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0. Preface

0.1. Notations.
(1) X,Y always denote Riemann surfaces.
(2) C always denotes the algebraic plane curve.
(3) Φ,Ψ: X → Y always denote the holomorphic map between Riemann

surfaces.
(4) f, g sometimes denote functions (smooth,holomorphic or meromorphic),

sometimes denote polynomials, and sometimes denote the convergent
power series.

(5) F,G always denote polynomials, and most of time they denote the ho-
mogenous polynomials given by polynomials f, g.

(6) fx always denote the partial derivative of f with respect to variable x.
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0.2. Motivations.

0.2.1. Meromorphic functions. Let U ⊆ C be an open subset with coordi-
nate {z}. In complex analysis we learnt that a meromorphic function f is a
function that is holomorphic on all of U except for a set of isolated points,
which are poles of the function. In other words, a meromorphic function
can be regarded as a function f : U → C∪{∞}.

Topologically speaking, C∪{∞} is S2, and in fact there is a complex
manifold structure on it. More precisely, we can glue two pieces of complex
plane via w = 1/z to obtain a complex manifold called Riemann sphere

P1 = C∪C∗ C,

and topologically P1 is exactly C∪{∞}. By using this viewpoint, meromor-
phic function on U is exactly the same thing as holomorphic map from U
to the Riemann sphere, and thus it gives us a lovely way to study mero-
morphic functions by using theories of holomorphic maps between Riemann
surfaces, such as the number (counted with multiplicity) of zeros is equal to
the number (counted with multiplicity) of poles.

0.2.2. Multivalueness of holomorphic functions. For complex number z =

ρe
√
−1θ, where ρ ∈ [0,∞) and θ ∈ R /2π Z, one has

(
√
ρe

√
−1θ/2)2 = (

√
ρe

√
−1(θ/2+π))2 = z.

This shows there are two candidates for
√
z, and this phenomenon is called

multivalueness of holomorphic function. If we define square root as
√
z =

√
ρe

√
−1θ/2, then it’s only well-defined on C \[0,∞), since it will “jump” when

passing through the two sides of [0,∞), and C \[0,∞) is called a single value
component of

√
z.

The ideal to solve this phenomenon is that, when passing the segment
[0,∞),

√
z should come into another single value component. In other words,

if we want to make square root
√
z defined on the whole complex plane, it

should be no longer a function from C to C, but a function from C to an
object we obtained from gluing two single value components together. This
construction also gives the Riemann sphere.
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Similarly, f(z) =
√
1− z2 is well-defined on C \[−1, 1], and it gives a

well-defined function from C to something obtained by gluing two copies of
C \[−1, 1], which is also the Riemann sphere.

Now let’s consider a more complicated example. For

f(z) =
√

(1− z2)(1− k2z2),

where k 6= ±1, it gives a well-defined function on C minus two line segments
connecting −1, 1 and −1/k, 1/k.

If we want to obtain a function defined on C, we should glue two copies
of above single value components. This gives a new Riemann surface called
complex torus.

0.2.3. Abelian integrals.

Example 0.2.1 (arc-length of ellipse). For ellipse given by (x/a)2+(y/b)2 =
1, by using parameterization

x = a cos θ

y = b sin θ,
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it’s easy to see arc-length is given byˆ θ1

θ0

√
a2 sin2 θ + b2 cos2 θdθ = a

ˆ θ1

θ0

√
1− k2 sin2 θdθ

z=sin θ
=

ˆ z1

z0

√
1− k2z2√
1− z2

dz

=

ˆ z1

z0

1− k2z2√
(1− k2z2)(1− z2)

dz,

where k =
√
1− b2/a2. For k = 0, since arcsin z is a primitive function of

1/
√
1− z2, one hasˆ z1

z0

1√
1− z2

dz = arcsin z1 − arcsin z0.

The classical theory of “addition formula” gives

sin(α+ β) = sinα

√
1− sin2 β +

√
1− sin2 α sinβ.

In terms of integration
ˆ z1

0

1√
1− t2

dt+

ˆ z2

0

1√
1− t2

dt =

ˆ z1
√

1−z22+z2
√

1−z21

0

1√
1− t2

dt.

For analogue of above case, if we define ellipse sine sn asˆ arcsin z

0

1√
1− k2 sin2 t

dt = sn−1(z),

one can also show it satisfies some addition formula

sn(α+β) =
snα

√
(1− sn2 β)(1− k2 sn2 β) + sn β

√
(1− sn2 α)(1− k2 sn2 α)

1− k2 sn2 α sn2 β
.

However, the ellipse sine cannot be expressed as an elementary function,
and this is closely related to the fact that y2 = (1 − z2)(1 − k2z2) is not a
Riemann sphere.

Example 0.2.2 (simple pendulum). Suppose there is an object with mass
m is released at θ = α with zero initial velocity, and the length of pendulum
is r.
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The conservation of energy gives the following equation
1

2
mr2(

dθ

dt
)2 = mgr cos θ −mgr cosα.

In other words,

(0.1) (
dθ

dt
)2 = 2

g

r
(cos θ − cosα) = 4

g

r
(sin2

α

2
− sin2

θ

2
).

An approximation with θ sufficiently small, one has
dθ

dt
=

√
g

r
(α2 − θ2).

This shows
t =

ˆ θ

0

√
r

g

1√
α2 − s2

ds.

Thus the period of the simple pendulum is given by

T = 4

ˆ α

0

√
r

g

1√
α2 − s2

ds = 2π

√
r

g
.

However, if we don’t use the approximation, and use substitution

sinϕ =
sin θ

2

sin α
2

in (0.1), one has
(
dϕ

dt
)2 =

g

r
(1− sin2

α

2
sin2 ϕ).

Then
t =

√
r

g

ˆ φ

0

1√
1− k2 sin2 s

ds,

where k = sin
α

2
, and thus explicit formula for the period of simple pendulum

is
T = 4

√
r

g

ˆ π
2

0

1√
1− k2 sin2 s

ds.

This is exactly ellipse integral.

Remark 0.2.1 (general case). Let f be a polynomial of two variables and
y = Φ(X) be a solution of equation f(x, y) = 0. Thenˆ

R(x, f(x)) = 0

can be expressed as elementary function if and only if deg f = 0, 1, 2, and in
fact deg f is closely related to the topology of algebraic curves.
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1. Riemann surface and plane curves

1.1. Riemann surface.
1.1.1. Definitions.
Definition 1.1.1 (complex atlas). Let X be a topological space. A complex
atlas on X consists of the following data:
(1) {Ui}i∈I is an open covering of X.
(2) For each i ∈ I, there exists a homeomorphism ϕi : Ui → ϕi(Ui) ⊆ C.
(3) For i, j ∈ I, if Ui ∩ Uj 6= ∅, then the transition function

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

is holomorphic.
Remark 1.1.1. If {Ui, ϕi} is a complex atlas on a topological space, then all
transition functions ϕij are not only holomorphic, but biholomorphic with
inverse ϕji.
Definition 1.1.2 (complex structure). Two complex atlas A ,B are equiva-
lent if A ∪B is also a complex atlas, and a complex structure is an equivalent
class of atlas on X.
Definition 1.1.3 (Riemann surface). A Riemann surface is a connected,
second countable, Hausdorff topological space X together with a complex
structure on X.
Definition 1.1.4 (compact Riemann surface). A Riemann surface is com-
pact, if the underlying topological space is compact.
Remark 1.1.2. More generally, a complex manifold is a connected, second
countable, Hausdorff topological space X together with a complex structure.
In particular, a Riemann surface X is a complex manifold with dimCX = 1,
and it’s called a surface since dimRX = 2.
1.1.2. Examples.
Example 1.1.1 (Riemann sphere). Let S2 = {(x, y, z) ∈ R3 | x2+y2+z2 =
1} be 2-sphere and {U1 = S2 \ (0, 0, 1), U2 = S2 \ (0, 0,−1)} be an open
covering of S2. Consider

ϕ1 : U1 → C

(x1, x2, x3) 7→
x1

1− x3
+
√
−1

x2
1− x3

,

and
ϕ2 : U1 → C

(x1, x2, x3) 7→
x1

1 + x3
−
√
−1

x2
1 + x3

.

A direct computation shows that

(
x1

1− x3
+

√
−1

x2
1− x3

)(
x1

1 + x3
−
√
−1

x2
1 + x3

) =
x21 + x22
1− x23

= 1,
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and thus the transition function ϕ2 ◦ ϕ−1
1 (z) = 1/z. This shows {U1, U2}

is a complex atlas of S2. It’s clear as a topological space S2 is connected,
second countable and Hausdorff, and thus S2 is a Riemann surface, called
Riemann sphere.

Remark 1.1.3. There is another construction of Riemann sphere, given by
gluing two complex planes together on C∗, and the gluing data on C∗ is given
by z ∼ 1/w. One thing to mention is that it’s not clear object constructed in
this way is Hausdorff. For example, if we glue two complex planes together
on C∗ by using gluing data z ∼ w, then the object obtained is not Hausdorff.

Example 1.1.2 (complex projective line). The complex projective line P1 =
C2 \(0, 0)/ ∼, where (x, y) ∼ (z, w) if and only if (λx, λy) = (z, w) for some
λ ∈ C∗, and the equivalent class for (x, y) is denoted by [x, y], called the
homogenous coordinate. The quotient topology on P1 which makes it second
countable, Hausdorff and compact. Consider

U0 = {[z, w] | z 6= 0} φ0−→ C

where ϕ0 is defined as ϕ1([z, w]) = z/w. Similarly consider

U1 = {[z, w] | w 6= 0} φ1−→ C

where ϕ1 is defined as ϕ1([z, w]) = w/z. For z ∈ ϕ1(U0 ∩ U1), one has

z
φ−1
1−→ [z : 1] = [1 :

1

z
]
φ0−→ 1

z
.

This shows the transition function ϕ01(z) = 1/z, which is holomorphic, and
thus {(U0, ϕ0), (U1, ϕ1)} gives a complex atlas on P1.

Remark 1.1.4 (complex projective space). The complex projective space Pn
is defined by Pn = Cn+1 \{0}/ ∼, where (x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) if
and only if there exists λ ∈ C∗ such that yi = λxi holds for all i = 0, 1, . . . , n,
and the equivalent class [x0 : x1 : · · · : xn] is call the homogenous coordinate
of Pn.

There is a canonical affine open covering {(Ui, ϕi)} of Pn defined by

Ui = {[x0 : x1 : · · · : xn] | xi 6= 0} φi−→ Cn,

where ϕi([x0 : x1 : · · · : xn]) = (x0/xi, . . . , x̂i/xi, . . . , xn/xi), and it makes
Pn to be a complex n-manifold.

Example 1.1.3. Let P be a convex polyhedra in Euclidean 3-dimensional
space E3. As topological spaces P is homeomorphic to the 2-sphere S2, and
let’s construct a complex atlas on it.
(1) Suppose p is the interior point of some face F . Since F can be isometri-

cally embedded into E2, we choose an orientation-preserving, isometric
embedding f which maps an open neighborhood U of p into E2 = C.
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(2) Suppose p is the interior point of some edge l = F1 ∩ F2. Firstly we
rotate F2 along l to the plane of F1, and then choose an orientation-
preserving, isometric embedding f which maps an open neighborhood
U of p into E2 = C.

(3) Suppose p is an vertex which is the intersection of three faces F1, F2 and
F3. Firstly we cut it along some edge l = F1∩F2, and then rotate F1, F2

to the plane of F3. Then we use some orientation-preserving, isometric
embedding f to map it into E2, and finally composite it with z 7→ z2π/α.

Exercise 1.1.1. Prove that above constructions give a complex atlas on
convex polyhedra.

Remark 1.1.5. All of above three examples give complex structure on topo-
logical sphere S2, a non-trivial fact is that all of them are the “same” complex
structure for S2 (See Corollary 9.2.3).
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Example 1.1.4 (complex torus). For non-zero w1, w2 ∈ C such that w1, w2

are R-linearly independent, L = Zw1+Zw2 is a discrete subgroup of (C,+).
Let π : C → T = C /L be the natural projection. Then T equipped with
the quotient topology is a connected, Hausdorff and second countable topo-
logical space. For p ∈ T , suppose z0 is an inverse image of p. If we choose
ε ∈ R>0 such that

B2ε(0) ∩ L = {0},
then Bε(z0)

π−→ π(Bε(z0)) ⊆ T is injective, and thus π−1 : π(Bϵ(z0)) →
Bϵ(z0) ⊆ C is a homeomorphism. Then {π(Bε(π−1(p))}p∈T gives an open
covering of T , and together with π−1 it gives a complex atlas of T .

Remark 1.1.6. It’s clear complex structure constructed above depends on
the choice of w1, w2, but it’s not obvious to see whether w1, w2 and w′

1, w
′
2

give the same complex structure or not. In fact, they give the same complex
structure if and only if they differ some elements in SL(2,Z), and all complex
structure on torus are arisen in this way in fact (See Proposition 9.2.1).

1.1.3. Morphisms.

Definition 1.1.5 (holomorphic map). Let X,Y be two Riemann surfaces
and Φ: X → Y be a continous map. For p ∈ X, Φ is called holomorphic at
p, if there exists a chart (U,ϕ) of p, and a chart (V, ψ) of Φ(p), such that

ψ ◦ Φ ◦ ϕ−1 : ϕ
(
U ∩ Φ−1(V )

)
→ ψ (V ∩ Φ(U))

is holomorphic at ϕ(x). Moreover, Φ is called holomorphic in an open subset
W ⊆ X, if Φ is holomorphic at any point in W .

Remark 1.1.7. It’s clear the definition of holomorphic map is independent
of the choice of charts, since change of coordinate is biholomorphic.

Definition 1.1.6 (isomorphism). Let Φ: X → Y be a holomorphic map
between Riemann surfaces. Φ is called an isomorphism if it’s bijective and
holomorphic.

Proposition 1.1.1. Let Φ: X → Y be a holomorphic map between Rie-
mann surfaces. Φ is an isomorphism if and only if Φ has an two-side inverse
Ψ, and Ψ is holomorphic.

Proposition 1.1.2. The complex projective space is isomorphic to Riemann
sphere.

Theorem 1.1.1 (open map theorem). Let Φ: X → Y be a non-constant
holomorphic map between Riemann surfaces. Then Φ is open.

Corollary 1.1.1. Let Φ: X → Y be a non-constant holomorphic map be-
tween Riemann surfaces and X is compact. Then Φ(X) = Y , and thus Y is
compact.

Proof. By open map theorem, Φ(X) is an open subset of Y , and Φ(X) is
compact in Y , since continous function maps compact set to compact set.
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Then Φ(X) is both open and closed in Y , and thus Φ(X) = Y since Y is
assumed to be connected. □
Theorem 1.1.2. Let Φ: X → Y be a non-constant holomorphic map be-
tween Riemann surfaces. Then for any q ∈ Y , Φ−1(q) is a discrete set. In
particular, if X is compact, then Φ−1(q) is a non-empty finite set.
1.1.4. Meromorphic functions.
Definition 1.1.7 (singularity). Let X be a Riemann surface and f be a
holomorphic function defined on U \ {p} where U ⊆ X is an open subset.
The point p is called a removbale singularity/pole/essential singularity, if
there exists a chart (U,ϕ) of p, such that f ◦ ϕ−1 : ϕ(U) → C has ϕ(p) as a
removbale singularity/pole/essential singularity.
Remark 1.1.8.
(1) If |f(p)| is bounded in a punctured neighborhood of p, then p is a

removable singularity, and we can cancel the singularity by defining
f(p) = limp′→p f(p

′).
(2) If limp′→p |f(p′)| = ∞, then p is a pole.
(3) If limp′→p |f(p′)| doesn’t exist, then p is a essential singularity.
Definition 1.1.8 (meromorphic function). Let X be a Riemann surface
and f be a holomorphic function defined on U \ {x} where U ⊆ X is an
open subset.
(1) f is called a meromorphic function at p if p is either a removbale singu-

larity or a pole, or f is holomorphic at p.
(2) f is called a meromorphic function on W , if it’s meromorphic at any

point p ∈W .
Remark 1.1.9. If f, g are meromorphic on W , then f±g, fg are meromorphic
on W . If in addition, g 6≡ 0, then f/g is also meromorphic on W . In other
words, the set of meromorphic functions on W forms a field, which is called
meromorphic function field.
Example 1.1.5. Consider f, g are two polynomials with g 6≡ 0, then f/g
is a meromorphic function on Riemann sphere S2 = C∪{∞}. In fact, all
meromorphic functions on S2 are in this form.
Theorem 1.1.3 (discreteness of singularities and zeros). Let X be a Rie-
mann surface and W ⊆ X be an open subset. If f is a meromorphic function
on W , then set of singularities and zeros of f is discrete, unless f ≡ 0.
Corollary 1.1.2. Let X be a compact Riemann surface.
(1) If f is a non-zero meromorphic function, then f has finitely many poles

and zeros on X.
(2) If f, g are two meromorphic functions on an open subset W ⊆ X, and

f agrees with g on a set with limit point in W , then f ≡ g.
1.2. Plane curves.
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1.2.1. Affine plane curves. Let V ⊆ C be a connected open subset and g be
a holomorphic function defined on U . The graph X of g, as a subset of C2

is defined by

{(z, g(z)) | z ∈ U}.

Given X the subspace topology, and let π : X → U be the projection to the
first factor. Note that π is a homeomorphism, whose inverse sends the point
z ∈ U to the ordered pair (z, g(z)). This makes X a Riemann surface.

A generalization of the graph of holomorphic function is that we consider
“Riemann surface” which is locally a graph, but perhaps not globally. The
tools we use is implicit function theorem in fact.

Theorem 1.2.1 (The implicit function theorem). Let f(z, w) : C2 → C be
holomorphic function of two variables and X = {(z, w) ∈ C2 | f(z, w) = 0}
be its zero loucs. Let p = (z0, w0) be a point of X and ∂f/∂z(p) 6= 0. Then
there exists a function g(w) defined and holomorphic in a neighborhood of
w0 such that, near p, X is equal to the graph z = g(w).

Method one. If we write z = a +
√
−1b, w = c +

√
−1d and f(z, w) = u +√

−1v, then u, v are smooth functions of a, b, c, d. Moreover, the Cauchy-
Riemann equations give

∂f

∂z
=
∂u

∂a
+
√
−1

∂v

∂a
=
∂v

∂b
−
√
−1

∂u

∂b
= A+

√
−1B.

Then
∂(u, v)

∂(a, b)
=

(
A B
−B A

)
,

and det
∂(u, v)

∂(a, b)
= A2 + B2 6= 0 if and only if A +

√
−1B 6= 0. Then the

classical implicit function theorem implies the zero loucs{
u = 0

v = 0

is locally given by {
a = a(c, d)

b = b(c, d).

In other words, z = g(w). Now it suffices to compute ∂g/∂w to show g is
holomorphic. Again by Cauchy-Riemann equations

∂f

∂w
=
∂u

∂c
+
√
−1

∂v

∂c
=
∂v

∂d
−
√
−1

∂u

∂d
= C +

√
−1D.
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Then by chain rule one has
∂(a, b)

∂(c, d)
=

(
∂(u, v)

∂(a, b)

)−1 ∂(u, v)

∂(c, d)

=

(
A B
−B A

)−1(
C D
−D C

)
=

1

A2 +B2

(
AC +BD AD −BC
BC −AD BD +AC

)
.

Thus
∂g

∂w
=

1

2

(
∂

∂c
+
√
−1

∂

∂d

)(
a+

√
−1b

)
=

1

2

(
∂a

∂c
+
√
−1

∂b

∂c
+
√
−1

∂a

∂d
− ∂b

∂d

)
= 0

□

Method two. Firstly let’s recall some basic facts in complex analysis: For a
holomorphic function f defined on U , the integral

1

2π
√
−1

˛
∂U

f ′(z)

f(z)
dz

counts the number of zeros of f(z) in U with multiplicity, and the integral
1

2π
√
−1

˛
∂U
z
f ′(z)

f(z)
dz

is the summation of zeros of f(z) in U . Now let’s prove the implicit function
theorem by using above observation. Fix w = w0, the holomorphic function
f(z, w0) has a zero at z = z0, and we may choose an open neighborhood U of
z0 such that z0 is the only zero of f(z, w0) in U since holomorphic function
has discrete zeros. Consider the integral

1

2π
√
−1

˛
∂U

fz(z, w)

f(z, w)
dz = N(w),

which is well-defined on sufficiently small neighborhood Dw0 of w0. It gives
a continous, integer-valued function with N(w0) = 1. This shows N(w) = 1
for all w ∈ Dw0 , and thus f(z, w) has only one zero for every w ∈ Dw0 .
Moreover, this zero point z is given by

1

2π
√
−1

˛
∂U
z
fz(z, w)

f(z, w)
dz = g(w),

which is holomorphic with respect to w. □
Definition 1.2.1 (affine plane curve). An affine plane curve is the loucs of
zeros in C2 of a (non-trivial) polynomial f(x, y).

Definition 1.2.2 (non-singular).



15

(1) A polynomial f(x, y) is non-singular at root p if either ∂f/∂x or ∂f/∂y
is not zero at p, otherwise it’s called singular.

(2) The affine plane curve X defined by f(x, y) is non-singular is non-
singular at p ∈ X if f is non-singular at p.

(3) The curve X is non-singular if it’s non-singular at each of its points.

Example 1.2.1. The affine plane curve C ⊆ C2 defined by x2 + y2 − 1 is
non-singular.

Given a non-singular affine plane curve C, by the implicit function the-
orem, one has C is locally a graph, and thus it gives a complex structure
of C. To be precise, suppose C is defined by the non-singular polynomial
f(x,w). Let p = (x0, y0) ∈ C with ∂f/∂x(p) 6= 0, then there exists a holo-
morphic function g(x) such that in an open neighborhood U of p, C is the
graph w = g(x). Thus the projection π : U → C, which maps (x, y) → x is
a homeomorphism from U to its image, which is an open subset in C. This
gives a complex chart of C.

A straightforward computation shows that complex charts given as above
are compatible with each other, and thus it gives a complex structure on C.
Moreover, C is second countable and Hausdorff, as a subspace of C2. The
only thing we need to check is C is connected. However, if f is an arbitrary
non-singular polynomial, the affine plane curve defined by f may not be
connected. For example, consider

f(x, y) = (x+ y)(x+ y − 1).

Then the affine plane curve defined by above non-singular polynomial is the
union of two complex planes which do not meet. Later in Section 3.2.3 we
will show that the plane curve defined by an irreducible polynomial must be
connected. Thus we have the following theorem.

Theorem 1.2.2. A non-singular affine plane curve defined by an irreducible
polynomial is a Riemann surface.

1.2.2. Projective plane curve.

Definition 1.2.3 (projective plane curve). Let F be a homogenous polyno-
mial in C[x, y, z]. A projective plane curve C defined by F is the zero loucs
of F , that is,

C = {[x : y : z] ∈ P2 | F (x, y, z) = 0}.

Remark 1.2.1 (relations between affine plane curve and projective plane
curve). Given a projective plane curve C given by homogenous polynomial
F . Consider

ϕ0 : U0 = C2 → P2

(y, z) 7→ [1 : y : z]

Then ϕ−1
0 (U0 ∩ C) = {(y, z) ∈ C2 | F (1, y, z) = 0} is an affine plane curve,

and similarly there are other affine plane curves given by ϕ−1
0 (U1 ∩ C) and
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ϕ−1
0 (U2∩C). Conversely, given an affine plane curve C defined by f ∈ C[y, z].

Consider the homogenous polynomial F (x, y, z) defined by

F (x, y, z) = xdf(
y

x
,
z

x
)

where d = deg f . Then F defines a projective plane curve such that the
affine plane curve it gives on affine chart U0 is exactly C.

Definition 1.2.4 (non-singular). A projective plane curve C is non-singular
if the affine plane curves ϕ−1

i (Ui ∩ C) are non-singular for i = 0, 1, 2, where
ϕi : Ui → P2 are standard affine covering of P2.

Proposition 1.2.1. A projective plane curve C = {[x : y : z] : F (x, y, z) =
0} ⊆ P2 is non-singular if and only if

F =
∂F

∂x
=
∂F

∂y
=
∂F

∂z
= 0

has no solution in P2.

Proof. Since F is a homogenous polynomial, it satisfies the Euler’s formula

dF = x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
,

where d = degF . Now let’s start our proof as follows:
(1) Suppose F = ∂F/∂x = ∂F/∂y = ∂F/∂z = 0 has a solution (a, b, c) with

a 6= 0. Then
∂F

∂y
(1,

b

a
,
c

a
) =

1

ad−1

∂F

∂y
(a, b, c) = 0

∂F

∂z
(1,

b

a
,
c

a
) =

1

ad−1

∂F

∂z
(a, b, c) = 0

F (1,
b

a
,
c

a
) =

1

ad
F (a, b, c) = 0.

This shows the affine plane curve ϕ−1
0 (U0 ∩ C) is singular, and thus C

is singular.
(2) Conversely, if the projective plane curve defined by F is singular, without

lose of generality we may assume X0 := ϕ−1
0 (U0 ∩ C) is singular. Then

there exists a solution (b, c) ∈ C2 such that

F (1, b, c) =
∂F

∂y
(1, b, c) =

∂F

∂z
(1, b, c) = 0.

By Euler’s formula one has
∂F

∂x
(1, b, c) = dF (1, b, c)− b

∂F

∂y
− c

∂F

∂z
= 0.

As a consequence, (1, a, b) is a solution of F = ∂F/∂x = ∂F/∂y =
∂F/∂z = 0.

□
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Theorem 1.2.3. Any non-singular projective plane curve C is a compact
Riemann surface.

Proof. Later we will show that a non-singular homogenous polynomial must
be irreducible (See Proposition 3.2.1). Then the three affine charts of C are
non-singular affine plane curve defined by irreducible polynomials, and thus
Riemann surfaces by Theorem 1.2.2. A straightforward computation shows
that the complex structures on each affine charts are compatible, and thus
C is a Riemann surface. Moreover, it’s compact since P2 is compact and C
is a closed subset of P2. □
Remark 1.2.2. One way to understand projective plane curve is to regard it
as a compactifications of affine plane curve.

Example 1.2.2 (Fermat curve). xd+yd = zd gives a non-singular projective
plane curve.

Example 1.2.3. The polynomial f(x, y) = y2−(1−x2)(1−k2x2), k 6= 0,±1
gives a non-singular affine plane curve C. Now we consider the compactifi-
cation of C. Let F (x, y, z) be the homogenous polynomial given by f(x, y),
that is,

F (x, y, z) = z2y2 − (z2 − x2)(z2 − k2x2).

F (x, y, z) gives a projective plane curve, and the affine plane curve it gives
on the affine chart U2 is exactly C, so it suffices to see the affine plane curves
it gives on the other affine charts.
(1) The affine plane curve it gives on the affine chart U1 is defined by

f(x, 1, z) = z2 − (z2 − x2)(z2 − k2x2).

In this case there is a new point [0 : 1 : 0], which is singular.
(2) The affine plane curve it gives on the affine chart U0 is defined by

f(1, y, z) = z2y2 − (z2 − 1)(z2 − k2).

But in this case, there is no more new point since there is no solution
satisfying z = 0.

In a summary, the compactification of the affine plane curve C adds a sin-
gular point, and later we will see how to handle with singularities by reso-
lutions.

1.2.3. Quadratic. A homogenous polynomial F of degree 2 can be written
as

F = (x, y, z)A

xy
z

 ,

where A ∈ M3×3(C) is a symmetric matrix. In this section we will see the
projective plane curve C defined by F is determined by the rank of A.

Proposition 1.2.2. If rkA = 3, then F is non-singular, and C is isomorphic
to P1.
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Method one. If rkA = 3, then there exists P ∈ GL(3,C) such that

P TAP =

1 0 0
0 1 0
0 0 −1

 .

This shows that afer a suitable change of coordinate, we may assume the
projective plane curve C defined by F is {[x : y : z] | x2+y2− z2 = 0} ⊆ P2.
The following map gives an isomorphism between C and P1.

Φ: P1 → C

[1 : t] 7→ [1− t2 : 2t : 1 + t2].

□
Method two. Consider the following holomorphic embedding

Φ: P1 → P2

[t0 : t1] 7→ [t20 : t0t1 : t
2
1].

Note that the image of Φ is a projective plane curve defined by the equation
xz = y2. On the other hand, after a suitable change of coordinate we may
also assume C is defined by this equation since there also exists P ∈ GL(3,C)
such that

P TAP =

0 0 1
2

0 1 0
1
2 0 0

 .

□
Proposition 1.2.3. If rkA = 2, then C is isomorphic to the union of two
P1.

Proof. If rkA = 2, then there exists P ∈ GL(3,C) such that

P TAP =

1 0 0
0 1 0
0 0 0

 .

This shows the projective plane curve C is defined by x2 + y2 = (x +√
−1y)(x−

√
−1y), which is the union of two P1 which intersects at [0 : 0 : 1].

In particular, it’s singular. □
Proposition 1.2.4. If rkA = 1, then C is isomorphic to a double line.

Proof. If rkA = 1, then there exists P ∈ GL(3,C) such that

P TAP =

1 0 0
0 0 0
0 0 0

 .

