec A and the set of homomorphisms of rings from A to Ox(X).

Proof. See Proposition 1.2.8 in [Fu06]. O

3.2. Proj construction. In this section we fix a graded ring S with de-
compostion S = @37, S

Proposition 3.2.1. An ideal of S is called a homogeneous ideal if it satisfies
one of the following equivalent conditions:

(1) a=P,(anSy).

(2) facaand a=)_,aq with ag € Sg, then a4 € a.

(3) ais generated by homogeneous elements as an additive subgroup of S.
(4) ais generated by homogeneous elements an an ideal of S.

Proposition 3.2.2. Let a be a homogeneous ideal of S. If for any homo-
geneous elements f and ¢ in S such that fg € a, one has either f € a or
g € a, then a is a prime ideal.

Proposition 3.2.3. Let a, b be homogeneous ideals of S. Then

(1) a4+ b,ab,aN b are homogeneous ideals.
(2) /a is a homogeneous ideal.

Proposition 3.2.4 (Proj). Let Sy = @3-, Sq and Proj S be the set of all
homogeneous prime ideals of S not containing S;. For any homogeneous
ideal a of .S, define
Vi(a)={p € ProjS|aCp}.
Then
(1) V4(0) = Proj S and Vi (5) = @.
(2) Mier Vi (a) = Vi (3=, ai) for any family of homogeneous ideals {a;}ier
of S.
(3) Vi(a)NVi(b) =Vi(ab) = Vi(anb) for any homogeneous ideals a and
bof S.
In particular, Proj S is a topological space so that closed subsets are of the
form Vi (a) for homogeneous ideals a of S. This topology is called Zariski
topology of Proj S.

Now let’s define the structure sheaf on ProjS. For any homogeneous
prime ideal p € Proj .S, consider the ring

Sp) = {% € Sy | a and t are homogeneous of the same degree}.

For open subset U C Proj S, Opyojs(U) is defined to be the set of functions
s: U = [lpey S(py such that
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(1) For every p € U, one has s(p) € S(p).

(2) For every p € U, there exists a neighborhood Uy, of p contained in U and
homogeneous elements a, f € S of the same degree such that for every
q € Up, one has f ¢ q and s(q) = a/f in S(g).

Proposition 3.2.5.

(1) For every p € Proj .S, there is a canonical isomorphism Opyojsp = S(p)-
(2) For every homomorphism element f € Sy, let

Dy (f) =Proj S\ Vi((f)) ={p € Proj S| f & p}.
Then D4 (f) is open in Proj.S, and open subsets of this type form a

basis for the topology of Proj S. Moreover, there is an isomorphism of
locally ringed space

(D+(f), Oprojslp, (1)) = (SpecS(py, Ospecs j) )-
In particular, (Proj S, Oprojs) is a scheme.

Proof. See Proposition 1.2.10 in [Fu06]. O
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4. PROPERTIES OF SCHEMES

4.1. Quasi-compact, irreducible, Noetherian topological space.

4.1.1. Quasi-compact scheme.

Definition 4.1.1 (quasi-compact). A scheme (X, Ox) is called quasi-compact
if any open covering of X admits a finite subcovering.

Remark 4.1.1. A scheme is quasi-compact if and only if it’s a finite union of
affine schemes.

4.1.2. Irreducible topological space.

Definition 4.1.2 (irreducible topological space). A topological space X is
called irreducible if X is not the union of two proper closed subsets. A
subset Y C X is called irreducible if Y is a irreducible topological space
equipped with induced topological.

Proposition 4.1.1. Let X be a topological space and Y C X be a sub-
set equipped with induced topological. If Y is irreducible, then Y is also
irreducible.

Proof. Suppose Y is not irreducible, so we have closed subsets S,T in X
such that Y is not contained in either S or T but Y ¢ TUS. If Y C S,
then Y C S = S, a contradiction, so Y is not contained in S. Similarly Y
is not contained in 7. But Y C Y C SUT, thus Y is not irreducible, a
contradiction. O

Proposition 4.1.2. Let A be aring. A closed subset of Spec A is irreducible
if and only if it’s of the form V' (p) for some prime ideal p of A.

Proof. See Proposition 1.3.2 in [Fu06]. O

Proposition 4.1.3. Let X be a scheme. For any irreducible closed subset
Y of X, there exists a unique point y € Y such that ¥ = {y}

Proof. See Proposition 1.3.3 in [Fu06]. O
4.1.3. Noetherian topological space.

Definition 4.1.3 (Noetherian topological space). A topological space X is
called a Noetherian topological space if the family of closed subsets of X
satisfies the descending chain conditions.

Example 4.1.1. If A is a Noetherian ring, then Spec A is a Noetherian
topological space.

Proposition 4.1.4. Suppose X is a Noetherian topological space.

(1) For every closed subset Y of X, there is a decompostion Y = Y U---UY,
into closed irreducible subsets Y; such that Y; ¢ Y; whenever i # j,
where Y; are called irreducible component of Y.
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(2) An irreducible closed subset Y is an irreducible component of X if and
only if Y is maximal among the family of irreducible closed subset of X.

Proof. See Proposition 1.3.4 in [Fu06]. O

Definition 4.1.4 (minimal prime ideal). Let A be a ring. A prime ideal of
A is called a minimal prime ideal if it contains no prime ideal other than
itself.

Corollary 4.1.1. Let A be a Noetherian ring. Then there is a one to one
correspondence between the family of irreducible components of Spec A and
the family of minimal prime ideals of A.

4.2. Reduced, irreducible and integral scheme.

Definition 4.2.1. Let (X, Ox) be a scheme. Then it’s

(1) connected if X is connected.

(2) irreducibe if X is irreducible.

(3) reduced if for every open subset U of X, Ox(U) is reduced.

(4) integral if for every open subset U of X, Ox(U) is an integral domain.
(5) locally integral if O, is an integral domain for every p € X.

Proposition 4.2.1. A scheme (X,Oyx) is integral if and only if it’s irre-
ducibe and reduced.

Proof. See Proposition 1.3.6 in [Fu06]. O

Proposition 4.2.2. Let (X, Ox) be an integral scheme and £ be its generic
point. Then Ox ¢ is a field.

Proposition 4.2.3. A scheme (X,Ox) is reduced if and only if Ox, is
reduced for every p € X.

Proof. Suppose (X,Ox) is reduced and s € Ox, such that s” = 0. Then
there exists an open neighborhood U of p such that s” = 0 in Ox(U), and
thus s = 0 since Ox(U) is reduced. Conversely, suppose Ox , is reduced
for every p € X and s € Ox(U) such that s = 0. Then by passing to the
stalks one has s, = 0 for every p € U, and thus s = 0. (]

Proposition 4.2.4. Let (X, Ox) be a scheme such that X is a Noetherian
topological space. Then (X, Oy) is locally integral if and only if it’s reduced
and its irreducibe component are disjoint.

Proof. See Proposition 1.3.8 in [Fu06]. O
4.3. Affine criterion.

Definition 4.3.1. Let (X, Ox) be a scheme. For any section f € Ox(X),
X is defined to be the subset of X consisting of thoes p € X such that the
germ of f at p is a unit in Ox ).

Proposition 4.3.1. Let (X,Ox) be a scheme.
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(1) For every f € Ox(X), Xy is open. It’s empty if and only if there exists
an open covering {U;},c; of X such that each f|y, is nilpotent.

(2) For any f,g € Ox(X), we have XN X, = Xyg4.

(3) Let (p,¢%): (X,0x) — (Y,0y) be a morphism of schemes and f €
Oy(Y) Then gO_l(Yf) = Xspﬁ(f).

(4) Suppose X can be covered by finitely many affine open subschemes
{U;}ier such that U; N U; can be covered by finitely many affine open
subschemes for all i,j € I. Let A = Ox. Then for any f € A, we have
Ox (Xf) = Af.

Proof. Here we only give the proof of (1), and for others one can refer to the
Proposition 1.3.9 in [Fu06]. Suppose {U; = Spec A;}ier is an affine covering
of X and define f; = f|y,. Then it’s clear that Xy = (J,c; D(f;), and thus
it’s open.

Now let’s prove the half part:

(a) Suppose there exists an open covering {U;};c; such that each f; :=
flu, is nilpotent. Then without lose of generality we may assume this
open covering consists of affine open subsets (by taking refinement when
neccessary). By previous result one has Xy = J;c; D(fi) = @ since
D(f;) = @ if f; is nilpotent.

(b) Conversely, if X; is empty, then there exists an affine open covering
{U; = Spec A;}icr such that D(f;) = @ for each i € I, and thus f; is
nilpotent.

[l

Proposition 4.3.2. A scheme (X,Oyx) is affine if and only if there ex-
ist finitely many sections fi,..., fn, € Ox(X) generating the unit ideal of
Ox(X) such that each open subscheme (Xy,, Ox|x, ) is affine.

Proof. See Proposition 1.3.10 in [Fu06]. O
4.4. Noetherian scheme.

Definition 4.4.1 (Noetherian scheme). A scheme (X, Ox) is called locally
Noetherian if it can be covered by affine open subschemes {U; = Spec A};cr
such that each A; is Noetherian, and it’s called Noetherian if it’s quasi-
compact and locally Noetherian.

Proposition 4.4.1. Let (X, Ox) be a Noetherian scheme. Then every open
subset of X is quasi-compact.

Proof. If X is Noetherian, then it admits a finite affine open covering {U; =
Spec A}ier such that each A; is Noetherian. In particular, X is a Noetherian
topological space, and thus every open subset of X is quasi-compact. O

Proposition 4.4.2. Let (X,Ox) be a locally Noetherian scheme. Then
for any affine open subscheme U = Spec A of X, A is Noetherian. In par-
ticular, an affine scheme (Spec A, Ogpec a) is locally Noetherian (and thus
Noetherian) if and only if A is Noetherian.
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Proof. See Proposition 1.3.11 in [Fu06]. O

Proposition 4.4.3. If (X,Ox) is a Noetherian scheme, then X is a Noe-
therian topological space, but the converse is not true.

Proof. Recall that if a ring A is Noetherian, then Spec A is a Noetherian
topological space. Now since (X, Ox) is a Noetherian scheme, then there
exists a finite affine open covering {U; = Spec 4;}7" ; such that each A; is a
Noetherian ring, and it’s clear that a finite union of Noetherian topological
space is also Noetherian.

Conversely, consider the ring A = k[z1,x2,...]/(z},23,...), where k is
a field. Since each variable x,, is nilpotent, every prime must contain I =
(r1,22,...). But A/I is just k, so I is already a maximal ideal, and thus
I is the only prime ideal. This shows Spec A has only one point, and it’s
obviously Noetherian. But [ is not finitely generated, so A is not Noetherian.
In particular, Spec A is not a Noetherian scheme. O
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5. PROPERTIES OF MORPHISMS
5.1. Quasi-compact, affine, finite type and finite.

Definition 5.1.1. Let m: X — Y be a morphism of schemes. It’s called

(1) quasi-compact if there exists a covering of Y by affine open subschemes
{Vi}ier such that each 7=1(V;) is quasi-compact.

(2) affine if there exists a covering of Y by affine open subschemes {V;}cr
such that each 7=1(V;) is affine.

(3) locally of finite type if if there exists a covering of Y by affine open
subschemes {V; = Spec B; };e1 such that each 7r_1(Vi) can be covered by
affine open subschemes {U;; = Spec A;;} e, for some finitely generated
Bi-algebra A;;.

(4) finite type if it’s quasi-compact and locally of finite type.

(5) finite if there exists a covering of Y by affine open subschemes {V; =
Spec B; }ier such that each 771(V;) = Spec A; for some finitely generated
B;-module A;.

Definition 5.1.2 (affine-local). Let (X, Ox) be a scheme and {Spec A; }icr
be an open covering of X. A property P is called affine-local, if every Spec A;
has property P implies any affine open subset of X has property P.

Lemma 5.1.1. Suppose Spec A and Spec B are affine open subschemes of
a scheme X. Then Spec A N Spec B is the union of open subsets that are
simultaneously distinguished open subschemes of Spec A and Spec B.

Proof given in [Vak17]. It suffices to show for any p € Spec ANSpec B, there
exists an open neighborhood of p in Spec A N Spec B that is simultaneously
distinguished in both Spec A and Spec B. Let Spec Ay be a distinguished
open subset of Spec A contained in Spec A N Spec B and containing p and
Spec By be a distinguished open subset of Spec B contained in Spec Ay and
containing p. Then g € Ox(Spec B) = B restricts to an element ¢ €
Ox (Spec Ay) = Ay. Note that

Spec By = Spec Af \ {q € Spec Af | ¢’ € q} = (Spec Ay)y.
If ¢ = ¢"/f" in Ay, where g” € A, then (Spec Ay), = Spec Ayr, and this
completes the proof. O
Lemma 5.1.2 (affine communication lemma). Let P be a property enjoyed
by some affine open subsets of a scheme X, such that

(1) if an affine open subset Spec A < X has property P, then for any f € A,
Spec Ay — X does too.

(2) If (f1,...,fn) = A, and Spec Ay, — X has property P for each i, then
so does Spec A — X.

Then the property P is affine-local.

Proof given in [Vak17]|. Suppose {Spec A4;} be an affine open covering of the
scheme X enjoying the property P. For any affine open subscheme Spec A
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of X, by Lemma 5.1.1 we may cover Spec A with a finite number of dis-
tinguished open subsets Spec Ay,, each of which is distinguished in some
Spec A;. By (1) one has each Spec Ay, has property P, and thus Spec A has
the property P by (2). O

Proposition 5.1.1. Let 7: X — Y be a morphism of schemes.

(1) 7 is quasi-compact if and only if for every affine open subscheme V' of
Y, f~Y(V) is quasi-compact.

(2)  is affine if and only if for every affine open subscheme V of Y, f=1(V)
is affine.

(3) 7 is of locally finite type if and only if for every affine open sub-
scheme V = Spec B of Y, f~1(V) can be covered by many affine open
subschemes {U; = Spec A;};cs such that each A; is a finitely generated
B-algebra.

(4) 7 is of finite type if and only if for every affine open subscheme
V = Spec B of Y, f~1(V) can be covered by finitely many affine open
subschemes {U; = Spec A;};cs such that each A; is a finitely generated
B-algebra.