This shows the projective plane curve C is defined by x2 = 0, which is a
singular projective plane curve called double line. □
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2. Ramification

Topologically speaking a Riemann surface is an orientable 2-dimensional
real manifold without boundary. In particular, the topology of a compact
Riemann surface can be classified by its genus. So there is a natural question:
Given a non-singular projective plane curve C defined by the homogenous
polynomial F (x, y, z) = y2z − x(x− z)(x− λz), λ 6= 0, 1, topologically C is
a closed orientable surface, is there any way to compute its genus?

Consider the following map

Φ: C \ [0 : 1 : 0] → P1

[x : y : z] 7→ [x : z].

It’s clear that Φ is well-defined holomorphic map. If we desire to extend F

to a holomorphic map Φ̃ defined on C, we need to consider the behavior of
C around [0 : 1 : 0]. On affine chart U1 = {[x : 1 : z] | x, z ∈ C}, it gives an
affine plane curve defined by

f(x, z) = z − x(x− z)(x− λz).

A direct computation shows that
∂f

∂z

∣∣∣∣
(0,0)

= 1,
∂f

∂x

∣∣∣∣
(0,0)

= 0.

Then by implicit function theorem, C is given by [x : 1 : z(x)] locally around
[0 : 1 : 0], and

z′(0) = − ∂p

∂x

∣∣∣∣
(0,0)

/
∂p

∂z

∣∣∣∣
(0,0)

= 0/1 = 0.

Thus x = 0 is a removable singularity of z(x)/x, so it’s reasonable to define
Φ̃([0 : 1 : 0]) = [1 : 0] to give an extension of Φ since for x 6= 0,

Φ([x : 1 : z(x)]) = [x : z(x)] = [1 :
z(x)

x
].

There are four special points for Φ̃ : C → P1, listed as follows
[0 : 1 : 0] 7→ [1 : 0]

[0 : 0 : 1] 7→ [0 : 1]

[z : 0 : 1] 7→ [z : 1]

[λz : 0 : 1] 7→ [λz : 1].

These points are called ramification points or ramification values of Φ̃, and
besides these points, Φ̃ is a double covering. Such a holomorphic map is
called a ramification covering, and in this section we will show that all holo-
morphic maps between Riemann surfaces are ramification coverings. More-
over, we introduce the Riemann-Hurwitz formula, which gives a method to
compute the genus of the ramification covering of a given space.
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2.1. Ramification covering.

Theorem 2.1.1 (local normal form). Let Φ: X → Y be a non-constant
holomorphic map. Then there are local coordinates (U,ϕ) and (V, ψ) of p
and Φ(p) respectively, such that

ψ ◦ Φ ◦ ϕ−1(z) = zk

holds for all z ∈ ϕ(U ∩ Φ−1(V )).

Proof. Firstly we fix a local coordinate (V, ψ) of Φ(p), and choose a local
coordinate (U1, ϕ1) of p such that Φ(U) ⊂ V . If we denote ψ ◦Φ ◦ϕ−1

1 = T ,
then T (0) = 0. Suppose the Taylor expansion of T at w = 0 is

T (w) =

∞∑
k=m

akw
k, am 6= 0.

Then T (w) = wmS(w), where S(w) is a holomorphic function with S(0) 6= 0,
and thus there exists a holomorphic function R(w) such that Rm(w) = S(w).

Then T (w) = (wR(w))m = (η(w))m, where η(0) = 0, η′(0) = R(0) 6= 0.
By inverse function theorem, there exists a sufficiently small neighborhood
U ⊆ U1 of p such that η is invertible in ϕ1(U), and thus this gives a new
local coordinate of p as

U1 ⊇ U
φ1−→ ϕ1(U)

η−→ η ◦ ϕ1(U) ⊂ C .

If we define ϕ = η ◦ ϕ1, then with respect to (U,ϕ) and (V, ψ), the local
representation of Φ is given by

ψ ◦ Φ ◦ ϕ−1(z) = ψ ◦ Φ ◦ ϕ−1
1 ◦ η−1(z) = T (η−1(z)) = zm.

□

Definition 2.1.1 (multiplicity). Let Φ: X → Y be a holomorphic map
between Riemann surfaces. If its local normal form at point p ∈ X is given
by z 7→ zk, then k is called the multiplicity3 of Φ at p, denoted by multpΦ.

Definition 2.1.2 (ramification point and ramification value). Let Φ: X →
Y be a holomorphic map between Riemann surfaces. A point p ∈ X is called
a ramification point if multpΦ > 1, and the image of ramification point is
called a ramification value.

Lemma 2.1.1. Let Φ: X → Y be a non-constant holomorphic map between
Riemann surfaces. A point p ∈ X is a ramification point if there exists some
local representation of Φ, denoted by T , such that T ′(0) = 0.

Corollary 2.1.1. The set of ramification points of a holomorphic map is a
discrete set.

3Sometimes this number is also called ramification of F at p.



21

Theorem 2.1.2. Let Φ: X → Y be a non-constant holomorphic map be-
tween compact Riemann surfaces and define

dq(Φ) =
∑

p∈Φ−1(q)

multpΦ.

Then dq(Φ) is independent of q ∈ Y , which is called the degree of Φ, and
denoted by deg(Φ).

Proof. Suppose X = Y = D are unit disks and Φ: D → D is a holomorphic
map defined by z 7→ zm. Then it’s easy to show dq(Φ) = m, for all q ∈ D,
since for q = 0, there is only one preimage of multiplicity m and for q 6= 0,
there are m preimages of multiplicity 1.

Let’s consider the general case. For q ∈ Y , since X is compact, Φ−1(q)
only consists of finitely many points, denoted by {p1, . . . , pk}. Fix a local
coordinate (V, ψ) centered at q ∈ Y , for any i = 1, . . . , k, there is a local
coordinate (Ui, ϕi) centered at pi ∈ X such that

ψ ◦ Φ ◦ ϕ−1
i (z) = zmi , z ∈ ϕi(Ui),

where mi = multpi(Φ). If we choose another neighborhood q ∈W ⊆ V such
that Φ−1(W ) ⊆

⋃k
i=1 Ui, then for any q ∈W , from the trivial case discussed

before one has

dq(Φ) =

k∑
i=1

mi.

This shows dq(Φ) is a locally constant function, and thus dq(Φ) is constant
since Y is connected. □
Corollary 2.1.2. A holomorphic map between compact Riemann surfaces
is an isomorphism if and only if it has degree one.

Corollary 2.1.3. X is a compact Riemann surface, and f is a meromorphic
function on X, then the number (counted with multiplicity) of zeros is equal
to the number (counted with multiplicity of poles).

Proof. Note that a meromorphic function f on X gives a holomorphic map
Φ from X to P1, and the number of zeros is the multiplicity of Φ at zero,
while the number of poles is the multiplicity of Φ at ∞. □

2.2. Riemann-Hurwitz formula. In this section we talk about Riemann-
Hurwitz formula, which computes the genus from a given ramification cov-
ering. Before that we recall some basic facts in topology.

For a compact oriented surface X, the Euler number of X can be defined
by the triangulation of X as follows: Suppose a triangulation of X is given
with v vertices, e edges and t tirangles. Then the Euler characterisitic of X
is defined by v − e + t. On the other hand, the Euler number can also be
defined as

χ(X) :=
∑
i

(−1)i dimHi(X,R),
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where Hi(X,R) is the i-th singular homology of X. The genus of X is
defined by

χ(X) = 2− 2gX .

Theorem 2.2.1 (Riemann-Hurwitz formula). Let Φ: X → Y be a non-
constant holomorphic map between compact Riemann surfaces. Then

χ(X) = deg(Φ)χ(Y )−
∑
p∈X

(multpΦ− 1)

Proof. Choose a triangulation ∆ of Y such that its vertex are exactly ram-
ification values of F . Let v, e, t denote the number of vertices, edges and
triangles of ∆ respectively. Suppose ∆′ is the triangulation of X obtained
by pulling back ∆ through F , and use v′, e′ and t′ to denote the number of
vertices, edges and triangles of ∆′ respectively.

It’s clear we have the following relations

t′ = td, e′ = ed

where d = deg(Φ). For q ∈ Y , note that

|Φ−1(q)| =
∑

p∈Φ−1(q)

1 = d+
∑

p∈Φ−1(q)

(1−multpΦ).

Then the relation between v and v′ is given by

v′ =
∑

vertex q of ∆
|Φ−1(q)|

=
∑

vertex q of ∆

d+ ∑
p∈Φ−1(q)

(1−multpΦ)


=vd+

∑
vertex q of ∆

 ∑
p∈Φ−1(q)

(1−multpΦ)


=vd+

∑
p∈X

(1−multpΦ).

Thus by the relation between Euler number and triangulation, we obtain
the desired conclusion. □

Remark 2.2.1. Since the set of ramification points is finite, then
∑

p∈X(multpΦ−
1) is a finite number, and for convenience we denote it by B(Φ). It describes
how many ramification points of Φ are there on X.

Definition 2.2.1 (ramified holomorphic map). A holomorphic map Φ is
called ramified if B(Φ) > 0.

Definition 2.2.2 (unramified holomorphic map). A holomorphic map Φ is
called unramified if B(Φ) = 0.



23

Remark 2.2.2. A unramified holomorphic map is a covering map, and thus
ramified holomorphic map is sometimes called ramified covering map.
Corollary 2.2.1. Let Φ: X → Y be a non-constant holomorphic map be-
tween compact Riemann surfaces. Then
(1) If Y is Riemann sphere and deg(Φ) > 1, then Φ must be ramified.
(2) If gX = gY = 1, then Φ must be unramified.
(3) If gX = gY > 1, then Φ must be an isomorphism.
Proof.
(1) Since Riemann sphere has genus zero, one has

B(Φ) = 2(deg(Φ)− 1) + 2gX > 0.

(2) By Riemann-Hurwitz formula we have
0 = 0 +B(Φ).

(3) By Riemann-Hurwitz formula we have
(1− deg(Φ))(2gX − 2) = B(Φ).

Then deg(Φ) = 1, since deg(Φ) ≥ 1, 2gX − 2 > 0 and B(Φ) ≥ 0.
□

2.2.1. Genus of projective plane curve. Now we’re going to use Riemann-
Hurwitz formula to compute the genus of projective plane curves. Firstly
consider the example at the beginning of this section, that is, the non-
singular projective plane curve C is defined by homogenous polynomial

F (x, y, z) = y2z − x(x− z)(x− λz),

where λ 6= 0, 1. The ramification covering Φ̃ : C → P1 has degree 2, and
the ramification values are [1 : 0], [0 : 1], [z : 1], [λz : 1]. Then by Riemann-
Hurwitz formula one has

χ(C) = 2× 2− 4

This shows the genus of C is 1.
Example 2.2.1 (Fermat curve). Let C be the projective plane curve de-
fined by the homogenous polynomial F (x, y, z) = xd + yd − zd. A direct
computation shows C is non-singular, and thus it gives a Riemann surface.
Consider the holomorphic map

Φ: C → P1

[x : y : z] 7→ [x : z].

Note that
yd = zd − xd = (x− α1z) . . . (x− αdz),

where α1, . . . , αd ∈ C are different d-th unit roots. Then Φ is a ramification
covering of degree d, and has d ramification values. Then by Riemann-
Hurwitz formula,

χ(C) = 2× d− d(d− 1).
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This shows the genus of C is (d− 1)(d− 2)/2.

Remark 2.2.3. In general, for a non-singular projective plane curve C defined
by a homogenous polynomial of degree d, the genus of C is (d− 1)(d− 2)/2,
and this is called Plücker’s formula or genus-degree formula (See Corollary
3.2.1). Moreover, if C is singular, then the genus of the normalization of C
is

(d− 1)(d− 2)

2
− δ,

where δ > 0 is related to the type of singularities of C (See Theorem 5.5.1).
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3. Bezout theorem

3.1. Statement and proof. Let C,C ′ be a non-singular projective plane
curves defined by a homogenous polynomials F,G such that F,G has no
common divisors4. In this section we will show how to count the number of
the intersections of C and C ′.
Definition 3.1.1 (intersection number). The intersection number at point
p ∈ C ∩ C ′ is the order of zero of G at p on some affine chart on C. The
intersection number of C and C ′ is the summation of intersection numbers
of all intersections p ∈ C ∩ C ′.
Remark 3.1.1. Note that the change of affine charts does not change the
vanishing order of a polynomial. This shows the intersection number of
an intersection is well-defined. For convenience, the intersection number at
point p is denoted by (C,C ′)p, and the intersection number of C and C ′ is
denoted by (C,C ′), that is,

(C,C ′) =
∑

p∈C∩C′

(C,C ′)p.

It’s left as an exercise (Exercise 11.3.2) to show (C,C ′)p = (C ′, C)p.
Theorem 3.1.1 (Bezout theorem). Let C,C ′ be two non-singular projective
plane curves defined by homogenous polynomials F,G such that F,G has
no common divisors. Then the intersection number

(C,C ′) = ed,

where degF = e, degG = d.
Proof. Let L be a linear homogenous polynomial such that L - F and H be
the projective line defined by L. Consider the holomorphic map

Φ: C → P1

[x : y : z] 7→ [Ld : G].

Since C is compact, one has Φ is surjective by Corollary 1.1.1.
(1) Suppose Φ is a non-constant holomorphic map. Note that the order of

zeros of Φ equals (C,Hd), and the order of poles of Φ equals to (C,C ′).
Then

(C,Hd) = (C,C ′).

since both order of zeros and order of poles are degree of Φ. By definition
one has

(C,Hd) = d(C,H).

Now it suffices to show a projective plane curve defined by a homogenous
polynomial with degree e intersects a projective line e times, which is
straightforward.

4Since both F and G are irreducible, this assumption exclude the trivial cases F | G
and G | F .
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(2) If Φ is a constant holomorphic map, then there exists a constant λ ∈ C∗

such that G = λLd. Again one has
(C,Ld) = (C, λHd) = (C,C ′),

since λ 6= 0.
□

3.2. Applications.

3.2.1. Plücker formula. In this section we will prove Plücker formula as a
consequence of Bezout theorem, but before that we prove a technique lemma.

Lemma 3.2.1. Let C be a projective plane curve of degree d. Then there
exists an affine coordinate [x : y : 1] ⊆ P2 such that C is given by the
following equation

f(x, y) = yd + a1(x)y
d−1 + · · ·+ ad(x) = 0,

where ai(x) ∈ C[x] with deg ai(x) ≤ i, or aj(x) = 0.

Proof. Let [z : w : 1] be an arbitrary affine coordinate of P2 and C is defined
by

f ′(z, w) = 0,

with deg f ′ = d. If f ′ is not of the desired form, then consider the following
coordinate transformation

z = x+ λy

w = y.

Let b(λ) be the coefficient of the term involving yn in f ′(x+λy, y). It’s clear
b(λ) is a non-zero polynomial in λ, and hence can equal 0 for only a finite
number of values of λ. Then we choose λ such that b(λ) 6= 0, and for such
a chosen λ, we consider

f(x, y) =
1

b(λ)
f ′(x+ λy, y).

Then in affine coordinate [x : y : 1], the equation of C is
f(x, y) = 0,

which satisfies our desire. □
Corollary 3.2.1 (Plücker formula). Let C ⊆ P2 be a non-singular projective
plane curve of degree d. Then the genus of C is (d− 1)(d− 2)/2.

Proof. By Lemma 3.2.1, without lose of generality we may assume C is
defined by the non-singular homogenous polynomial F with

F (x, y, z) = yd − a1(x, z)y
d−1 − · · · − ad(x, z).

Then consider the following holomorphic map
Φ: C → P1

[x : y : z] 7→ [x : z],
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which is a ramification covering in fact. Now by Riemann-Hurwitz formula
it suffices to compute the ramification data of Φ. On affine charts U2 = {[x :
y : 1]} ⊆ P2, C is defined by

f(x, y) = yd − a1(x, 1)y
d−1 − · · · − ad(x, 1) = 0.

(1) If fy(x0, y0) 6= 0, then by implicit function theorem, around the point
[x0 : y0 : 1], the affine plane curve C ∩ U2 is given by [x : y(x) : 1], and
thus Φ is a local diffeomorphism at this point.

(2) If fy(x0, y0) = 0, then fx(x0, y0) 6= 0 since f is non-singular. By implicit
function theorem again, around [x0 : y0 : 1], there exists a local coordi-
nate y 7→ [x(y) : y : 1], and Φ is given by y 7→ x(y). By chain rule one
has

x′(y) = −(fx(x(y), y))
−1fy(x(y), y).

This shows the order of zero of x′(y) equals to the order of zero of
fy(x(y), y).

This shows B(Φ) =
∑

p∈C(multpΦ − 1) is exactly the intersection num-
ber of F and Fy, and since both F and Fy are non-singular homogenous
polynomial, by Bezout theorem one has

B(Φ) = d(d− 1).

By Riemann-Hurwitz formula, the genus of C is (d− 1)(d− 2)/2. □
3.2.2. Non-singular homogenous polynomial is irreducible. Another appli-
cation of Bezout theorem is that any non-singular homogenous polynomial
is irreducible.

Proposition 3.2.1. Let F be a non-singular homogenous polynomial. Then
F is irreducible.

Proof. On contrary we suppose F = F1F2. By chain rule of derivative it’s
easy to see both F1 and F2 are non-singular. Then by Bezout theorem, F1

and F2 have at least a common zero, which contradicts to F is non-singular,
since F is singular at the common zero of F1 and F2, which can be shown
by chain rule of derivatives again. □
3.2.3. Connectness of irreducible plane curve. In this section, we will prove
the connectness of plane curves as we mentioned before. In fact, we will
prove the following stronger theorem.

Theorem 3.2.1. Let F be an irreducible homogenous polynomial and C
be the projective plane curve defined by F . Then the set of singularities S
is finite, and C \ S is connected.

Before starting the proof, we prepare some basic facts we will use.

Lemma 3.2.2. If R is a UFD and
f = a0x

m + a1x
m−1 + · · ·+ am,

g = b0x
n + b1x

n−1 + · · ·+ bn
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are polynomials in R[x] with a0 6= 0, b0 6= 0. Then f, g has a non-trivial com-
mon divisor if and only if there exists F,G ∈ R[x] with degF < m, degG < n
such that

f ·G = F · g.

Proof. On one hand, if f, g has a non-trivial common divisor h, then
f = h · F
g = h ·G.

This shows f ·G = F · g, where degF < deg f ≤ m and degG < deg g ≤ n.
On the other hand, if f ·G = F · g with degF < m and degG < n, then

all factors of f cannot be all factors of F since deg f > degF . Hence there
exists a non-trivial divisor of f which is also a divisor of g since R[x] is UFD
by Gauss lemma. □

Suppose
F (x) = A0x

m−1 + · · ·+Am−1

G(x) = B0x
n−1 + · · ·+Bn−1.

Then f ·G = F · g if and only if

(3.1)


a0B0 = b0A0

a1B0 + a0B1 = b1A0 + b0A1

...
amBm−1 = bnAm−1.

Thus f ·G = F · g has non-zero solutions F,G if and only if (3.1) has a non-
zero solution (A0, . . . Am−1, B0, . . . , Bn−1). Then by basic theory of systems
of linear equations, (3.1) has a non-zero solution if and only if the following
determinant equals to zero.

(3.2) det



a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
a2 a1 . . . 0 b2 b1 . . . 0
...

... . . . a0
...

... . . . b0

am am−1 · · ·
... bn bn−1 · · ·

...
0 am . . .

... 0 bn . . .
...

...
... . . . am−1

...
... . . . bn−1

0 0 · · · am 0 0 · · · bn


Definition 3.2.1 (resultant). If R is a ring and

f = a0x
m + a1x

m−1 + · · ·+ am,

g = b0x
n + b1x

n−1 + · · ·+ bn

are polynomials in R[x]. The resultant of f, g is defined as the determinant
in (3.2), and denoted by R(f, g).
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Theorem 3.2.2. If R is a UFD and
f = a0x

m + a1x
m−1 + · · ·+ am,

g = b0x
n + b1x

n−1 + · · ·+ bn

are polynomials in R[x] with a0 6= 0, then
(1) f, g have a non-trivial common divisor if and only if R(f, g) = 0;
(2) there exists polynomial α, β ∈ R[x], with degα < n, deg β < m such

that
α(x)f(x) + β(x)g(x) = R(f, g).

Definition 3.2.2 (discriminant). Let R be a ring and f ∈ R[x]. The
discriminant of p is defined by D(f) := R(f, f ′), where f ′ is the formal
derivative of f .

Corollary 3.2.2. Let R be a UFD and f ∈ R[x]. Then f has a multiple
root if and only if D(f) = 0.

Now let’s start the proof of Theorem 3.2.1.
Proof. Firstly let’s shows F has only finitely many singularities. By Lemma
3.2.1, without lose of generality we may assume C is defined by

f(x, y) = yd + a1(x)y
d−1 + · · ·+ ad(x)

on some affine chart. If we regard f(x, y) and fy(x, y) as elements in C[x][y],
then R(f, fy) ∈ C[x], which is a non-zero polynomial since f(x, y) is irre-
ducible. By Theorem 3.2.2 there exists α, β ∈ C[x, y] such that

α(x, y)f(x, y) + β(x, y)fy(x, y) = R(f, fy)(x).

If point (x0, y0) such that f(x0, y0) = fy(x0, y0) = 0, then
R(f, fy)(x0) = 0.

This shows f(x, y) = fy(x, y) = 0 has finitely many solutions, and thus C
only has finitely many singularities on this affine chart. On the other hand,
the infty line z = 0 only intersects with C finitely many times, and thus
there are at most finitely many singularities on z = 0. As a consequence, C
has only finitely many singularities.

To prove C∗ = C \ S is connected, it suffices to show C∗ is connected on
the affine chart U2 = {[x : y : 1]} since

C∗ ∩ U2 ⊆ C∗ ⊆ C = C∗ ∩ U2,

and a basic fact in point set topology says that if a set is connected, so is
its closure. For convenience, in the following proof we still use C to denote
the affine plane curve C ∩ U2. Now consider the ramification covering

Φ: C → C
(x, y) 7→ x.

If we define B = {x0 ∈ C | R(f, fy)(x0) = 0} ⊆ C1, then the argument in
the proof of Corollary 3.2.1 can be used here to show Φ: C \Φ−1(B) → C \B
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is a local diffeomorphism. Thus Φ: C \ Φ−1(B) → C \B is a covering map
on each component of C \ Φ−1(B) since Φ is a proper.

For each point x0 6∈ B, the fiber Φ−1(x0) are exactly the d distinct solu-
tions of yd + a1(x0)y

d−1 + · · ·+ ad(x0) = 0 has d distinct solutions, denoted
by {y1(x0), . . . , yd(x0)}. By the basic theory of covering space, there is an
action of the fundamental group π1(C \B, x0) on the fiber Φ−1(x0). To be
precise, given [γ] ∈ π1(C \B, x0), we choose arbitrary representive γ ∈ [γ]
and consider its lift γ̃, which is independent of the choice of γ. If yi(x0) and
yj(x0) are endpoints of γ̃, then [γ] · yi(x0) = yj(x0). Thus it’s clear to see
the number of connected components of C \ Φ−1(B) equals to the number
of orbits of Φ−1(x0) under the π1(C \B, x0)-action.

Suppose {y1(x0), . . . , yl(x0)} is an orbit of π1(C \B, x0)-action. Then for
any x 6∈ B, we choose a path γ : [0, 1] → C \B connecting x0 and x. Then
γ has l different liftings ending at points y1(x), . . . , yl(x), which can be
extended as holomorphic functions defined on an open neighborhood of x.
If we define

σ1(x) =
∑
i

yi(x)

σ2(x) =
∑
i<j

yi(x)yj(x)

...
σl(x) = y1(x) . . . yd(x),

then σi(x) does not depend on the choice of paths connecting x0 and x,
and thus σi(x) are holomorphic functions defined over C \B. By Rouché’s
theorem, one can see these σi(x) has polynomial growth, that is, there exists
constants C and N such that

|σi(x)| < C|x|N

holds for all i = 1, . . . , l. Then by Riemann extension theorem one has σi(x)
are defined on C, and they are polynomials of x in fact. Note that

(y − y1(x)) . . . (y − yl(x)) | f(x, y).
Then

g(x, y) = yd − σ1(x)y
d−1 + σ2(x)y

d−2 + · · ·+ (−1)lσl(x) ∈ C[x, y]
also divides f(x, y). But since f(x, y) is irreducible, one has f = g, and thus
the π1(C \B, x0)-action is transitive as desired. □
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4. Differential forms

4.1. Differential forms, differential operators and integrations.

4.1.1. Differential forms. Firstly let’s consider the differential forms defined
on an open subset U ⊆ C. Suppose {z} is the coordinate on C. Then
(1) A smooth 1-form is of the form fdz + gdz, where f, g are smooth func-

tions, and the set of all smooth 1-forms defined on U is denoted by
A1(U).

(2) A smooth 1-form is a (1, 0)-form, if it’s of the form fdz, where f is a
smooth function, and the set of all (1, 0)-form defined on U is denoted
by A1,0(U).

(3) A smooth 1-form is a (0, 1)-form, if it’s of the form fdz, where f is a
smooth function, and the set of all (0, 1)-form defined on U is denoted
by A0,1(U).

(4) A smooth 1-form is a holomorphic 1-form, if it’s of the form fdz, where f
is a holomorphic function, and the set of all holomorphic 1-form defined
on U is denoted by Ω1

X(U).
(5) A smooth 2-form is of the form fdz ∧ dz, where f is a smooth function,

and the set of all smooth 2-forms defined on U is denoted by A2(U).
(6) A holomorphic 2-form is of the form fdz∧dz, where f is a holomorphic

function, and the set of all holomorphic 2-forms defined on U is denoted
by Ω2(U).

Remark 4.1.1. It’s clear A1(U) = A1,0(U)⊕A0,1(U).

If we want to define differential forms on Riemann surfaces, a natural
idea is to define them on each coordinate chart, and glue them together in a
suitable way, so we need to know what will happen under the holomorphic
change of coordinate.

Suppose Φ: U → V is a holomorphic function between open subsets
U, V ⊆ C and θ = fdw + gdw is a smooth 1-form on V . Then the pullback
of θ is defined by

Φ∗(θ) = f(Φ(z))Φ′(z)dz + g(Φ(z))Φ′(z)dz.

Similarly, if θ = fdw ∧ dw is a smooth 2-form, then the pullback is defined
by

Φ∗(θ) = f(Φ(z))|Φ′(z)|2dz ∧ dz.

In fact, pullback is a contravariant functor.

Definition 4.1.1 (k-form). A smooth (holomorphic) k-form θ on a Riemann
surface X assigns to any local coordinate ϕ : U → V a smooth (holomorphic)
k-form α, and assignments are compatible5 with the charts.

5This means if U ′ φ′
−→ V ′ is another local coordinate assigned with k-form β, then

Φ∗(β) = α,

where Φ = φ′ ◦ φ−1(z).
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Definition 4.1.2 ((1, 0)-form and (0, 1)-form). A smooth 1-form θ on a
Riemann surface X is called
(1) a (1, 0)-form, if it can be represented as fdz locally, where f is a smooth

function;
(2) a (0, 1)-form, if it can be represented as fdz locally, where f is a smooth

function.
Definition 4.1.3 (holomorphic 1-form). A holomorphic 1-form θ on a Rie-
mann surface X is a differential (1, 0)-form which can be locally represented
as f(z)dz, where f is a holomorphic function.
4.1.2. Differential operators. Given a smooth function f defined on an open
subset U ⊆ C, one has

df =
∂f

∂z
dz +

∂f

∂z
dz.

The operators ∂ and ∂ on smooth functions as follows

∂f :=
∂f

∂z
dz

∂f :=
∂f

∂z
dz.

For a smooth 1-form θ = fdz + gdz, similarly one has

dθ =
∂f

∂z
dz ∧ dz +

∂g

∂z
dz ∧ dz = (

∂g

∂z
− ∂f

∂z
)dz ∧ dz.

Thus we can define the operators ∂ and ∂ on smooth 1-form θ = fdz + gdz
as follows

∂θ := ∂g ∧ dz

∂θ := ∂f ∧ dz.

In a summary, we have constructed differential operators d, ∂ and ∂ on open
subset U ⊆ C, and above constructions can also be paralled to the Riemann
surface X.
Theorem 4.1.1.
(1) d = ∂ + ∂.
(2) d2 = ∂2 = ∂

2
= 0.

(3) ∂∂ = −∂∂.
(4) A (1, 0)-form θ is holomorphic if and only if dθ = ∂θ = 0.
(5) d, ∂ and ∂ satisfy the Leibniz rule, and commute with pullback.
4.1.3. Integrations of differential forms. Let θ be a smooth 1-form on a
Riemann surface X and γ be a piecewise smooth curve on X. Suppose the
curve γ is divided into γ = γ1 ∪ · · · ∪ γn, such that γi : [ai, bi] → Ui, where
(Ui, ϕi) is a local coordinate. If θ is given by fidzi+ gidzi in the local chart
(Ui, ϕi), then the integration of θ along γ is defined byˆ

γ
θ =

n∑
i=1

ˆ
γi

θ :=
n∑
i=1

ˆ bi

ai

{f · z′i(t) + g · z′i(t)}dt.
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Similarly, if η is a 2-form and D is a region on X, we also divide D into
D = D1 ∪ · · · ∪Dn such that each Di lies in some local chart (Ui, ϕi). If we
write zi = xi +

√
−1yi, then

dzi ∧ dzi = (dxi +
√
−1dyi) ∧ (dxi −

√
−1dyi) = −2

√
−1dxi ∧ dyi.