(5)  is finite if and only if for every affine open subscheme V' = Spec B of
Y, f~1(V) = Spec A for some finitely generated B-module A.

Proof. Here we only give the proof of (1), and proofs for others are simi-
lar. By affine communication lemma, it suffices to show the following two
statements

(a) If Spec A C Y is an affine open subset such that 7—*(Spec A) is quasi-
compact, then for any f € A one has 7! (Spec A ) is quasi-compact.

(b) If (f1,...,fn) = A and 7 !(Spec Ay,) is quasi-compact for each i, then
71 (Spec A) is quasi-compact.

The statement (b) is easy since the finite union of quasi-compact subset is

still quasi-compact, and now let’s prove statement (a). Suppose Spec A C Y

is an affine open subset such that m—!(Spec A4) is quasi-compact. Then for

any f € A, one has

7~ (Spec Ap) = (7~ (Spec A))ﬂ.ﬁ(f),

where 7(f) € Ox(7~1(Spec A)). On the other hand, since 7~ '(Spec A) is
quasi-compact, there exists a finite affine open covering il of it, and by (1)
of Proposition 4.3.1 one has the intersection of (7~!(Spec A))rap) With any

affine open subset in 4 is still affine. This shows (7~!(Spec A))re(py Is a
quasi-compact since it’s a finite union of affine open subsets. ([

Corollary 5.1.1. Any affine morphism is quasi-compact.

Corollary 5.1.2. If the source of a morphism is a Noetherian scheme, then
the morphism is quasi-compact.

Proof. 1t follows from Proposition 4.4.1. O
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Proposition 5.1.2. Suppose f: X — Y is a morphism of schemes. Then
f is locally of finite type if and only if for every affine open subscheme
V = Spec B of Y and every affine open subscheme U = Spec A of X such
that f(U) C V, the B-algebra A is finitely generated.

Proof. See Exercise 7.7.1. O

5.2. Birational morphism.

Proposition 5.2.1. Let X — S and Y — S be two morphisms and assume
Y — S is locally of finite type.

(1) Let f,g: X — Y be two morphisms making the following diagram com-

mutes
X — Y
S

Let x € X such that f(x) = g(x) = y and such that ff; = gg. Then
there exists an open neighborhood U of z in X such that f|y = ¢|v.

(2) Suppose S is locally Noetherian. Let z € X and y € Y be two points
such that their images in S are the same point s € S, and let ¢: Oy, —
Ox ; be a homomorphism making the following diagram commutes

Oxa ¢ Oy,
\ /

OS,S

Y

Then there exists an open neighborhood U of x in X and a morphism
f: U — Y such that f(x) =y, ff; = ¢ and the following diagram com-

mutes
f
U————Y
S
(3) Suppose S is locally Noetherian, X — S is also locally of finite type,

and f: X — Y is a morphism making the diagram in (1) commutes.

Assume f(z) =y and f}i Oy,y — Ox is an isomorphism. Then there
exist open neighborhoods U of x in X and V of y in Y such that f
induces an isomorphism from U to V.

Proof. See Proposition 1.3.13 of [Fu06]. O

Definition 5.2.1 (dominant and birational morphism). Let X and Y be
integral schemes.

(1) A morphism f: X — Y is dominant if f(X) =Y.
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(2) A dominant morphism f: X — Y is called birational if f§: Oy, — Ox ¢
is an isomorphism, where £, n are generic points of X and Y respectively.

Corollary 5.2.1. Let S be a locally Noetherian scheme and let X and Y be
two integral schemes. Suppose we have the following commutative diagram

X—>Y

N7

such that X — S and Y — S are locally of finite type and f is a birational
morphism. Then there exists non-empty open subsets U C X and V C Y
such that f induces an isomorphism from U to V.

5.3. Open immersion and closed immersion.

Definition 5.3.1 (open immersion). A morphism (f, *): (Z,0z7) — (X, Ox)
is called an open immersion if it induces an isomorphism of (Z, Oz) with an
open subscheme of (X, Ox).

Definition 5.3.2 (closed immersion). A morphism (f, f*): (Z,0z7) — (X, Ox)
is called a closed immersion if it induces a homeomorphism of Z with a closed
subset of X, and f#: Ox — f.Oy is surjective.

Definition 5.3.3 (immersion). A morphism Z — X is called an immersion
if it can be written as a composite Z — U — X such that U — X is an
open immersion and Z — U is a closed immersion.

Definition 5.3.4 (locally closed subset). A subset Z of X is called locally
closed if it’s the intersection of an open subset with a closed subset.

Remark 5.3.1. In other words, a subset Z is locally closed if and only if Z
is open in Z.

Proposition 5.3.1. Let (f,f%): (Z,07) — (X,0Ox) be a morphism of

schemes.

(1) (f, f%): (Z,0z) = (X, Ox) is an open immersion if and only if f induces
a homeomorphism of Z with an open subset of X and fg: Ox.,f(p) =
Oz is an isomorphism for every p € Z.

(2) (f, f%): (Z,02) = (X,0x) is an immersion if and only if f induces a
homeomorphism of Z with a locally closed subset of X and fg :Ox ) —
Oz is an epimorphism.

(3) The immersions are monomorphisms in the category of schemes. More-
over, the composite of immersions is an immersion, so are open immer-
sion and closed immersion.

Proof. See Exercise 7.8.1. O

Proposition 5.3.2. Let A be a ring.
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(1) For every ideal a of A, the morphism ¢: Spec A/a — Spec A induced
by the canonical homomorphism ¢: A — A/a is a closed immersion.

(2) Every closed immersion into Spec A is isomorphic to Spec A/a — Spec A
for some ideal a of A.

Proof. See Proposition 1.3.16 of [Fu06]. O
Corollary 5.3.1. A closed immersion is affine, and thus quasi-compact.

Proposition 5.3.3 (reduced closed subscheme structure). Let (X, Ox) be
a scheme and Y be a closed subset of X. Then there exists a unique reduced
scheme structure (Y, Oy) on Y which makes Y a closed subscheme of X. If
(Z,0z) = (X,0Ox) is a closed immersion such that its image in X contains
Y, then there exists a unique morphism (Y,Oy) — (Z,Ogz) such that the
following diagram commutes

— X

d

Fu06]. O

N

Proof. See Proposition 1.3.18 of

—

5.4. Fibred product. In this section S always is a scheme.

Definition 5.4.1.

(1) An S-scheme is a scheme X together with a morphism X — S.
(2) An S-morphism from an S-scheme X to an S-scheme Y is a morphism
X — Y such that the diagram

X —— Y

NS

Remark 5.4.1. For any scheme X, there is a unique morphism X — SpecZ,
so the category of schemes coincides with the category of Spec Z-schemes.

Definition 5.4.2 (fibred product). Let X and Y be S-schemes. The prod-
uct in the category of S-schemes is called the fibred product of X and Y
over S, which is a S-scheme denoted by X xg Y.

Proposition 5.4.1. For S-schemes X and Y, their fibred product over S
exists and unique up to unique isomorphism.

Proof. See Proposition 1.3.20 of [Fu06]. O

Proposition 5.4.2. Let f: X — Y be a morphism of schemes and y be a
point in Y with residue field k(y). The projection

X Xy Speck(y) - X

induces a homeomorphism from X xy Speck(y) with f~!(y) on the under-
lying topological spaces.

commutes.
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Proof. See Proposition 1.3.21 of [Fu06]. O
Proposition 5.4.3. Let
X Y
T
S

be morphisms of schemes. Then the diagram

XxpY — X xgY

| |

T —— 5 TxgT

is Cartesian, where the top horizontal arrow is the unique morphism whose
composites with the two projections of X xg Y to its factors are the two
projections of X x7 Y to its factors, and the right vertical arrow is the
unique morphism whose compositions with the two projections of T'x g T to
its factors are the morphisms X — T and Y — T respectively.

Proof. See Exercise 7.9.4. O

5.4.1. Base change.

Definition 5.4.3 (stable under base change). Let f: X — Y be a morphism
of schemes. A property P of f is called stable under base change, if for any
morphism Y’ — Y, the base change f': X xy Y’ — Y’ also has property P.

Proposition 5.4.4.

(1) The quasi-compact morphism is stable under base change.

(2) The finite type morphism is stable under base change.

(3) The finite morphism is stable under base change.

(4) The immersion (closed immersion, open immersion) is stable under base.

Proof. Here we only give the proof of (1), and the proofs for others are
similar.

Let f: X — Y be a quasi-compact morphism and ¢g: Y’ — Y be a mor-
phism. For any affine open subset U = Spec A of Y, we choose an affine
open covering {V; = Spec B;} of g~ }(U), where B;’s are A-algebras. Then

UV =X xy Vi = f71(U) @ Vi

On the other hand, since f is quasi-compact, there exists a finite affine open
covering {W; = SpecC;}_; of f ~1(U), where C;’s are A-algebras. Then

7N Vi) = 71 U) @u Vi = | Spec Cj @4 Bi.
j=1
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This shows f/~1(V;) is quasi-compact. By varing U and thus ¢~ '(U), we
obtain an open covering {V;};cr of Y’ such that f~!(V;) is quasi-compact
for each 7 € I. This shows f’ is quasi-compact. O

5.5. Separated morphisms.

Definition 5.5.1 (diagonal morphism). Let f: X — Y be a morphism of
schemes. The diagonal morphism Ax/y: X — X Xy X to be the unique
morphism satisfying

polAx)y =qoAxy =idx.

Definition 5.5.2 (separated morphism). Let f: X — Y be a morphism of
schemes. It’s called separated if Ax/y is a closed immersion.

Definition 5.5.3 (separated scheme). A scheme X is called separated if
the canonical morphism X — SpecZ is separated.

Definition 5.5.4 (quasi-separated).

(1) A morphism f: X — Y of schemes is called quasi-separated if the diag-
onal morphism is quasi-compact.

(2) A scheme X is quasi-separated if the canonical morphism X — SpecZ
is quasi-separated.

Proposition 5.5.1. Let f: Spec B — Spec A be a morphism of affine
schemes. Then f is separated.

Proof. See Proposition 1.3.22 of [Fu06]. O

Proposition 5.5.2. Let f: X — Y be a morphism of schemes.

(1) The diagonal morphism A: X — X Xy X is an immersion.
(2) f: X — Y is separated if and only if Ax/y(X) is a closed subset of
X Xy X.

Proof. See Proposition 1.3.23 of [Fu06]. O

Proposition 5.5.3.

(1) A morphism f: X — Y of schemes is separated if and only if there exists
an open covering {V;}icr of Y such that f~1(V;) — V; is separated.

(2) The immersion is separated.

(3) The composite of two separated morphisms is separated.

(4) The separated morphism is stable under base change.

(5) Let f: X — Y and g: Y — Z be morphisms of schemes. If go f is
separated, then f is separated.

Proof. Here we only give the proof of (1), and for others one can refer to
the Proposition 1.3.26 in [Fu06].

Let {V;}icr be an open covering of Y and U; = f~1(V;) such that U; — V;
is separated. By (2) of Proposition 5.5.2 it suffices to show Ay,y(X) is a
closed subset of X xy X, and it suffices to find an open covering { such
that the preimage of each open subset in 4 under A,y is closed. Suppose
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g: X xy X — Y is the natural morphism. Then {g~!(V;)} gives an open
covering of X xy X and by the property of fibred product one has ¢g=1(V;) =
Ui xy, U;. It’s clear A;(}Y(Ui xy, U;) = Ui, and U; — U; xy, U; is closed
since U; — V; is separated.

Conversely, suppose f: X — Y is separated. Then for any open covering
{Vitier of Y, f=1(V;) — V; is the base change of f under V; < V, and thus

it’s separated since the separated morphism is stable under base change. [J

Proposition 5.5.4. Let X be a S-scheme, where S is an affine scheme.

(1) If X is separated over S, then the intersection of any two affine open
subschemes is affine, and this fails in general if X is not separated.

(2) If X is quasi-separated over S, then the intersection of any two affine
open subschemes is a finite union of affine subschemes,

Proof. For (1). Let U = Spec A and V = Spec B be two affine open sub-
schemes of X. Then by the property of fibred product one has U xg V
is affine. On the other hand, by Proposition 5.4.3 one has the following
diagram is Cartesian

UxxV —— UxgV

| |

X — X xgX

Thus UNV =U xx V — U xgV is a closed immersion since X — X xg X
is a closed immersion, and the closed immersion is stable under base change.
As a consequence, U NV is affine since every closed immersion into an affine
scheme is affine, and the proof of (2) is similar.

In general, consider the affine plane with double origin, that is, two copies
U and V of affine plane A% over a field k glued along the identity morphism
on the open subscheme A7 \{0}. Then the intersection U NV = A?\{0},
which is not affine. O

5.6. Proper and projective morphisms.
5.6.1. Proper morphisms.

Definition 5.6.1 (universally closed). A morphism f: X — Y of schemes
is called universally closed, if for any morphism Y’ — Y, the base change
f't X xyY' — Y’ of fisa closed map on the underlying topological spaces.

Definition 5.6.2 (proper). A morphism f: X — Y of schemes is proper if
f is finite type, separated and universally closed.

Proposition 5.6.1.

(1) A morphism f: X — Y of schemes is proper if and only if there exists
an open covering {V;};cr of Y such that f~1(V;) — V; is proper.

(2) The closed immersion is proper.

(3) The composite of two proper morphisms is proper.
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(4) The proper morphism is stable under base change.
(5) Let f: X — Y and g: Y — Z be morphisms of schemes. If go f is
proper and g is separated, then f is proper.

Proposition 5.6.2. The finite morphism is proper.
5.6.2. Projective morphisms.

Definition 5.6.3 (projective space). The projective space P7 is defined by
ProjZlzy, . ..,zy], and for any scheme Y, the projective space over Y is the
Y-scheme P}, :=P7 xz Y.

Definition 5.6.4 (projective morphisms). A morphism f: X — Y of schemes
is projective if f can factorized as a composite

X Py —-Y

such that X — Py is a closed immersion and Py, — Y is the projection. It’s
called quasi-projective if it can be factorized as above with X — Py being
an immersion.