Thus if η is given locally by
fdzi ∧ dzi,

then the integration is defined byˆ
D
η =

n∑
i=1

ˆ
Di

η :=

n∑
i=1

ˆ
φi(Di)

−2
√
−1fdxi ∧ dyi.

Theorem 4.1.2 (Stokes). Let X be a Riemann surface and θ be a smooth
1-form. If D is a compact reigon with piecewise smooth boundary ∂D, thenˆ

D
dθ =

ˆ
∂D

θ.

4.2. Holomorphic 1-form and meromorphic 1-form.

4.2.1. Holomorphic 1-form.

Example 4.2.1. Consider the non-singular affine plane curve C defined by
f(x, y) = y2 − x(x− 1)(x− λ) = 0. Then dx/y is a holomorphic 1-form on
C.
(1) For point (x, y) with y 6= 0, dx/y is a well-defined holomorphic 1-form.
(2) For point (x, y) with y = 0, since C is non-singular, at this point one

has fx 6= 0. Note that f(x, y) = 0 holds on C, and thus one has fxdx+
fydy = 0 holds on C, which implies

dx

2y
= −dy

fx
.

This shows dx/y is always a well-defined holomorphic 1-form on C.

More generally, arguments shown in above example can be used to prove
the following proposition.

Proposition 4.2.1. Let C be a non-singular affine plane curve defined by
f(x, y) = 0. Then

ω =
dx

fy
=

dy

fx
is a holomorphic 1-form on C.

Proposition 4.2.2. Let C be a non-singular projective plane curve defined
by F (x, y, z) = 0 with degF ≥ 3. Then the holomorphic 1-form

ω =
dx

Fy(x, y, 1)

on the affine piece {z = 1} extends to a holomorphic 1-form on C.
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Proof. Firstly we extend the holomorphic 1-form as follows

ω =
d(x/z)

Fy(x/z, y/z, z/z)
.

Then on the affine piece defined by x = 1, one has

ω = − zd−3dz

Fy(1, y, z)
=

zd−3dz

Fz(1, y, z)
.

Thus if d ≥ 3, the extension of ω is a holomorphic 1-form defined on C. □
Remark 4.2.1. More generally, if g(x, y) ∈ C[x, y] is a polynomial, then by
the same argument one can show that the holomorphic 1-form

ω =
g(x, y)dx

Fy(x, y, 1)

defined on affine piece also extends to a holomorphic 1-form on C if deg g ≤
d − 3. Note that the dimension of vector space consisting of homogenous
polynomial with degree d− 3 in three variables is (d− 1)(d− 2)/2. On the
other hand, by genus formula one has g = (d − 1)(d − 2)/2 and later (in
Lemma 9.1.1) we will show the dimension of vector space consisting of all
holomorphic 1-forms is also genus. In other words, we have gave an explicit
basis of holomorphic 1-forms on non-singular projective plane curve.

4.2.2. Meromorphic 1-forms.

Definition 4.2.1 (meromorphic 1-form). A meromorphic 1-form θ on a
Riemann surface X is a smooth (1, 0)-form which can be locally represented
as f(z)dz, where f is a meromorphic function.

Recall that given a meromorphic meromorphic function f on a Riemann
surface X, for p ∈ X, we can chosoe a local coordinate z centered at p, and
consider the Laurent series of f ◦ ϕ−1(z) as

f(z) =

∞∑
n=m

cnz
n, cm 6= 0.

The order of f at p is defined by m and denoted by ordp(f).

Lemma 4.2.1. ordp(f) is independent of the choice of local coordinate.

Proof. A meromorphic function f on a Riemann surface X corresponds to
a holomorphic map Φ: X → P1. If p is a zero point of f , then ordp(f) =
multpΦ, and if p is a pole of f , then ordp(f) = −multpΦ. □

Let θ be a meromorphic 1-form on Riemann surface X, in local coordinate
z centered at p, we can write

θ = f(z)dz

so we can define ordp(θ) = ordp(f), and clearly it’s independent of the choice
of local coordinate.
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Example 4.2.2. Let X = P1 and {(C, z), (C, w)} be an atlas of P1, where
the transition is given by w = 1/z. Consider 1-form θ which locally looks
like dz on (C, z). Using holomorphic change of coordinate, one has θ looks
like

θ =
−1

z2
dz

on (C, w). This shows θ gives a meromorphic 1-form P1, and

ordp(θ) =

{
0, p ∈ P1 \ {∞}
−2, p = ∞

Then ∑
p∈P1

ordp(θ) = −2.

Example 4.2.3. Let X = P1 and {(C, z), (C, w)} be an atlas of P1, where
the transition is given by w = 1/z. Consider the meromorphic 1-form θ
which is given by a rational function r(z) on (C, z), where

r(z) = c
n∏
j=1

(z − λi)
aj ,

where c 6= 0, ai ∈ Z, λj 6= λj ∈ C. Using holomorphic change of coordinate,
one has θ looks like

θ = c
n∏
j=1

(
1

w
− λj)

aj (− 1

w2
)dw

on (C, w). This shows θ gives a meromorphic 1-form P1, and

ordp(θ) =

{
aj , p = λj

−2−
∑n

j=1 aj , p = ∞.

Then ∑
p∈P1

ordp(θ) = −2.

Remark 4.2.2. This shows for a meromorphic 1-form θ on the projective line
P1, one always has ∑

p∈P1

ordp(θ) = −2.

Later we will see it’s not a coincidence (in Theorem 4.4.1).

4.3. Residue theorem. Let θ be a meromorphic 1-form on a Riemann
surface X. Suppose θ is locally given by fdz, where f is a meromorphic
function. The order of f lose too many information given by the coefficient of
its Laurent series and we want to keep track coefficients which are invariant
under the holomorphic change of local coordinate. Luckily, there exists such
an invariant, that is −1-th coefficient of Laurent series c−1.
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Definition 4.3.1 (residue). The residue of a meromorphic 1-form θ is de-
fined by Resp(θ) = c−1.

The following lemma shows that the residue is independent of the choice
of local coordinate, and gives a formula to compute it.

Lemma 4.3.1. Let D be any compact region in Riemann surface X such
that p ∈ D\∂D, ∂D is piecewise smooth, and θ cannot have poles in D\{p}.
Then

Resp(θ) =
1

2π
√
−1

ˆ
∂D

θ.

Proof. Choose D′ ⊆ D such that p ∈ D′ \ ∂D′, ∂D′ is smooth, and D′ is
contained in a local chart with local coordinate z centered at p. In this local
chart, we can write θ as

θ = (
∞∑
n=m

cnz
n)dz.

Then ˆ
∂D

θ −
ˆ
∂D′

θ =

ˆ
D\D′

dθ = 0,

where the last equality holds since θ is holomorphic in D \D′. As a conse-
quence,
ˆ
∂D

θ =

ˆ
∂D′

θ =

ˆ
φ(∂D′)

(
∞∑
n=m

cnz
n)dz = 2π

√
−1c−1 = 2π

√
−1Resp(θ).

□

Theorem 4.3.1 (residue theorem). Let X be a compact Riemann surface
and θ be a meromorphic 1-form on X. Then∑

p∈X
Resp(θ) = 0

Proof. Since X is compact, there are only finitely many poles of θ, denoted
by {p1, . . . , pk}. For each 1 ≤ j ≤ k, we can choose a neighborhood Dj of
pj which plays the role of D′ in Lemma 4.3.1. Then

∑
p∈X

Res(θ) =
k∑
j=1

Respj (θ) =
1

2π
√
−1

k∑
j=1

ˆ
∂Dj

θ =
1

2π
√
−1

ˆ
D\

⋃k
j=1Dj

dθ = 0.

□

Corollary 4.3.1. Let X be a compact Riemann surface and f be a mero-
morphic function on X. Then∑

p∈X
ordp(f) = 0
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Proof. It suffices to note that

ordp(f) = Resp(
df

f
).

□

4.4. Poincaré-Hopf theorem. Let M be a real closed 2-manifold and σ
be a smooth 1-form with isolated zeros. Suppose σ is locally given by σ =
udx+ vdy on an open neighborhood U of zero p such that U \ {p} contains
no zero of σ. Then the index of σ at p, denoted by Indp(σ), is defined by
the degree of the following map

Φ: S1(ε) → S1

(x, y) 7→ (u, v)√
u2 + v2

,

where S1(ε) is the sphere of radius ε contained in U . The Poincaré-Hopf
theorem6 says that

k∑
i=1

Indpi(σ) = χ(M),

where {p1, . . . , pk} are all zeros of σ. Moreover, Poincaré-Hopf theorem still
holds if σ is smooth except finitely many singularities, by adding the index
of these singularities. In this section we will use Poincaré-Hopf theorem to
show that the phenomenon we have seen in Example 4.2.2 and Example
4.2.3 are not coincidences.

Theorem 4.4.1. Let X be a compact Riemann surface and θ be a mero-
morphic 1-form on X. Then∑

p∈X
ordp(θ) = −χ(X) = 2g − 2.

Proof. Consider the 1-form σ = Re(θ), which is a smooth 1-form besides the
poles of θ, and the zeros of σ are exactly the one of θ. For any zero or pole
p ∈ X of θ, without lose of generality we may assume θ is of the form zmdz
locally. Then

σ = rm (cos(mθ)dx− sin(mθ)dy)

where r = |z|. Thus the index at point p is

Indp(σ) =
1

2π

ˆ 2π

0
cos(mθ)d sin(−mθ) + sin(−mθ)d cos(mθ)

=
1

2π

ˆ 2π

0
−m

(
sin(−mθ)2 + cos(−mθ)2

)
dθ

= − ordp(θ).

6See page35 of [Mil65].
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Thus by Poincaré-Hopf theorem one has∑
p∈X

ordp(θ) = −χ(X).

□
Remark 4.4.1. In fact, one can prove Riemann-Hurwitz formula by Poincaré-
Hopf theorem (Exercise 11.5.1).
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5. Normalization

In this section we will deal with singularities of algebraic curves. Roughly
speaking, after resoluting all singularities of a curve C, we should obtain
a Riemann surface, which is “isomorphic” to C besides these singularities.
Before the formal definitions, let’s see some examples of singularities we have
already seen.
Example 5.1. The affine plane curve C defined by x2−y2 = 0 has a singular
point (0, 0). Geometrically speaking, there are two projective line intersect
at the point (0, 0), which cause the singularity. Thus one way to solve the
singularity is to “split” these two lines.

Formally speaking, we should consider the disjoint union of two copy of
C, which is mapped to C as follows

Φ: C
∐

C → C

{t1}, {t2} 7→ (t1, t1), (t2,−t2).

Example 5.2. The affine plane curve C defined by x2−y3 = 0 has a singular
point (0, 0). To solve this singularity, geometrically thinking we should pull
this curve “straightly”, which can be seen as

Formally speaking, we should consider the parameterization
Φ: C → C

t 7→ (t3, t2).

Example 5.3. The affine plane curve defined by y2 − x2(x − 1) = 0 has a
singular point (0, 0). From the following picture we can see that if we want
to solve the singularity, we should also “split” the two part which intersect
at (0, 0), as what we have done in the Example 5.1.
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5.1. Weierstrass preparation theorem. Denote

C{x} = {
∞∑
k=1

akx
k | convergent series with positive convergence radius.}

C{x, y} = {
∞∑
k=1

aklx
kyl | convergent series with positive convergence radius.}

They are called germs of holomorphic functions.

Definition 5.1.1 (Weierstrass polynomial). An element f(x, y) ∈ C{x, y}
is called a Weierstrass polynomial if f(x, y) = yd+a1(x)y

d−1+ · · ·+ad(x) ∈
C{x, y}, where ai(x) ∈ C{x} and ai(0) = 0.

Theorem 5.1.1 (Weierstrass preparation theorem). If f ∈ C{x, y} such
that f(0, y) is not identically zero, then there exist a unique u ∈ C{x, y}∗
and a unique Weierstrass polynomial w such that f = uw.

Proof. Firstly we may assume f(0, 0) = 0, otherwise f ∈ C{x, y}∗ and there
is nothing to prove. If so, then f(0, y) has an isolated zero at y = 0, that is,
there exists ε > 0 such that

{f(0, y) = 0} ∩ {|y| ≤ ε} = {y = 0}.
By continuity we may choose ρ > 0 sufficiently small such that f(x, y) 6= 0
on {|x| < ρ, |y| = ε}. Then the number of zeros of f(x, y) in |y| ≤ ε for a
fixed x is computed by

n(x) =
1

2π
√
−1

ˆ
|y|=ϵ

fy(x, y)

f(x, y)
dy,

which is an integer-valued holomorphic function, and thus n(x) ≡ m is a
constant.

For all |x| < ρ, suppose y1(x), . . . , ym(x) are zeros of f(x, y) contained
in {|y| ≤ ε}. Then we claim that w(x, y) = (y − y1(x)) · · · (y − yn(x)) is a
Weierstrass polynomial. Indeed, note that

σk(x) :=
m∑
i=1

yki (x) =
1

2π
√
−1

ˆ
|y|=ϵ

yk
fy(x, y)

f(x, y)
dy

are holomorphic, and thus if we write
w(x, y) = ym + a1(x)y

m−1 + · · ·+ am(x),
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then ai(x) are polynomials of σ1(x), . . . , σm(x). This shows ai(x) ∈ C{x},
and ai(0) = 0 for all i since yi(0) = 0 for all i.

For convenience we denote D = {|x| < ρ, |y| ≤ ε}. By definition u(x, y) =
f(x, y)/w(x, y) is well-defined in D \ {w = 0}. For fixed |x| < ρ, by con-
struction w(x, y) and f(x, y) have the same zeros in y. Therefore u(x, y) 6= 0
on D and u(x, y) is holomorphic in variable y for each x. Now for given y0
with |y0| < ε, one has

u(x, y0) =
1

2π
√
−1

ˆ
|y|=ϵ

u(x, y)

y − y0
dy.

This shows u(x, y) is holomorphic in variables x and y, and thus one has
u(x, y) is holomorphic. Moreover, since u has no zeros, it has a non-zero
constant term u(0, 0), and thus u ∈ C{x, y}∗.

Finally let’s see the uniqueness. If f = u′w′ in D, then
w′ = yd + c1(x)y

d−1 + · · ·+ cd(x) = (y − y1(x)) . . . (y − ym(x)) = w.

This shows w = w′ and thus u = u′. □
Corollary 5.1.1. C{x, y} is UFD.
Proof. Firstly note that C{x} is UFD, since for f ∈ C{x}, one has

f = xµg,

where g ∈ C{x} is a unit. Then by Gauss lemma one has C{x}[y] is UFD.
Now for f ∈ C{x, y}, suppose f = xµg with g(0, y) 6= 0. Since µ is unique, it
suffices to show the unique factorization for g. By Weierstrass preparation
theorem there is a decomposition

g(x, y) = uw.

Since Weierstrass polynomial w belongs to C{x}[y] which is UFD, there is
a unique decomposition

w = wp11 . . . wpkk ,

where wi ∈ C{x}[y] is monic irreducible. Now we need to show each wi is ir-
reducible in C{x, y}. If not, suppose wi = aibi in C{x, y}. Then wi(0, y) 6≡ 0
implies both ai(0, y) 6≡ 0 and bi(0, y) 6≡ 0, and again by Weierstrass prepa-
ration theorem one has

ai = u′iw
′
i

bi = u′′iw
′′
i ,

where w′
i, w

′′
i ∈ C{x}[y]. Since the decomposition in Weierstrass prepara-

tion theorem is unique, one has u′iu′′i = 1 and wi = w′
iw

′′
i in C{x}[y], a

contradiction. Thus we obtain a decomposition of g into
g = uwp11 . . . wpkk ,

where u is a unit in C{x, y} and wi are irreducible in C{x, y}.
Now let’s prove the uniqueness of decomposition of g. Suppose g is de-

composed as
g = uwp11 . . . wpkk = vw̃q11 . . . w̃qll .
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Since g(0, y) 6≡ 0, then again by Weierstrass preparation theorem we may
decomposition these wi and w̃j into

wi = uiw
′
i

w̃j = vjw̃
′
j .

By the uniqueness of the decomposition in Weierstrass preparation and the
factorization in C{x}[y], one has {wi} and {w̃j} are the same up to ordering,
and l = k. This completes the proof. □

Remark 5.1.1. Although y2−x2(x−1) is irreducible in C[x, y], it’s reducible
in C{x}[y], that is,

(y − x
√
x− 1)(y + x

√
x− 1).

In the following section we will see such local decomposition gives the local
resolution of singularities.

5.2. Resolution of singularities. Let C be an irreducible projective plane
curve with singularities Sing(C). A normalization of C is a compact Rie-
mann surface C̃ together with a continous map Φ: C̃ → C such that Φ is
surjective and

Φ: C̃ \ Φ−1(Sing(C)) → C \ Sing(C)
is an isomorphism. In this section we will use unique factorization of C{x, y}
to construct the normalization of C. Firstly let’s give a rough ideal about
what we’re going to do.

The idea is to find sufficiently small D = {|x| < ρ, |y| < ε} such that C∩D
decomposed into several pieces7 C1∪· · ·∪Cl, where each Ci is homeomorphic
to a disk and the union attaches them only at their centers. If we have
constructed homeomorphisms ϕi from disk ∆i to Ci for each i and repeat
this procedure for all singularities, then we may construct the normalization
C̃ by adding these Ci to C \ Sing(C) in a suitable way.

7In fact, suppose f = uw1 . . . wl in C{x, y}, where w1, . . . , wl are distinct irreducible
Weierstrass polynomials and u ∈ C{x, y}∗. Then each Ci is the zero loucs {wi = 0}.
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In the following sections we will explain above procedures in detail. The
construction of homeomorphism for each singularity is called local resolution
and adding these Ci to C \ Sing(C) is called the global resolution.

5.2.1. Local resolution of singularities. Let C be an irreducible projective
plane curve with singularities Sing(C). Suppose p is a singularity of C, and
without lose of generality we may assume p = [1 : 0 : 0] by after a suitable
PGL(3,C) transformation. Moreover, we may put the affine equation of C
in the following form

f(x, y) = yn + a1(x)y
n−1 + · · ·+ an(x) = 0,

where ai(x) ∈ C[x]. Since f(x, y) is irreducible, it has no multiple divisors in
C[x][y], so R(f, fy) 6= 0 in C[x]. Regardless of whether we are in C[x][y] or
in C{x}[y], the resultant R(f, fy) is the same, which implies f(x, y) has no
multiple divisors in C{x}[y]. Then f(x, y) is decomposed into the product
of distinct irreducible factors in C{x}[y] as follows

f = f1 . . . fl.

Moreover, from f(0, y) = yn, one can see every fi must satisfy fi(0, y) 6= 0.
Thus by Weierstrass preparation theorem one has in C{x, y} one has the
following decomposition

fi = uiwi,

where ui ∈ C{x, y}∗ and wi is a Weierstrass polynomial. Thus f(x, y) is de-
composed into the product of irreducible Weierstrass polynomials in C{x, y}
as follows

f = uw1 . . . wi.

In order to avoid messy notations, in the following discussion we use w to
denote one of the irreducible Weierstrass polynomials appeared in above
decomposition.

Note that R(w,wy)(x) 6≡ 0 implies R(w,wy)(x) can only have isolated
zeros. And since w(0, y) = yk has multiple roots, then R(w,wy)(0) = 0.
Then there exists sufficiently small ρ > 0 such that for each x 6= 0 in

D = {x ∈ C | |x| < ρ},

one has R(w,wy)(x) 6= 0. Then

w(x, y) =

k∏
ν=1

(y − yν(x)),

where yν(x)’s are roots of w(x, y). Moreover, for 0 6= x ∈ D, R(w,wy)(x) 6=
0, so that

wy(x, y) 6= 0.

Then by the implicit function theorem, every yν(x) is locally a holomorphic
function, and it can be uniquely analytically extended to a holomorphic
function defined on D \ {x ∈ R≥0}, still denoted by yν(x). Now analytically
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extend yν(x) across the cut line, the y∗ν(x) obtained after this continuation
must still satisfy

f(x, y∗ν(x)) = 0,

and thus y∗ν(x) is one of the y1(x), . . . , yk(x). In other words, the monodromy
is given by a permutaion τ of {1, . . . , k}. By the same argument used in the
proof of connectness of irreducible projective plane curve, one can show that
the permutation τ is a k-cycle.

Theorem 5.2.1. Notations as above, and denote ∆ = {t ∈ C | |t| < ρ1/k}.
Then the map

ϕ : ∆ → C2

t 7→ (tk, yν(t
k)),

is a well-defined holomorphic map and ϕ is injective from ∆ onto
C∆ = {(x, y) ∈ C2 | |x| < ρ, |y| < ε,w(x, y) = 0}.

Furthermore, ϕ is a biholomorphic from ∆ \ {0} onto C∆ \ {(0, 0)}.

Proof. As t wraps one around the origin of ∆, tk wraps around the origin k
times. This shows when t wraps one around the origin once, yν(tk) remains
unchanged since the monodromy is given by a k-cycle. In this way, yν(tk)
defines a single-valued holomorphic function for 0 < |t| < ρ1/k, which can
be extended to a holomorphic function defined on ∆ by Riemann extension
theorem. From this one can see φ : ∆ → C2 is a well-defined holomorphic
map.

To see ϕ is injective: If (tk1, yν(t
k
1)) = (tk2, yν(t

k
2)), then t2 = (ξk)

ℓt1 for
some ` ∈ Z, where ξk is the k-th unit root, and thus

yν((ξk)
ℓtk1) = yν(t

k
1).

Note that only when the variable x wraps around the origin km times does
the value yν(x) remains unchanged. Therefore one has k | `, which implies φ
is injective. Moreover, as t varies in ∆, one can see yν(tk) passes all possible
values of y1(x), . . . , yk(x) for |x| ≤ ρ, which shows φ maps ∆ onto C∆.

By implicit function theorem, there is a Riemann surface structure on
C∆ \ {(0, 0)}, and thus ϕ is biholomorphic since it’s holomorphic and both
injective and surjective. □
5.2.2. Global resolution of singularities. Let C be an irreducible projective
plane curve with singularities Sing(C) and C∗ = C \ Sing(C). For the
singularity p, according to the method of the proceeding section, there exists
m open discs ∆i together with l holomorphic maps ϕi such that

ϕi : ∆i \ {0} → C∗

is a biholomorphic map onto the image set. Now we use these ϕi to glue
discs ∆i to C∗ to get the following Riemann surface

C̃ = C∗
⋃
φ1

∆1

⋃
φ2

∆1 · · ·
⋃
φl

∆l.
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Repeat this procedure for each singularity and then we obtain the normal-
ization C̃ of C.

5.3. Blow-up. In this section we will introduce a method to determine the
irreducible decomposition of a polynomial f(x, y) in C{x, y}. Without lose
of generality we may assume f(0, 0) = 0 and write

f(x, y) = fm(x, y) + fm+1(x, y) + . . . ,

where fi are homogenous polynomials of degree i, and m is the smallest
integer such that fd 6= 0.
(1) If m = 1, then (0, 0) is a non-singular point. In this case, {f1(x, y) = 0}

is the (unique) tangent line of f(x, y) = 0 at (0, 0).
(2) If m ≥ 2, then {fm(x, y) = 0} is the union of lines, and this set is called

the tangent cone of f(x, y) = 0.
After a suitable linear transformation, we may assume the tangent cone

of f(x, y) = 0 at (0, 0) does not contain {x = 0}. Thus
(5.1) f(x, y) = (y − α1x) . . . (y − αmx) + fm+1(x, y) + . . . ,

where ai ∈ C.
Definition 5.3.1 (ordinary singularity). If {fm = 0} is the union of m
distinct lines, then (0, 0) is called an ordinary m-tuple singularity.
Example 5.3.1. If f(x, y) = y2 + x2(x − 1), then the tangent cone of
f(x, y) = 0 at (0, 0) is the union of lines y = ±x, and thus (0, 0) is an
ordinary 2-tuple singularity.
Example 5.3.2. If f(x, y) = y2 − x3, then the tangent cone of f(x, y) = 0
at (0, 0) is y2 = 0, that is, the union of double copies of y = 0. In this case
(0, 0) is not an ordinary singularity. The singularity of this type is called a
cusp.
Proposition 5.3.1. If f(x, y) has ordinary m-tuple singularity at (0, 0),
then f(x, y) decomposes as a product of m irreducible factors in C{x, y} as
follows

f(x, y) = u
m∏
i=1

(y − xhi(x)),

where u ∈ C{x, y}∗.
Proof. It’s left as an exercise in homework (Exercise 11.5.6), and here we
list the key steps of the proof as follows.
(1) Denote by w = y/x,

g(x,w) =
f(x, xw)

xm
∈ C{x, y}.

Prove that g converges in a product of discs
Dρ1 ×Dρ2 = {(x,w) | |x| < ρ1, |w| < ρ2}

that contains (0, αi).
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(2) Prove that g(0, αi) = 0 and ∂g/∂w(0, αi) 6= 0 and hence g(x,w) = 0 has
a solution w = hi(x) near (0, αi) with hi(x) ∈ C{x} and hi(0) = αi.

(3) Prove that
∏
(y − xhi(x)) | f(x, y) and f(x, y) equals to the product of

m irreducible factors up to units in C{x, y}.
□

The procedure by introducing a new variable w such that y = xw to
consider the polynomial g(x,w) in the proof of above proposition is called
“blow up”. Note that locally around x = 0, there is no difference between
f(x, y) = 0 and g(x,w) = 0 except x = 0, but g(0, w) may has lots of
solutions, denoted by α1, . . . , αk. (You can think that one point is blowed
up to several points geometrically.)

If g(x,w) is non-singular at all these points, then g(x,w) = 0 can be
viewed as a local normalization of f(x, y) = 0 at (0, 0). Otherwise we may
need to blow up again along those singularities. In particular, Proposition
5.3.1 shows that if (0, 0) is an ordinary m-tuple singularity, then after blow-
ing up once, you can get the desired local normalization.

Example 5.3.3. For f(x, y) = x2 − y2, we know that f(x, y) = 0 is the
union of two line at origin and thus (0, 0) is a singularity. By considering

g(x,w) =
f(x, xw)

x2
=
x2 − x2w2

x2
= 1− w2.

One can see that for x = 0, g(0, w) has solutions w = ±1, and that’s exactly
y = ±x.

Example 5.3.4. For f(x, y) = y2 − x2 + x3 − y3 = 0, one has

g(x,w) =
f(x, xw)

x2
=
x2w2 − x2 + x3 − x3w3

x2
= w2 − 1 + x− xw3.

Then x = 0 has solutions w = ±1. A direct computation shows ∂g/∂w =
2w − 3xw2, and thus

∂g

∂w

∣∣∣∣
x=0,w=±1

= ±1 6= 0.
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By implicit function theorem there exists w1(x), w2(x) ∈ C{x} such that
w1(0) = 1 and w2(0) = −1. Then f(x, y) = 0 is parameterized by

y = xw1(x)

y = xw2(x)

locally around (0, 0).

Example 5.3.5. For f(x, y) = y2 − y3 + x3 = 0, one has

g(x,w) =
f(x, xw)

x2
=
x2w2 − x3w3 + x3

x2
= w2 − xw3 + x = 0.

Then g(0, w) has solution w = 0. Note that

∂g/∂x = w3 + 1

∂g/∂w = 2w − 3xw2.

Then
∂g

∂x

∣∣∣∣
x=0,w=0

= 1 6= 0,

By implicit function theorem there exists x = x(w) with x(0) = 0. Note
that

x′(0) = − ∂g/∂w

∂g/∂x

∣∣∣∣
w=0

=
0

1
= 0,

and x′′(0) 6= 0. Then f(x, y) = 0 is parameterized by{
x(w) = w2(c+ . . . )

y(w) = w3(c+ . . . )

locally around (0, 0).

Example 5.3.6. For y2 − y3 − x4 = 0. y = xw, one has

g1(x,w) =
f(x, xw)

x2
=
x2w2 − x3y3 − x4

x2
= w2 − xw3 − x2 = 0.

Then g1(0, w) = 0 has solution w = 0. Since
∂g1
∂x

∣∣∣∣
(0,0)

= 0,
∂g1
∂w

∣∣∣∣
(0,0)

= 0,

one has (0, 0) is still a singular point of g1(x,w), so we may blow it up again
by setting w = xt. By doing this, one has

g2(x, t) =
g1(x, xt)

x2
=
x2t2 − x4t3 − x2

x2
= t2 − x2t3 − 1.

Then g2(0, t) has solutions t = ±1. Note that
∂g2
∂t

∣∣∣∣
(0,±1)

= ±2 6= 0.
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Then by implicit function theorem there exists t1(x), t2(x) ∈ C{x} such that
t1(0) = 1 and t2(0) = −1, and thus f(x, y) = 0 is parameterized by

y = x2t1(x)

y = x2t2(x)

locally around (0, 0).

5.4. Bezout theorem for singular curve. In Theorem 3.1.1 we have
shown the Bezout theorem under the assumption of C,C ′ are non-singular
projective plane curve. In general case Bezout theorem still holds, if we use
the right definition for the intersection number.

Definition 5.4.1 (intersection number). Let C,C ′ be irreducible projective
plane curves defined by homogenous polynomials F,G such that F,G has
no common divisors, and p ∈ C ∩ C ′. If U is an open neighborhood of p
such that the local decomposition of C into irreducibles as

C ∩ U = C1 ∪ · · · ∪ Ck,
with local normalizations ϕi : ∆i → Ci, then the intersection number at p is
defined by

(C,C ′)p =
k∑
i=1

ordt=0(G(ϕi(t))).