Definition 5.6.5 (projective). A S-scheme X is called projective over S, if
X — S is a projective morphism.

Lemma 5.6.1. For any finitely generated A-module, one has
{p € Spec A | M, =0} = Spec A \ V(anny(M)).
Proposition 5.6.3. The projective morphism is proper.

Proposition 5.6.4.

(1) The closed immersion is projective.
(2) The composite of projective morphisms is projective.
(3) The projective morphism is stable under base change.
(4) Let f: X — Y and f': X’ — Y’ be projective S-morphisms between
S-schemes. Then f x f': X xg X' - Y xg Y’ is projective.
(5) Let f: X — Y and ¢g: Y — Z be morphism of schemes. If go f is
projective and g is separated, then f is projective.

3
4

Proposition 5.6.5 (Segre embedding). There exists a closed immersion
]P)gn Xg ]P)g’ N Pfgm+1)(n+1)—1’

which is an S-morphism.
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6. COHERENT SHEAVES

6.1. Ox-modules. Let (X, Ox) be a ringed space.

Definition 6.1.1 (Ox-module). A sheaf of Ox-module (or Ox-module) is

a sheaf F such that

(1) every open subset U C X, F(U) is an Ox (U)-module;

(2) for every inclusion of open subsets V' C U, the restriction F(U) — F (V)
is compatible with the module structure via the ring homomorphism

Ox(U) = Ox(V).

Definition 6.1.2 (morphism of Ox-module). Let F and G be O x-modules.
A morphism of Ox-modules is a morphism of sheaves ¢: F — G such that
for each open subset U C X, ¢(U): F(U) — G(U) is a homomorphism of
Ox (U)-modules.

Notation 6.1.1. The set of morphisms between Ox-modules F and G is
denoted by Homp, (F,G), which is a Ox (X )-module.
Example 6.1.1. Let 7 and G be Ox-modules.
(1) The sheaf hom 220, (F,G) is the Ox-module

U~ Hom@X‘U(}"\U,g\U).
(2) The tensor F ®o, G is the Ox-module associated to the presheaf

U FU) @0, G(U).
Remark 6.1.1. For any p € X, one has

(FRG)p=Fp®Gp.

Example 6.1.2. Let {F;};c; be a family of Ox-modules.

(1) The direct sum in the category of Ox-module is the sheaf associated to
the presheaf sheaf
U P F).
1€l
(2) The direct product in the category of O x-module is the sheaf associated
to the presheaf sheaf

U [[F(U).
1€l
Example 6.1.3. Let I be a direct set.
(1) For a direct system (F;, ¢i;) of Ox-modules, its direct limit in the cat-
egory of Ox-modules is the sheaf associated to the presheaf

U— li_ng]-}(U )
(2) For a inverse system (F;, ¢;;) of Ox-modules, its direct limit in the
category of Ox-modules is the sheaf associated to the presheaf

U — lim F(U).

7
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Definition 6.1.3 (direct image and inverse image). Let (f, f%): (X,0x) —
(Y, Oy) be a morphism of ringed spaces.

(1) Let F be an Ox-module. The direct image f.F is an f,Ox-module,
and it becomes a Oy-module via the morphism f*: Oy — f.Ox.

(2) Let G be an Oy-module. The inverse image of G is defined to be Ox-
module

f*g =0Ox ®f*10y f_lg.

Definition 6.1.4 (finite representation). An Ox-module F is called of finite
presentation if there exists an open covering {U; };c; of X such that on each
U;, there is an exact sequence of the form

OE‘?Z”Z’ — OE‘?:“ — Fly, = 0.

Definition 6.1.5 (finite type). An Ox-module F is called of finite type if
there exists an open covering {U; }ier of X such that on each U;, there is an
exact sequence of the form

Og™ — Flu, — 0.

Proposition 6.1.1. Let (X, Ox) be a ringed space and F, G be Ox-modules.
If F is of finite representation, then for every p € X, one has

(Ko oy (F,G))p = Hom(?x?p (Fps Gp)-
Proof. See Proposition 1.4.1 in [Fu06]. O

6.2. Coherent sheaves.

6.2.1. Sheaf associated to a module over affine space.

Definition 6.2.1. Let A be a ring and M be a A-module. The Ogpec a-
module associated to M, denoted by M~ is defined as follows: For ev-
ery open subset U C Spec A, M~ (U) consists of those mappings s: U —
HpeSpec 4 M, satisfying the following two conditions

(1) For every p € U, one has s(p) € M,.

(2) For every p € U, there exists an open neighborhood U, of p, m € M
and f € A, such that for every q € Uy, one has f ¢ q and s(q) = m/f
in M.

For every inclusion of open subsets V C U, M~(U) — M~ (V) is defined to

be the restriction of mappings.

Example 6.2.1. Let A be a ring. Then A~ = Ogpec 4.

Proposition 6.2.1. Let A be a ring and M be a A-module.

(1) (M™), = M, for every p € Spec A.
(2) (M™)(D(f)) = My for every f € A.
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(3) A sequence of A-modules
M — M — M"
is exact if and only if the sequence of Ogpec 4-modules
M"™ = M~ — M"™
is exact.
(4) For any A-modules M and N, one has
HomospecA(MN,NN) >~ Homy (M, N)
M™ @0g,. 4 N™ = (M 4 N)™.
If M is an A-module with finite presentation, then
Hom Ogpee A (M™,N™) = (Homa (M, N))™.
(5) For a family {M;};c; of A-modules, one has

D i = (DM
i i
(6) For a direct system (M;, ¢;j)icr of A-modules, one has

lim M;™ = (ling M)

Proof. Here we only give the proofs of (3), (5) and (6), since (1),(2) can be
proved by the similar argument as shown in structure sheaf case, and the
proof of (4) is shown in Proposition 1.4.2 in [Fu06].

For (3). Note that a sequence of A-modules M’ — M — M" is exact if
and only if

M, — M, — M,/

is exact for every p € Spec A, and thus it’s equivalent to the sequence of
sheaves M~ — M~ — M"™ is exact by (1).

For (5). It suffices to note that for each p € Spec A, one has

(@ M)y = PM7)y = P My = (EB M;)y,

since taking stalk commutes with direct sum, and by the same argument
one can prove (6), since both taking stalk and direct limit are colimits, and
colimit commutes colimit. (]

Proposition 6.2.2. Let ¢: A — B be a homomorphism of rings and
f: Spec B — Spec A be the corresponding morphism.

(1) For every B-module N, one has f, N~ = N~ where on the right hand
N is regarded as an A-module.
(2) For every A-module M, one has f*M~ = (B®4 M)~.

Proof. See Proposition 1.4.3 in [Fu06]. O
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6.2.2. Coherent sheaves on Noetherian scheme.

Definition 6.2.2 (quasi-coherent). Let (X,Ox) be a scheme. A sheaf of
Ox-module F is called quasi-coherent if X can be covered with affine open
subschemes U; = Spec A4; such that F|y, = M/ for some A;-module M;.

Definition 6.2.3 (coherent). Let (X, Ox) be a Noetherian scheme. A sheaf
of Ox-module F is called quasi-coherent if X can be covered with affine open
subschemes U; = Spec A; such that Fly, = M7 for some finitely generated
A;-module M;.

Proposition 6.2.3. Let X be a scheme and F be a quasi-coherent sheaf on
X. Then for any affine open subscheme U = Spec A of X, there exists an
A-module M such that F|y = M~. If X is Noetherian and F is coherent,
then M is finitely generated.

Proof. See Proposition 1.4.5 in [Fu06]. O

Corollary 6.2.1. Let X be a scheme and F,G be quasi-coherent Ox-
modules.

(1) The tensor product F ®p, G is quasi-coherent, and if F is of finite
presentation, then 2.0, (F,G) is quasi-coherent.

(2) Let ¢: F — G be a morphism. Then ker ¢, coker ¢ and im ¢ are quasi-
coherent.

If X is Noetherian, then the same statements hold for coherent sheaf.
Proof. See Corollary 1.4.6 in [Fu06]. O

Proposition 6.2.4. Let f: X — Y be a morphism of schemes.

(1) If G is a quasi-coherent Oy-module, then f*G is a quasi-coherent Ox-
module.

(2) If X and Y are Noetherian and G is coherent, then f*G is coherent.

(3) If f is quasi-compact and quasi-separated, and F is a quasi-coherent
Ox-module, then f.F is a quasi-coherent Oy-module.

Proof. See Proposition 1.4.9 in [Fu06]. O
6.2.3. Coherent sheaves on general scheme.

Definition 6.2.4 (coherent sheaf on ringed space). Let (X, Ox) be a ringed
space. An Ox-module F is called coherent if F is of finite type and for every
open subset U of X and every homomorphism w: O(GJB” — Flu, the kernel of
u is of finite type.

Proposition 6.2.5. Let (X, Ox) be a ringed space.

(1) Suppose Oy is coherent. Prove that an Ox-module F is coherent if and
only if F is of finite presentation.

(2) Prove that Definition 6.2.4 of coherence coincides with the one in Defi-
nition 6.2.3 for Noetherian schemes.

Proof. See Exercise 7.11.2. (|
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Lemma 6.2.1 (Oka). Let X be a complex manifold and Ox be the sheaf
of holomorphic functions (and thus (X, Ox) gives a locally ringed space).
Then Ox is coherent.

6.3. Sheaf of ideals.

Definition 6.3.1 (sheaf of ideals). Let (X, Ox) be a ringed space. A sheaf
of ideals Z of Ox is an Ox-submodule of Ox.

Definition 6.3.2 (support). Let (X,Ox) be a ringed space and F be an
Ox-module. The support of F is defined to be the set

suppF ={p e X | F, # 0}.

Proposition 6.3.1. Let X be a scheme and F be a quasi-coherent Ox -
module of finite type. Then supp F is a closed subset of X. Suppose further-
more that X is Noetherian. Then for every coherent sheaf of ideals 7 of Ox
such that supp F C supp(Ox/Z), there exists n € N such that Z"F = 0.

Proof. See Proposition 1.4.14 of [Fu06]. O

Definition 6.3.3 (scheme theoretic image). Let f: X — Y be a morphism
between schemes. A closed immersion i: Z — Y such that f =iog for a
morphism g: X — Z is called a scheme theoretic image, if ¢ statisfies the
following universal property: For every factorization f = i’ o ¢’ such that
1 Z' - Y is a closed immersion and ¢’: Z’ — Y is a morphism, there exists
a unique morphism j: Z — Z’' such that i’ oj =i and jog =¢'.

Proposition 6.3.2. Let f: X — Y be a quasi-compact and quasi-separated
morphism between schemes. Then f(X) is its scheme theoretic image.

Corollary 6.3.1. Let f: Z — X be an immersion. If f is quasi-compact,
then f can be factorized as Z — F — X such that the first arrow is an open
immersion and the second arrow is a closed immersion.

Proof. See Corollary 1.4.17 of [Fu06]. O

Proposition 6.3.3 (Chow’s lemma). Let S be a Noetherian scheme and
f: X — S be a proper morphism. Then there exists a projective morphism
g: X' — X such that f o g is projective, and g induces an isomorphism
g Y (U) — U for some dense open subset U of X.

X 25X
\lf
S
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Proof. See Proposition 1.4.18 of [Fu06]. O

6.4. Coherent sheaves on Proj. Let S = @7, S be a graded ring and
M is a graded S-module.

Definition 6.4.1 (shifted graded module). M (n) is the graded S-module
whose underlying S-module is M and whose grading is defined by (M (n))q =
Myin.

Definition 6.4.2. For every homogeneous prime ideal p of S, define M,
to be the Sy)-module

Mgy = {? | me M and ¢t € S\ p are homogeneous of the same degree}.

Definition 6.4.3. For every homogeneous element f in S, define M) to
be the S(y)-module

My = {% | k € N and m € M is homogeneous of degree kdeg f}.

Definition 6.4.4. The Op,js-module associated to M, denoted by M~ is
defined as follows: For every open subset U C Spec A, M~ (U) consists of
those mappings s : U — Ipespec aM(y) satistying the following two condi-
tions

(1) For every p € U, one has s(p) € M.

(2) For every p € U, there exists an open neighborhood U, of p,m € M and
f € S of the same degree, such that for every q € Uy, one has f ¢ q and
S(q) = m/f in M(q)

For every inclusion of open subsets V' C U, M~(U) — M~ (V) is defined to

be the restriction of mappings.

Proposition 6.4.1.

(1) For every p € Proj S, one has (M), = M,.

(2) For every homogeneous element f in S of positive degree, one has
M™|p(s) = (M)~

(3) M~ is quasi-coherent. If S is Noetherian and M is finitely generated
S-module, then Proj S is Noetherian and M™ is coherent.

Definition 6.4.5 (twisting). For any integer n,Opyojs(n) is defined by
S(n)~ and Opyoj 5(1) is called the twisting sheaf. Moreover, for any Op,; g-
module F, define

‘F(n) = ‘F ®0Proj S OPTOJ S(n)
Proposition 6.4.2. Let S be a graded ring which is generated by S as a
Sp-algebra.
(1) Oprojs(n) is an invertible sheaf for every n.
(2) Let M and N be S-modules. Then

(M ®s N)~™ =M~ QOpojs N™.
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Proposition 6.4.3. Let S be a graded rings which are generated by S
as Sp-algebra and so is T. Let ¢: T — S be a homomorphism with the
property ¢(Sy) C Ty for all d, and
U=1{qeProjT |5, o (a).
Then U is an open subset of Proj7T" and ¢ induces a canonical morphism
f: U — Projs.
(1) For every graded S-module M, one has
M~ = (Tes M) |y.
In particular, one has

[ Oprojs(n) = Oprojr(n)|u-
(2) For every graded T-module N, one has
f«(N"|y) = N7,
where on the right hand side, N is regarded as an S-module.

6.4.1. Graded S-module associated to Opojs-module. Let S be a graded
ring which is generated by S as Sg-algebra and X = Proj S.

Definition 6.4.6 (graded S-module associated to Op;ojs-module). For any
Ox-module F, the graded S-module associated to F is defined by

rF) = @ Fmx),

n=—oo

where the S acts on I'y(F) by the following composite of canonical homo-
morphisms

Sa @ F(n)(X) = Oprojs(d)(X) @ F(n)(X) = F(d+n)(X).

Proposition 6.4.4. Let 7 be a quasi-coherent Op,oj s-module. Then I', (F)™~
F.

Corollary 6.4.1.

(1) Let X be a closed subscheme of P} = Proj A[zo,...,zy], where A is a
ring. Then X is isomorphic to Proj A[zg,...,zy]/a for some homoge-
neous ideal a of Afzg, ..., Zm].

(2) A scheme X over Spec A is projective if and only if it’s isomorphic
to ProjS for some graded ring S such that Sy = A and S is finitely
generated by S; as Sp-algebra.

6.4.2. Ampleness and globally generated.

Definition 6.4.7 (very ample). Let X be a S-scheme. An invertible Ox-
module £ is called very ample over S if there exists an immersion i: X — P
which is an S-morphism such that

L =i*(Opp(1)).

>~
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Definition 6.4.8 (generated by global sections). An Ox-module F is gen-
erated by global sections if there exists a family of sections s; € F(X) such
that for every p € X, F, is generated by the germs (s;), as an Ox ,-module.

Theorem 6.4.1 (Serre). Let X be a scheme proper over Spec A for a
Noetherian ring A, let Ox (1) be an invertible O x-module very ample over
Spec A, and let F be a coherent Ox-module. There exists an integer N such
that for every n > N, the Ox-module F(n) = F@OxOx(1)®" is generated
by finitely many global sections.
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Part 3. Homework
7. HOMEWORK
7.1. Homework-1.

Exercise 7.1. 1. A filtered abelian group is a pair (A, F'®*A) such that A is
an abelian group and

D FADFTAS ..

is a decreasing family of subgroups of A with indices i € Z. A homomor-
phism f: (A, F*A) — (B, F*B) of filtered abelian groups is a homomor-
phism f: A — B of abelian groups such that f(F*A) C F'B for all i € Z.

(1) Prove that filtered abelian groups form an additive category with zero
objects and every morphism has kernel and cokernel.

(2) Given an example of a morphism f such that the canonical morphism
coim f — im f is not an isomorphism.

Proof. For (1). Suppose (A, F*A) and (B, F*B) are filtered abelian groups.
The direct product of (A, F'*A) and (B, F'*B) is given by (A®, F*(A® B)),
where the filtration of A @ B is given by F'(A® B) = F'A® F'B, and
it’s clear morphisms between (A, F*A) and (B, F'*B) form an abelian group
such that the composition is bilinear. This shows the category of filtered
abelian groups is additive, and the zero object in this category is zero group
with trivial filtration.

Suppose f: (A, F*A) — (B, F*B) is a morphism between filtered abelian
groups. Since f is also a group homomorphism between abelian groups, it
has kernel and cokernel in the category of abelian groups. More precisely,
ker f C A and coker f = B/im f. Then the filtrations on A and B induce
filtrations on ker f and coker f respectively, and thus it gives kernel and
cokernel in the category of filtered abelian groups.

For (2). Suppose A = Z & Z with filtration Z®Z D Z D {0} and B =
Z®ZLZDZ with filtration ZHZDZ D Z®Z D {0}. For homomorphism
given by

A— B
(a,b) — (a,b,0),

the coimage is exactly A with filtration Z@Z D Z D {0}, but the image is
Z @ Z with filtration Z®Z D Z S Z O {0}. O

Exercise 7.2. Let 0 = A — B — C — 0 be a sequence of morphisms in
an abelian category. Prove the following statements are equivalent:

(1) The sequence is a short exact sequence.
(2) B — C is an epimorphism and A — B is its kernel.
(3) A — B is a monomorphism and B — C' is its cokernel.

Proof. Firstly let’s show the following lemma:
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Lemma 7.1.1. Suppose B = C — 0 is a sequence of morphisms in an
abelian category. Then the following statements are equivalent:

(a) B— C — 0 is exact.
(b) the cokernel of v is C' — 0.
(¢) v is an epimorphism.

Proof.

(a) to (b): If B — C — 0 is exact, then coimv = imwv is the kernel of
C — 0, that is the imv = C — C. On the other hand, im v is the kernel of
cokernel v. Thus the cokernel of v is C' — 0.

(b) to (a): If the cokernel of v is C' — 0, then coim v = imv = ker(cokerv) =
ker{C — 0}, that is B — C — 0 is exact.

(b) to (c): If the cokernel of v is C' — 0 and «, 8: C' — D are morphisms
such that «ov = fov. Then («— ) ov = 0, and thus by universal property
of cokernel there exists the following commutative diagram

B—-(C——0

a—ﬁl
g
D

This shows a = 3, that is, v is an epimorphism.

(c) to (b): If v is an epimorphism and f: C'— D is a morphism such that
fov =0, then f =0 since v is an epimorphism, and thus every morphism
f such that f owv = 0 factors through C' — 0, that is, the cokernel of v is
C —0.

O
Remark 7.1.1. By the same argument one can see a sequence of morphisms

0 — A 5 B in abelian category is exact if and only if u is a monomorphism,
also if and only if 0 — A is the kernel of u.

Now suppose 0 — A = B = C — 0 is an exact sequence in abelian
category. Then we claim v is the kernel of v: Since v ou = 0, by the
universal property of kernel there exists the following diagram

0 A “ B

\L \\\) T

coim{0 — A} —— kerwv

/g

Note that @ is an epimorphism, since A — coim{0 — A} is an epimorphism
and coim{0 — A} — kerv is an isomorphism. Moreover, T is a monomor-
phism since u is a monomorphism: If o, 8: D — A such that woa =uo 3,
then we compose them with kerv — B, one has uo a = u o 3, and thus
a = . Then w is both monomorphism and epimorphism, and since the
category is abelian, one has w is an isomorphism, and thus u is the kernel
of v. By the same argument, it’s easy to see v is the cokernel of wu.
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In a summary, above arguments show that (1) implies (2) and (3). To see
(2) implies (1), it suffices to show 0 - A — B — C'is exact, since v: B — C
is epimorphism already implies B — C' — 0 is exact. Firstly, since u is the
kernel of v, then it’s monomorphism, and thus 0 — A — B is exact. By
previous lemma one has 0 — A is the kernel of u, and thus coimu = A — A.
On the other hand, kernel of v is u. This shows the coimage of u is exactly
the kernel of v, that is A -+ B — C' is exact.

0 y A ® y B * 5 C
comu=A4 ----- y kerv=A

]

Exercise 7.3. Let A and B be objects in an abelian category. Prove that
the canonical sequence

0—>A3A@B’33—>0

is exact.

Proof. By Exercise 7.2 it suffices to show 47 is a monomorphism and cokernel

of i1 is po. By definition there exists p;: A® B — A such that p; oi; =idy

and is: B — A @® B such that py o io = idg. Moreover, ps 0411 = p1 0ig =0

and i o p; + 42 0 po = idagB-

(1) Suppose «,3: C — A are morphisms such that i; o « = i; o 5. Then
proiioa =p;oi;of implies a = 3, and thus 77 is a monomorphism.

(2) Suppose a: C' — A @ B is a morphism such that ps o & = 0. Then

itoproa = (igopy+izops) o = a.
Thus we have the following commutative diagram

OHAL)A@BLBHO
p10a1\/
C

This shows i1: A — A @ B satisfies the universal property of kernel.
O

Exercise 7.4. Let I be a category whose objects form a set, and let F' be a
covariant functor from I to the category of Abelian groups. For each ¢ € I,
let k;: F(i) — @,c; F(i) be the canonical monomorphism. Let H be the
subgroup of @, ; F'(i) generated by

ki) = ki (F (i = j) (@),
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where ¢ — j goes over all morphisms in I, and x; goes over all elements

F(i). Set
lim F(i) = (@ F(i)) /H.

el iel
Let ¢;: F(i) — lim, F(i) be the composite of k; with the projection
@B,c; F(i) = (@,c; F(i)) /H. Then we have ¢; o F(i — j) = ¢; for ev-
ery morphism ¢ — j in I. If A is an abelian group and ¢;: F (i) - A (i € I)
is a family of homomorphisms such that v o F(i — j) = 4; for all mor-
phisms ¢ — j in I, then there exists one and only one homomorphism

Y liglie] F(i) — A such that ¢ o ¢; = 4; for all i.

Proof. Firstly let’s show the existence: Note that by universal property of
direct sum, there exists a morphism ¢: €, F'(i) — A, such that ¢); = ¢pok;,
where k;: F(i) — €, F'(i) is canonical inclusion. Moreover, for any element
ki(z;) — kj(F(i — j)(z;)) € H, one has

P(ki(xi) — ki (F (i = j)(21))) = Yi(wi) — by 0 F(i — j)(xi) = 0.
This shows H C ker ¢, and thus we obtain a morphism 1) : hﬂie[ F(i)— A
induced by ¢, and it’s clear i; = 1 o ¢;.

L~
o @, F() —23 A
| =
ling e, F/(2)
Before we begin to prove the uniqueness, we claim any element of ligni6 F (1)

can be written in the form ¢;(z;) for some i € I and some x; € F(i): For
any element 2 € lim, F(i) = @,c; F(i)/H, we write it as

z= dilzj), wj€F(j).
j=1

It suffices to check the case of n = 2: Since [ is a directed set, there exists
k € I such that k > 1,k > 2. Then

¢1(I1) + QZ)Q(.TQ) = qbk o F(l — k)($1) + gf)k o F(2 — k:)(QZQ)
Then x can be written as ¢y (F'(1 — k)(z1) + F(1 — k)(x2)) as desired.
Let’s show the uniqueness: If ¢’: lim, _ F (1) — A is another morphism

such that ¢; = ¢ o ¢; for all i € I. By above claim, we know each element
can be written as ¢;(z;) for z; € F(i). So it suffices to check ¥ (¢;(x;)) =
' (¢i(x;)), which is clear

P(pi(xi)) = Pi(x:) = V' (Pi(wi)).
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O

Exercise 7.5. Let (A;, ¢ji)ien be an inverse system of abelian groups over
the direct set (N, <) of natural numbers. Consider the homomorphism

FoJJA = T4 (@) = (ai = ¢isri(air)).
i€N i€N
Define @111 A; = coker f. Let u: (A}, ¢ji)ien — (Ai, ¢ji)ien and v: (As, ¢ji)ien —
(A”. ¢ji)ien be morphisms of inverse systems of abelian groups such that the
sequences
0— A =5 A, =5 A7 — 0

are exact for all 4.

Prove that we have an exact sequence 0 — lim, A — lim_ A; — lim, A7 —
lim} A} — lim! A; — lim} A7 — 0.
Proof. Consider the following commutative diagram consisting of exact se-
quences

ker f’ ker f ker f”

0 —— [Ler 4 LN [Licr As v [Lic; A7 —— 0

f f 1

v ~ v

0 ’ Hie] A ’ Hie[ A; — Hie[ A;, — 0

~

coker f’ coker f coker f”

Since ker f = @11 A;, the snake lemma yields the desired result. O
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7.2. Homework-2.

7.2.1. Part I. In the following, we work with morphisms in an abelian cat-
egory C.
Exercise 7.6. Let f: A — B and g: B — C be morphisms.

(1) Suppose f and g are monomorphisms. Prove g o f is a monomorphism.
(2) Suppose g o f is a monomorphism. Prove f is a monomorphism.

Proof. For (1). Suppose a,3: D — A are arbitrary morphisms such that
gofoa=gofof. Then foa = fof since g is a monomorphism, and
thus o = 3 since f is also a monomorphism.
For (2). Suppose «, 3: D — A are arbitrary morphisms such that foa =
f o pB. By composing g one has
gofoa=gofop,
and thus a = 3 since g o f is a monomorphism. O

Exercise 7.7. Let f: A — B be a morphism in C. Recall that we have a
commutative diagram

A—1 B

| [

coim f =5 im f

Moreover A — coim f is an epimorphism and im f < B is a monomorphism.
Suppose we have a commutative diagram

A—1.B
@ Tw
C D

such that ¢: A — C is an epimorphism, ¢: D — B is a monomorphism, and

14

C =2 D is an isomorphism. Prove that there exist isomorphisms coim f =Wei
and D — im f such that the following diagram commutes:

A—2 ¢ DY B
>~ 7
coim f —— im f

Thus ¢: A — C can be identified with ¢: A — coim f, and ¥: D — B can
be identified with im f — B.

~

Proof. For convenience we denote the kernel of f by 7: ker f — A, denote
the isomorphism between C' and D by g, and denote canonical morphism
from A to coim f by u.

Note that Y ogogpoT = for = 0. Then ¢p o7 = 0 since ¢ is a
monomorphism and ¢ is an isomorphism. By universal property of cokernel
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there is a morphism from coim f — C, denoted by «. Since aou = ¢
and both ¢ and u are epimorphisms, one has « is an epimorphism. By
the same argument one can see there exists a morphism g: imf — D
which is a monomorphism. Since C is an abelian category, there is canonical
isomorphism between coim f and im f, and thus « is a monomorphism and
B is an epimorphism. This shows both a and 3 are isomorphisms in C, since
C is an abelian category.

0 —— kerf ——— A B coker f —— 0
I
coim f --%-» C —2 D P im f

O

Exercise 7.8. Define the opposite category C° of C as follows:
(a) C° has the same objects as C. For any object A in C, we denote the
corresponding object in C° by A°.
(b) For any objects A and B in C, we define
Homgeo (A°, B°) = Home(B, A).
For any morphism ¢: A — B in C, we denote by ¢°: B° — A° the
corresponding morphism in C°.
Then
(1) Prove that C° is an abelian category.
(2) Suppose
A4 BYSC
is an exact sequence in C. Prove that
BB A
is an exact sequence in C°.