The intersection number of C and C ′, denoted by (C,C ′), is the summation

(C,C ′) =
∑

p∈C∩C′

(C,C ′)p.

Remark 5.4.1. The definition given above is compatible with the intersection
number in the non-singular case, since if C is non-singular, then locally there
is only one piece and the local normalization is a biholomorphism.

Theorem 5.4.1 (Bezout). Let C,C ′ be irreducible projective plane curves
defined by homogenous polynomials F,G such that F,G has no common
divisors. Then the intersection number

(C,C ′) = ed,

where degF = e and degG = d.

5.5. Plücker formula for singular curve.

5.5.1. Riemann-Hurwitz approach.

Theorem 5.5.1. Let C be an irreducible projective plane curve defined by
the homogenous polynomial F of degree d with Sing(C) = {p1, . . . , pk}, and
ϕ : C̃ → C be its normalization. Suppose each pi is an ordinary mi-tuple
singularity. Then

g
C̃
=

(
d− 1

2

)
−

k∑
i=1

(
mi

2

)
≥ 0
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Proof. Choose a point p /∈ C and not lies in the tangent cone of C for any
singularity. The point p defines a projection Φ from C to the projective line
P1, and the composition Φ̃ = Φ ◦ ϕ is a holomorphic map from C̃ to P1.

Now it suffices to figure out the ramification data of Φ̃ and use Riemann-
Hurwitz formula to compute the genus of C̃.

(1) If q ∈ C \ Sing(C), then

multφ−1(q) Φ̃− 1 = multq Φ− 1 = (F, Fy)q

(2) If q ∈ Sing(C), then for each qi ∈ π−1(q), one has multqi Φ̃ = 1 since C̃
is locally defined by irreducible linear function.

This shows the ramification data

B(Φ̃) =
∑

q∈C\Sing(C)

(F, Fy)q.

Now let’s figure out the intersection number of singular points. Suppose
p ∈ Sing(C) is a m-tuple singularity. For convenience we may assume p =
[0 : 0 : 1] and denote f(x, y) = F (x, y, 1). Since p is an ordinary m-tuple
singularity, by Proposition 5.3.1 one has

f(x, y) = (y − y1(x)) . . . (y − ym(x)),

where yi(x) = aix+ o(x2). Then there are m local normalizations at point
p, which are given by ϕi(t) = (t, yi(t)). This shows the intersection number
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at singularity p is given by

(f, fy)(0,0) =

m∑
i=1

ordt=0 fy(ϕi(t))

=

m∑
i=1

ordt=0

∏
j ̸=i

(yi(t)− yj(t))

=

m∑
i=1

m− 1

= m(m− 1).

Then by Bezout theorem (Theorem 5.4.1), one has

B(Φ̃) = d(d− 1)−
k∑
i=1

mi(mi − 1).

By Riemann-Hurwitz formula one has

2g
C̃
− 2 = −2d+ d(d− 1)−

k∑
i=1

mi(mi − 1),

and thus

g
C̃
=

(
d− 1

2

)
−

k∑
i=1

(
mi

2

)
.

□

Remark 5.5.1. Above argument shows that the genus of the normalization C̃
only depends on the degree of C and the type of singularities. For example,
suppose p ∈ C is a cusp, that is, locally it’s given by y2 = x3, and its local
normalization is given by ϕ : t 7→ (t2, t3).
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The preimage ϕ−1(0) is a ramification point of Φ̃, with multφ−1(0) Φ̃ = 2,
and thus

B(Φ̃) =
∑

q∈C\Sing(C)

(f, fy)q +
∑

q is a cusp
1.

On the other hand, the intersection number at the cusp is
(f, fy)p = ordt=0 2t

3 = 3.

Then by the same argument one can see that one more cusp will decrease
the genus of C̃ by 1.

In general, for each type singularity we may define a δ-invariant, such
that one more such type singularity will decrease the genus of normalization
by δ. As we have seen, the δ-invariant for m-tuple singularity is

(
m
2

)
and

the δ-invariant for cusp is 1.

5.5.2. Poincaré-Hopf approach. In this section we introduce another ap-
proach to compute the genus of the normalization by Poincaré-Hopf theorem,
from which it’s relatively easy to compute the δ-invariance of singularity.

Suppose C is a projective plane curve defined by homogenous polynomial
F . Consider

η =
dx

Fy(x, y, 1)
= − dy

Fx(x, y, 1)
.

If F is non-singular, then η has no zeros or poles on the affine piece C∩{[x :
y : 1]}. On {z = 0}, a direct computation shows

η = − zd−3dz

Fy(1, y, z)
=

zd−3dz

Fx(x, 1, z)
.

Thus η gives a meromorphic 1-form on C, and by using Bezout theorem one
has ∑

p∈C
ordp(θ) = (d− 3)d.

Then Poincaré-Hoft theorem implies that gC = (d− 1)(d− 2)/2.
Now let’s generalize above arguments to the case C is singular. Suppose

f(x, y) has singularity a (0, 0) with multiplicity m, and x = 0 is not in the
tangent cone of f at (0, 0). Now consider the blow up at the singularity
(0, 0), that is,

g(x,w) =
f(x, xw)

xm
.

A direct computation by chain rule shows that
xm−1gw(x,w) = fy(x, xw).

Thus
η =

dx

fy(x, y)
=

dx

xm−1gw(x, xw)
= x−(m−1) dx

gw(x,w)
.

If g(0, w) = 0 has solutions α1, . . . , αk, and g(x,w) is non-singular at these
points, then g(x,w) = 0 gives the normalization of C, denoted by C̃.
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Then by Poincaré-Hopf theorem one has

2g
C̃
− 2 =

∑
p∈C̃

(x−(m−1), x)p +
∑
p∈C̃

ordp(
dx

gw(x,w)
)

= −m(m− 1) + d(d− 3).

Otherwise we repeat above procedures again to each singularity (0, wi), and
by induction we have the δ-invariance for singularity (0, 0) is

δ =

(
m

2

)
+

(
m1

2

)
+ · · ·+

(
mk

2

)
+ . . . .

Example 5.5.1. The δ-invariance of ordinary m-tuple singularity is
(
m
2

)
,

since after blowing up once, it’s already non-singular. This coincides with
previous result.

Example 5.5.2. For f(x, y) = yn − xm, with gcd(m,n) = 1. Without lose
of generality we may assume n < m. Then

g(x,w) =
f(x, xw)

xn
=
xnwn − xm

xn
= wn − xm−n.

This shows
δ(n,m) = δ(n,m− n) +

(
n

2

)
.

Thus by induction one has the δ-invariance of singularity (0, 0) is (m−1)(n−
1)/2.
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6. Divisors

In this section, we always assume X is a compact Riemann surface.

6.1. Divisors.

Definition 6.1.1 (divisors). A divisor onX is a formal sumD =
∑

p∈X D(p)·
p, where D(p) ∈ Z such that D(p) 6= 0 for only finitely many p.

Notation 6.1.1. Div(X) denotes the free abelian group generated by divi-
sors on X.

Definition 6.1.2 (degree). For D ∈ Div(X), the degree of D is defined by

deg(D) =
∑
p∈X

D(p).

Remark 6.1.1. The degree gives a group homomorphism deg : Div(X) → Z.
The kernel of deg is denoted by Div0(X), that is,

Div0(X) := {D ∈ Div(X) | deg(D) = 0}.

6.1.1. Principal divisor.

Definition 6.1.3 (principal divisor). If f 6≡ 0 is a meromorphic function
on X, the principal divisor corresponding to f is

div(f) :=
∑
p∈X

ordp(f) · p.

Notation 6.1.2. PDiv(X) denotes the set of all principal divisors on X.

Lemma 6.1.1. Suppose f, g are meromorphic functions on X and g 6≡ 0.
1. div(fg) = div(f) + div(g).
2. div(1/g) = −div(g).
3. div(f/g) = div(f)− div(g).

Corollary 6.1.1. PDiv(X) is a subgroup of Div(X).

Example 6.1.1 (divisor of zeros or poles). Let f 6≡ 0 be a meromorphic
function on X. Then the zero divisor is defined by

div0(f) :=
∑
p∈X

ordp(f)>0

ordp(f) · p,

and the pole divisor is defined by

div∞(f) := −
∑
p∈X

ordp(f)<0

ordp(f) · p.

It’s clear
div(f) = div0(f)− div∞(f).
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Definition 6.1.4 (linearly equivalent). For D1, D2 ∈ Div(X), if D1−D2 is
a principal divisor, then D1, D2 are called linearly equivalent, and denoted
by D1 ∼ D2.

Example 6.1.2. div0(f) is linearly equivalent to div∞(f).

Lemma 6.1.2. If f 6≡ 0 is a meromorphic function on X, then

deg(div(f)) = 0

Proof. It follows from Corollary 2.1.3. □

Corollary 6.1.2.
PDiv(X) ⊆ Div0(X).

It’s natural to ask whether PDiv(X) = Div0(X) or not (Later in Theo-
rem 10.1.1 we will see the answer for this question). The following result
shows that the statement holds for X = P1, but for higher genus case, this
statement fails even for genus one.

Theorem 6.1.1. PDiv(P1) = Div0(P1).

Proof. For D ∈ Div0(P1), we may write is as

D =

n∑
i=1

ei · λj + e∞ · ∞, λi ∈ C,

where e∞ = −
∑n

i=1 ei. Then for the meromorphic function given by f =∏n
i=1(z − λi)

ei , one has div(f) = D. □

Corollary 6.1.3. For D1, D2 ∈ Div(P1), D1 ∼ D2 if and only if deg(D1) =
deg(D2).

Theorem 6.1.2. Let X = C /L be the complex torus, where L = Zw1 +
Zw2 is a lattice. Then

Div0(X)/PDiv(X) ∼= X.

Proof. Consider the following group homomorphism
A : Div(X) → X∑
p∈X

np · p 7→
∑
p∈X

npp,

where
∑

p∈X npp is the addition structure of X. It’s clear that A|Div0(X) is
surjective, since for any p ∈ X, one has

A(p− 0) = p,

and p− 0 is a divisor with degree zero. Now it suffices to show that kerA =
PDiv(X), which is left as exercises (Exercise 11.5.3, Exercise 11.7.5). □
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6.1.2. Canonical divisor.

Definition 6.1.5 (canonical divisor). Let θ be a meromorphic 1-form on
X. The canonical divisor K given by θ is defined by

K := div(θ) =
∑
p∈X

ordp(θ) · p.

Lemma 6.1.3. If f is a meromorphic function, and θ is a meromorphic
1-form, then fθ is also a meromorphic 1-form, and

div(fθ) = div(f) + div(θ).

Conversely, we have

Lemma 6.1.4. If θ1, θ2 are meromorphic 1-form, then there exists a mero-
morphic function f such that

θ1 = fθ2.

Proof. Suppose meromorphic 1-forms θ1, θ2 are locally given by
θ1 = f1dz

θ2 = f2dz.

Then we can define a meromorphic function f locally by f1/f2. The con-
struction is independent of the choice of local charts, since factors coming
from the change of charts with cancel with each other, as one of them is on
the denominator and the other one is on the numerator. □

Corollary 6.1.4. The difference of any two canonical divisors is a principal
divisor.

Corollary 6.1.5. The canonical divisors have the same degree. Moreover,
the degree of canonical divisor is 2gX − 2.

Proof. It follows from Poincaré-Hopf theorem. □

6.1.3. Pullback of divisors. Let Φ: X → Y be a non-constant holomorphic
map. For point q ∈ Y , we regard it as a divisor and define the pullback of
it as follows

Φ∗(q) :=
∑

p∈Φ−1(q)

multpΦ · p.

Then for any divisor D ∈ Div(Y ), its pullback is defined by

Φ∗(D) =
∑
q∈Y

D(q) · Φ∗(q).

Moreover, for any q ∈ Y , one has

deg(Φ∗(q)) =
∑

p∈Φ−1(q)

multpΦ = deg(Φ).
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Then since taking degree is a group homomorphism, one has

deg(Φ∗(D)) =
∑
q∈Y

D(q) deg(Φ∗(q)) = deg(Φ) deg(D).

Lemma 6.1.5. Let Φ: X → Y be a non-constant holomorphic map.
(1) Φ∗ : Div(Y ) → Div(X) is a group homomorphism.
(2) Φ∗(PDiv(Y )) ⊆ PDiv(X).

Proof. It’s clear that Φ∗ is a group homomorphism. For (2). Let f 6≡ 0 be
a meromorphic function on Y . Then we claim that

Φ∗(div(f)) = div(f ◦ Φ).

To see this, for any p ∈ X, we have

Φ∗(div(f))(p) = multpΦdiv(f)(Φ(p))

= multpΦordΦ(p)(f)

= ordp(f ◦ Φ)
= div(f ◦ Φ)(p).

□

Corollary 6.1.6. Let Φ: X → Y be a non-constant holomorphic map. If
D1 ∼ D2 on Y , then Φ∗(D1) ∼ Φ∗(D2) on X.

Definition 6.1.6 (ramification divisor). Let Φ: X → Y be a holomorphic
map between compact Riemann surfaces. The ramification divisor is defined
by

RΦ :=
∑
p∈X

(multpΦ− 1) · p.

Remark 6.1.2. Recall that Riemann-Hurwitz formula says that

2gX − 2 = deg(Φ)(2gY − 2) +
∑
p∈X

(multpΦ− 1).

If θ is a non-zero meromorphic 1-form on Y , then Φ∗(θ) is also a meromorphic
1-form, and thus

deg(div(θ)) = 2gY − 2

deg(div(Φ∗θ)) = 2gX − 2.

Then the Riemann-Hurwitz formula can be written as

deg(div(Φ∗(θ))) = deg(Φ) deg(div(θ)) + deg(RΦ) = deg(Φ∗(div(θ))) + deg(RΦ).

As a consequence, the pullback of a canonical divisor div(θ) by a holomorphic
map Φ is still a canonical divisor if and only if Φ is not ramified.
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6.1.4. Partial order of divisors.

Definition 6.1.7 (effective divisors). A divisor D on X is called effective
divisor if D(p) ≥ 0 for all p ∈ X, and denote it by D ≥ 0.

Remark 6.1.3. For any divisor D, it can be written as a difference of two
effective divisors as follows

D =
∑
p∈X

D(p)≥0

D(p) · p−
∑
p∈X

D(p)<0

−D(p) · p.

Definition 6.1.8 (partial order). For two divisors D1, D2 ∈ Div(X), we say
D1 ≥ D2 if D1 −D2 ≥ 0.

6.2. The global sections associated to divisors.

6.2.1. The global sections of OX(D). Given D ∈ Div(X), consider the fol-
lowing set8

Γ(X,OX(D)) := {f ∈ MX(X) | div(f) +D ≥ 0}.

Moreover, if f ≡ 0, we define ordp(f) = ∞, and thus 0 ∈ Γ(X,OX(D)).

Remark 6.2.1. Γ(X,OX(D)) consists of meromorphic functions with poles
not too bad.
(1) If D(p) = −n < 0, then p must be a zero of f with order ≥ n;
(2) If D(p) = n > 0, then p may be a pole, but its order at least won’t be

larger than n.

It’s clear that there is a C-vector space structure on Γ(X,OX(D)). Later
(in Corollary 6.2.1) we will show that Γ(X,OX(X)) is a finite-dimensional
C-vector space, and we use `(D) to denote its dimension for convenience.
Before that, let’s see some basic properties and examples.

Lemma 6.2.1. For D1, D2 ∈ Div(X). If D1 ≤ D2, then Γ(X,OX(D1)) ⊆
Γ(X,OX(D2)).

Lemma 6.2.2. If deg(D) < 0, then Γ(X,OX(D)) = {0}.

Proof. If f ∈ Γ(X,OX(D)) and f 6≡ 0, then one has div(f) + D ≥ 0. By
taking degree one has

0 = deg(div(f)) ≥ − deg(D) > 0.

A contradiction. □

Lemma 6.2.3. IfD1 ∼ D2 are two linearly equivalent divisors, then Γ(X,OX(D1)) ∼=
Γ(X,OX(D2)) as C-vector spaces.

8In algebraic geometry, a (Cartier) divisor corresponds to a line bundle OX(D), and
here Γ(X,OX(D)) is exactly the global section of line bundle OX(D). In section 7.1 we
will introduce sheaves and discuss it in detail.
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Proof. Since D1 ∼ D2, there exists a meromorphic function h such that
D1 = D2 + div(h). For any f ∈ Γ(X,OX(D1)), then

div(fh) = div(f) + div(h) ≥ −D1 +D1 −D2 = −D2.

Thus one can define a linear map
µh : Γ(X,OX(D1)) → Γ(X,OX(D2))

f 7→ fh.

with inverse µh−1 : Γ(X,OX(D2)) → Γ(X,OX(D1)). This shows Γ(X,OX(D1)) ∼=
Γ(X,OX(D2)). □

Example 6.2.1. If D = 0, then Γ(X,OX(0)) consists of holomorphic func-
tion, and since X is compact, one has

Γ(X,OX(0)) ∼= C .

In particular, if D ∈ PDiv(X), then Γ(X,OX(D)) ∼= Γ(X,OX(0)) ∼= C.

Example 6.2.2. Suppose D is a divisor on P1 with deg(D) ≥ 0, which is
written by

D =
n∑
i=1

ei · λi + e∞ · ∞.

Consider the function

fD(z) =
n∏
i=1

(z − λi)
−ei .

Then we claim that

Γ(P1,OP1(D)) = {g(z)fD(z) | g(z) is a polynomial of degree at most deg(D)}.

For a polynomial g of degree d ≤ deg(D), one has

div(g(z)fD(z)) +D = div(g) + div(fD) +D

≥ (
∑
i

ei + e∞ − d) · ∞

≥ 0,

since div(g) ≥ −d · ∞. This shows gfD ∈ Γ(P1,OP1(D)). Conversely, for
any function h ∈ Γ(P1,OP1(D)), we define g = h/fD. A direct computation
shows

div(g) = div(h)− div(fD)

≥ −D − div(fD)

= (−
∑
i

ei − e∞) · ∞

= − deg(D) · ∞.
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This shows that g can admit no poles in the finite part C, and can have a
pole of order at most deg(D). This forces g to be a polynomial of degree at
most deg(D). In particular, one has

`(OP1(D)) =

{
0, deg(D) < 0

1 + deg(D), deg(D) ≥ 0

Example 6.2.3. Suppose X is a compact Riemann surface with genus g ≥
1. Then

Γ(X,OX(p)) = C .
Indeed, if f ∈ Γ(X,OX(p)), then f is only allowed to have a simple pole at
p. If f is non-constant, then it gives a holomorphic map Φ: X → P1 with
Φ−1(∞) = {p}. This shows deg(Φ) = 1, and thus it’s an isomorphism, a
contradiction to g ≥ 1.

For D ∈ Div(X), let’s estimate the upper bound of the dimension of the
C-vector space Γ(X,OX(D)).

Lemma 6.2.4. For any D ∈ Div(X), and p ∈ X, then either Γ(X,OX(D−
p)) = Γ(X,OX(D)) or Γ(X,OX(D−p)) has codimension 1 in Γ(X,OX(D))
holds.

Proof. Let n = −D(p), and choose a local coordinate z centered at p. For
any f ∈ Γ(X,OX(D)), the Laurent series of f at p must have the following
form

czn + higher order terms
Consider α : Γ(X,OX(D)) → C, which is defined by f 7→ c.
(1) If α 6≡ 0, then it’s a surjective linear map. If f ∈ kerα, then ordp(f) ≥

n+1, and thus ordp(f)+D(p)−1 ≥ 0, which implies f ∈ Γ(X,OX(D−
p)). By the same argument one can show Γ(X,OX(D − p)) ⊆ kerα,
and thus kerα = Γ(X,OX(D − p)). This shows Γ(X,OX(D − p)) has
codimension 1 in Γ(X,OX(D)).

(2) If α ≡ 0, then Γ(X,OX(D − p)) = Γ(X,OX(D)).
□

Theorem 6.2.1. For any D ∈ Div(X), write D = P−N such that P,N ≥ 0
and Supp(P ) ∩ Supp(N) = ∅. Then

`(D) ≤ 1 + deg(P ).

Proof. Let’s prove it by induction on deg(P ). If deg(P ) = 0, that is, P = 0,
then one has Γ(X,OX(P )) ∼= C. Thus `(D) ≤ `(P ) = 1 = 1 + deg(P ).

Assume induction hypothesis holds for deg(P ) = k−1. Let D = P−N be
a divisor with deg(P ) = k, such that P,N ≥ 0 and Supp(P )∩Supp(N) = ∅.
Since Supp(P ) 6= ∅, we choose q ∈ Supp(P ), and write D−q = (P −q)−N .
Then Supp(P−q)∩Supp(N) = ∅ and deg(P−q) = k−1. Then by induction,
one has

`(D − q) ≤ 1 + deg(P − q) = 1 + k − 1 = k,
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and by Lemma 6.2.4, one has

`(D) ≤ `(D − q) + 1 ≤ k + 1 = deg(P ) + 1.

This completes the proof. □

Corollary 6.2.1. For any D ∈ Div(X), the the vector space consisting of
global sections Γ(X,OX(D)) is finite-dimensional9.

6.2.2. The global sections of Ω1
X(D). Let M(1)

X (X) be the set of all mero-
morphic 1-forms on X. For D ∈ Div(X), the global sections of Ω1

X(D) is
defined by

Γ(X,Ω1
X(D)) = {ω ∈ M(1)

X (X) | div(ω) +D ≥ 0}.

Example 6.2.4. Γ(X,Ω1
X(0)) consists of all holomorphic 1-forms, and some-

times it’s denoted by Γ(X,Ω1
X) or Ω1

X(X). Not like holomorphic functions,
there may be many non-trivial holomorphic 1-forms on X. Later we will see
(in Lemma 9.1.1) its dimension equals to the genus of X.

Lemma 6.2.5. For D1, D2 ∈ Div(X). If D1 ∼ D2, one has Γ(X,Ω1
X(D1)) ∼=

Γ(X,Ω1
X(D2))

Proof. The same as Lemma 6.2.3. □

Theorem 6.2.2. Let K be the canonical divisor on X. Then for any D ∈
div(X), one has

Γ(X,Ω1
X(D)) ∼= Γ(X,OX(K +D)).

Proof. Suppose the canonical divisor K is given by meromorphic 1-form ω,
that is, K = div(ω). For any f ∈ Γ(X,OX(K +D)), one has

div(fω) = div(f) + div(ω) ≥ −(K +D) +K = −D.

Thus fω ∈ Γ(X,Ω1
X(D)). This gives a linear map

µω : Γ(X,OX(K +D)) → Γ(X,Ω1
X(D))

f 7→ fω.

It’s clear that µω is injective, and thus it suffices to show µω is surjective. For
any θ ∈ Γ(X,Ω1

X(D)), by Lemma 6.1.4, there exists meromorphic function
f such that θ = fω. Note that

−D ≤ div(θ) = div(f) + div(ω) = div(f) +K.

This shows div(f) + (D +K) ≥ 0 as desired. □

6.3. Linear system and morphisms to projective space.

9Later we will introduce Riemann-Roch theorem (Theorem 9.1), and use it to compute
the dimension of Γ(X,OX(D)).
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6.3.1. Motivations. Let X be a compact Riemann surface. If there exists
a non-singular projective plane curve C ⊆ P2 of degree d such that X is
biholomorphic to C as Riemann surfaces, then the genus of X is given by (d−
1)(d−2)/2. In other words, the genus of X cannot be arbitrary integers, and
thus not every compact Riemann surface can be embedded holomorphically
into P2, so it’s natural to ask whether there exists some PN such that X can
be embedded into PN holomorphically?

Definition 6.3.1 (projective curve). A compact Riemann surface X is
called a (non-singular) projective curve, if X can be embedded into some
projective space PN holomorphically.

Note that if X is a isomorphic to a projective plane curve C defined by a
homogenous polynomial F , then we can say the degree of X is the degree of
F . In general, for a projective curve X ⊆ PN , one can also define its degree.

Firstly, fix a homogenous polynomial G(x0, . . . , xN ) which is not iden-
tically zero on X, we’re going to define the intersection divisor div(G) on
X, which records the points (with multiplicity) where G = 0. Fix a point
p ∈ X where G vanishes, and choose a homogenous polynomial H of the
same degree as G, which does not vanish at p.

In this case G/H is a meromorphic function on X, which vanishes at p.
Then div(G)(p) is defined to be the order of this meromorphic function at
p, and for points q where G 6= 0, we set div(G)(q) = 0.

It’s easy to see that div(G) is independent of the choice of H, and thus a
well-defined divisor on X. In particular, if G has degree one, it’s called the
hyperplane divisor on X.

Definition 6.3.2 (degree of projective curve). Let X ⊆ PN be a projective
curve. The degree of X is defined10 to be the degree of hyperplane divisor.

6.3.2. Linear system.

Definition 6.3.3 (complete linear system). For D ∈ Div(X), the complete
linear system of D is defined by

|D| = {E ∈ Div(X) | E ≥ 0, E ∼ D}.

Lemma 6.3.1.
S : P(Γ(X,OX(D))) → |D|

[f ] 7→ div(f) +D

is bijective.

Proof. It’s clear S is well-defined and by definition it’s surjective. Now let’s
show the injectivity. For f1, f2 ∈ Γ(X,OX(D)) \ {0}, if S(f1) = S(f2), then
div(f1/f2) = 0. This shows f1/f2 is a holomorphic function, and thus f1/f2
is constant. Then f1 = f2 in P(Γ(X,OX(D))). □

10It’s well-defined, since the difference between any two hyperplane divisors is a prin-
cipal divisor.
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Corollary 6.3.1.
(1) If deg(D) < 0, then |D| = ∅.
(2) If D1 ∼ D2, then |D1| = |D2|.
(3) `(D) ≥ 1 if and only if |D| 6= ∅.

Proof. (1) follows from Lemma 6.2.2, and (2) follows from Lemma 6.2.3. For
(3). It suffices to note that `(D) ≥ 1 if and only if P(Γ(X,OX(D))) 6= ∅. □

Definition 6.3.4 (linear system). A linear system is a subset of a complete
linear system |D|, which corresponds (via the map S) to a linear subspace
of P(Γ(X,OX(D)).

6.3.3. Linear system of holomorphic maps to projective space.

Definition 6.3.5 (holomorphic maps to projective space). A map Φ: X →
PN is holomorphic at p ∈ X if there are holomorphic functions f0, . . . , fN
defined near p, not all zero at p, such that Φ(q) = [f0(q) : . . . fN (q)] for
every q near p. The map Φ is a holomorphic map if it’s holomorphic at all
points of X.

Note that if X is a compact Riemann surface, there is no global defined
holomorphic function, and thus one cannot expect to use the same holomor-
phic functions fi at all points of X to define a holomorphic map Φ.

However, one can use meromorphic functions to construct holomorphic
maps to projective space, and it turns out every holomorphic map can be
defined in this way. Let X be a Riemann surface and f = {f0, . . . , fN} is a
set of meromorphic functions on X. Now we define

Φf : X → PN

p 7→ [f0(p), . . . , fN (p)].

In apriori, Φf is only defined for p such that p is not a pole of any fi and
p is not a zero of every fi, and Φf is holomorphic at all points where it’s
defined.

Lemma 6.3.2. If the set of meromorphic functions f = {f0, . . . , fN} is not
all identically zero, then the map Φf : X → PN is defined on all of X.

Example 6.3.1 (linear system given by morphism). Suppose Φ: X → PN
is a holomorphic map defined by meromorphic functions f = {f0, . . . , fN}
on X. If we denote D = −mini{div(fi)}, then for each i, one has

ordp(fi) ≥ −D(p).

Therefore {fi} ⊆ Γ(X,OX(D)), and if we use Vf to denote the linear sub-
space generated by {fi}, then it gives a linear system

|Φ| = {div(g) +D | g ∈ Vf}.
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6.3.4. Base locus of linear systems.
Definition 6.3.6 (base locus). Let Q be a linear system on X. A point p
is a base point of Q if every divisors E ∈ Q contains p, and the set of all
base points of Q is called its base locus.
Definition 6.3.7 (base-point-free). A linear system Q is said to be base-
point-free if it has no base point.
Notation 6.3.1. For convenience, for a divisor D, the base locus of D
is the base locus of the complete linear system |D|, and D is said to be
base-point-free if |D| is base-point-free.
Lemma 6.3.3. Let D ∈ Div(X) and Q ⊆ |D| be a linear system defined
by the subspace V ⊆ Γ(X,OX(D)). Then p ∈ X is a base point of Q if and
only if

V ⊆ Γ(X,OX(D − p)).

In particular, p is a base point of |D| if and only if
`(D) = `(D − p).

Proof. Note that the linear system Q is given by {div(f) +D | f ∈ V }, and
thus p is a base point of Q if and only if for every f ∈ V , one has

ordp(f) +D(p) ≥ 1.