Proof. For (1). Firstly, let’s see C is an additive category. For objects A°, B°
and C° of C°, by definition Homeo(A°, B°) = Home¢(A, B) is an abelian
group, and the composition

Homee (A°, B°) x Homes (B°, C°) — Homes (A°, C°)

is bilinear. Moreover, the direct sum of A°, B® in C° is the product of A, B
in C, which also exists. Secondly, let’s show C° is an abelian category. For
morphism f°: B® — A° in C° corresponding to f: A — B in C, we're
going to show the kernel of f° is the cokernel of f. For arbitrary morphism
a®: C° — B° such that f° o« = 0, by universal property of kernel, there
exists the following commutative diagram
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ker f° B° i y A°

«

o
This corresponds to the following commutative diagram in category C

kerf°<—B<LA

Then by uniqueness of cokernel, one has ker f° is exactly the cokernel of f.
Similarly one can show the cokernel of f° is exactly the kernel of f. This
shows for any morphism f°: B® — A°, it has kernel and cokernel since C
is an abelian category. Moreover, by the same argument it’s easy to see
coim f° is isomorphic to im f, and im f° is isomorphic to coim f, and thus

coim f° = im f°,
since C is an abelian category.

For (2). Note that A % B X (s exact if and only if ker ¢ = coim ¢, and
since C is an abelian category, it’s equivalent to ker ¢ = im ¢. By arguments
in the proof of (1) it’s equivalent to coker ¢° = coim ¢°. O

7.2.2. Part I1.

Exercise 7.9. Let X be a topological space, A an abelian group endowed
with the discrete topology, and F the sheaf so that F(U) is the group of
continuous maps from U to A for every open subset U of X. Prove that F
is isomorphic to the sheaf associated to the constant presheaf U — A.

Proof. Firstly note that if A is equipped with discrete topology, then con-
tinuous map f from U to A is locally constant since every point a € A is an
open subset, and thus its preimage f~1(a) is an open subset in U. On the
other hand, by the construction of constant sheaf associated to the constant
presheaf, the sections of it over U are also locally constant maps from U to
A. This shows F is exactly the sheafication of constant presheaf. O

Exercise 7.10. For every open subset U of the complex plane C, let O(U)
be the ring of holomorphic functions on U, and let O*(U) be the group of
units in O(U). Prove that the morphism O — O* defined by
o) — 0*(U)
f = e?w\/jf
is an epimorphism in the category of sheaves of abelian groups, but not an

epimorphism in the category of presheaves. Here we regard O as a sheaf of
abelian groups with respect to addition of functions. Prove that the kernel of
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this morphism is isomorphic to the sheaf associated to the constant presheaf
U~ Z.

Proof. For the first part, if we want to show O 2B 0* 5 0 is an exact
sequence in the category of sheaves of abelian groups, it suffices to check for
each x € C, the following sequence of stalks is exact

0, 22 0 > 0.

It holds since for any non-vanishing holomorphic function f, log f is well-
defined on a sufficiently small neighborhood of x, which proves the surjec-
tivity. On the other hand, O IR O* = 0 is not an exact sequence in the
category of presheaves of abelian groups, since

o(c*) 2B o*(C*) =0

fails to be an exact sequence.
For the half part, we need to prove

02250 28 o

is an exact sequence in the category of sheaves of abelian groups. It suffices
to show for any open subset U C C, the following sequence of abelian groups
is exact
0 = ZU) ™5 ow) =% 04 (U).

If u: U — Z is a locally constant function, then it’s clear exp(27y/—1u) = 0.
Conversely, if v: U — C is a holomorphic function such that expv = 0.
Then for each x € U, v(z) = 2my/—1u(x), where u: U — Z is a continuous
function since v is continuous, and thus v € 2wv/—1Z(U), since continuous
integral-valued function is locally constant. (]

Exercise 7.11. Let C be a category. For any object X € ob C, let X:C—
(Sets) be the contravariant functor from C to the category of sets defined by

X(Y) = Hom(Y, X).

A functor from C to the category of sets is called representable by X if it is
isomorphic to X. For any contravariant functor G: C — (Sets), prove that
we have a one-to-one correspondence

Hom(X, @) — G(X)
o — ax(idx),

where Hom()? ,G) is the set of natural transformations from the functor X
to the functor G. Prove the same result for covariant functors.

Proof. Let us first check this correspondence is surjective: For an object
s € G(X), we define @ = a(s): X — G as follows: For X' € C, let

ayx: X(X') — G(X’') be the morphism of set which sends f: X' — C
to G(f)(s). Now let’s show a: X — G is a natural transformation: For
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any morphism ¢: X” — X’ in C, it suffices to show the following diagram
commutes

X(x) 25 qx)

lf( (9) lG (9)

X(X") =% G(x”)

For any element f € )N((X’), that is, a morphism f: X’ — X, one has
G(fog)(s) =G(g) o G(f)(s).

This shows above diagram commutes by the construction of . Moreover,
it’s clear

ac(idx) = G(idx)(s) = s
as desired.

To see above correspondence is injective: If there are two natural transfor-
mation o, n: X — G such that ax(idx) = nx(idx), we need to show a = 7.
In other words, it suffices to show for any X’ € C, we have ax: = nx. For
any morphism ¢g: X’ — X, as « is a natural transformation, we have the
following commutative diagram

X(X) 25 G(X)

l)? (9) lG(g)
X(X') 2% G(x)
It follows that

G(g) o ax(idx) = axs o X(g)(idx) = ax(g).
Similarly as 7 is a natural transformation, one has (G(g)onx)(idx) = nx/(g).
Hence
ax(g) = G(g) o ax(idx) = G(g) o nx (idx) = nx+(9)-
By considering the opposite category, it’s clear the same result holds for
covariant functors. (|

Exercise 7.12. Let u: C — D be a functor. Suppose that for each object
D € ob D, the functor

C — (Sets)

C +— Hom(u(C), D)
is representable by an object v(D) € ob C. Then v: D — C is a functor right
adjoint to u.

Proof. In other words, for any objects C € C, D € D, there is an one-to-one
correspondence

Hom(u(C), D) =2 Hom(C,v(D)).
Thus by definition v is a right adjoint to u. O
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Exercise 7.13. Let u: C — D be a functor.

(1) We say w is faithful (resp. fully faithful) if for any objects C1,Cs € ob C,
the map
Hom (C1,C2) — Hom (u (Cy) ,u (Cy))
is injective (resp. bijective).
(2) We say u is essentially surjective if for any object D in D, there exists
an object C in C such that we have an isomorphism u(C) = D.
(3) We say u is an equivalence of categories if u is both fully faithful and

essentially surjective.
Suppose u is an equivalence of categories. For any D € ob D, choose an
object v(D) € ob C such that uov(D) = D. Prove that v is a functor that
is both left and right adjoint to u: D — C. It is called a quasi-inverse of wu.

Proof. Firstly let’s show v is a functor: If f: D; — D5 is a morphism in D,
then consider the following commutative diagram

D1 L) ’U(Dl) #> D1

lf () lf

DQ — U(DQ) — D2

Since u is an equivalence of categories, and thus it’s fully faithfully, so there
exists a morphism v(f): v(D;) — v(D3) still making above diagram com-
mutes, which shows v is a functor.

Now let’s show v is the right adjoint of u, that is to show for any C' € C and
D € D, there is a one-to-one correspondence Hom(u(C), D) = Hom(C, v(D)).
Note that u is essentially surjective, so there exists C’ such that u(C’) = D,
and thus

Hom(u(C), D) = Hom(u(C),u(C")) = Hom(C, C").
On the other hand, one has
Hom(C,v(D)) = Hom(C,vou(C")) = Hom(u(C), uovou(C")) = Hom(u(C),u(C")) = Hom(C, C").

This shows v is the right adjoint of v, and by the same argument one can
see v is the left adjoint of w. O
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7.3. Homework-3.

Exercise 7.14. Let A be a ring. For every open subset U of Spec A, let
Sy be the multiplicative subset Sy = (¢ (A — p), and let P(U) = S A.
For every inclusion V' C U of open subsets, we have Sy C Sy and hence we
have a canonical homomorphism P(U) — P(V). This makes P a presheaf
of rings on Spec A. Prove that Ogpec 4 = PT.

Proof. It suffices to show for each point p € Spec A, one has
OSpec Ap = ,P;—-

Note that Ogpecap = Ap, so it suffices to show 'P; = A,. But by the
construction of P, one has
. . -1
P;r =P, = h_r>n73(U) = thU A.
peU peU
Now it suffices to show that A, satisfies the universal property of inverse limit
hﬂpeU S(;lA, which follows from the universal property of localization. [J

Exercise 7.15. Let S be a multiplicative subset of a ring A. Prove that
the canonical morphism Spec S~'A — Spec A induces an embedding on the
underlying topological spaces.

Proof. Recall that the prime ideals in S~ A are in one to one correspondence
with prime ideals in A which do not intersect with S, and the correspondence
is given by pullback. This shows the canonical morphism ¢: SpecS™1A —
Spec A is bijective, and it’s clear that ¢ is continuous, so it suffices to show
that ¢ is closed.

Note that every ideal in S™'A is an extended ideal, that is, it’s of the
form S~'a, where a C A is an ideal. Then

¢(V(S™'a)) = ¢({S7'p | ST'a C S7'p, p is prime})

={p|aCp, pis prime}
= V(a).

This completes the proof. O

Exercise 7.16. Let x be a point in scheme X, and let k(z) = Ox ,/m,
be the residue field at z. Construct a natural morphism i: Speck(z) — X
with image « so that the homomorphism Ox , — k(x) induced by it is the
canonical homomorphism.

Proof. If we want to construct a morphism from scheme Speck(z) — X,
it suffices to construct a continuous map between topological spaces and a
morphism between structure sheaves.

(1) For the continuous map between topological spaces Speck(x) and X,
we simply send Spec k(z) to the point x € X since Speck(z) is just a
single point.
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(2) For the morphism i* between structure sheaves, it’s defined as follows:
For open subset U C X, if: Ox(U) — Ospeck(z) (i1 (U)) = k(x) is
defined by

Ox(U) i> (’))(7Z — k(ac),
where « is given by taking limit if € U, otherwise « is zero map.

Then above data gives a morphism between schemes Spec k(x) and X, and

by definition the homomorphism Ox, — k(z) induced by i* is canonical

morphism. O
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7.4. Homework-4.

Exercise 7.17. Let X be a topological space and Cx be the sheaf of
complex-valued functions on X. Prove that (X, Cx) is a locally ringed space.
Moreover, for each p € X, one has

mp = {f € Cxp | f(p) =0},
and the residue field k(p) = C.

Proof. To show (X,Cx) is a locally ringed space, it suffices to show that for
each p € X, every element in Cx, \ m, is a unit. Then m, is the unique
maximal ideal and thus Cx , is the local ring.

For f € Cx,\m,, since f(p) # 0, we may construct a continuous function
g defined on an open neighborhood U of p such that g(p) = 1/f(p). Then g
is an inverse of f in Cx ).

To see the residue field, it suffices to note that

0—mp,—=Cxp,—C—0

is an exact sequence. ([l

Exercise 7.18. Let f: U — X be an embedding of topological spaces.
Then for any sheaf F defined on U and p € U, prove that

(f*]:)f(p) = Fp

Proof. Since f is a topological embedding, without lose of generality we may
assume U C X equipped with subspace topology and f is the inclusion map
i: U — X. By definition one has
(i F)p= lim i.F(V)
peVCX
= lm FE(V))
peVCX
= hﬂ F(VnNU).
peVCX
On the other hand, since U is equipped with subspace topology, every open
subset of U containing p is exactly of the form V NU, where V C X is an
open subset containing p. This shows
iy F(VNU) = lig F(U) = F,
peVCX peU
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7.5. Homework-5.

7.5.1. Part I.

Exercise 7.5.1. Let S be a graded ring.
(1) Let p be a prime ideal of S, and let
P =P Sa).
d

Prove that p’ is a homogeneous prime ideal of S.
(2) Let a be a homogeneous ideal of S. Prove that \/a is the intersection of
homogeneous prime ideals containing a.

Proof. For (1). Note that for any degree d, one has

p’ NSg=pnNSy.
This shows
P =P NS =P NS,
d d

and thus p is a homogeneous ideal.

To see p’ is prime, it suffices to show if a, b are two homogeneous elements
such that ab € p’, then either a or b in p. Since both a and b are homoge-
neous, then ab is also homogeneous. If ab € p N Sy, then either a or b in p
since p is prime, and thus either a or b in some p NSy since both a and b are
homogeneous. This completes the proof of p’ is a prime homogeneous ideal.

For (2). Suppose I is the set of all homogeneous prime ideals of S con-
taining a. Firstly one has v/a C [,/ p" since y/a equals the intersection
of all prime ideals containing a. On the other hand, for any prime ideal
p containing a, one has the homogeneous prime p’ = @ (p N Syz) C p also
contains a, since

a=EPanS.) CEPansSy).

d P
Thus va = @y, b’ as desired. O

Exercise 7.5.2. Let ¢: S — T be a homomorphism of graded rings. Sup-
pose there exists an integer m > 1 such that ¢(Sy) C Tyq for all d. Let I be
the homogeneous ideal of T' generated by ¢(S), and let U = Proj T —V(T).
Construct a morphism f: U — Proj S of schemes so that f(q) = ¢~'(q) for
any q € U and that fg: Oprojs,£(q) — OprojT,q can be identified with the
homomorphism ¢q: Sig-1(q)) = T{q)-

Proof. Firstly let’s construct the continuous map between the base topolog-
ical spaces U and ProjS. Since ¢: .S — T is a homomorphism of graded
rings, one has the pullback of a homogeneous ideal q C T still is a homoge-
neous ideal of S. As a consequence, if ¢ € U = Proj T\ V(T), one has ¢~ *(q)
is a homogeneous prime ideal, and ¢~!(q) doesn’t contain S, otherwise g
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will contain T, which is a contradiction. This shows f(q) := ¢~ 1(q) gives a
well-defined map from U to Spec .S, which is also continuous.

Now let’s construct the morphism between structure sheaves Op.; 5 and
f+«Ou, where Oy is Ogpecr|v in fact. For each open subset V' C Spec S, it
suffices to construct a homomorphism of rings

Oprojs(V) = Ou(f~H(V)) = Oprojrlu(f 71 (V)),

which is compatible with the restriction map between different open subsets.
Given q € Proj T\ V(T), we will construct a homomorphism ¢q: Sy-1(q) —
T{q) as follows: For any element s/t € S,-1(q), ¢(s/t) is defined by ¢(s)/¢(t).
Since t & ¢~ 1(q), one has ¢(t) & q, and thus ¢(s/t) € Ty. On the other hand,
since ¢ is a ring homomorphism between graded rings, it maps elements of
degree zero to the one of degree zero, and thus ¢(s/t) € T(q) as desired.
For any element s € Oprojs(V), it’s amap s: V — ][, S, satisfying some
properties. Given q € f~%(V) with ¢~'(q) = p, that is, f(q) =p € V. By

composing

ol
a5 p % S 25 T,

one can construct amap t: f~1(V) — qes-10v) Tq)- A routine check shows

that ¢ gives an element of Oy (f~1(V)), and this correspondence gives a
morphism between sheaves Op,qj5 — f«Op such that the induced morphism
on stalks is exactly ¢q: S(g-1(q)) = L{(q)- (]

Exercise 7.5.3. Let A be a ring, I an ideal of A, and S = @7, I, Then
S is a graded ring. We call Proj S the blowing-up of Spec A along the ideal
I. Prove that the inclusion A = Sy — S induces a morphism of schemes
f: Proj S — Spec A such that over the open subset U = Spec A — V(I), f

induces an isomorphism f~(U) = U,

Proof. For convenience we denote the inclusion i: A < S. Firstly let’s show
the inclusion ¢ gives a continuous map f between topological spaces between
Proj S and Spec A with im f C U. Given p € Proj S, one has i~ 1(p) is a
prime ideal of A, and i~!(q) cannot contain the ideal I, otherwise q contains
all power of I, and thus it contains Sy, a contradiction.

(1) Note that the continuous map f: ProjS — U is surjective, since for
any prime ideal p C A, automatically it’s a homogeneous prime ideal in
S with f(p) = p.

(2) On the other hand, if homogeneous prime ideals p,q € S such that
i~Y(p) =i '(q), then p = i~ 1(p)S,. = i71(q)S+ = q. This shows f is

injective.
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(3) Finally let’s show f is a closed map. Suppose Vi (a) is a closed subset
of Proj S, where a C S is a homogeneous prime ideal. Then

f(Vi(a)) = f({p € Proj S | a C p})
={i"'(p) | p € ProjS,a C p}
= {p € SpecA i !(a) Cp}

= V(i Y(a)).

Above arguments shows that f~1(U) U as topological spaces.

To see there exists an isomorphism between structure sheaves Oy and
J+O -1, it suffices to show Oy r,) = Op-1(1), holds for each p € FHU).
On one hand, one has

Ov,sp) = Ai-1(p)-
On the other hand, Op-1 (), = S(p). Note that

Sy = {; | s € S,t € p,s,t are homogeneous and of the same degree. }

It’s clear that there exists an inclusion A;-1(,) <> Sp,). Conversely, for
any s/t € S, it suffices to construct an element a/b € A;-1(,) such that
a/b=s/tin S.

Exercise 7.5.4. Let A = R[z1,...,z,] be a polynomial ring, let I =
(z1,...,2,) be the ideal of A generated by z1,...,x,, let S = @F, I,
let T'= Aly1, ..., yn] be the graded ring so that Ty consists of homogeneous
polynomials of degree d in the variables y1, . .., y, with coefficients in A, and
let J be the homogeneous ideal of T' generated by x;y; —x;v; (i,j =1,...,n).
Consider the epimorphism of graded rings ¢: T — S so that ¢(a) = a € Sy
for any a € A and ¢(y;) = z; € S1. Prove that ¢ induces an isomorphism of

schemes Proj S = Proj Aly1,...,yn]/J.

Proof. Here we only give a proof for n = 2, and cases for more variables are
similar. Firstly note that the kernel of the epimorphism of graded rings

¢o:T — S
contains the ideal J, since ¢(x1y2 — x2y1) = 0. Conversely, if o = ay; + by

is mapped to 0, then it must be in the ideal generated by xiys — xoy1
since x1,xy are algebraically independent. This shows ¢: T — S induces

an isomorphism between graded rings S and Alyi, ..., y,|/J, that is, a ring
isomorphism which preserves the degree. Thus it induces an isomorphism
between schemes Proj .S and Proj A[yi,...,yn]/J. O
7.5.2. Part II.

Exercise 7.5.5. Let S be a graded ring and p be a homogeneous prime
ideal. Prove that

(1) If f € S\ p, then Siy) — Sy is injective.
(2) S(py is a local ring.
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Proof. For (1). Suppose a/f" =b/f™ in S(;). Then there exists a homoge-
neous element s € S\ p such that
s(af™ —=bf") =0.
Then af™ —bf™ = 0 since p is a prime ideal, and thus a/f" = b/ f™ in 5.
For (2). Consider

s
m= {2 | s,t € p,s,t are homogeneous and of the same degree}.

Note that any element outside of m is invertible, and thus m is the only
maximal ideal of the local ring S(y). ]

Exercise 7.5.6. Prove that if @ # U C Spec A, then 0 # 1 € Ospec a(U).

Proof. Since @ # U, we may assume there exists a non-zero ideal p €
U. If 0 =1 € Ogpeca, that is, Ogpec a(U) is a zero ring, then for any
open subset V' C U, one has Ogpec 4(V) is also zero ring. In particular,
hglpeU Ospec a(U) = Ay is a zero ring, a contradiction. O
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7.6. Homework-6.

Exercise 7.6.1. Let X be a Noetherian topological space and let F be
a presheaf. Suppose that for every open subset U and every finite open
covering (U;)ier, the following conditions hold:

(1) For any sections s,t € F(U) such that s|y, = t|y, for every ¢ € I, then
s=t.

(2) Let s; € F(U;) be sections such that s;|y,nu; = sjlv,nu; for every pair
i,j € I. Then there exists a section s € F(U) such that s|y, = s; for
every i € 1.

Prove that F is a sheaf.

Proof. For a Noetherian topological space X, any open subset U C X is
quasi-compact, that is, any open covering of U admits a finite subcovering.
Thus it suffices to chech above two conditions for every finite open covering.

O

Exercise 7.6.2. Let (Fj, ¢i;)icr be a direct system of sheaves of abelian
groups on X, and let li 2,]:i be the sheaf associated to the presheaf U —

ligi Fi(U). Prove that hﬂz}-l is the direct limit of (F;, ¢i;)ier in the cate-
gory of sheaves, and for every P € X, we have

Suppose furthermore that X is a Noetherian topological space. Prove that
the presheaf U — lim, Fi(U) is a sheaf.

Proof. Firstly let’s show hgnz F; statisfies the universal property of the direct
limit of (Fj, ¢ij)icr. Suppose C is a sheaf and 1;: F; — C are morphisms
such that 1;¢;; = 1;. Then For any open subset U C X, by the universal
property of hgz Fi(U), one has

For convenience we denote ¢ (U): lim, F(U) — C(U). Since all of ¢;5, 1, 1;
are morphisms between (pre)sheaves, it’s clear that the collection of group
homomorphisms {¢(U)}yc x gives a morphism of presheaves U — lim, Fi(U)
and C, and thus gives a morphism of sheaves hﬂl F; and C.

Secondly, note that
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The morphism lim F;(U) — lim, F;, statisfies the universal property of
taking stalk, and thus by the uniqueness one has

(lim F;), = lim F; .

Finally let’s suppose X is a Noetherian topological space and prove that
U — lim, Fi(U) is a sheaf. For every finite open covering {Uy }qe of U. If
st e @ZE(U) such that s|y, = t|y, for all a € o7, then for each a € &7,
there exists N, such that for all ¢ > N, one has s|y, = t|y, in Fi(Ua).
Since & is a finite index set, we may take N > max{N, | @ € &/}. Then
for all i > N and o € &7, one has s|y, = t|y, in Fi(Ua), and since F; is a
sheaf, one has s = t in F;(U) for all i > N, and thus s =t in lim, Fi(U).
Similarly, one can check the other condition for hgl Fi to be a sheaf by the
same argument. O

Exercise 7.6.3. Let (F;, ¢j)icr be an inverse system of sheaves of abelian
groups on X. Prove that the presheaf U — I&HZE(U) is a sheaf and it is
the inverse limit of (F;, ¢j)icr in the category of sheaves.

Proof. By the same argument as above exercise one can show that gnl Fi
is the inverse limit in the category of sheaves, so here we only prove that
U @ZE(U) is a sheaf.

Recall that a presheaf F is a sheaf if and only if for an open subset U and
open covering {U,} of U, the following sequence is exact

0— F(U) — H]—" ) — H F(Uap)-
Since the inverse limit is left exact, one has

0+ () - [[um 05+ [[ ).
75 g
This completes the proof. O
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7.7. Homework-7.

Exercise 7.7.1. Let f: X — Y be a morphism of schemes which is locally
of finite type. Let V = Spec B be an affine open subscheme of Y and
U = Spec A be an affine open subscheme of X such that f(U) C V.

(1) Prove that f~!(V) can be covered by affine open subschemes {U) =
Spec Ax}aea such that Ay are finitely generated B-algebras.

(2) Prove that there exist finitely many a1, ..., a, € Asuchthat D(a1),...,D(ay)
cover U, and each A, is a finitely generated B-algebra.

(3) Prove that A is a finitely generated B-algebra.

Proof. For (1). Since V' NV is an open subset of V; = Spec B;, then V NV;
is a union of distinguished open subsets D( f;z) = Spec(B;)y,, , and for each
fir € B;, for convenience we still use f;; to denote the image of f;; under the
morphism B; — A;;. Then (A;j)y, is a finitely generated (B;)y,, -algebra.
After relabelling the index, in fact we have shown that V is covered by affine
schemes Spec C; such that each f~!(SpecC;) is a union of affine schemes
Spec D;j, where D;; is a finitely generated Cj-algebra.

For each point p € V, suppose it lies in the affine scheme Spec C;. Then
there exists a distinguished open subset Spec By, C Spec C; which contains
p. For convenience we still use f, to denote the image of f, under the
morphism B — C; — Dyj. Then each (Dj)y, is a finitely generated By,-
algebra, and thus a finitely generated B-algebra. This completes the proof.

For (2). Since f~1(V) is covered by affine schemes Spec Ay, then U =
Spec A is also covered by the intersection of Spec A N Spec Ay. Moreover,
since both A and A) are affine, then by Lemma 5.1.1 one can pick a collection
of open subset Uy; such that U)y; are simultaneously the distinguished open
subsets of Spec A and Spec Ay. For convenience we write

Uyi = Spec Ay, = Spec(Ay)g,,-

Since Ay are finitely generated B-algebra, so is (A)),,,, and thus each Ay,,
can be realized as a finitely generated B-algebra, which completes the proof.

For (3). Note that Spec A is covered by distinguished open subsets
D(ay),...,D(ay) if and only if (a1,...,a,) = A. Thus it reduces to the
following lemma of commutative algebra.

Lemma 7.7.1. Let A be a B-algebra and (ai,...,a,) = A. If A, is a
finitely generated B-algebra for each ¢, then A is also a finitely generated
B-algebra.

Proof. For each x € A, since A,, is finitely generated B-algebra, its image

in A,, is equal to some A
i i
1 x]i )
PRI ) i 9
! e
i i

Fi(

a

.k .
where 2 /a;’ are generators of Ay, over B, and F' is some polynomial with
coefficients in B. After multiplying by a large power of a;, there are n
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equations in A which are of the form

aNx = ﬁl(xi, .. ,x?i,ai).
On the other hand, since (aq,...,a,) = 1, there exists mq,..., m, € A such
that

miay + - -+ mpa, = 1.
Exponentiate above equation to the n/N-th power and multiply by z, one
has '

= G(a1,. .., an, M1, ..., My, T5),

where G is a polynomial with coefficients in B, since each monimial of m;,
there exists some a; in the coefficients such that the power of a; is > N, and
thus afv x can be replaced by Fi. This shows any x € A can be expressed
as a polynomial of m;, a;, :1:; with coefficients in B, and thue A is a finitely
generated B-algebra. ([l

O
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7.8. Homework-8.

Exercise 7.8.1. Let (f, f1): (Z,0z) — (X, Ox) be a morphism of schemes.

(1) (f, f: (Z,0z) — (X,0x) is an open immersion if and only if f induces
a homeomorphism of Z with an open subset of X and f]g: Ox 1) —
Oz,p is an isomorphism for every p € Z.

(2) (f, fH:(Z,0z) — (X,0x) is an immersion if and only if f induces a
homeomorphism of Z with a locally closed subset of X and f£ :Ox ) —
Oz, is an epimorphism for every p € Z.

(3) The immersions are monomorphisms in the category of schemes. More-
over, the composite of immersions is an immersion, so are open immer-
sions and closed immersions.

Proof. For (1). Note that by definition one has (f, f*): (Z,0z) = (X,Ox)

is an open immersion if and only if it induces an isomorphism between

(Z,0yz) and an open subscheme of (X, Ox). Since f has already induced a

homeomorphism of Z with an open subset of X, it suffices to show for every

p € Z, fb: Ox iy — Ozp is an isomorphism if and only if (f,07) sy =

Ox f(p)- In general it fails, but since f induces a homeomorphism, one has

(1.0 = N O7(f1(V)) = lm O5(U) = Oz,
pef~1(V) peU

is an isomorphism. On the other hand, one has the following commutative
diagram

fg: OX:f(p) OZ7p

~,

(f*OZ)f(p)

Thus f£ is an isomorphism if and only if (f.O0z) ) = Ox, f(p), and by the
same argument one can show (2).

For (3). Since the composite of epimorphisms is an epimorphism, one has
the composite of immersions is an immersion, so are open immersions and
closed immersions.

Now let’s show immersions are monomorphisms in the category of schemes.
Suppose «, 8: Z — Z are two morphisms between schemes such that foa =
fopB, where f is an immersion. Firstly a = £ as morphisms between topolog-
ical spaces since f induces homeomorphism between underlying topological
spaces. Moreover, on each stalk one has

of o ff = o fF,
and thus one has off = % on each stalk since f* is an epimorphism. O

Exercise 7.8.2. Let S be a graded ring and let a be a homogeneous ideal
of S. Prove that the canonical homomorphism S — S/a induces a closed
immersion ProjS/a — Proj S.
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Proof. Firstly the canonical homomorphism S — S/a is a homomorphism
of graded rings, and thus the pullback of homogeneous prime ideals are still
homogeneous prime ideals. For any p/a € Proj.S/a, the pullback of p/a is
p, which is a homogeneous prime ideal which contains a and cannot contain
S, otherwise p/a contains (S/a)y, a contradiction. On the other hand,
any homogeneous prime ideals p € V, (a) gives an element in Proj S/a, and
these two constructions are inverse to each other. Thus one has Proj S/p =
Vi (a) as sets. Moreover, it’s also easy to show the canonical homomorphism
ProjS/a — Vi(a) is a closed map and thus it’s a homeomorphism with
respect to Zariski topology.