In other words, for every f ∈ V , one has
ordp(f) ≥ −D(p) + 1,

which is equivalent to f ∈ Γ(X,OX(D − p)), as desired. □
Proposition 6.3.1. A divisor D is base-point-free if and only if

`(D − p) = `(D)− 1

for all p ∈ X.
Proof. It follows from Lemma 6.2.4 and Lemma 6.3.3. □
Corollary 6.3.2. Let B be the base locus of D. Then D−B is base-point-
free, and

Γ(X,OX(D −B)) → Γ(X,OX(D))

is an isomorphism.
Corollary 6.3.3. A divisor D is base-point-free if and only if for every p ∈
X, there exists a basis {f0, f1, . . . , fN} of Γ(X,OX(D)) such that ordp f0 =
−D(p) and ordp fi > −D(p) for 1 ≤ i ≤ N .
Proof. If for every p ∈ X, there exists f0 ∈ Γ(X,OX(D)) such that ordp f0 =
−D(p), then f /∈ Γ(X,OX(D − p)), and thus `(D − p) = `(D) − 1. This
shows D is base-point-free.

Conversely, if D is base-point-free, then there exists f0 ∈ Γ(X,OX(D)) \
Γ(X,OX(D − p)), that is, ordp f0 = −D(p). Suppose f1, . . . , fr is a basis
of Γ(X,OX(D − p)). Then f0, f1, . . . , fr is a basis of Γ(X,OX(D)), and
ordp fi ≥ −D(p) + 1 > −D(p). □
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6.3.5. Hyperplane divisor of holomorphic maps to projective space.
Lemma 6.3.4. Let H ⊆ PN be a hyperplane defined by the linear equation
L =

∑
i aixi = 0 and Φ: X → PN is a holomorphic map defined by Φ =

[f0 : · · · : fN ]. If Φ(X) is not contained in hyperplane H, then

Φ∗(H) = div(
∑
i

aifi) +D,

where D = −mini{div(fi)}.
Proof. See Lemma 4.13 in Chapter V of [Mir95]. □
Corollary 6.3.4. Let Φ: X → PN be a holomorphic map. Then the set of
hyperplane divisors {Φ∗(H)} forms the linear system |Φ| of the map.
6.3.6. Holomorphic maps and linear systems.
Proposition 6.3.2. Let Q be a base-point-free linear system on a compact
Riemann surface X. Then there exists a holomorphic map Φ: X → PN such
that |Φ| = Q. Moreover, Φ is unique up to the choice of coordinates in PN .
Proof. See Proposition 4.15 in Chapter V of [Mir95]. □
6.3.7. Criterion for ampleness. Let D be a divisor on a compact Riemann
surface X. By Corollary 6.3.2 one can always remove the base locus of
D without changing the complete linear system |D|. Thus without lose of
generality we may always assume |D| is base-point-free, and thus it induces
a holomorphic map ΦD : X → PN .
Definition 6.3.8 (very ample). A base-point-free divisor D on a compact
Riemann surface X is called very ample if ΦD is an embedding is called a
very ample divisor.
Proposition 6.3.3. ΦD is injective if and only if `(D − p− q) = `(D)− 2
for every p 6= q ∈ X.
Proof. For p ∈ X, by Corollary 6.3.3, choose a basis f0, . . . , fN of Γ(X,OX(D))
such that ordp f0 = −D(p) and ordp fi > −D(p) for i = 1, . . . , N . Then for
any p 6= q ∈ X, ΦD(p) = ΦD(q) if and only if ΦD(q) = [1 : 0 : · · · : 0],
which is equivalent to ordq f0 < ordq fi for 1 ≤ i ≤ N . Since q is not
a base point of |D|, this happens if and only if ordq f0 = −D(q) and
ordq fi > −D(q) for 1 ≤ i ≤ N , which is equivalent to say f1, . . . , fN is
a basis of Γ(X,OX(D − q)). Therefore, ΦD(p) = ΦD(q) if and only if

Γ(X,OX(D − p− q)) = Γ(X,OX(D − p)) = Γ(X,OX(D − q)).

Using above observation, it’s easy to prove this proposition:
(1) If ΦD is injective, then Γ(X,OX(D − p − q)) 6= Γ(X,OX(D − p)), and

thus `(D− p− q) = `(D− p)− 1 = `(D)− 2 since |D| is base-point-free.
(2) If `(D − p− q) = `(D)− 2 for every p 6= q ∈ X, then we must have

Γ(X,OX(D − p− q)) 6= Γ(X,OX(D − p)),

otherwise `(D)− `(D − p− q) ≤ 1.
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□
Proposition 6.3.4. ΦD seperates tangent directions at p ∈ X if and only
if `(D − 2p) = `(D)− 2.

Proof. For p ∈ X, by Corollary 6.3.3, choose a basis f0, . . . , fN of Γ(X,OX(D))
such that ordp f0 = −D(p) and ordp fi > −D(p) for i = 1, . . . , N . Around
ΦD(p) = [1 : 0 : · · · : 0], ΦD seperates the tangent directions if and only if at
least one of fi satisfies ordp fi = −D(p)+1. Thus ΦD seperates the tangent
directions if and only if

Γ(X,OX(D − p)) 6= Γ(X,OX(D − 2p)),

which is equivalent to `(D−2p) = `(D)−2, since |D| is base-point-free. □
As a summary, we have proven the following result.

Theorem 6.3.1. A base-point-free divisor D is very ample if and only if
for every p, q ∈ X, one has

`(D − p− q) = `(D)− 2.

6.3.8. Degree of the image and of the map.

Theorem 6.3.2. Let Φ: X → PN be a holomorphic map with image Y and
H be a hyperplane of PN . Then

deg(Φ∗(H)) = deg(Φ) deg(Y ).

In particular, if D is a very ample divisor, then
deg(ΦD(X)) = deg(D).

Proof. See Proposition 4.23 in Chapter V of [Mir95]. □
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7. Sheaf and its cohomology

7.1. Sheaves. Unless otherwise specified, X denotes a topological space
along this section.

7.1.1. Definitions and examples.

Definition 7.1.1 (sheaf). A presheaf of abelian group F on X consisting
of the following data:
(1) For any open subset U of X, F (U) is an abelian group.
(2) If U ⊆ V are two open subsets of X, then there is a group homomor-

phism rV U : F (V ) → F (U). Moreover, above data satisfy
I F (∅) = 0.
II rUU = id.
III If W ⊆ U ⊆ V are open subsets of X, then rVW = rUW ◦ rV U .

Moreover, F is called a sheaf if it satisfies the following extra conditions
IV Let {Vi}i∈I be an open covering of open subset U ⊆ X and s ∈

F (U). If s|Vi := rUVi(s) = 0 for all i ∈ I, then s = 0.
V Let {Vi}i∈I be an open covering of open subset U ⊆ X and si ∈

F (Vi). If si|Vi∩Vj = sj |Vi∩Vj for all i, j ∈ I, then there exists s ∈
F (U) such that s|Vi = si for all i ∈ I.

Notation 7.1.1. Given a (pre)sheaf F on X, we also use Γ(X,F ) to denote
F (U), and the elements in Γ(U,F ) are called sections of F over U . In
particular, the elements in Γ(X,F ) are called global section of F .

Example 7.1.1 (constant presheaf). For an abelian group G, the constant
presheaf assign each open subset U the group G itself, but in general it’s
not a sheaf.

Example 7.1.2. Let X be a Riemann surface and OX(U) be the set of all
holomorphic functions f : U → C. This gives a sheaf OX , which is called
sheaf of holomorphic functions on X.

Example 7.1.3. Let X be a compact Riemann surface and D be a divisor
on X. Let Γ(U,OX(D)) be the set of all meromorphic functions on U which
satisfy the condition that

ordp(f) ≥ −D(p)

for all p ∈ U . This gives a sheaf OX(D), which is called sheaf of meromorphic
functions with poles bounded by D.

Example 7.1.4 (skyscraper sheaf). For an abelian group G, the skyscraper
sheaf Gp is given by

Gp(U) =

{
{0}, p 6∈ U

G, p ∈ U.
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7.1.2. Morphisms and stalks.
Definition 7.1.2 (morphism of presheaves). A morphism ϕ : F → G be-
tween presheaves consisting of the following data:
(1) For any open subset U ofX, there is a group homomorphism ϕ(U) : F (U) →

G (U).
(2) If U ⊆ V are two open subsets of X, then the following diagram com-

mutes
F (V ) G (V )

F (U) G (U)

rV U

φ(U)

rV U

φ(V )

Notation 7.1.2. For convenience, for s ∈ F (U), we often write ϕ(s) instead
of ϕ(U)(s).
Remark 7.1.1. The morphisms between sheaves are defined as morphisms of
presheaves.
Definition 7.1.3 (isomorphism). A morphism of presheaves ϕ : F → G
is called an isomorphism if it has two-sided inverse, that is, there exists a
morphism of presheaves ψ : G → F such that ψϕ = idF and ϕψ = idG .
Remark 7.1.2. A morphism of presheaves ϕ : F → G is an isomorphism if
and only if for every open subset U ⊆ X, ϕ(U) → G (U) is an isomorphism
of abelian groups.
Definition 7.1.4 (stalks). For a presheaf F and p ∈ X, the stalk at p is
defined as

Fp = lim−→
p∈U

F (U)

Remark 7.1.3 (alternative definition). In order to avoid language of direct
limit, we give a more useful but equivalent description of stalk: For p ∈ U∩V ,
sU ∈ F (U) and sV ∈ F (V ) are equivalent if there exists p ∈ W ⊆ U ∩ V
such that sU |W = sV |W . An element sp ∈ Fp, which is called a germ, is an
equivalence class [sU ].
Notation 7.1.3.
(1) For s ∈ F (U) and p ∈ U , s|p denotes the equivalent class it gives.
(2) For sp ∈ Fp, s ∈ F (U) denotes the section such that s|p = sp.
Definition 7.1.5 (morphisms on stalks). Given a morphism of sheaves
ϕ : F → G , it induces a morphism of abelian groups ϕp : Fp → Gp as
follows:

ϕp : Fp → Gp

sp 7→ ϕ(s)|p.

Remark 7.1.4. It’s necessary to check the ϕp is well-defined since there are
different choices s such that s|p = sp.
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Proposition 7.1.1. Let ϕ : F → G be a morphism between sheaves. Then
ϕ is an isomorphism if and only if the induced map ϕp : Fp → Gp is an
isomorphism for every p ∈ X.

Proof. It’s clear if ϕ is an isomorphism between sheaves, then it induces an
isomorphism between stalks. Conversely, it suffices to show ϕ(U) : F (U) →
G (U) is an isomorphism for every open subset U ⊆ X.
(1) Injectivity: For s, s′ ∈ F (U) such that ϕ(s) = ϕ(s′), by passing to stalks

one has ϕp(s|p) = ϕp(s
′|p) for every p ∈ U , and thus s|p = s′|p since ϕp

is an isomorphism. By definition of stalks there exists an open subset
Vp ⊆ U containing p such that s agrees with s′ on Vp. Then it gives an
open covering {Vp} of U , and by axiom (IV) one has s = s′ on U .

(2) Surjectivity: For t ∈ G (U), by passing to stalks there exists sp ∈ Fp such
that ϕp(sp) = t|p for every p ∈ U since ϕp is surjective. By definition of
stalks there exists an open subset Vp ⊆ U containing p and s ∈ F (Vp)
such that ϕ(s) = t on Vp. This gives a collection of sections defined
on an open covering {Vp} of U , and by injectivity we proved above one
has these sections agree with each other on the intersections. Then by
axiom (V) there exists a section s ∈ F (U) such that ϕ(s) = t.

□

7.1.3. Sheafification. In Example 7.1.1, we come across a presheaf that is
not a sheaf. To obtain a sheaf from a presheaf, we require a process known
as sheafification. One approach to defining sheafification is through its uni-
versal property.

Definition 7.1.6 (sheafification). Given a presheaf F there is a sheaf F+

and a morphism θ : F → F+ with the property that for any sheaf G and
any morphism ϕ : F → G there is a unique morphism ϕ : F+ → G such
that the following diagram commutes:

F G

F+

θ

φ

φ

The universal property shows that if the sheafification exists, then it’s
unique up to a unique isomorphism. One way to give an explicit construction
of sheafification is to glue stalks together in a suitable way. Let F+(U) be
a set of functions

f : U →
∐
p∈U

Fp

such that f(p) ∈ Fp and for every p ∈ U there is an open subset Vp ⊆ U
containing p and t ∈ F (Vp) such that t|q = f(q) for all q ∈ Vp.

Proposition 7.1.2. F+ is the sheafication of F .
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Proof. Firstly let’s show F+ is a sheaf: It’s clear F+ is a presheaf, so it
suffices to check conditions (IV) and (V) in the definition. Let U ⊆ X be
an open subset and {Vi} be an open covering of U .
(1) If s ∈ F+(U) such that s|Vi = 0 for all i, then s must be zero: It suffices

to show s(p) = 0 for all p ∈ U . For any p ∈ U , then there exists an open
subset Vi contains p, hence s(p) = s|Vi(p) = 0.

(2) Suppose there exists a collection of sections {si ∈ F+(Vi)}i∈I such that
si|Vi∩Vj = sj |Vi∩Vj

holds for all i, j ∈ I. Now we construct s ∈ F+(U) as follows: For p ∈ U
and Vi containing p, we define s(p) = si(p). This is well-defined since si
agree on the intersections, so it remains to show s ∈ F+(U). It’s clear
s(p) ∈ Fp. For p ∈ U , there exists Vi containing p, and thus there exists
Wi ⊆ Vi containing p and t ∈ F (Wi) such that t|q = si(q) = s(q) for all
q ∈ Vp.

There is a canonical morphism θ : F → F+ as follows: For open subset
U ⊆ X, and s ∈ F (U), θ(s) is defined by

θ(s) : U →
∐
p∈U

Fp

p 7→ s|p.

Note that if F is a sheaf, the canonical morphism θ : F → F+ is an iso-
morphism.
(1) Injectivity: If s ∈ F (U) such that s|p = 0 for all p ∈ U , then there

exists an open covering {Vi}i∈I of U such that s|Vi = 0, by axiom (IV)
of sheaf one has s = 0.

(2) Surjectivity: For f ∈ F+(U) and p ∈ U , there exists p ∈ Vp ⊆ U and
t ∈ F (Vp) such that f(p) = t|p by construction of F+. Then glue these
sections together to get our desired s such that θ(s) = f .

Finally let’s show F+ statisfies the universal property of sheafification.
A morphism of presheaves ϕ : F → G induces a map on stalks

ϕp : Fp → Gp.

For f ∈ F+(U), the composite of f with the map∐
p∈U

ϕp :
∐
p∈U

Fp →
∐
p∈U

Gp

gives a map ϕ̃(f) : U →
∐
p∈U Gp, and in fact ϕ̃(f) ∈ G+(U): For p ∈ U ,

ϕ̃(f)(p) ∈ Gp since f(p) ∈ Fp and ϕp : Fp → Gp. If for all q ∈ Vp we have
t|q = f(q), then

ϕ̃(f)(q) = ϕq(f(q)) = ϕq(t|q) = ϕ(t)|q.
Since G is a sheaf, the canonical morphism θ′ : G → G+ is an isomorphism,
so we can define ϕ := θ′−1 ◦ ϕ̃. Now let’s show ϕ = ϕ ◦ θ = θ′−1 ◦ ϕ̃ ◦ θ. It’s
easy to show they coincide on each stalk since ϕp = θ′−1

p ◦ ϕ̃p ◦ θp, and thus
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ϕ = ϕ ◦ θ by Proposition 7.1.1. Furthermore, uniqueness follows from the
fact that ϕp is uniquely determined by ϕp. □
Remark 7.1.5. From the construction, one can see the stalk of F+ at p is
exactly Fp.
Remark 7.1.6. The sheafification can be described in a more fancy language:
Since we have sheaf of abelian groups on X as a category, denote it by AbX ,
and presheaf is a full subcategory of AbX , there is a natural inclusion functor
ι from category of sheaf to category of presheaf. The sheafification is the
adjoint functor of ι.
Example 7.1.5 (constant sheaf). For an abelian group G, the associated
constant sheaf G is the sheafication of the constant presheaf. By the con-
struction of sheafification, G can be explicitly expressed as

G(U) = {locally constant function f : U → G}

7.1.4. Exact sequence of sheaf. Given a morphism ϕ : F → G between
sheaves of abelian groups, there are the following presheaves

U 7→ kerϕ(U)

U 7→ imϕ(U)

U 7→ cokerϕ(U),

since ϕ(U) : F (U) → G (U) is a group homomorphism.
Proposition 7.1.3. The kernel of a morphism between sheaves is a sheaf.
Proof. Let {Vi}i∈I be an open covering of U .
(1) For s ∈ kerϕ(U), if s|Vi = 0, then s = 0 since s is also in F (U).
(2) If there exists si ∈ kerϕ(Vi) such that si|Vi∩Vj = sj |Vi∩Vj , then they glue

together to get s ∈ F (U). Note that
ϕ(U)(s)|Vi = ϕ(Vi)(s|Vi) = ϕ(Vi)(si) = 0

Then s ∈ kerϕ(U).
□

But the image of morphism may not be a sheaf. Although we can prove
the first requirement in the same way, the proof for the second requirement
fails: If there exists si ∈ imϕ(Vi), and we can glue them together to get a
s ∈ G (U), but s may not be the image of some t ∈ F (U). The cokernel fails
to be a sheaf for the same reason.
Definition 7.1.7 (image and cokernel). Let ϕ : F → G be a morphism
between sheaves of abelian groups. Then the image and cokernel of ϕ is
defined to be the sheafification of the following presheaves

U 7→ imϕ(U)

U 7→ cokerϕ(U)

respectively.
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Definition 7.1.8 (exact). For a sequence of sheaves:

· · · → F i−1 φ
i−1

−→ F i φi

−→ F i+1 → . . .

It’s called exact at F i, if kerϕi = imϕi−1. If a sequence is exact at every-
where, then it’s an exact sequence of sheaves.

Definition 7.1.9 (short exact sequence). An exact sequence of sheaves is
called a short exact sequence if it looks like

0 → F
φ−→ G

ψ−→ H → 0

Proposition 7.1.4. Let ϕ : F → G be a morphism between sheaves of
abelian groups. Then for any p ∈ X, one has

(kerϕ)p = kerϕp

(imϕ)p = imϕp.

Proof. For (1). It’s clear (kerϕ)p ⊆ kerϕp. Conversely, if sp ∈ kerϕp, then
ϕp(sp) = 0 ∈ Gp. In other words, there exists an open subset U containing
p and s ∈ F (U) such that s|p = sp and ϕ(s)|p = 0, which implies there is
another open subset V containing p such that ϕ(s)|V = 0. Hence ϕ(s|V ) = 0,
that is, s|V ∈ kerϕ(V ). Thus sp = (s|V )|p ∈ (kerϕ)p.

For (2). It’s clear (imϕ)p ⊆ imϕp since the sheafication doesn’t change
stalk. Conversely, if sp ∈ imϕp, then there exists tp ∈ Fp such that ϕp(tp) =
sp. Suppose t ∈ F (U) is a section of some open subset U containing p such
that t|p = tp. Then ϕ(t)|p = ϕp(tp) = sp. In other words, sp is in the stalk
of the image presheaf at p, but the sheafication doesn’t change stalk, so we
have sp ∈ (imϕ)p. □
Corollary 7.1.1. The sequence of sheaves

· · · → F i−1 φ
i−1

−→ F i φi

−→ F i+1 → . . .

is exact if and only if the sequence of abelian groups are exact

· · · → F i−1
p

φi−1
p−→ F i

p

φi
p−→ F i+1

p → . . .

for all p ∈ X.

Corollary 7.1.2. The the sequence of sheaves
0 → F → G

is exact if and only if for any open subset U , the following sequence of abelian
groups is exact

0 → F (U) → G (U).

Method one. For any open subset U ⊆ X, one has
ϕ(U) : F (U) → G (U)

is injective, since by definition we have for any open subset U ⊆ X, kerϕ(U) =
0, that is injectivity. □
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Method two. Or from another point of view, for each p ∈ U , we have
ϕp : Fp → Gp

is injective. That is kerϕp = 0. So we obtain (kerϕ(U))p = 0 for all p ∈ U .
But for a section s ∈ F (U) if we have s|p = 0, then we must have s = 0,
and thus kerϕ(U) = 0. □

Example 7.1.6 (exponential sequence). Let X be a Riemann surface and
OX be its holomorphic function sheaf. Then

0 → 2π
√
−1Z → OX

exp−→ O∗
X → 0

is an exact sequence of sheaves, called exponential sequence.

Proof. The difficulty is to show exponential map is surjective on stalks at
p ∈ X. That is we need to construct logarithms of functions g ∈ O∗

X(U) for
U , a neighborhood of p. We may choose U is simply-connected, then define

log g(q) = log g(p) +

ˆ
γq

dg

g

for q ∈ U , where γq is a path from p to q in U , and the definition of log g(q)
is independent of the choice of γq since U is simply-connected. □

Remark 7.1.7. In fact, U is simply-connected is crucial for constructing log-
arithm. If we consider X = C and U = C \{0}, then

exp: OX(U) → O∗
X(U)

cannot be surjective.

Example 7.1.7. Let X be a compact Riemann surface and D be a divisor
on X. For any point p, the sequence

0 → OX(D − p) → OX(D)
evp−→ Cp → 0

is exact, where the evaluation map evp is given by sending f =
∑

n≥−D(p) cnz
n

to the coefficient c−D(p) on open subsets containing p, and is identically zero
on open subsets not containing p.

7.2. Čech cohomology. In this section we talk about the Čech cohomology
of sheaf F with repest to open covering U on a topological space X. For
convenience, we denote

Ui0...in := Ui0 ∩ · · · ∩ Uin .

The Čech cochain is defined by

0 → C0(U,F )
δ−→ C1(U,F )

δ−→ C2(U,F ) → . . . ,

where
Cn(U,F ) =

∏
(i0...in)

F (Ui0...Uin
),
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and the differential δ : Cn(U,F ) → Cn+1(U,F ) is given by

δ(fi0...in) = (gi0...in+1),

where

gi0...in+1 =

n+1∑
k=0

(−1)kfi0...îk...in+1
|Ui0...in+1

.

A routine computation shows above Čech cochain is a complex, and the
cohomology of this complex, denoted by Ȟ∗(U,F ), is the Čech cohomology
of sheaf F with repest to open covering U. One natural question is what
will happen when we change the choice of open covering.

Definition 7.2.1 (refinement). Let U = {Uα}α∈I and V = {Vβ}β∈J be two
open coverings of X. We say that V is a refinement of U if for every open
subset Vj , there exists an open subset Ui such that Vj ⊆ Ui.

Remark 7.2.1 (refining map). Any choice of such a Ui for every Vj can be
viewed as a function r : J → I on the index sets, and such a function is
called a refining map.

Given U = {Uα}α∈I an open covering and V = {Vβ}β∈J is a refinement
of U. If φ : J → I is a refining map, then it gives a map between n-cochains
as follows

φ♯ : Cn(U,F ) → Cn(V,F ),

given by
φ♯(ω)(Vβ0...βn) = ω(Uϕ(β0)...ϕ(βn)),

where ω ∈ Cn(U,F ).

Lemma 7.2.1. Given U = {Uα}α∈I an open covering and V = {Vβ}β∈J
is a refinement of U. If φ, ψ are two refining maps J → I, then there is
a homotopy operator between φ# and ψ#. In other words, there exists a
homeomorphism from Ȟ∗(U,F ) → Ȟ∗(V,F ), whihc is independent of the
choice of the refining maps.

Proof. Define K : Cq(U,F ) → Cq−1(V,F ) by

(Kω)(Vβ0...βq−1) =
∑

(−1)iω(Uϕ(β0)...ϕ(βi)ψ(βi)...ψ(βq−1)).

Now let’s show11

ψ# − φ# = δK +Kδ.

For any cochain ω ∈ Cq(U,F ) and Vβ0...βq , it’s easy to see

ψ# − φ#(ω)(Vβ0...βq) = ω(Uψ(β0)...ψ(βq))− ω(Uϕ(β0)...ϕ(βq)).

11An exercise you only check once in your whole life.
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On the other hand, one has

δK(ω)(Vβ0...βq) =
∑
i

(−1)iKω(V
β0...β̂i...βq

)

=
∑
i≤j

(−1)i+jω(U
ϕ(β0)...ϕ̂(βi)...ϕ(βj+1)ψ(βj+1)...ψ(βq)

)

︸ ︷︷ ︸
part I

+
∑
i>j

(−1)i+jω(U
ϕ(β0)...ϕ(βj)ψ(βj)...ψ̂(βj)...ψ(βq)

)︸ ︷︷ ︸
part II

.

By the same computation one has

Kδω(Vβ0...βq) =
∑
j

(−1)jδω(Uϕ(β0)...ϕ(βj)ψ(βj)...ψ(βq))

=
∑
i<j

(−1)i+jω(U
ϕ(β0)...ϕ̂(βi)...ϕ(βj)ψ(βj)...ψ(βq)

)︸ ︷︷ ︸
part III

+
∑
i>j

(−1)i+jω(U
ϕ(β0)...ϕ(βj)ψ(βj)... ̂ψ(βi−1)...ψ(βq)

)︸ ︷︷ ︸
part IV

+
∑
j

ω(U
ϕ(β0)...ϕ̂(βj)ψ(βj)...ψ(βq)

)︸ ︷︷ ︸
part V

.

Note that part I cancels with part III, since if you fix i, you will find j-th
terms of part I and part III are equal but differ a sign. Similarly you can
find part II and part IV almost cancel each other, but

part II + part IV =
∑
j

−ω(U
ϕ(β0)...ϕ(βj)ψ̂(βj)ψ(βj+1)...ψ(βq)

)︸ ︷︷ ︸
part VI

,

and it’s clear to see that
part V + part VI = ω(Uψ(β0)...ψ(βq))− ω(Uϕ(β0)...ϕ(βq))

as desired. This completes the proof. □

Thus for two different open covering U,V such that V is a refinement of
U, there is a natural homomorphism

fUV : H∗(U,F ) → H∗(V,F ).

Furthermore, if there are three open covering such that C is a refinement of
V, and V is a refinement of U. then we have

fUC = fUVfVC.
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So if we give a partial order on set of all open coverings, that is U < V, if V
is a refinement of U, we obtain a direct system {H∗(U,F ), fUV}. The direct
limit of this direct system

Ȟ∗(X,F ) := lim−→
U

Ȟ∗(U,F ).

is called Čech cohomology of X valued in the sheaf F .

Remark 7.2.2. In fact, the definition of Čech cohomology makes sense for
any presheaf F , and if X is a paracompact topological space12(In particular,
any manifold), then the Ȟ(X,F ) = Ȟ(X,F+).

Notation 7.2.1. For convenience, we denote
H i(X,F ) = Ȟ i(X,F ),

since in this lecture note we only introduce the Čech cohomology approach
to sheaf cohomology, and we also denote

hi(X,F ) := dimH i(X,F ).

In particular, if X is a compact Riemann surface and D is a divisor on X,
then

h0(X,OX(D)) = `(D).

7.3. Computations for Čech cohomology.

7.3.1. The vanishing of H1 for skyscraper sheaves.

Theorem 7.3.1. Let X be a paracompact topological space and F be a
skyscraper sheaf on X. Then Hn(X,F ) = 0 for n ≥ 1.

Proof. See Proposition 4.3 in Chapter IX of [Mir95]. □

7.3.2. The vanishing of H2 for OX(D).

Theorem 7.3.2. Let X be a compact Riemann surface and D be a divisor
on X. Then Hn(X,OX(D)) = 0 for n ≥ 2.

Proof. See Proposition 4.7 in Chapter IX of [Mir95]. □

7.3.3. The long exact sequence of cohomology.

Theorem 7.3.3 (Zig-zag). Let X be a paracompact topological space and
0 → K → F → G → 0

be an exact sequence of sheaves on X. Then there is a long exact sequence
of cohomology groups

12A topological space is called paracompact, if it’s Hausdorff and every open covering
has a locally finite refinement, and an open covering is called locally finite, if every point
has a neighborhood which intersects only finite many of the open subsets in the covering.



76

0 H0(X,K ) H0(X,F ) H0(X,G )

H1(X,K ) H1(X,F ) H1(X,G )

H2(X,K ) H2(X,F ) H2(X,G ) . . .

Proof. See Theorem 3.18 in Chapter IX of [Mir95]. □

7.4. Algebraic sheaves, Zariski cohomology and GAGA principle.

7.4.1. Zariski topology.

Definition 7.4.1 (Zariski topology). Let X be a compact Riemann surface.
The Zariski topology on X is the topology whose open sets are cofinite13

sets together with empty set.

Notation 7.4.1. For convenience, when we refer to X equipped with Zariski
topology, we will write XZar.

Remark 7.4.1.
(1) XZar is not Hausdorff.
(2) XZar is compact14, that is, every open covering admits a finite subcover.
(3) Any two non-empty open sets of XZar intersect.

7.4.2. Algebraic sheaves. Suppose X is a compact Riemann surface. In this
section we define algebraic sheaves on XZar.

Definition 7.4.2. The the sheaf of regular functions on XZar is defined by
OX,alg(U) = {f ∈ MX(X) | f is holomorphic at all points of U}.

Definition 7.4.3. The the sheaf of regular 1-forms on XZar is defined by

Ω1
X,alg(U) = {ω ∈ M(1)

X (X) | ω is holomorphic at all points of U}.

Definition 7.4.4. Let D be a divisor on X.
(1) The sheaf of regular functions with poles bounded by D on XZar is

defined by
OX,alg(D)(U) = {f ∈ MX(X) | div(f) ≥ −D at all points of U}.