Now it suffices to show for each p/a € Proj S/a, the canonical homomor-
phism Opyojsp — Oproj 5/ap/a 18 surjective. Note that

Oprojsp = Sp)
OProj S/ap/a = (S/a)(p/a)a

and the canonical homomorphism is given by projection, which is surjective.
This completes the proof. O
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7.9. Homework-9.

7.9.1. Part I.

Exercise 7.9.1. Finish step 3 of the proof of Proposition 1.3.20 as follows.
(1) Let
U xsY —L5 vy
U — S

be the fibred product of U; and Y. Prove that there exists one and
only one isomorphism ¢;;: p; (U; N U;) — pj_l(Ui N Uj) such that the
following diagrams commute

P UiN ) 2 pr (Ui U, NUNTy) =2 Uin T,
j J

x lpj \lqﬂ
UZ‘OU]’

(2) Prove that ¢;; = d)j_il and ¢ji o ¢;j = ¢, when restricted to pi_l(Ui N
U;NUyg). So we can glue the schemes U; xg Y together to get a scheme

(3) Suppose we have a commutative diagram

Z 1,y

I

X — 85

and suppose X has an open covering X = |, U; such that

p i U) ——= Y

|

U, — S

are fibred product for all i. Prove that Z in the first diagram is the
fibred product of X and Y over S.

Proof. For (1). By step 2 of the proof of Proposition 1.3.20, one has pi_l(UZﬂ
Uj) is the fibred product of U; NU; and Y over S, so is p}l(Ui NU;). Thus
there exists one and only one isomorphism ¢;;: p; *(U; NU;) — pj_l(UZ- nU;)
by the universal property of fibred product.

For (2). Note that ¢;; o ¢ is an isomorphism such that the following
diagram commutes



ALGEBRAIC GEOMETRY 73

_ ®ijoPii  _
p; 1(Ui N Uj) MAEAREN D; 1<Ui N Uj)

T, P

U,nuj,

so is the identity map. Then by the fact that the fibred product is unique
up to a unique isomorphism, one has ¢;; o ¢;; = id, that is, ¢;; = gzﬁj_il as
desired. The same argument shows that ¢;i o ¢;; = ¢y

For (3). In order to prove that Z satisfies the universal property of fibred
product, we need to show for any commutative diagram

WLY

| ]

X — 5

there exists a unique morphism W — Z such that the following diagram
commutes

|

X —— S

<N

Since X = J,; U;, an observation is that the morphism o: W — X is equiv-
alent to a collection of morphisms {«;: X — U;} which are compatible with
each other. Thus for each i there exists a unique morphism W — p~1(U;)
such that the following commutative diagram

since p~1(U;) is the fibred product of U; and Y over S. By uniqueness the
collection of morphisms {W — 7~1(U;)} can be glued to a unique morphism
from W — Z, as desired. O

Exercise 7.9.2. Prove the isomorphism X; xgY = X; xXg, Y; in step 6 in
the proof of Proposition 1.3.20.

Proof. 1t suffices to note that given morphisms f: Z — X and g: Z — Y
over S, the image of g must land inside Y;. O
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7.9.2. Part I

Exercise 7.9.3. Let C be a category in which fibred product exists. Con-
sider commutative diagrams

PO e xS x
Y s 2l g

Suppose the second square is Cartesian. Prove that the first square is Carte-
sian if and only if the third one is Cartesian.

Proof. Suppose the first square is Cartesian and consider the following com-
mutative diagram

W B

xr 2of

o JV i
S —— 8
gof

By composing . and f, one obtains the following commutative diagram

X 9. x

I

S’T>S

where the morphism ¢: W — X' is induced by the assumption that the
second square is Cartesian. On the other hand, consider the following com-
mutative diagram

X// fl X/

L

S// f SI’

where the morphism : W — X” is induced by the assumption that the
first square is Cartesian, and that’s exactly the morphism making the third
square to be Cartesian.
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Conversely, suppose the third square is Cartesian, and consider the fol-
lowing commutative diagram

w fﬂ\“
X/l f/ X/

|
SHT) S’.

Then by the assumption the third square is Cartesian, one has the following

commutative diagram

X// g'of

]

S”T)S

where the induced morphism W — X" is denoted by ¢. In order to show the
first square is Cartesian, it suffices to show the following diagram commutes

\

X// X/

S"*)S

which follows from the second square is Cartesian. (]

Exercise 7.9.4.

(1) Let f: X — S and ¢g: Y — S be maps of sets. Prove that their fibred
product is (X xgY,p,q), where

XxsY ={(z,y)|[re X,yeY, f(z) =gy},

and p: X xgY — X,q: X xgY — Y are the projections p(z,y) = =
and ¢q(x,y) = y respectively.

(2) Use the description of the fibred product in (1) to prove Proposition
5.4.3 for the category of sets.

(3) Let C be a category and let
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X — X

S —— S
be a commutative diagram in C. For every object Z € ob(, it induces a
commutative diagram

Hom(Z, X') —— Hom(Z, X)

|

Hom(Z,S’) —— Hom(Z, S)

in the category of sets. Prove that the first diagram is Cartesian in C if
and only if the second diagram is Cartesian in the category of sets for
every object Z € obC.

(4) Use (2) and (3) to prove Proposition 1.3.24 for every category C in which
fibred product exists.

Proof. For (1). Suppose there exist morphisms (between sets) a: W — X
and 8: W — Y such that the following diagram commutes

AN

T =
.CQT’*:

f

Then one can construct
p: W =X xgY
w = (a(w), B(w))

such that the following diagram commutes

Moreover, any morphism from W — X Xxg Y such that above diagram
commutes must be of this form. This shows X xg Y statisfies the universal
property of fibred product.

For (2). Given the morphisms between sets as follows
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X /
T
ls
S.
By using the description of the fibred product in (1), the following diagram
commutes

XxpY — X xgY

| |

T —— 5 TxgT,

since the morphisms in above diagram can be described as follows:

(a) X xpY — X xgY is given by (z,y) — (z,y).

(b) X xgY = T xgT is given by (z,y) — (f(z),9(y)).

(¢) Tw— T xgT is given by t — (t,t).

(d) X xp Y — T is given by (x,y) — f(x) or (z,y) — ¢(y), since in this
case f(z) = g(y)-

Moreover, given morphisms a: W — T and 8: W — X X g Y such that the

following diagram commutes

o
X xpY — X xgY

| |

T — T xgT,

an observation is that the image of § lies in X xp Y, and thus there is a
unique morphism from W to X X7 Y such that above diagram commutes,
which is exactly § itself. This shows X xpY statisfies the universal property
of fibred product.

For (3). Suppose

X — X

L)

S/T>S

is Cartesian. For any Z € obC and morphisms a: Z — S and 3: Z — X
such that f o 8 = g o «, by the universal property there exists a unique mo
¢: Z — X'. Conversely given morphisms Z — X', it’s easy to construct
morphisms a: Z — X and 3: Z — S’ such that f o = goa. This shows
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Hom(Z, X') = Hom(Z, S") X tiom(z,5) Hom(Z, X) by the description of fibred
product in (1). This shows

Hom(Z, X') —— Hom(Z, X)

|

Hom(Z,S") —— Hom(Z, S)

is Cartesian, and by the same argument one can prove the converse state-
ment.

For (4). By (3), it suffices to show that for each Z € ob(, the following
diagram is Cartesian

Hom(Z, X x7Y) —— Hom(Z, X xgY)

| |

Hom(Z,T) ———— Hom(Z,T xgT).

Note that by the proof of (3), one can see

Hom(Z,T x5 T) = Hom(Z, T) Xtom(z,s) Hom(Z,T)
Hom(Z, X x5Y) = Hom(Z, X) Xtom(z,5) Hom(Z,Y)
Hom(Z, X x7Y) =Hom(Z, X) Xpom(z,1) Hom(Z,Y),

and thus the desired result follows from (2). O

7.9.3. Part 111

Exercise 7.9.5. Let X,Y be S-schemes and f,g: X — Y be S-morphisms.
Suppose (f,g): X — Y xgY is the morphism such that po (f,g9) = f,qo
(f,9) = g and K is the fibred product of X and Y over Y xg Y, which can
be seen as follows

K—Y" v
w7
- B
Z/ X (f,9) Y xgY P

N

(1) Prove that ¢: K — X is an immersion and fot=gou.
(2) Let h: Z — X be a morphism such that f oh = goh. Prove that there
is a unique morphism h': Z — K such that to h' = h.

Proof. For (1). If o, f: Z — K are morphisms such that t o« = ¢ 0 3, then
one also has Aoboa = Aobo . Then by the universal property of K one
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can see morphism from Z — K with such property must be unique, and
thus @ = 8. This shows ¢ is a monomorphism. For the half part, note that

po(figlov=Ffou
qo(f,g)or=gor
On the other hand, (f,g)ot=Aoband po A =goA.
For (2). Since h: Z — X statisfies f oh = go h, one has po (f,g)oh =
qo(f,g)og, which gives a morphism Z — Y satisfying desired commutative

property, and thus by the universal property of K as a fibred product, there
exists a morphism h’': Z — K such that toh/ = h. O
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7.10. Homework-10.
7.10.1. Part I.

Exercise 7.10.1. Let X be an S-scheme, S — S a morphism, X’ = X x5’
the base change of X, A: X — X xgX and A’: X' — X' x ¢ X’ the diagonal
morphisms. Use the result in Exercise 7 on page 58 of the textbook to prove
the following diagram is Cartesian:

!
X A X xg X'

| !

X 2 5 XxgX

Proof. By (3) of Exercise 7 on page 58, it suffices to show for every scheme
Z, the following diagram is Cartesian

Hom(Z, X') —— Hom(Z, X' xg X)

| |

Hom(Z, X) —— Hom(Z, X xg X).

On the other hand, one has
Hom(Z, X x5 X) = Hom(Z, X) Xtom(z,s) Hom(Z, X)
Hom(Z, X' x g X') = Hom(Z, X') X gom(z,51) Hom(Z, X').

Thus it suffices to show the following diagram is Cartesian

Hom(Z, X') —— Hom(Z, X') Xom(z,51) Hom(Z, X)

| l

Hom(Z, X) —— Hom(Z, X') Xgom(z,s) Hom(Z, X),

which is clear by the description of fibred product in the category of sets. [J

Exercise 7.10.2. Let X and S be locally compact topological spaces, S' is
Hausdorff, and let f: X — S be a continuous map.

(1) Prove that a proper map is a closed map.

(2) Let S’ be a locally compact topological space and let g: S’ — S be a
continuous map. For any proper map f: X — S, prove the base change
f'i X xg S — S’ of fis proper.

Proof. For (1). Let V' C X be a closed subset. It suffices to show S\ f(V)
is open. For s € S\ f(V), there exists an open neighborhood of U of s with
compact closure since S is locally compact. Then f~!(U) is compact since
f is proper. Let E = V N f~}(V). Then E is compact since it’s a closed
subset of a compact set, and hence f(F). Again by S is Hausdorff, one has
f(E) is closed in S. Then U \ f(E) is an open neighborhood of s which is
disjoint from f(V'). This shows S\ f(V) is open.
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For (2). Note that the fibred product in the category of topological spaces
can be described as X xg5" = {(z,y) € X xS | f(z) = g(y)} and f": X xg
S’ — S’ is given by (x,y) — y. Then for any compact subset K C S’, one
has

(f)HEK) C f9(K) x K,
which is a compact subset since f is proper. O
7.10.2. Part I
Exercise 7.10.3. The set

I = {(Zo,,’tn) | Zo++2n:d, io,...,in EZZO}
has (dzn) solutions. Prove that the homomorphism
¥ Z[yio...in](io,...,in)él — Z[ﬂfo, oo afEn]
Yig..in —> T - - aln

. ) (d+n)_1
induces a morphism Py, — P, " .

Proof. For convenience, we use A = @ A, to denote the graded ring

’I’LEZZO
ZlYig...inl(io,....in)e1- Note that for each degree n, one has p(Ay) C Z[wo, - . ., Tn]nd-
This shows ring homomorphism ¢ preserves the grade, and thus it induces
a morphism between Proj. ([
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7.11. Homework-11.

7.11.1. Part I.

Exercise 7.11.1. Let X be a topological space, BB a basis of topology for
X, F and G sheaves of abelian groups on X. Suppose for every member U
in B, we are provided with a homomorphism ¢(U): F(U) — G(U) such that
for every pair V' C U in B, the following diagram commutes,

Foy 29 gw)

| |

Fv) XY g

Prove that there exists a unique morphism of sheaves ¢: F — G such that
for any member U in B, one has ¢(U): F(U) — G(U) coincides with ¢(U).

Proof. For convenience we denote B = {U, } aer and use ¢, to denote ¢(Uy,).
For any open subset U C X, we write it as U = |J,, Ua, since B is a basis for
topology. Then for any = € U, if x € U,, then we define ¢(U)(x) = ¢n(z).
This is well-defined since if x € U, N Ug, then

gba(x) = ¢(Ua N Ug)(:ﬂ) = Cf)ﬁ(l‘)

This gives a unique morphism of sheaves ¢: F — G such that for any U € B,
one has ¢(U): F(U) — G(U) coincides with ¢(U). O

7.11.2. Part II.

Exercise 7.11.2 (coherent sheaf on ringed space). Let (X, Ox) be a ringed
space. An Ox-module F is called coherent if F is of finite type and for
every open subset U of X and every homomorphism w: O[EJB" — Flu, the
kernel of u is of finite type.

(1) Suppose Ox is coherent. Prove that an Ox-module F is coherent if and
only if F is of finite presentation.