(2) The sheaf of regular 1-forms with poles bounded by D on XZar is defined
by
Ω1
X,alg(D)(U) = {f ∈ MX(X) | div(ω) ≥ −D at all points of U}.

13A cofinite set is a subset whose complement is finite.
14In many standard textbooks of algebraic geometry, this property is sometimes called

quasi-compactness, when the space is not Hausdorff, and the compactness means Hausdorff
and quasi-compact.
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Definition 7.4.5. The sheaf of rational functions MX,alg on XZar is the
constant sheaf valued in MX(X).

Definition 7.4.6. The sheaf of rational 1-forms M(1)
X,alg on XZar is the

constant sheaf valued in M(1)
X (X).

Remark 7.4.2. Note that the global sections of the algebraic sheaves are the
same as classical one15

7.4.3. Zariski cohomology.

Theorem 7.4.1. Let X be a compact Riemann surface and G be a constant
sheaf on XZar. Then for every n ≥ 1, Hn(XZar, G) = 0.

Proof. See Proposition 2.1 in Chapter X of [Mir95]. □
Corollary 7.4.1. Let X be a compact Riemann surface. Then for every
n ≥ 1,

Hn(XZar,MX,alg) = Hn(XZar,M(1)
X,alg) = 0.

7.4.4. GAGA principle. Since there are two ways of taking cohomology on
a compact Riemann surface X, it’s natural to compare them.

Theorem 7.4.2 ([Ser56]). Suppose X is a projective curve. Then for any
divisor D, the following cohomology groups are isomorphic

Hn(X,OX(D)) ∼= Hn(XZar,OX,alg(D)).

15For example, OX(D)(X) = OX,alg(D)(X).
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8. Riemann-Roch theorem

8.1. First version of Riemann-Roch theorem.

Definition 8.1.1 (Euler characterisitic). Let X be a compact Riemann
surface and F be a locally free sheaf on X. The Euler characterisitic of F
is defined by

χ(X,F ) := h0(X,F )− h1(X,F ) + h2(X,F ).

Example 8.1.1. Let X be a compact Riemann surface and D is divisor on
X. Then

χ(X,OX(D)) = h0(X,OX(D))− h1(X,OX(D)),

since by Theorem 7.3.2, one has h2(X,OX(D)) = 0.

Theorem 8.1.1 (Riemann-Roch). Let X be a compact Riemann surface
and D be a divisor on X. Then

χ(X,OX(D)) = χ(OX) + deg(D).

Proof. By using the short exact of sheaves

0 → OX(D − p) → OX(D)
evp−→ Cp → 0,

there is a long exact sequence of cohomology groups as follows

0 H0(X,OX(D − p)) H0(X,OX(D)) H0(X,Cp)

H1(X,OX(D − p)) H1(X,OX(D)) H1(X,Cp) = 0.

This shows
h0(X,OX(D−p))−h0(X,OX(D))+1−h1(X,OX(D−p))+h1(X,OX(D)) = 0,

that is
χ(X,OX(D)) = χ(X,OX(D − p)) + 1.

By induction one has
χ(X,OX(D)) = χ(X,OX) + deg(D).

□
Remark 8.1.1 (Hirzebruch–Riemann–Roch). Let X be a compact manifold
and E be a sheaf of holomorphic vector bundle. Then

χ(X, E ) =

ˆ
X
Ch(E )Td(X),

where Ch(E ) is the Chern character of E and Td(X) is the Todd class of TX.
In the curve case, the Todd class of tangent bundle is 1+ c1(TX)/2 and the
Chern character of OX(D) is 1 + c1(OX(D)). This shows χ(X,OX(D)) =
c1(OX(D)) + c1(TX)/2 = deg(D) + 1− g.
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8.2. Serre duality.

Theorem 8.2.1 (Serre duality). Let X be compact Riemann surface and
Ω1
X(D) be the sheaf of meromorphic 1-forms with poles bounded by D. Then

there is a a perfect pairing
H1(X,OX(D))×H0(X,Ω1

X(−D)) → C .

In particular, h1(X,OX(D)) = h0(X,OX(K −D)).

Corollary 8.2.1 (Riemann-Roch). Let X be a compact Riemann surface
and D be a divisor on X. Then

`(D)− `(K −D) = deg(D) + 1− g,

where K is the canonical divisor.

8.2.1. Laurent tail divisor. Let X be a Riemann surface and zp is a local
coordinate centered at point p ∈ X. A Laurent tail with respect to p is a
function of the form

rp(zp) =

kp∑
i=−np

aiz
i
p,

where ai ∈ C.

Definition 8.2.1 (Laurent tail divisor). A Laurent tail divisor on X is a
formal finite sum ∑

p∈X
rp(zp) · p

where rp(zp) is a Laurent tail with respect to p.

For any D ∈ Div(X), let’s consider the algebraic sheaves TX,alg[D] defined
as follows

U 7→ TX,alg[D](U) = {
∑
p∈X

rp(zp) | kp < −D(p) for all p ∈ U},

where kp is the maximal order of the function rp. There is a natural mor-
phism between algebraic sheaves

αD(U) : MX,alg(U) → TX,alg[D](U)

f 7→
∑
p∈U

rp(zp)p,

where rp(zp) is obtained from the Laurent series of f in zp by cutting off all
terms with degree ≥ −D(p).

Lemma 8.2.1. The following sequence is exact

0 → OX,alg(D) → MX,alg
αD−→ TX,alg[D] → 0.

Proof. See Lemma 2.3 in Chapter X of [Mir95]. □
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This induces a long exact sequence in cohomology, that is,

0 → OX(D)(X) → MX(X)
αD−→ TX [D](X) → H1(XZar,OX,alg(D)) → 0,

since by Corollary 7.4.1 one has H1(XZar,MX,alg) = 0, and thus by GAGA
principle (Theorem 7.4.2), one has

H1(X,OX(D)) = H1(XZar,OX,alg(D))

= TX [D](X)/MX(X).

Remark 8.2.1. Here we use the Zariski cohomology of algebraic sheaves and
GAGA principle since it’s easy to see H1(XZar,MX,alg) = 0, but it’s not
easy to see why H1(X,MX) = 0. One way is to show

H1(X,OX(D)) = 0

for D with sufficiently large16 degree by other methods (For example, Ko-
daira vanishing), and use the following exact sequence

0 → OX(D)(X) → MX(X)
αD−→ TX [D](X) → H1(X,OX(D)) → H1(X,MX) → 0

to conclude H1(X,MX) = 0.

8.2.2. Proof of Serre duality. For ω ∈ Γ(X,Ω1
X(−D)), consider the following

residue map
Resω : T [D](X) → C∑

p

rp(zp)p 7→
∑
p

Resp(rp(zp)ω)

The following lemma shows that the residue map can descend toH1(X,OX(D)) =
TX [D](X)/MX(X).

Lemma 8.2.2. For f ∈ MX(X), we have Resω(αD(f)) = 0.

Proof. Suppose the Laurent series of f at p is
∑

k akz
k
p , and ω is locally

given by

(

∞∑
n=D(p)

cnz
n
p )dzp.

Then Resp(fω) equals to the coefficient of z−1
p in (

∑
k akz

k
p )(
∑∞

n=D(p) cnz
n
p )dzp,

which is
∑∞

n=D(p) a−n−1cn. Thus only ak with k < −D(p) can contribute to
Resp(fω). On the other hand, by definition of αD, we have

Resp(fω) = Resp(rp(zp)w)

where αD(f) =
∑

p rp(zp)p. By residue theorem, we have

Resp(αD(f)) =
∑
p

Resp(fω) = 0.

□
16To be explicit, deg(D) ≥ 2g − 1.
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As a consequence, one has the following linear map
Resω : H

1(X,OX(D)) → C .
In other words, we have

Res: Γ(X,Ω1
X(−D)) → H1(X,OX(D))∗

ω 7→ Resω .

Theorem 8.2.2 (Serre duality). The residue map is an isomorphism.

Proof of injectivity. For any 0 6= ω ∈ Γ(X,Ω1
X(−D)), let {zp} be a local

coordinate centered at p ∈ X, and write ω = (
∑∞

n=k ckz
k
p )dzp, where ck 6= 0.

Now consider the Laurent tail divisor

Z =
1

zk+1
p

· p ∈ TX [D](X).

Then
Resω(Z) = ck 6= 0.

This shows Resω 6= 0, and that’s exactly the injectivity. □
It remains to show it’s surjective, which is still a long way to prove it,

and let’s make some preparations first. For f ∈ MX(X) and D ∈ Div(X),
we define multiplicative map

µf = µDf : TX [D](X) → TX [D − div(f)](X)∑
p

rp(zp) · p 7→ suitable truncation of
∑
p

(frp(zp)) · p

Exercise 8.2.1. If f 6≡ 0, then µf is an isomorphism with inverse µ 1
f
.

Exercise 8.2.2. For f, g ∈ MX(X) and D ∈ Div(X), one has
µf (αD(g)) = αD−div(f)(fg).

In other words, the following diagram commutes

MX(X) MX(X)

TX [D](X) TX [D](X).

αD

f

αD−div(f)

µf

As a consequence, deduce that
µf (imαD) ⊆ im(αD−div(f)).

Remark 8.2.2. For any ϕ ∈ H1(X,OX(D))∗, the composite

ϕ̃ : TX [D](X)
π−→ H1(X,OX(D))

φ−→ C,
satisfies ϕ̃|imαD = 0; Conversely, any linear map ϕ̃ : TX [D](X) → C such
that ϕ̃|imαD = 0 gives a linear map ϕ : H1(X,OX(D)) → C. By Exercise
8.2.2 one has

ϕ̃ ◦ µf |im(αD+div(f)) = 0,
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and thus ϕ̃ ◦ µf induces a linear map H1(X,OX(D + div(f)) → C.

Lemma 8.2.3. For any A ∈ Div(X), and two non-zero ϕ1, ϕ2 ∈ H1(A)∗,
there exists B ∈ Div(X) with B > 0 together with non-zero meromorphic
functions f1, f2 ∈ H0(X,OX(B)) such that

ϕ̃1 ◦ tA−B−div(f1)
A ◦ µf1 = ϕ̃2 ◦ tA−B−div(f2)

A ◦ µf2
In other words, the following diagram commutes

TX [A−B − div(f1)](X) TX [A](X)

TX [A−B](X) C

TX [A−B − div(f2)](X) TX [B](X)

φ̃1
µf1

µf2 φ̃2

Proof. Suppose that no such divisor B and non-zero meromorphic functions
f1, f2 exist. Then for every positive definite B, it turns out that

Γ(X,OX(B))× Γ(X,OX(B)) → H1(X,OX(A−B))∗

(f1, f2) 7→ ϕ̃1 ◦ tA−B−div(f1)
A ◦ µf1 − ϕ̃2 ◦ tA−B−div(f2)

A ◦ µf2
is injective. In particular, one has 2`(B) ≤ h1(X,OX(A − B)), and by the
first version of Riemann-Roch Theorem (Theorem 9.1), one has

h1(X,OX(A−B)) = `(A−B)− deg(A−B)− 1 + h1(X,OX)

≤ `(A)− deg(A)− 1 + h1(X,OX) + deg(B)

= a+ deg(B),

where a is constant. On the other hand, one has

`(B) = h1(X,OX(B)) + deg(B)− 1 + h1(X,OX)

≥ 1− h1(X,OX) + deg(B)

= b+ deg(B),

where b is constant. This leads to the following inequalities

a+ deg(B) ≥ h1(X,OX(A−B)) ≥ 2`(B) ≥ 2b+ 2deg(B),

and it cannot hold for sufficiently large deg(B), which is a contradiction. □

Lemma 8.2.4. Let D1 ∈ div(X) be a divisor and and ω ∈ Γ(X,Ω1
X(−D1)).

Suppose there is another divisor D2 ≥ D1 such that Resω : TX [D1](X) → C
satisfies

Resω |ker tD1
D2

= 0.

Then ω ∈ Γ(X,Ω1
X(−D2)), and the following diagram commutes
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T [D1](X) T [D2](X)

C

t
D1
D2

Resω Resω

Proof. Suppose ω /∈ Γ(X,Ω1
X(−D2)). Then there exists p ∈ X such that

D1(p) ≤ k = ordp(ω) < D2(p).

Let’s consider the Laurent tail divisor Z = z−k−1
p p ∈ TX [D1](X). Then

tD1
D2

(Z) = 0, but for ω = (
∑∞

n=k cnz
n
p )dzp, one has

Resω(Z) = ck 6= 0,

which is a contradiction.
For the half part, given any Z =

∑
p rp(z)p ∈ TX [D1](X), Resω(Z) only

depends on terms in rp with order which is less than −D2(p) ≤ −D1(p).
This proves that the diagram commutes. □

Finally, let’s complete the proof of Serre duality.

Proof of surjectivity. Let ω be any meromorphic 1-form on X and K =
div(ω) be the canonical divisor. For any 0 6= ϕ ∈ H1(X,OX(D))∗, we pick
A ∈ div(X) such that A ≤ D and A ≤ K, so that ω ∈ Γ(X,Ω1

X(−A)). Let’s
set ϕA := ϕ̃ ◦ tAD. By Lemma 8.2.3, it turns out that there exists a divisor
B > 0 and non-zero meromorphic functions f1, f2 ∈ Γ(X,OX(B)) such that

ϕA ◦ tA−B−div(f1)
A ◦ µf1 = Resω ◦tA−B−div(f2)

A ◦ µf2 .

For the right hand side, one has

TX [A−B](X) TX [A−B − div(f2)](X) TX [A](X)

C

µf2

Resω

Since
div(ω) ≥ A ≥ A−B − div(f2)

div(f2ω) ≥ A−B,

we can add two more arrows in the above diagram such that the following
diagram commutes

TX [A−B](X) TX [A−B − div(f2)](X) TX [A](X)

C .

µf2

Resf2ω

Resω Resω
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In other words, one has
ϕA ◦ tA−B−div(f1) ◦ µf1 = Resf2ω .

By composing µ−1
f1

, one has

ϕA ◦ tA−B−div(f1)
A = Res f2

f1
ω
.

If we define ω̃ = f2ω/f1, then Resω̃ |ker tA−B−div(f1)
A

= 0. By Lemma 8.2.4,
one has ω̃ ∈ Γ(X,Ω1

X(−A)), and hence Resω̃ = ϕA.
By definition, the map ϕA is the composite of ϕ̃ and tAD, hence Resω̃ |ker tAD =

0. By Lemma 8.2.4 again, ω̃ ∈ Γ(X,Ω1
X(−D)) such that Resω̃ = ϕ̃. This

completes the proof. □
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9. Applications of Riemann-Roch theorem

In this section, X always denotes a compact Riemann surface with genus
g and K is the canonical divisor on X.

Theorem 9.1 (Riemann-Roch). For any D ∈ Div(X), one has

`(D)− `(K −D) = deg(D) + 1− g.

9.1. Hodge decomposition.

Lemma 9.1.1. `(K) = g.

Proof. By Example 6.2.1 one has `(0) = 1. □

Theorem 9.1.1 (Hodge decomposition). H1
dR(X,C) ∼= Γ(X,Ω1

X)⊕Γ(X,Ω1
X).

Proof. Firstly, the natural map

Γ(X,Ω1
X) → H1

dR(X,C)
η 7→ η

is well-defined, since if η is holomorphic, then η is also d-closed. To show
this, suppose locally one has η = f(z)dz, and thus

dη =
∂f

∂z
dz ∧ dz +

∂f

∂z̄
dz̄ ∧ dz = 0,

since f(z) is holomorphic. On the the hand, this map is also injective.
Suppose a holomorphic 1-form η = dh for some smooth function h. Then

η =
∂h

∂z
dz +

∂h

∂z̄
dz̄

implies that ∂h/∂z̄ = 0, and thus h is holomorphic. Since the constant func-
tions are the only holomorphic defined on X, one has η = 0. By the same
argument one can also show the natural map Γ(X,Ω1

X) → H1
dR(X,C) is in-

jective. Then by dimension reason it suffices to show Γ(X,Ω1
X)∩Γ(X,Ω1

X) =
{0}.

Consider the following pairing

Q : H1
dR(X,C)×H1

dR(X,C) → C

(α, β) 7→ 1

2π
√
−1

ˆ
X
α ∧ β̄.

It gives a non-degenrated Hermitian pairing on H1
dR(X,C), and Γ(X,Ω1

X) ⊥
Γ(X,Ω1

X) with respect to this pairing. This completes the proof. □

9.2. Curves of genus zero and one.
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9.2.1. The uniqueness of complex structure on S2.

Corollary 9.2.1 (Riemann inequality). `(D) ≥ deg(D) + 1− g.

Historically, Riemann found this inequality and his student Roch made it
into an equality. However, the following lemma shows that in a very generic
case, Riemann inequality is always an equality.

Lemma 9.2.1. If deg(D) ≥ 2g − 1, then `(D) = deg(D) + 1− g.

Proof. If deg(D) ≥ 2g − 1, then deg(K −D) < 0, since
deg(K −D) = deg(K)− deg(D) = 2g − 2− deg(D).

Then by Lemma 6.2.2 one has `(K −D) = 0. □

Lemma 9.2.2. If there exists p ∈ X such that `(p) > 1, then X is isomor-
phic to P1.

Proof. If `(p) > 1 for some p ∈ X, there exists a non-constant meromorphic
function f ∈ Γ(X,OX(p)). Suppose Φ: X → P1 is the holomorphic map
corresponding to f . By the same argument used in Example 6.2.3 one has
Φ is an isomorphism. □

Corollary 9.2.2. Any compact Riemann surface X with genus zero is iso-
morphic to P1.

Proof. For any p ∈ X, deg(p) = 1 ≥ 2×0−1, and thus `(p) = deg(p)+1−0 =
2 > 1. Then by Lemma 9.2.2 one has X is isomorphic to P1. □

Corollary 9.2.3. The complex structure on topological sphere S2 is unique17.

9.2.2. Genus one curve.

Proposition 9.2.1. Let X be a compact Riemann surface with genus one.
Then X is isomorphic to a complex torus, that is, X ∼= C /L, where L =
Zw1 + Zw2 is a lattice.

Proof. By Lemma 9.1.1 one has `(K) = 1, and thus there exists a holomor-
phic 1-form η. Choose a basis α, β of H1(X,Z) and define w1 =

´
α η, w2 =´

β η. Now let’s prove w1, w2 are R-linearly independent: If aw1 + bw2 = 0

for some a, b ∈ R, that is,
´
aα+bβ η = 0, then
ˆ
aα+bβ

η =

ˆ
aα+bβ

η = 0.

By Theorem 9.1.1, one has η, η is a basis of H1
dR(X), and thus aα+ bβ = 0,

which implies a = b = 0. This shows L = Zw1 + Zw2 is a lattice.

17For the higher dimension case, Yau proved that the complex structure on P2 is unique,
and the Kälher structure on Pn is unique, but it’s still widely open whether the complex
structure on Pn is unique or not for n ≥ 3.



87

Fix a point p0 ∈ X and for every p ∈ X, we choose a path γp connecting
p0 and p. Then it gives a map

Φ: X → C /L

p 7→
ˆ
γp

η.

It’s well-defined since for different choice of paths γp and γ′p connecting p0
and p, one has γp− γ′p = aα+ bβ for some a, b ∈ Z, and thus

´
γp
η−
´
γ′p
η =

aw1 + bw2 ∈ L. Since η has no zeros, one has Φ is a local diffeomorphism,
and thus a covering map since Φ is proper. Thus there is the following
commutative diagram

C

X C /L,Φ

where Φ∗(π1(X)) is a subgroup of π1(C /L) = L, that is, X ∼= C /Z w̃1 +
Z w̃2, where Z w̃1 + Z w̃2 ⊆ L. □

Above proposition shows that every genus one compact Riemann surface
is a complex torus. In the following of this section, we will give an algebraic
description for genus one compact Riemann surface, which turns out to be
a plane cubic curve, and it’s called an elliptic curve.

Proposition 9.2.2. Let X be a compact Riemann surface of genus one.
Then it’s isomorphic to a non-singular projective plane cubic curve.

Method one. Let D be any divisor on X with degree three. Then it’s clear
that D is very ample (Exercise 11.7.4). On the other hand, by Riemann-
Roch theorem one has `(D) = 3, and thus it induces a holomorphic embed-
ding

ΦD : X → P2.

By Theorem 6.3.2 one has the image of the degree is three, and thus X is
isomorphic to a non-singular projective plane cubic curve. □

Method two. For each p ∈ X, since deg(K − 2p) = −2 < 0, one has `(K −
2p) = 0, and thus by Riemann-Roch theorem one has

`(2p) = 1− 1 + 2 = 2.

Then there exists a non-constant meromorphic function f ∈ Γ(X,OX(2p)),
which gives a holomorphic map Φ: X → P1. Moreover, p is the only double
pole of Φ. This shows the degree of Φ is 2. By Riemann-Hurwitz theorem
one has

2− 2g = 4−B(Φ)
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and thus it has four ramification points p1, p2, p3, p4. Without lose of gener-
ality, we may assume they’re [0 : 1], [1 : 1], [λ : 1] and [1 : 0]. On the other
hand, consider the affine plane curve

C = {y2 = x(x− 1)(x− λ)}

with compactification C ⊆ P2, and C̃ is the normalization of C. Note that
both X and C̃ are double cover (in the sense of topological space) of P1

besides four points.

X \ {p1, p2, p3, p4} C̃ \ {p1, p2, p3, p4}

P1
2:1 2:1

Then by Riemann existence theorem, X is isomorphic to C̃. □

Remark 9.2.1. In fact, C̃ constructed as above are called double cover of P1,
and by Riemann existence theorem they’re the same thing as hyperelliptic
curve, as we’ll introduce in the following section.

9.3. Hyperelliptic curve and double cover of P1.

9.3.1. Hyperelliptic curve.

Definition 9.3.1 (hyperelliptic). A compact Riemann surface X is called
hyperelliptic if there exists a holomorphic map Φ: X → P1 such that deg(Φ) =
2.

Lemma 9.3.1. Let X be a hyperelliptic curve. Then there exists an invo-
lution, called hyperelliptic involution, on X which has 2g + 2 fixed points.

Proof. Suppose Φ: X → P1 is a holomorphic map with degree 2. Then by
Riemann-Hurwitz formula, one has

2g − 2 = deg(Φ)(2× 0− 2) +B(Φ)

This shows B(Φ) = 2g+2. In other words, Φ has exactly 2g+2 ramification
points x1, . . . , x2g+2 ∈ X, since deg(Φ) = 2, and 2g + 2 ramification values
bi = Φ(xi) ∈ P1.

For any z ∈ P1 \ {b1, . . . , b2g+2}, one has Φ−1(z) contains 2 points. Now
we define the involution T : X → X as follows: For each ramification point
xi, T (xi) = xi, and T (p) = q if Φ(p) = Φ(q) and p 6= q. It’s clear that the
fixed points of T are {x1, . . . , x2g+2}. □

Remark 9.3.1. In fact, 2g+2 is a sharp upper bound for the number of fixed
points of a non-trivial automorphism.

Proposition 9.3.1. If X is a compact Riemann surface with genus g and
T ∈ Aut(X) is not identity, then T has at most 2g + 2 fixed points.
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Proof. Suppose Fix(T ) is the set of fixed points of T . For p 6∈ Fix(T ), by
Riemann inequality one has

`((g + 1)p) ≥ deg((g + 1)p) + 1− g = 2.

Thus there exists a non-constant f ∈ Γ(X,OX((g + 1)p)) such that
div∞(f) = rp,

where 1 ≤ r ≤ g + 1. For h = f − f ◦ T ∈ MX(X), one has
div∞(h) = rp+ rq,

where q = T−1(p). This shows
deg(div0(h)) = deg(div∞(h)) = 2r ≤ 2g + 2.

Since every fixed point of T is a zero of h, one has
|Fix(T )| ≤ deg(div0(h)) ≤ 2g + 2.

□
Lemma 9.3.2. A compact Riemann surface X is hyperelliptic if and only
if there exists an effective divisor D such that deg(D) = 2 and `(D) ≥ 2.
Proof. If X is hyperelliptic, then there exists a holomorphic map Φ: X →
P1 with degree 2. Suppose f is the non-constant meromorphic function
corresponding to Φ, and let D = div∞(f) ≥ 0. Then deg(D) = deg(Φ) = 2.
Moreover,

div(f) = div0(f)− div∞(f) ≥ −D.
This shows f ∈ Γ(X,OX(D)), and thus `(D) ≥ 2.

Conversely, given an effective divisor D such that deg(D) = 2 and `(D) ≥
2, we choose a non-constant meromorphic function f ∈ Γ(X,OX(D)) with
corresponding holomorphic map Φ: X → P1. Then

1 ≤ deg(Φ) = deg(div∞(f)) ≤ deg(D) = 2.

This shows deg(Φ) = 1 or 2.
(1) If X 6∼= P1, then deg(Φ) = 2, and thus X is hyperelliptic.
(2) If X ∼= P1, then X is hyperelliptic by considering z 7→ z2.

□
Theorem 9.3.1. If X is a compact Riemann surface with genus g ≤ 2, then
X is hyperelliptic.
Proof. Let D be any effective divisor with deg(D) = 2. By Riemann-Roch
inequality one has

`(D) ≥ deg(D) + 1− g = 3− g.

This shows `(D) ≥ 2 if g ≤ 1, and thus X is hyperelliptic by Lemma 9.3.2.
If g = 2, there exists a non-zero holomorphic 1-form ω since dimΓ(X,Ω1

X) =
g = 2. Now consider the effective divisor K = div(ω). On one hand, one
has deg(K) = 2g − 2 = 2, and on the other hand one has `(K) = 2 by
Riemann-Roch theorem. Thus X is hyperelliptic by Lemma 9.3.2. □



90

9.3.2. Double cover of P1.
Theorem 9.3.2. There exists hyperelliptic curve of any genus.
9.4. Canonical map.
Lemma 9.4.1. Let X be a compact Riemann surface with genus g ≥ 1
and K be the canonical divisor. Then the complete linear system |K| is
base-point-free.
Proof. For any p ∈ X, one has `(p) = 1 for every p ∈ X, otherwise X ∼= P1

by Lemma 9.2.2. Then by Riemann-Roch theorem, one has
`(p)− `(K − p) = deg(p) + 1− g.

This shows `(K − p) = g − 1 < g = `(K), for all p ∈ X. By Proposition
6.3.1 one has |K| is base-point-free. □
Definition 9.4.1 (canonical map). The holomorphic map ΦK : X → Pg−1

given by canonical divisor K is called the canonical map.
Proposition 9.4.1. Let X be a compact Riemann surface with genus g ≥ 3.
Then canonical map is an embedding if and only if X is not hyperelliptic.
Proof. Note that the canonical map fails to be an embedding if and only
if the canonical divisor K is not very ample, and by Theorem 6.3.1, it’s
equivalent to `(K − p − q) 6= `(K) − 2 for every p, q ∈ X. This can only
happen if `(K − p− q) = `(K)− 1 = g − 1 since |K| is base-point-free. On
the other hand, by Riemann-Roch theorem one has

`(K − p− q) = deg(K − p− q) + 1− g + `(p+ q)

= g − 3 + `(p+ q).

Thus the canonical map fails to be an embedding if and only if there exists
p, q ∈ X such that `(p+ q) = 2.
(1) If there exists p, q ∈ X such that `(p + q) = 2, then any non-constant

meromorphic function f ∈ Γ(X,OX(p + q)) gives a holomorphic map
X → P1 of degree 2, and thus X is hyperelliptic.

(2) If X is hyperelliptic and Φ: X → P1 is a holomorphic map of degree 2,
then the preimage divisor p+ q of ∞ has degree 2 and `(p+ q) = 2.

□
9.4.1. Finding equations for projective curve. Let D ∈ Div(X) be a base-
point-free divisor and {f0, . . . , fN} be a basis of Γ(X,OX(D)). Then it gives
a holomorphic map into projective spaces as follows

ΦD : X → PN

x 7→ [f0 : · · · : fN ].
A natural question is to find out the defining equations of X. Consider the
following map

Rk : Symk(CN+1) → Γ(X,OX(kD))

p(x0, . . . , xN ) 7→ p(f0, . . . , fN ).
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Roughly speaking one has

dimkerRk ≥
(
k +N

N

)
− `(kD).

If k is sufficiently large, by Riemann-Roch theorem one has

(9.1) dimkerRk ≥
(
k +N

N

)
− k deg(D) + g − 1.

In other words, there are lots of equations in the kernel of Rk.

9.4.2. Genus three curve. Let X be a compact Riemann surface of genus 3,
which is not hyperelliptic. Then by canonical embedding ΦK , it’s embedded
into P2 as a non-singular curve of degree 4.

Proposition 9.4.2. Let X be a compact Riemann surface of genus 3. Then
X is not hyperelliptic if and only if X is a non-singular quartic curve.

Proof. If X is not hyperelliptic, then the canonical map ΦK : X → P2 is an
embedding, and by (9.1) one has

dimkerR4 ≥
(
4 + 2

2

)
− 4× 4 + 3− 1 = 1.

Thus there exists a homogenous quartic polynomial F vanishing on X, and
this polynomial is irreducible since no polynomial of degree less than four
can vanish on X.

Therefore, every polynomial vanishing on X is a multiple of the quartic
polynomial F , and thus F is the defining function of X.

Conversely, suppose X is a non-singular quartic curve. Consider the holo-
morphic 1-form η defined by

η =
dx

fy
= −dy

fx
.

Moreover, p(x, y)η is holomorphic if and only if degP ≤ d − 3 = 1. This
shows {η, xη, yη} is a basis of Γ(X,Ω1

X), and thus the canonical embedding
of C is

C → P2

[x : y : 1] 7→ [1 : x : y].

□

Remark 9.4.1. The dimension of non-hyperelliptic curves of genus 3 is(
4 + 2

2

)
− 1− (32 − 1) = 6,

while the dimension of hyperelliptic is 2× 3− 1 = 5.
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9.4.3. Genus four curve. Consider the canonical map
ΦK : X → P3.

A direct computation shows that

dimkerR2 ≥
(
3 + 2

3

)
− (12− 4 + 1) = 10− 9 = 1,

and
dimkerR3 ≥

(
3 + 3

3

)
− (18− 4 + 1) = 20− 15 = 5.

Then there exists a quartic polynomial 0 6= F ∈ kerR2. Now let’s prove
ker R2 is generated by F . If F1, F2 are linear independent in ker R2, then
ΦK(X) ⊆ {F1 = 0} ∩ {F2 = 0}. For a general hyperplane H ⊆ P3, by
Bezout theorem one has |{F1 = 0} ∩ {F2 = 0} ∩ H| ≤ degF1 degF2 = 4,
while

degΦ∗
K(H) = 6,

a contradiction. Since F vanishes on X, so do cubic polynomials {xiF}3i=0.
Note that dimkerR3 ≥ 5, so there exists a cubic polynomial Q ∈ kerR3 \
span{xiF}3i=0. By the same argument one can show C = {F = 0}∩{Q = 0}.

Remark 9.4.2. The dimension of non-hyperelliptic and non-trigonal of genus
four is (

3 + 1

3

)
×
(
3 + 1

3

)
− 1− dim(PGL(2,C)× PGL(2,C)) = 9,

while the dimension of hyperelliptic curve of genus four is
2g − 1 = 7.
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10. Abel-Jacobi theorem

10.1. Abel-Jacobi map. Let X be a compact Riemann surface with genus
g and Ω1

X(X) be the space of all holomorphic 1-forms on X, which is a C-
vector space of dimension g by Lemma 9.1.1.

For any [c] ∈ H1(X,Z), consider the following map
ˆ
[c]
: Ω1

X(X) → C

ω 7→
ˆ
c
ω

It’s well-defined by Stokes theorem. This gives a linear functional on Ω1
X(X),

that is,
´
[c] ∈ Ω1

X(X)∗, which is called a period of X.

Definition 10.1.1 (period group). Let Λ to denote the set of all periods of
X, which forms a subgroup of Ω1

X(X)∗, called the period group of X.

Remark 10.1.1. More precisely, suppose {αi, βj}gi,j=1 is a Z-basis ofH1(X,Z).
Then Λ is generated by {

´
αi
,
´
βj
}gi,j=1.

Lemma 10.1.1. Λ is a lattice in Ω1
X(X)∗.

Proof. For ai, bj ∈ R, if
´∑

i aiαi+
∑

j bjβj
η = 0 holds for every holomorphic

1-form η. Then by taking conjugates one hasˆ
∑

i aiαi+
∑

j bjβj

η = 0,

and thus
∑
aiαi + bjβj = 0 in H1(X,R). This shows ai = bj = 0 for all i, j,

since {αi, βj}gi,j=1 is a R-basis of H1(X,R). □

Definition 10.1.2 (Jacobian). The Jacobian of X is defined as

Jac(X) := Ω1
X(X)∗/Λ

Example 10.1.1. Jac(P1) = {0}.

Example 10.1.2. If X is a compact Riemann surface of genus one, then
Jac(X) = X.

Now let’s define the Abel-Jacobi map, which relates X to its Jacobian.
Fix a base point x ∈ X. For any p ∈ X, we choose a path γp from x to p,
and define ˆ

γp

: Ω1
X(X) → C

ω 7→
ˆ
γp

ω.
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It’s clear that
´
γp

∈ Ω1
X(X)∗, but it depends on the choice of γp. If we

choose another path γ′p, then
ˆ
γp

−
ˆ
γ′p

=

ˆ
γ∪(−γ′p)

∈ Λ.

In other words, ˆ
γp

≡
ˆ
γ′p

(mod Λ).

Definition 10.1.3 (Abel-Jacobi map). The Abel-Jacobi map A is defined
as follows

A : Div(X) → Jac(X)∑
p

np · p 7→
∑
p

np

ˆ
γp

.

Remark 10.1.2. Note that the Abel-Jacobi map defined above may depend on
the choice of base point, but if we restrict the Abel-Jacobi map on Div0(X),
and denoted it by A0, then it’s independent of the choice of base point.

Lemma 10.1.2. A0 : Div0(X) → Jac(X) is independent of the choice of
the base point.

Proof. Let x′ be another base point, and use A′
0 to denote the Abel-Jacobi

map corresponding to x′. Choose any path α from x to x′, one has

A(p)−A′(p) =

ˆ
γp

−
ˆ
γ′p

=

ˆ
γp∪(−γ′p)∪(−α)

+

ˆ
α

≡
ˆ
α

(mod Λ).

Given any D ∈ Div0(X), then

A0(D)−A′
0(D) =

∑
p

np(A(p)−A′(p))

≡
∑
p

np

ˆ
α

(mod Λ)

≡ 0 (mod Λ).

This completes the proof. □

Theorem 10.1.1 (Abel-Jacobi). kerA0 = PDiv(X).

Corollary 10.1.1. If gX ≥ 1, then A : X → Jac(X) is injective.
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Proof. If not, then there exist p 6= p′ ∈ X such that A(p) = A(p′). For
degree zero divisor D = p− p′, one has

A0(D) = A(p)−A(p′) = 0 ∈ Jac(X).

Then D ∈ kerA0 = PDiv(X) by Abel-Jacobi theorem. In other words, there
exists a meromorphic function f such that D = div(f). Let Φ: X → P1 be
the holomorphic map corresponding to f . Then Φ−1(∞) = p′, and the
multiplicity of p′ is 1. This shows the degree of Φ is exactly 1, and thus Φ
is an isomorphism, a contradiction to gX ≥ 1. □

By using Abel-Jacobi theorem, one can give an another proof of every
genus one compact Riemann surface is torus.

Theorem 10.1.2. Let X be a compact Riemann surface with genus one.
Then X ∼= C /L, where L ⊆ is a lattice.

Proof. Since the genus of X is one, one has Ω1
X(X)∗ ∼= C, and thus Jac(X) ∼=

C /L for some lattice L ⊆ C. In particular, Jac(X) is a compact Riemann
surface.

On one hand, by Corollary 10.1.1, one has the Abel-Jacobi map A is
injective. On the other hand, by Corollary 1.1.1 one has A is surjective,
since X is compact. This shows X ∼= Jac(X) = C /L. □

10.2. Proof of necessity in Abel-Jacobi theorem. Let Φ: X → Y be a
non-constant holomorphic map between compact Riemann surfaces of degree
d. For q ∈ Y which is not a ramification value, we choose an open neigh-
borhood U of q such that U does not contain any ramification value. Then
Φ−1(U) =

⋃d
i=1 Vi, where Vi ∩ Vj = ∅, and Φi := Φ|Vi is an isomorphism.

For any function f and 1-form θ on X, we can define the trace of them
on U as follows

tr(f)|U =

d∑
i=1

f ◦ Φ−1
i

tr(θ)|U =
d∑
i=1

(Φ−1
i )∗(θ).

Theorem 10.2.1. If f and θ are meromorphic, then tr(f) and tr(θ) can
be extended to globally defined meromorphic function and meromorphic 1-
forms on Y . Moreover, if f and θ are holomorphic, then tr(f) and tr(θ) are
holomorphic.

Proof. Firstly let’s consider an easy case, that is, the preimage of q contains
only one point p. Suppose w is a local coordinate centered at p and z is a
local coordinate centered at q such that locally Φ is given by z = wd.

Suppose f has the Laurent series f =
∑

n cnw
n at p and ξ = exp(2π

√
−1/d)

is the d-th unit root. For any z 6= 0, one has preimages of z = wd are ξiw,
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for i = 0, . . . , d− 1. Hence,

tr(f)(z) =

d−1∑
j=0

f(wξj)

=

d−1∑
j=0

∑
n

cn(wξ
j)n

=
∑
n

cn(

d−1∑
j=0

ξjn)wn.

A direct computation shows that

(ξn − 1)
d−1∑
j=0

ξjn = ξdn − 1 = 0.

Thus

d−1∑
j=0

ξjn =

{
0, ξn 6= 1

d, ξn = 1.

On the other hand, note that ξn = 1 if and only if n = kd for some k ∈ Z.
Thus one has

tr(f)(z) =
∑
k

ckddw
kd

=
∑
k

ckdd(w
d)k

=
∑
k

ckddz
k,

which is a meromorphic function in a neighborhood of z = 0. Moreover, if
f is holomorphic at w = 0, then k ≥ 0, and thus tr(f) is also holomorphic.

Similarly, let’s see the case of 1-form θ. Suppose θ is written as θ =
(
∑

n cnw
n)dw at p. Then

θ = (
∑
n

cnw
n)

1

dwd−1
dz,
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since dz = dwd−1dw. For z 6= 0, one has

tr(θ) =
d−1∑
j=0

∑
n

cn
d
(wξj)n−d+1dz

=
∑
n

cn
d
(
d−1∑
j=0

ξj(n−d+1))wn−d+1dz

=
∑
k

ckd+d−1w
dkdz

=
∑
k

ckd+d−1z
kdz

This shows tr(θ) defines a meromorphic 1-form near z = 0, and if θ is
holomorphic, then tr(θ) is holomorphic.

For the general case, suppose the preimage of ramification values of q
are {p1, . . . , pn}. Then we choose an open neighborhood U of q such that
Φ−1(U) = V1 ∪ · · · ∪ Vn such that pi ∈ Vi and Vi ∩ Vj 6= ∅. Then on each
Vi → U , it reduces to previous case. □

Corollary 10.2.1. If θ is a meromorphic 1-form on X, then for any q ∈ Y

Resq(tr(θ)) =
∑

p∈Φ−1(q)

Resp(θ).

Proof. It suffices to consider the case the preimage of q is only one point. In
this case, from the proof of Theorem 10.2.1, one has the residue of tr(θ) is
ckd+d−1 when k = 1, and that’s exactly c−1. □

Let γ be a piecewise smooth curve in Y such that Φ−1(γ) doesn’t contain
poles of θ. Then there are no poles of tr(θ) on γ, and thus

´
γ tr(θ) is well-

defined. Away from ramification values of Φ, γ can be lifted to exactly d non-
intersecting curves in X. By taking closures of these curves, we obtain curves
γ1, . . . , γd ⊆ X, and then we define the pullback of γ by Φ∗(γ) = γ1+· · ·+γd.

Lemma 10.2.1.
ˆ
γ
tr(θ) =

ˆ
Φ∗(γ)

θ :=
d∑
i=1

ˆ
γi

θ

Proof. Since by removing finitely many points does not affect the result of
integral, so without lose of generality we may assume γ is a path not through
any ramification values. Let U be an open neighborhood of γ, which contains
no ramification values, and thus

Φ−1(U) = V1 ∪ · · · ∪ Vd
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such that Vi ∩ Vj 6= ∅ and γi ⊆ Vi. Then
ˆ
Φ∗(γ)

θ =
d∑
i=1

ˆ
γi

θ

=

d∑
i=1

ˆ
Φ(γi)

(Φ−1
i )∗θ

=

ˆ
γ

d∑
i=1

(Φ−1
i )∗θ

=

ˆ
γ
tr(θ).

□
Proof of necessity in Theorem 10.1.1. For any D ∈ PDiv(X), there exists
a meromorphic function f such that div(f) = D. Let Φ: X → P1 be the
holomorphic map corresponding to f with degree d. Given a path γ in P1

from ∞ to 0, which contains no ramification values of Φ except 0 and ∞,
one has Φ∗(γ) = γ1 + · · · + γd, where γi is a curve from a pole qi of f to a
zero pi of f . Then D =

∑d
i=1(pi − qi).

Fix a base point x ∈ X, and use αi, βi to denote the path from x to pi
and qi respectively. Then by definition one has A0(D) =

∑d
i=1(
´
αi

−
´
βi
).

Let η = αi − γi − βi. Then

A0(D) =
d∑
i=1

(

ˆ
η
+

ˆ
γi

) (mod Λ)

=

d∑
i=1

ˆ
γi

(mod Λ).

For any holomorphic 1-form θ on X, one has

A0(D)(θ) =
d∑
i=1

ˆ
γi

θ =

ˆ
Φ∗(γ)

θ =

ˆ
γ
tr(θ) = 0,

since tr(θ) is holomorphic. This shows A0(D) = 0, as desired. □

10.3. Proof of sufficiency in Abel-Jacobi theorem.

10.3.1. Riemann bilinear relations. Let X be a compact Riemann surface of
genus g, and the homology group H1(X,Z) is generated by {αi, βj | i, j =
1, . . . , g}. For any closed 1-form ω on X, consider

Ai(ω) =

ˆ
αi

ω, i = 1, . . . , g

Bi(ω) =

ˆ
βj

ω, i = 1, . . . , g.
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On the other hand, let P be the polygon with 4g sides {αi, βj , α′
i, β

′
j}
g
i,j=1

such that X is obtained by identifying αi, α
′
i and βj , β

′
j . For any closed

1-form ω on X, it can be considered as a closed 1-form on P. Fix a base
point x in the interior of P, and define

fω(p) =

ˆ p

x
ω,

where integration along any path from x to p inside P. Since ω is closed, this
integration is independent of the choice of path. Thus fω is a well-defined
function on a neighborhood of V , and dfω = ω.

Lemma 10.3.1. Let ω, θ be closed 1-forms on X. Then
ˆ
X
ω ∧ θ =

ˆ
∂P
fωθ =

g∑
i=1

Ai(ω)Bi(θ)−Ai(θ)Bi(ω)

Proof. Firstly,
´
X ω∧ θ =

´
∂P fωθ follows from the Stokes theorem. For any

p ∈ αi, we use p′ ∈ α′
i to denote the point glued to p. Let αp be a curve

from p to p′. Note that αp is homotopic to βi. Then

fω(p)− fω(p
′) =

ˆ p

x
ω −
ˆ p′

x
ω

= −
ˆ
αp

ω

= −
ˆ
βi

ω

= −Bi(ω)

Similarly we can take p ∈ bi and p′ ∈ β′i, and we can see

fω(p)− fω(p
′) = Ai(ω)

Since θ is a closed smooth 1-form on X, its values along αi and α′
i are same,

and similarly for βj and β′j . Then
ˆ
∂P
fωθ =

g∑
i=1

(

ˆ
αi

+

ˆ
βi

−
ˆ
α′
i

−
ˆ
β′
i

)fωθ

=

g∑
i=1

ˆ
p∈αi

(fω(p)− fω(p
′))θ +

ˆ
q∈βi

(fω(q)− fω(q
′))θ

=

g∑
i=1

−Bi(ω)Ai(θ) +Ai(ω)Bi(θ).

This completes the proof. □
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Lemma 10.3.2. Let ω be a holomorphic 1-form on X which is not identi-
cally zero. Then

Im

g∑
i=1

Ai(ω)Bi(ω) < 0.

Proof. In each local coordinate z, ω can be written as ω = f(z)dz for some
holomorphic function f(z), so ω = f(z)dz. Then

ω ∧ ω = |f(z)|2dz ∧ dz

= −2
√
−1|f(z)|2dx ∧ dy

so
√
−1
´
X ω∧ω > 0, since |f(z)|2 ≥ 0 and not identically zero. By previous

lemma, we have
√
−1

g∑
j=1

{Aj(ω)Bj(ω)−Aj(ω)Bj(ω)} =
√
−1

ˆ
X
ω ∧ ω > 0

Since
´
γ ω =

´
γ ω, then

Aj(ω) = Aj(ω), Bj(ω) = Bj(ω)

Thus

Im

g∑
i=1

Ai(ω)Bi(ω) =
1

2
Im

g∑
i=1

{Ai(ω)Bi(ω)−Ai(ω)Bi(ω)} < 0

□

Corollary 10.3.1. Let ω ∈ Ω1
X(X). If Ai(ω) = 0 for all i = 1, . . . , g, then

ω = 0. If Bi(ω) = 0 for all i = 1, . . . , g, then ω = 0.

Proof. Assume Ai(ω) = 0 for all i = 1, . . . , g. If ω 6= 0, then by previous
lemma, we have

Im

g∑
i=1

Ai(ω)Bi(ω) < 0

A contradiction, so we have ω = 0. The proof still holds for the case of
Bi(ω) = 0, i = 1, . . . , g. □

Recall dimΩ1
X(X) = dimL(1)(0) = g. Fix a basis {ω1, . . . , ωg} of Ω1

X(X).

Definition 10.3.1 (period matrices). Define two matrices A,B as
A = (Ai(ωj))g×g, B = (Bi(ωj))g×g

Then A,B are called period matrices of X.

Remark 10.3.1. A,B depends on the choice of basis {ω1, . . . , ωg} and gen-
erators {ai, bi} of H1(X,Z).

Lemma 10.3.3. Both A and B are invertible.
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Proof. Assume A is not invertible, then there exists c = (c1, . . . , cg)
T ∈

Cg, c 6= 0 such that Ac = 0. Let ω =
∑g

j=1 cjωj ∈ Ω1
X(X). Then

Ai(ω) =

g∑
j=1

cjAi(ωj) = 0, for all i = 1, . . . , g

By above corollary, we have ω = 0, a contradiction to the fact {ω1, . . . , ωg}
is a basis, so A is invertible. The proof still holds for the case of B. □
Lemma 10.3.4 (first Riemann bilinear relation). ATB is a symmetric ma-
trix.

Proof. For any 1 ≤ j, k ≤ g, clearly ωi ∧ ωj = 0, since both of them are
(1, 0)-form. So

0 =

ˆ
X
ωj ∧ ωk =

g∑
i=1

{Ai(ωj)Bi(ωk)−Ai(ωk)Bi(ωk)}

And this is exactly (j, k)-th entry of ATB − BTA, thus ATB = BTA, as
desired. □
Lemma 10.3.5 (second Riemann bilinear relation).

√
−1(ATB − BTA) is

a positive definite Hermitian matrix.

Proof. We have proven that for any ω ∈ Ω1
X(X),

√
−1(

g∑
j=1

{Aj(ω)Bj(ω)−Aj(ω)Bj(ω)}) > 0

For any 0 6= c = (c1, . . . , cg)
T ∈ Cg, applying above equation to ω =∑g

j=1 cjωj , we have

0 <
√
−1

g∑
j=1

g∑
k,l

ckcl{Aj(ω)Bj(ω)−Aj(ω)Bj(ω)}

=
√
−1cT (ATB −BTA)c

This completes the proof. □
Remark 10.3.2. Note if we choose another basis {ω′

1, . . . , ω
′
g} of Ω1

X(X), there
exists an invertible matrix M = (mij) such that

ωi =

g∑
j=1

mijω
′
j

Let A′, B′ be the period matrices with respect to {ω′
1, . . . , ω

′
g}. Then

Ai(ωj) =
∑
k

mjkAi(ω
′
k), for all i, j

Thus
A = A′MT
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Similarly we have B = B′MT . Since period matrices A,B are always in-
vertible, we can choose a basis {ω1, . . . , ωg} such that A = I, that isˆ

αi

ωj = δij , for all i, j = 1, . . . , g

Such basis is called normalized basis, in this case, b-period matrix B is called
normalized b-period matrix.

First Riemann relation is equivalent to B is symmetric, and second Rie-
mann bilinear relation is equivalent to Im(B) is positive definite.

Lemma 10.3.6. The 2g rows of any period matrices of A and B are linear
independent over R.

Proof. If suffices to prove for any α, β ∈ Rn, then
αTA+ βTB = 0 =⇒ α = β = 0

Since under a change of basis of Ω1
X(X), A and B will be multiplied by the

same invertible matrix from the right. So it suffices to show for the case
A = I, that is

0 = αT + βTB = 0

so we have
βT Im(B) = 0

But Im(B) is positive definite, then β = 0, so is α. □
Lemma 10.3.7. If Q is a base-point-free linear system, for any finite set of
points {p1, . . . , pn}, there exists a divisor E ∈ Q such that pi 6∈ Supp(E) for
all i = 1, . . . , n.

Proof. Assume Q ⊆ |D| for some divisor D and V ⊆ Γ(X,OX(D)) is the
space corresponding to Q. Since pi is not base point of Q, then V 6⊆
Γ(X,OX(D − pi)) for all i, and thus V \

⋃n
i=1 Γ(X,OX(D − pi)) is non-

empty. Choose f ∈ V \
⋃n
i=1 Γ(X,OX(D − pi)). Then ordpi(f) = −D(pi)

for all i. Let E = div(f) +D ∈ Q, we have E(pi) = 0 and pi 6∈ Supp(E) for
all i. This completes the proof. □
Theorem 10.3.1. For any compact Riemann surface X, given finite set of
distinct point {pi} on X and a corresponding set of complex numbers {γi}
with

∑
i γi = 0, then there exists a meromorphic 1-form ω on X such that

the poles of ω are exactly {pi}, all thoes poles are simple poles with residue
{γi}.

Proof. If g = 0, then X = C∪{∞}, we can construct as follows

ω =
∑
i

γi
z − pi

dz.

Suppose g ≥ 1. In this case the complete linear system of canonical divisor
K is base-point-free. Then by Lemma 10.3.7 we may choose a canonical
divisor K = div(ω0) ≥ 0 such that pi 6∈ Supp(K) for all i. Now we’re going
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to find f ∈ MX(X) such that ω = fω0 satisfying our requirements. Let
{zi} be a local coordinate centered at pi. In this coordinate, we write

ω0 = (ci + zigi(zi))dzi,

where gi is a holomorphic function, and ci 6= 0 since pi 6∈ Supp(div(ω0)).
Consider Laurent tail divisor

Z =
∑
i

γi
ci
z−1
i · pi

Since −K(pi) = 0 > −1 for all i, one has Z ∈ TX [K](X).
Let αK : MX(X) → TX [K](X) be the truncation map introduced in the

proof of Serre duality. Since H1(X,OX(K)) = coker(αK), then by Serre
duality, Z ∈ im(αK) if and only if Resθ(Z) = 0 for all θ ∈ Γ(XΩ1

X(−K)).
On one hand, Γ(XΩ1

X(−K)) is generated by ω0, since ω0 ∈ Γ(XΩ1
X(−K))

and dimC Γ(XΩ1
X(−K)) = `(0) = 1. On the other hand, note that

Resω0(Z) =
∑
i

Reszi=0

{
γi
ci
z−1
i (ci + zigi(zi)

}
dzi

=
∑
i

γi

= 0.

This shows there exists f ∈ MX(X) such that αK(f) = Z, and fω0 is the
desired meromorphic 1-form. □

Lemma 10.3.8. Let D ∈ Div0(X) such that A0(D) = 0 ∈ Jac(X) where
A0 is the Abel-Jacobi map. Then there exists a meromorphic 1-form ω on
X such that

1. Supp(D) = set of poles of ω and ω only has simple poles;
2. Resp(ω) = D(p);
3. periods of ω are integral multiples of 2π

√
−1.

Proof. Since
∑

p∈X D(p) = 0, then by Theorem 10.3.1, there exists a mero-
morphic 1-form θ on X satisfying (1) and (2). Let {ω1, . . . , ωn} be a basis
of Ω1

X(X). Let ω = θ−
∑g

i=1 ciωi with ci ∈ C. Then ω still satisfies (1) and
(2). The difficultly is to find suitable ci such that ω satisfies (3).

Choose closed paths ai, bi which generate H1(X,Z) such that Supp(D) ⊂
X \

⋃
i(ai ∪ bi). For i = 1, . . . , g, define

ρk =
1

2π
√
−1

g∑
i=1

{Ai(ωk)Bi(θ)−Ai(θ)Bi(ωk)}
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By Lemma 10.3.1 we have

ρk =
1

2π
√
−1

ˆ
∂V
fωk

θ

=
∑
p∈V

Resp(fωk
θ)

=
∑

p∈Supp(D)

fωk
(p)D(p)

the last equality holds since fωk
is holomorphic and θ satisfies (1) and (2).

Thus
ρk =

∑
p

D(p)

ˆ p

p0

ωk

where p0 is a fixed base point in interior of P.
Consider the identification

Ω1
X(X)∗

Φ−→ Cg

α 7→ (α(ω1), . . . , α(ωg))

and Λ = spanZ{Φ(
´
αi
),Φ(
´
βi
)}, and note that

Φ(ai) = (Ai(ω1), . . . , Ai(ωg))

Φ(bi) = (Bi(ω1), . . . , Bi(ωg))

Thus Φ induces isomorphism
Φ: Jac(X) → Cg /Λ

a complex g-dimensional torus. By the definition of Abel-Jacobi map
(ρ1, . . . , ρg) ≡ Φ(A0(D)) (mod Λ)

If A0(D) = 0, then (ρ1, . . . , ρg) ∈ Λ, so there exists mj , nj ∈ Z such that

(ρ1, . . . , ρg) =

g∑
i=1

mj(Aj(ω1), . . . , Aj(ωg))−
g∑
i=1

nj(Bj(ω1), . . . , Bj(ωg))

By definition of ρk, we have

ρk =
1

2π
√
−1

g∑
i=1

{Ai(ωk)Bi(θ)−Ai(θ)Bi(ωk)}

we must have
g∑
j=1

(Bj(θ)−2π
√
−1mj)Aj(ωk) =

g∑
j=1

(Aj(θ)−2π
√
−1nj)Bj(ωk), 1 ≤ k ≤ g

Let b̃j = Bj(θ)− 2π
√
−1mj , ãj = Aj(θ)− 2π

√
−1nj . Then above equations

can be expressed as
AT b = BTa

where a = (ã1, . . . , ãg)
T , b = (̃b1, . . . , b̃g)

T , and A,B are period matrices.
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Consider linear transformations

Cg α−→ C2g β−→ Cg

where

α =

(
A
B

)
, β = (BT ,−AT )

Since A,B are invertible, then α is injective and β is surjective, and the first
Riemann bilinear relation implies β ◦ α(v) = (BTA−ATB)v = 0. Then

imα ⊆ kerβ

and the injectivity of α and surjectivity of β tells us imα and kerβ have the
same dimension, so the following sequence is exact.

0 → Cg α−→ C2g β−→ Cg → 0

Since β
(
a
b

)
= 0. Thus there exists c such that α(c) =

(
a
b

)
. In other words,

a = Ac, b = Bc. Let ω = θ −
∑g

j=1 cjωj . Then periods of ω is

Ak(ω) = Ak(θ)−
∑
j

cjAk(ωj)

= Ak(θ)− (Ak(θ)− 2π
√
−1nk)

= 2π
√
−1nk,

Bk(ω) = Bk(θ)−
∑
j

cjBk(ωj)

= Bk(θ)− (Bk(θ)− 2π
√
−1mk)

= 2π
√
−1mk.

□

10.3.2. Proof of sufficiency in Abel-Jacobi theorem.

Proof of sufficiency in Theorem 10.1.1. ForD ∈ Div0(X) such thatA0(D) =
0 ∈ Jac(X), we choose a meromorphic 1-form ω on X satisfying three con-
ditions in Lemma 10.3.8.

Fix a base point x ∈ X which is not a pole of Ω. Define

f(p) := exp(

ˆ p

x
ω), ∀p ∈ X

where the integral is along any path from x to p which doesn’t pass poles
of ω. Since period of ω are integral multiples of 2π

√
−1 and residue of ω

are integers. So f(p) doesn’t depend on the choice of path in the integral´ p
x ω. In other words, f is well-defined for p which is not a pole of ω, and f

is holomorphic and non-zero at such points.
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Since Supp(D) = poles of ω, f is holomorphic on X \ Supp(D). For
p ∈ Supp(D) and n = D(p). Choose a local coordinate z centered at p.
Since Resp(ω) = n and ordp(ω) = 1, then near p

ω = (nz−1 + g(z))dz

where g is holomorphic. Thus near p we have

f(z) = exp(

ˆ p

x
ω) = exp(n log z + h(z)) = zneh(z)

Thus f is meromorphic and ordp(f) = n = D(p), so D = div(f) ∈ PDiv(X).
This completes the proof of Abel-Jacobi theorem. □
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11. Homework

11.1. Homework-1.
Exercise 11.1.1. Prove that when ω1, ω2 ∈ C are R-linearly independent,
then
(1) Zω1 + Zω2 is discrete.
(2) C /Zω1 + Zω2 is Hausdorff.
(3) C → C /Zω1 + Zω2 is a covering map.

Exercise 11.1.2. Let V be a complex vector space of dimension n, with
C-basis e1, . . . , en, and T : V → V is a C-linear transformation. Suppose
T has matrix representation X = A +

√
−1B where A,B ∈ Mn(R) under

(complex) basis e1, . . . , en. Prove
(1) e1, . . . , en,

√
−1e1, . . . ,

√
−1en is an R-basis of V .

(2) T has matrix (
A B
−B A

)
under the R-basis above when T is viewed as an R-linear transformation.