(2) Prove that this definition of coherence coincides with the one in Defini-
tion 6.2.3 for Noetherian schemes.

Proof. For (1). Firstly let’s show if F is coherent, then F is of finite presen-
tation (To prove this, we don’t need the assumption Oy is coherent). Since
F is of finite type, there exists an open covering {U;} of X such that

O 5 Fly, 0

is exact, and the ker u; is of finite type implies that there exists a refinement
of {U;}, denoted by {Uj;;} such that the following sequence is exact

Om;; on;
Oy, " = Op." = Flo,; = 0.

This shows F is of finite presentation. For the converse statement, firstly
let’s prove the following lemma.
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Lemma 7.1. An Ox-module F is coherent if and only if there exists an
open covering {U;} of X such that F|y, is coherent.

Proof. 1t’s clear that if F is coherent, then every F|y, is coherent. Con-
versely, suppose there exists an open covering {U;} of X such that F|y, is
coherent. Firstly, since each F|y, is of finite type, there exists a refinement
{Ui;} of {U;} such that the following sequences are exact

Dnij
Olp” = Flu; — 0,

and thus F is of finite type. For every homomorphism w: (9[6]9" — Flu, its
restriction gives the following homomorphism

. "D
U; - OU%UZ- — ]:|UQU¢7

and the kerw; is of finite type since F|yny, is coherent, and thus by the
previous argument one has ker v is of finite type. ([

Now suppose Ox is coherent and F is of finite representation. Then there
exists an open covering {U;} such that the following sequence

O™ = O™ = Fly, = 0

is exact, and thus F|y, is coherent, since the quotient of coherent sheaves is
coherent’. Then by Lemma 7.1 one has F is coherent.

For (2). Suppose X is a Noetherian scheme. In this case, Ox is coher-
ent, and thus is suffices to show the definition of coherence for Noetherian
schemes in Definition 6.2.3 is equivalent to finite presentation.

(a) If F is of finite presentation, then without lose of generality we may
assume there exists an affine open covering {U; = Spec A;} such that

OIGJBZW — OIEJBZ“ — Fly, =0

is exact. Note that (’)a"i itself is of the form M, where M; = AZ™.
This shows F is coherent (in the sense of Definition 6.2.3).

(b) If F is coherent (in the sense of Definition 6.2.3), then there exists an
affine open covering {U; = Spec A;} such that

M 25 Flg, =0

is exact, where M; is a finitely generated A;-module. Since X is Noether-
ian, one has A; is a Noetherian ring, and thus M; is also a Noetherian
module since it’s finitely generated. In particular, any submodule of M;
is finitely generated, and thus ker u; is of finite type.

O

2However, it’s also highly non-trivial with the definition of coherence given here, but I
don’t want to give a proof here. See Lemma 17.12.4 in [Sta23].



84 BOWEN LIU

Exercise 7.11.3. Let X and Y be S-schemes, let f,g: X — Y be S-
morphisms, and let U be a dense open subset of X such that f|y = g|y as
morphisms of schemes. Suppose Y is separated over S. Then f = g as maps
on topological spaces. Suppose furthermore that X is reduced. Then f =g
as morphisms of schemes.

Proof. Consider the following diagram

X XYXSYY — Y

l lAy/s

p Qi LN VRS

If Y is separated, then Ay, g(Y) C Y xg Y is a closed subset, and thus
h=1(Ay,s(Y)) is also a closed subset since h is continuous. On the other
hand, suppose U C X is the dense open subset such that f|y = g|y. Then
U C h_l(Ay/S(Y)), and thus one has ™' (Ay/g(Y)) = X by taking closure
of U. As a consequence, one has f = g on X as maps on topological spaces.

Now it suffices to show f%, g% induce the same morphisms between sheaves,
and thus without lose of generality we may assume both X = Spec A and
Y = Spec B are affine schemes. For convenience we write f*: Ospeca —
f1Ospec 5 by using adjoint between f, and f~'. Suppose ker(f* — g¥) C
Spec A is of the form V(b). Then one has U C V(b), and thus V(b) =
Spec A, since U is dense. As a consequence, b is the radical of A, and thus
b = 0 since A is reduced. O
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7.12. Homework-12.

7.12.1. Part I

Exercise 7.12.1. 1. Let f: X — Y be a continuous map between topo-
logical spaces, let F and G be sheaves of abelian groups on X and Y, re-
spectively, let 6: G — f,F be a morphism, and let ¢: f~'G — F be the
morphism induced by by adjunction. For any x € X, and 6,: Gy(y) = Fz
be the composite

gf(x) 3 (fF) e = lim (fF)(V)

flx)eV
= lm F(V) - lim FU) = i,
zef~1(V) zel

and let ¥;: G,y — F, be the composite

gf(x) = (filg)z & Fa.
Prove that d, = ;.

Proof. For open subset U C X, recall that the adjoint morphism ¢ (U) is
given by the following composite
) I 1y F ) - F(O).

By passing to stalks one has the following commutative diagram

Of(x
g(m)L)(f*) ) — Fu

( f710)e
(f7'G).
This completes the proof. O

Exercise 7.12.2. Let (f, f%): (X, Ox) — (Y, Oy) be a morphism of locally
ringed spaces, F an Ox-module, G an Oy-module, §: G — f,F a homo-
morphism of Oy-modules, and ¢: f*G — F the morphism induced by §
by adjunction. For any = € X, and d5: G(,) — F be defined as in above
exercise, and let ¥, : Ox , ROy 1(a) Qf(m) — F, be the composite

Prove that
Y (r ® 8) =15(8)
for any r € Ox, and s € Gy,
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Proof. For open subset U C X, recall that the adjoint morphism ¢ (U) is
given by the following composite

FGU) = (0Ox®p-10, f1G)(U) (Ox®@f-10, fHAF)(U) = F(U).

Similarly, by passing to stalks one has the following commutative diagram

idef=16(U)
—

id @8 ()
OX,:(: ®Oy’f(m> gf(x) ? OX,J; ®Oy7f<z) (f*‘F)f(I) ? ]::v

o~ o o~

(f*0)a

(f*G)a
This completes the proof.

» ([ fiF)e ————— F

O

Exercise 7.12.3. Let (X,Ox) be a scheme and F a quasi-coherent Ox-
module. Suppose F is of finite presentation. Prove that for any affine open
subset U = Spec A, we have F|y = M~ for some A-module M with finite
presentation.

Proof. Firstly, for any affine open subset U = Spec A, we may assume F|y =
M~ for some A-module M, so it suffices to show M is of finite presentation.
Since F is of finite presentation, there exists an open covering of U, without
lose of generality we may assume it’s given by {U; = Spec Ay}, with
(fi,..., fn) = A, such that on each U one has the following exact sequence

Ddm; D
Oy — Oy = Flu, = 0,

where m;, n; € Z~¢. In other words, the localization My, is of finite presen-
tation for each ¢ = 1,2,...,n, and thus M is of finite presentation. O

7.12.2. Part II.

Exercise 7.12.4. Let X be a scheme, £ be an invertible Ox-module with
f € L(X) and F be a quasi-coherent O x-module.

(1) Define X to be the subset of X consisting of those points € X such
that the germ of f at x does not lie in m, L., where m,, is the maximal
ideal of the local ring Ox ;. Then X is open.

(2) Suppose X is quasi-compact. If s € F(X) is a section whose restriction
to Xy vanishes, then there exists a natural number n such that the
section s ® f®" € (F ®0, L%")(X) vanishes.

(3) Suppose X is quasi-compact and quasi-separated. Given a section ¢ in
F(Xy), there exists a natural number n such that the section ¢t ® f"
in (F ®p, L%)(Xy) can be extended to a section in (F ®p, LO™)(X).

Proof. For (1). Since L is an invertible Ox-module, there exists an open
covering {U;} of X such that L|y, = Oy,. If we use f; to denote f|y, and
use Xy, to denote the subset of U; consisting of those points x € U; such
that the germ of f; at « does not lie in m,£,, then X = |J, X,, and by (1)
of Proposition 4.3.1 one has each Xy, is open.
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For (2). Since X is quasi-compact, we may assume {U; = Spec 4;}7 ; is
a finite affine open covering of X, and thus X; N Spec A; = D(f;), where
fi :== flu,. Since the restriction of s to Xy vanishes, one has the restriction
of s to each D(f;) = Spec(A;)y, vanishes for each ¢ = 1,...,n, and thus
there exists some n; € Z~g such that f™s =0 in A;. Now it suffices to take
n = max;{n;}, one has s ® f" € (F ®0, L£")(X) vanishes.

For (3). Since X is quasi-compact and quasi-separated, by (2) of Proposi-
tion 5.5.4 we may assume {U; = Spec 4;}7_, is a finite affine open covering of
X such that each U; NUj is a union of finitely many affine open subschemes.
For convenience we denote t; := t|y,. Note that ¢; — t; vanishes on U; N Uj,
and since U; N Uj is a union of finite affine open subschemes, then by (2)
there exists some n;; € N such that (¢; —t;) ® f;;“ € (F®oy, LOM3)(U;NU;)
vanishes. On the other hand, for each ¢; € F(X N U;), there exists some
m; € N such that t; ® f™ extends to (F ®o, L&™)(X;NU;). Since every-
thing is finite, there exists a sufficiently large n such that t ® f™ extends to
a section in (F ®p, LZ")(X). O
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7.13. Homework-13.

Exercise 7.13.1. Let S be a graded ring which is generated by S; as an
Sp-algebra.

(1) Prove that for every f € S; and every graded S-module M, we have an
S(p)-module isomorphism

P M) = My

n=—oo

In particular, taking M = S, we get an S(y)-module isomorphism

P sm)g — Sy

n=—oo

Prove that we have an Sy-module isomorphism
Mgy ®s ;) Sy = My
(2) Let M and N be graded S-modules. Construct an isomorphism
Mgy sy Nigy — (M @5 N)p),

so that after taking the tensor product ®s, fS + and composing with the
isomorphisms in (1), we get the canonical isomorphism

Mf ®Sf Nf = (M@S N)f.

(3) Let p € Proj S, and let T be the set of homogeneous elements in S\ p.
Prove that we have an S(;)-module isomorphism

@ M(?’L)(p) i} T_lM.

n=—oo

In particular, taking M = S, we get an S(,)-module isomorphism

m [a¥)
@ S(n)(p) — T_IS.

n=—oo

Prove that we have a T~!S-module isomorphism
M) ®s,,, T718 —» T M.
(4) Let M and N be graded S-modules. Construct an isomorphism
M) ®s,, Ny — (M @5 N))

so that after taking the tensor product ®5<p)T_1S and composing with
the isomorphisms in (3), we get the canonical isomorphism

T 'M @p-1s TN =5 T"(M ®g N).
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Proof. For (1). Consider the following homomorphism

It’s well-defined since there are only finitely many m,,/f*» # 0.

(a) Firstly let’s show ¢ surjective: Since for any m/f* ¢ My, we may write
m =y . m;, where m; are homogeneous elements of degree i. If i = k+n,
then m;/f* € M(n)(s), and thus

¢<<%>> - Z’J’Zk - %.

(b) Now let’s prove ¢ is injective: If Y2 my/fF =0 in My, then there
exists some N € N such that

3 o

n=—oo

Since degm, = k, + n, then by degree reason f¥m,/f* = 0 for every
n € Z. On the other hand, multiplying by fV gives an isomorphism from
M(n)(s) to M(n+N)(y for each n € Zsince f € Sy. This shows my,/f*» =0
for each n € Z, and thus ¢ is injective. In particular, one has

Moreover, since M(n)y) = Ms) ®s,,, S(n)(s) as S(p-modules, one has
M= @ M)y

>~ B (M) @5, S(n) ()

n=—oo

= M) ®sy, Sy-
For (2). Consider the following homomorphism

¢: Mp) @54y Nipy = (M @5 N)y)
m; Ny m; Q@ n;
Y e ® > .
ki li ki+li
R
It’s clear that ¢ is surjective, so it suffices to check it’s injective. If

m; @ n; 1 ;
Z fli‘i“!‘li :fwzfamz®nl:0
7 7
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in (M ®g N)(f), where N = max; {k; +[;} and k; + I; + a; = N for all i,
then >, f*m; ®n; =0in M ®g N, and thus

m; n;

Y @ =0
ki l;

— R f

in M) ®s, Ny This shows the injectivity. As a consequence, after taking
the tensor product ®s s Sy and composing with the isomorphisms in (1), we
get the canonical isomorphism

Mf ®Sf Nf = (M Qs N)f.
For (3). Note that
(@) =

GﬁBM(”)(p)g P lim (M(n)y)”

n=—oo peD{ (f)

>~ lim P (M(n))~

peEDL(f) n=—o0

= lim (@ M(”)m)

peEDL(f) \n=—o0
= lim (My)~
peDL(f)
®
~ T M,

where (a) and (b) hold from S is generated by S; as an Sy-algebra, and by
the same argument as (1) one can show

-1 = -1
M(p) ®S(p) TS — T M.

For (4). It follows from (2) by using the same modification as (3).
([

Exercise 7.13.2. Let X be a scheme, and Y be a closed subscheme of X

with ideal sheaf Z. Define the blowing-up X of X along Y to be the scheme

Proj(,_4Z") over X, where Proj(D,-,Z") is obtained by gluing Proj

(D;2,Z"(U)) over open affine subschemes U of X.

(1) Let m: X — X be the canonical morphism. Prove that 7 induces an
isomorphism 771(X \ V) =X \Y.

(2) Let f: X’ — X be a closed immersion, and let Y/ = X’ xx Y be the
closed subscheme of X’ obtained from Y — X by base change. Prove

that the blowing-up X’ of X’ along Y’ is isomorphic to the scheme
theoretic image of the composite

XY Lx\y T (x\Y) > X
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Proof. For (1). Suppose {U, = Spec A, } is an affine open covering of X. If
we write [, = Z(Uy), then 7: X — X on the affine pieace U, is induced by
the natural inclusion
Ay — S, = @ Ic‘f.
d>0

By previous homework (Exercise 7.5.3), one has 7| -1,y : 7 (Ua\V (Ia)) =
Ua \ V(1) is an isomorphism. This shows 7: 77 1(X \ V) — X \ YV is an
isomorphism.

For (2). O
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