(3)

det

(
A B
−B A

)
= | detX|2.

Exercise 11.1.3 (implicit function theorem). Let f(z, w) : C2 → C be
holomorphic function of two variables and X = {(z, w) ∈ C2 | f(z, w) = 0}
be its zero loucs. Let p = (z0, w0) be a point of X and ∂f/∂z(p) 6= 0. Then
there exists a function g(w) defined and holomorphic in a neighborhood of
w0 such that, near p, X is equal to the graph z = g(w).

Exercise 11.1.4. Let x1, . . . , xn be distinct points on C and
f(x, y) = yd − (x− x1) · · · (x− xn).

Prove that C = {f(x, y) = 0} defines a Riemann surface in C2, and what is
the topological type of C?
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11.2. Homework-2.
Exercise 11.2.1. Consider the affine plane curve

C = {y2 = x3 + ax+ b},
where a, b ∈ C.
(1) Find the equation for the corresponding projective plane curve in P2.
(2) When is C smooth?
(3) When C is not smooth, find the singular points.

Exercise 11.2.2. For a projective plane curve defined by a linear equation,
we call it a projective line. Show that for any two distinct points on P2,
there is a unique projective line passing through them. Prove also that any
two distinct projective lines intersect at one point.

Exercise 11.2.3. We say p1, . . . , pn ∈ P2 are in general position if no three
are colinear, that is, lie on a projective line. Show that for four points in P2

in general position {p1, . . . , p4} and {q1, . . . , q4}, there exists a g ∈ GL(3,C)
such that gpi = qi, 1 ≤ i ≤ 4.

Exercise 11.2.4. Given 5 points in P2 in general position, show that there
exists a unique smooth conic passing through them (By conic we mean a
projective plane curve defined by a degree-2 equation).

Exercise 11.2.5. Consider
C := {x3 + y3 = z3}

and
Φ: C → P1,

[x : y : z] 7→ [x : z].

How many critical points are there and what are their multiplicities?

Exercise 11.2.6. Let Φ: X → Y and Ψ: Y → Z be two holomorphic
maps between Riemann surfaces such that X,Y are connected, Φ,Ψ are not
constant maps. Prove that

multp(Ψ ◦ Φ) = multpΦ ·multΦ(p)Ψ

Exercise 11.2.7. Consider maps between C defined by
Φ: C → C

z 7→ z3(z2 − 2z + a)2,

where
a =

34± 6
√
21

7
.

Find the critical values of Φ and the corresponding multiplicities on critical
points.
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11.3. Homework-3.
Exercise 11.3.1. For which λ ∈ C we have

C := {[x : y : z] ∈ P2 | x3 + y3 + z3 + 3λxyz = 0}
is smooth? For such λ, compute the degree and critical values for

Φ: C → P1, [x : y : z] 7→ [x : z]

and find the genus of C.

Exercise 11.3.2. Assume affine plane curves C1 = {f = 0}, C2 = {g =
0} ⊆ C2 are smooth at p = (0, 0). Define the intersection number (C1, C2)p
of C1, C2 at p to be multpG, where

G : C1 → C
(x, y) 7→ g(x, y).

Prove
(C1, C2)p = (C2, C1)p.

Exercise 11.3.3. In many branches of mathematics, we use partubation
method to solve equations. For example, if we want to solve the quadratic
equation

x5 − x =
1

2
,

we may start by solving
x5 − x = 0.

We have five solutions x = 0,±1,±
√
−1. For the solution x1 = 0, we

introduce a parameter t and try to solve x5 − x = t by power series
x1(t) = a0 + a1t+ · · ·+ akt

k + · · ·
where x1(t) = a0 = 0 recursively by comparing the coefficients of Taylor
expansion of both sides

x51(t)− x1(t) = t.

What is the convergence radius of x1(t)?

Exercise 11.3.4. Find two smooth conic curves (conic means degree two)
in P2 which meet at one point with multiplicity 4.

Exercise 11.3.5. Let X,Y be two compact connected Riemann surfaces of
genus gX > gY . Prove that every holomorphic map from Y to X is constant.

Exercise 11.3.6. Try to define smooth algebraic curve in
P1 × P1 = {[x1 : y1], [x2 : y2]}

by considering homogeneous polynomial of bidegree (d1, d2) in C[x1, y1, x2, y2],
in which

deg x1 = deg y1 = (1, 0),

deg x2 = deg y2 = (0, 1).
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11.4. Homework-4.
Exercise 11.4.1. Let X be a compact Riemann surface. Prove that

OX(X) = {constant functions}.

Exercise 11.4.2. Let w1, w2 be R-linearly independent complex numbers,
and C = C /L, where L = Zw1 + Zw2.
(1) Prove that ω = dz defines a holomorphic 1-form on C, where z is the

coordinate of C.
(2) Compute dimCΩ1

C(C).

Exercise 11.4.3. For any two points p 6= q ∈ P1, construct a meromorphic
1-form ω with ordp ω = and ordq ω = −1.

Exercise 11.4.4. Show that
{([x0 : x1], [y0 : y1]) | (x20 + x21)(y

2
0 + y21) = x0x1y0y1}

is a smooth curve in P1 × P1, and compute its genus.

Exercise 11.4.5. Let C be a smooth conic in P2, A,B,C,D,E, F ∈ C are
six distinct points.
(1) Prove that line AB connecting A,B intersect with C at exactly two

points A,B.
(2) Let f be the product of lines AB,CD,EF , g be the product of lines

BC,DE,FA. Choose P /∈ C \ {A,B,C,D,E, F}. Prove that there
exists λ ∈ C such that f + λg vanishes on P .

(3) If C = {h = 0}, prove that h | f + λg.
(4) If AB ∩DE = G,CD ∩ AF = H,EF ∩ BC = K. Prove that G,H,K

are colinear (on the line (f + λg)/h).

Exercise 11.4.6. Let R be a UFD and f1, f2, g ∈ R[X] with deg f1 =
m, deg g = n. Prove that
(1) R(f1, g) = (−1)mnR(g, f1).
(2) R(f1f2, g) = R(f1, g)R(f2, g).



111

11.5. Homework-5.
Exercise 11.5.1. Prove Riemann-Hurwitz theorem by Poincaré-Hopf the-
orem.

Exercise 11.5.2. Let f(x, y) = x3 − x2 + y2. Prove that
(1) f(x, y) is irreducible in C[x, y].
(2) f(x, y) is reducible in C{x}[y].
(3) Is f(x, y) reducible in C{y}[x]?

Exercise 11.5.3 (Miranda IV.3 E). Let τ be a complex number with strictly
positive imaginary part. Let h be a meromorphic function on C which is
(Z+ Zτ)-periodic; in other words, h(z + 1) = h(z + τ) = h(z) for all z. For
any point p in C, let γp be the path which is the counterclockwise boundary
of the parallelogram with vertices p, p+1, p+ τ +1, p+ τ, p (in that order).
Assume p is chosen so that there are no zeroes or poles of h on γp. Show
that

1

2π
√
−1

ˆ
γp

z
h′(z)

h(z)
dz

is an element of the lattice (Z+Z τ).

Exercise 11.5.4 (Miranda IV.3 F). Check by direct computation that if
r(z) is a rational function of z, then the meromorphic 1-form r(z)dz on the
Riemann sphere C∞ satisfies the residue theorem.

Exercise 11.5.5 (Miranda IV.3 G). Check that if L is a lattice in C and
h(z) is an L-periodic meromorphic function, then the meromorphic 1-form
ω = h(z)dz, considered as a form on the complex torus C /L, satisfies the
residue theorem.

Exercise 11.5.6. Let f(x, y) = fd(x, y) + fd+1(x, y) + · · ·+ ∈ C{x, y},
where fi(x, y) are homogeneous with respect to (x, y) and deg fi = i or
fi = 0. Prove that if fd(x, y) has d distinct linear factors, then f(x, y)
decomposes as product of d irreducible factors in C{x, y}.
(1) Reduce the question to fd(x, y) =

∏
(y − αix)

(2) Denote by w = y/x,

g(x,w) =
f(x, xw)

xd
∈ C{x, y}.

Prove that g converges in a product of discs
Dρ1 ×Dρ2 = {(x,w) | |x| < ρ1, |w| < ρ2}

that contains (0, αi).
(3) Prove that g(0, αi) = 0 and ∂g

∂w (0, αi) 6= 0 and hence g(x,w) = 0 has a
solution w = hi(x) near (0, αi) with hi(x) ∈ C{x} and hi(0) = αi.

(4) Prove that
∏
(y − xhi(x)) | f(x, y) and f(x, y) is the product of m

irreducible factors up to units in C{x, y}.
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11.6. Homework-6.
Exercise 11.6.1. Let x1, . . . , xn be distinct points on C, and let

C = {yd = (x− x1)
a1 · · · (x− xn)

an} ⊆ C2

where d, ai ∈ Z>0 and gcd(d, a1, . . . , an) = 1. Let C ⊆ C2 be the corre-
sponding projective plane curve. Prove C is irreducible and compute the
genus of the normalization of C.

Exercise 11.6.2. A projective plane curve is called rational if it’s irreducible
and its normalization has genus zero. Find a rational curve for each degree
d.

Exercise 11.6.3. Determine y2−(x2y2+x4) is irreducible or not in C{x, y}.
This is an example of tacnode singularity.

Exercise 11.6.4. Compute the genus of the curve
C = {x2y2 − z2(x2 + y2) = 0} ⊆ P2

Exercise 11.6.5. C1, C2 ⊆ P2 are curves of degree n. Assume C1, C2 inter-
sect at n2 distinct points. If mn of these points lie on an irreducible curve
C3 of degree m, then the remaining (n−m)n points lie on a curve of degree
n−m.

Exercise 11.6.6. If a degree n projective plane curve C has [n2 ]+1 singular
points on a line L, then L is necessarily a component of C.
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11.7. Homework-7.
Exercise 11.7.1. Let D ∈ Div(X) and |D| is base-point-free. Prove |nD|
is base-point-free for all n ∈ Z>0.
Exercise 11.7.2. For D ∈ Div(X), prove that
(1) If degD < 0, then `(D) = 0.
(2) If degD = 0, then `(D) = 0 or 1.
(3) For X = C /Zω1 + Zω2, and use the fact that

Div0(X)/PDiv(X) ' X

to find all divisors D ∈ Div0(X) such that `(D) = 0 and all D such that
`(D) = 1.

Exercise 11.7.3. Let X be a smooth cubic curve, show that there exists
f ∈ MX(X) such that div(f) is divisable by 2 but f is not a square of a
function in MX(X).
Exercise 11.7.4. Let D ∈ Div(X).
(1) If deg(D) ≥ 2g, then |D| is base-point-free.
(2) If deg(D) ≥ 2g + 1, then D is very ample.
Exercise 11.7.5 (Theta function).
(1) If w1, w2 ∈ C are R-linearly independent, then X = C /Zw1 + Zw2 is

isomorphic to C /Z+Z τ for some τ ∈ H = {τ ∈ C | Imτ > 0}.
(2) If z ∈ C, Imτ > 0, define

θ(z) =

∞∑
n=−∞

eπ
√
−1(n2τ+2nz).

Prove the series converges absolutely and uniformly on compact subsets
of C.

(3) Prove
θ(z + 1) = θ(z),

θ(z + τ) = e−π
√
−1(τ+2z)θ(z)

(4) Consider the parallelogram with vertices p, p+1, p+1+ τ, p+ τ and use
integration of

1

2π
√
−1

ˆ
θ′

θ
dz

to conclude that θ has a simple zero inside this parallelogram for a
generic p.

(5) For any x ∈ C, let θ(x)(z) = θ(z − 1
2 − τ

2 − x). Prove that

θ(x)(z + 1) = θ(x)(z).

θ(x)(z + τ) = −e−2π
√
−1(z−x)θ(x)(z).

(6) Conclude that θ(x)(z) has simple zeros at x+m+nτ with m,n ∈ Z and
no other zeros.
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(7) Let

R(z) =

∏m
i=1 θ

(xi)(z)∏n
j=1 θ

(yj)(z)

for x1, . . . , xm, y1, . . . , yn ∈ C. Then R(z + 1) = R(z), and if
∑m

i=1 xi−∑n
j=1 yj ∈ Z, then R(z + τ) = R(z).

(8) Use (7) to prove for X = C /Z+Z τ ,
PDiv(X) = kerA,

where A is the Abel-Jacobi map.
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11.8. Homework-8.
Exercise 11.8.1 (gonality). Let C be an algebraic curve. Define
gon(C) = min{degΦ | Φ: C → P1 is a non-constant holomorphic map}.

Prove that
(1) If C is a non-singular projective plane curve of degree d > 1, then

gon(C) ≤ d− 1.
(2) If C has genus g, then gon(C) ≤ g + 1.

Exercise 11.8.2. Show that
Φ: P2 → P5

[x0 : x1 : x2] 7→ [x20 : x
2
1 : x

2
2 : x0x1 : x1x2 : x0x2]

defines an embedding. Consider a non-singular projective plane curve C of
degree 5. Prove that the canonical map of C into P5 is Φ|C , and C is not
hyperelliptic.

Exercise 11.8.3. Show that any non-singular projective plane curve C of
degree d ≥ 4 is not hyperelliptic.

Exercise 11.8.4. Let X be an algebraic curve of genus g ≥ 2 and D a
divisor on X with deg(D) > 0.
(1) Show that if deg(D) ≤ 2g − 3, then `(D) ≤ g − 1.
(2) Show that if deg(D) = 2g − 2, then `(D) ≤ g.
Therefore we see that among divisors of degree 2g−2, the canonical divisors
have the most sections.

Exercise 11.8.5. Let X be an algebraic curve of genus g.
(1) Show that if g ≥ 3, then mK is very ample for every m ≥ 2.
(2) Show that if g = 2, then mK is very ample for every m ≥ 3.
(3) Show that if g = 2, then map Φ2K maps X to a non-singular projective

plane conic, and that this map has degree 2.

Exercise 11.8.6.
(1) Suppose C ⊆ P4 is a canonical curve of genus 5. Show that C lies in

at least three linearly independent second-degree hypersurfaces Q1, Q2,
and Q3.

(2) Suppose C is a non-hyperelliptic curve of genus g = 5 which is trigonal,
that is, there exists a holomorphic map Φ: C → P1 with degree three.
Let

Φ−1(t) = Dt = p1(t) + p2(t) + p3(t) ∈ Div(C).

Then prove that the image of p1(t), p1(t) and p3(t) under the canonical
embedding are always collinear.
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12. Homework (with solutions)

12.1. Homework-1.

Exercise 12.1.1. Prove that when ω1, ω2 ∈ C are R-linearly independent,
then
(1) Zω1 + Zω2 is discrete.
(2) C /Zω1 + Zω2 is Hausdorff.
(3) C → C /Zω1 + Zω2 is a covering map.

Proof. For (1). Choose 0 < ε < min{|w1|/2, |w2|/2, |w1 − w2|/2}. Then for
any two elements u, v in Zw1 + Zw2, one has Bϵ(u) ∩Bϵ(v) = ∅, and thus
Zw1 + Zw2 is discrete.

For (2). Let L denote the lattice Zw1 + Zw2 and π : C → C /L be the
canonical projection. Suppose C /L is equipped with the quotient topology,
that is, U ⊆ C /L is an open subset if and only if π−1(U) is open in C.
It’s easy to show π : C → C /L is an open map, since for any open subset
U ⊆ C, one has

π−1(π(U)) =
⋃
w∈L

w + U.

For u, v ∈ C /L, we choose ũ, ṽ ∈ C such that π(ũ) = u and π(ṽ) = v.
Since C is Hausdorff, there exists open neighborhoods Ũ , Ṽ of ũ, ṽ such that
Ũ∩Ṽ = ∅. Moreover, we may assume π|

Ũ
and π|

Ṽ
are injective by shrinking

Ũ , Ṽ when necessary. Then π(Ũ) and π(Ṽ ) are open neighborhoods of u, v
respectively such that π(Ũ) ∩ π(Ṽ ) = ∅. This shows C /L with quotient
topology is Hausdorff.

For (3). For u ∈ C /L, the preimages of u is discrete since L is discrete.
For each preimage ũi, we choose ε > 0 small sufficiently such that Bϵ(ũi) ∩
Bϵ(uj) = ∅ for i 6= j and π|Bϵ(ũi) is injective for all i. If we denote U =
π(Bϵ(ũi)), then π : Bϵ(ũi) → U is a homeomorphism for each i and by
construction Bϵ(ũi) ∩ Bϵ(uj) = ∅ for i 6= j. This shows π : C → C /L is a
covering map. □

Exercise 12.1.2. Let V be a complex vector space of dimension n, with
C-basis e1, . . . , en, and T : V → V is a C-linear transformation. Suppose
T has matrix representation X = A +

√
−1B where A,B ∈ Mn(R) under

(complex) basis e1, . . . , en. Prove
(1) e1, . . . , en,

√
−1e1, . . . ,

√
−1en is an R-basis of V .

(2) T has matrix (
A B
−B A

)
under the R-basis above when T is viewed as an R-linear transformation.

(3)

det

(
A B
−B A

)
= | detX|2.
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Proof. For (1). Since e1, . . . , en are C-linearly independent and 1,
√
−1 are

R-linearly independent, one has e1, . . . , en,
√
−1e1, . . . ,

√
−1en are R-linearly

independent. On the other hand, since e1, . . . , en is a C-basis, then any
element v ∈ V can be expressed as v = v1e1 + · · · + vnen, where vi ∈ C. If
we write vi = ai +

√
−1bi with ai, bi ∈ R, then

v = a1e1 + · · ·+ anen +
√
−1b1e1 + · · ·+

√
−1bnen.

This shows V as a R-vector space is spanned by e1, . . . , en,
√
−1e1, . . . ,

√
−1en.

For (2). Since T has matrix representation X = A+
√
−1B under C-basis

e1, . . . , en, one has

T (ei) =

n∑
j=1

Xijej =

n∑
j=1

(
Aijej +Bij

√
−1ej

)
T (

√
−1ei) =

n∑
j=1

Xij

√
−1ej =

n∑
j=1

(
−Bijej +Aij

√
−1ej

)
.

This shows T has matrix (
A B
−B A

)
under the R-basis e1, . . . , en,

√
−1e1, . . . ,

√
−1en.

For (3). By elementary operations, one has(
A B
−B A

)
−→

(
A+

√
−1B B

−B +
√
−1A A

)
−→

(
A+

√
−1B B

0 A+
√
−1B

)
Since the elementary operations don’t change the determinant, this shows
the desired result. □

Exercise 12.1.3 (implicit function theorem). Let f(z, w) : C2 → C be
holomorphic function of two variables and X = {(z, w) ∈ C2 | f(z, w) = 0}
be its zero loucs. Let p = (z0, w0) be a point of X and ∂f/∂z(p) 6= 0. Then
there exists a function g(w) defined and holomorphic in a neighborhood of
w0 such that, near p, X is equal to the graph z = g(w).

Proof. If we write z = a +
√
−1b, w = c +

√
−1d and f(z, w) = u +

√
−1v,

then u, v are smooth functions of a, b, c, d. Moreover, the Cauchy-Riemann
equations give

∂f

∂z
=
∂u

∂a
+
√
−1

∂v

∂a
=
∂v

∂b
−
√
−1

∂u

∂b
= A+

√
−1B.

Then
∂(u, v)

∂(a, b)
=

(
A B
−B A

)
,



118

and det
∂(u, v)

∂(a, b)
= A2 + B2 6= 0 if and only if A +

√
−1B 6= 0. Then the

classical implicit function theorem implies the zero loucs{
u = 0

v = 0

is locally given by {
a = a(c, d)

b = b(c, d).

In other words, z = g(w). Now it suffices to compute ∂g/∂w to show g is
holomorphic. Again by Cauchy-Riemann equations

∂f

∂w
=
∂u

∂c
+
√
−1

∂v

∂c
=
∂v

∂d
−
√
−1

∂u

∂d
= C +

√
−1D.

Then by chain rule one has
∂(a, b)

∂(c, d)
=

(
∂(u, v)

∂(a, b)

)−1 ∂(u, v)

∂(c, d)

=

(
A B
−B A

)−1(
C D
−D C

)
=

1

A2 +B2

(
AC +BD AD −BC
BC −AD BD +AC

)
.

Thus
∂g

∂w
=

1

2

(
∂

∂c
+
√
−1

∂

∂d

)(
a+

√
−1b

)
=

1

2

(
∂a

∂c
+
√
−1

∂b

∂c
+
√
−1

∂a

∂d
− ∂b

∂d

)
= 0

□
Exercise 12.1.4. Let x1, . . . , xn be distinct points on C and

f(x, y) = yd − (x− x1) · · · (x− xn).

Prove that C = {f(x, y) = 0} defines a Riemann surface in C2, and what is
the topological type of C?

Proof. Note that there is no common zero of f(x, y) and ∂f/∂x since x1, . . . , xn
are distinct points, and thus the affine plane curve defined by f(x, y) is non-
singular. Also f is irreducible in C[x, y] by applying Eisenstein criterion to
the prime x− x1. This shows C defines a Riemann surface. □
Remark 12.1.1. Now let’s consider the singularity of its compactification.
Suppose n ≥ d, and consider the homogenous polynomial defined by f(x, y)
as follows

F (x, y, z) = zn−dyd − (x− x1z) . . . (x− xnz).
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By setting z = 0 we found a new point [0 : 1 : 0]. It suffices to see it’s
singular or not. A direct computation shows
∂F

∂x
= −(x− x2z) . . . (x− xnz)− · · · − (x− x1z) . . . (x− xn−1z)

∂F

∂y
= dzn−dyd−1

∂F

∂z
= (n− d)zn−d−1yd + x1(x− x2z) . . . (x− xnz) + · · ·+ xn(x− x1z) . . . (x− xn−1z).

Then
(1) If n > d+ 1, then it’s singular.
(2) If n = d+ 1 or n = d, it’s non-singular.

Now we suppose n < d, and then the homogenous polynomial defined
f(x, y) is given by

F (x, y, z) = yd − zd−n(x− x1z) . . . (x− xnz).

By setting z = 0 we find a new point [1 : 0 : 0]. It suffices to see it’s singular
or not. A direct computation shows
∂F

∂x
=− zd−n ((x− x2z) . . . (x− xnz) + · · ·+ (x− x1z) . . . (x− xn−1z))

∂F

∂y
=dyd−1

∂F

∂z
=(n− d)zd−n−1(x− x1z) . . . (x− xnz)

+ x1z
d−n(x− x2z) . . . (x− xnz) + · · ·+ xnz

d−n(x− x1z) . . . (x− xn−1z).

Then
(1) If n < d− 1, then it’s singular.
(2) If n = d− 1, then it’s non-singular.
In a summary, only when n = d − 1, d, d + 1, the compactification is non-
singular, otherwise it’s singular.
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12.2. Homework-2.
Exercise 12.2.1. Consider the affine plane curve

C = {y2 = x3 + ax+ b},
where a, b ∈ C.
(1) Find the equation for the corresponding projective plane curve in P2.
(2) When is C smooth?
(3) When C is not smooth, find the singular points.
Proof. For (1). The corresponding projective plane curve in P2 is defined by

F (x, y, z) = zy2 − x3 − axz2 − bz3.

For (2). For f(x, y) = y2 − x3 − ax− b, a direct computation shows
∂f

∂x
= −3x2 − a,

∂f

∂y
= 2y.

Note that C is non-singular if and only if for every point (x, y) ∈ C, at least
one of above derivatives is non-zero. In other words, the singularities the
solutions of the following systems of equations

f(x, y) =
∂f

∂x
=
∂f

∂y
= 0.

Note that above systems of equations is equivalent to{
x3 + ax+ b = 0

3x2 + a = 0

This shows C is non-singular if and only if x3 + ax + b has three different
roots.

For (3). If C is non-singular, the singularities are given by the roots of
x3 + ax+ b with multiplicity > 1. □
Exercise 12.2.2. For a projective plane curve defined by a linear equation,
we call it a projective line. Show that for any two distinct points on P2,
there is a unique projective line passing through them. Prove also that any
two distinct projective lines intersect at one point.
Proof. For points p, q ∈ P2, without lose of generality we may assume p =
[x : y : 1] and q = [z : w : 1]. In the affine piece U2 = {[z0 : z1 : z2] | z2 6= 0},
it’s clear that there exists a line, given by az0 + bz1 + c = 0, connecting the
points (x, y) and (z, w). Then the p, q is connected by the projective line
defined by

az0 + bz1 + cz2 = 0.

Conversely, suppose l1, l2 are two projective lines given by
az0 + bz1 + cz2 = 0

ez0 + fz1 + gz2 = 0.
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Consider the corresponding lines in affine piece U2, that is,
az0 + bz1 + c = 0

ez0 + fz1 + g = 0.

There are two cases:
(1) If af 6= be, then there exists a unique intersection of l1, l2 in U2. For

z2 = 0, points in l1, l2 are given by [a/b : 1 : 0] and [e/f : 1 : 0], so l1
and l2 cannot intersect at z2 = 0 since af 6= be.

(2) If af = be, then there exists no intersection of l1, l2 in U2, and the unique
intersection are at z2 = 0.

□
Exercise 12.2.3. We say p1, . . . , pn ∈ P2 are in general position if no three
are colinear, that is, lie on a projective line. Show that for four points in P2

in general position {p1, . . . , p4} and {q1, . . . , q4}, there exists a g ∈ GL(3,C)
such that gpi = qi, 1 ≤ i ≤ 4.
Proof. Without lose of generality we assume {q1, . . . q4} are

{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]}.
Now if we regard {p1, . . . , p4} as four vectors in C3, then there exists the
following relations

ap1 + bp2 + cp3 = p4,

where a, b, c ∈ C, since any four vectors in C3 are C-linearly dependent.
Moreover, since {p1, . . . , p4} are colinear, one has a, b, c ∈ C∗ and p1, p2, p3
forms a basis of C3. Then consider g ∈ GL(3,C) defined by

ap1 7→ e1

bp2 7→ e2

cp2 7→ e3,

where {e1, e2, e3} is the standard basis of C3. Then
g(p4) = g(ap1 + bp2 + cp3) = [1 : 1 : 1]

as desired. □
Exercise 12.2.4. Given 5 points in P2 in general position, show that there
exists a unique smooth conic passing through them (By conic we mean a
projective plane curve defined by a degree-2 equation).
Proof. Suppose the five points are given by homogenous coordinates {[xi :
yi : zi]}5i=1. Then

det


x2 xy y2 xz yz z2

x21 x1y1 y21 x1z1 y1z1 z21
x22 x2y2 y22 x2z2 y2z2 z22
x23 x3y3 y23 x3z3 y3z3 z23
x24 x4y4 y24 x4z4 y4z4 z24
x25 x5y5 y25 x5z5 y5z5 z25

 = 0
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is a conic passing through them. □

Exercise 12.2.5. Consider
C := {x3 + y3 = z3}

and
Φ: C → P1,

[x : y : z] 7→ [x : z].

How many critical points are there and what are their multiplicities?

Proof. For [x : z] ∈ P1 with x3 6= z3, it’s clear there are three different values
for y such that

y3 = z3 − x3.

On the other hand, the points [1 : 1], [1 : e
2π

√
−1

3 ], [1 : e
4π

√
−1

3 ] ∈ P1 are the
ramification value of above projection, with multiplicity 3. □

Exercise 12.2.6. Let Φ: X → Y and Ψ: Y → Z be two holomorphic
maps between Riemann surfaces such that X,Y are connected, Φ,Ψ are not
constant maps. Prove that

multp(Ψ ◦ Φ) = multpΦ ·multΦ(p)Ψ

Proof. Suppose multpΦ = m and multΦ(p)Ψ = n. Recall that the multi-
plicity is defined by the local normal form of holomorphic map. In other
words, there exists an open neighborhood U of p with coordinate u, open
neighborhood V of Φ(p) with coordinate v and open neighborhood W of
G ◦ Φ(p) with coordinate w, such that Φ is locally given by

u 7→ v = um,

and Ψ is locally given by
v 7→ w = vn.

Then Ψ ◦ Φ is locally given by
u 7→ w = umn.

Note that the multiplicity is independent of the choice of the local coordi-
nates, and thus multp(Ψ ◦ Φ) = mn = multpΦ ·multΦ(p)Ψ as desired. □

Exercise 12.2.7. Consider maps between C defined by
Φ: C → C

z 7→ z3(z2 − 2z + a)2,

where

a =
34± 6

√
21

7
.

Find the critical values of Φ and the corresponding multiplicities on critical
points.
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Proof. Note that the critical points of Φ are zero loucs of ∂Φ/∂z = 0, and a
direct computation shows

∂Φ

∂z
= 3z2(z2 − 2z + a)2 + 2z3(z2 − 2z + a)(2z − 2)

= z2(z2 − 2z + a)
(
3(z2 − 2z + a) + 2z(2z − 2)

)
= z2(z2 − 2z + a)(7z2 − 10z + 3a).

(1) It’s clear z0 = 0 is a critical points of Φ with multiplicity 3, and thus
Φ(0) = 0 is a critical value.

(2) If z1, z2 are two solutions of z2 − 2z + a, then Φ(z1) = Φ(z2) = 0, and
the corresponding multiplicities on critical points z1, z2 are 2.

(3) If z3, z4 are two solutions of 7z2 − 10z + 3a, then

z3 =
10 +

√
100− 4× 7× 3a

14

z4 =
10−

√
100− 4× 7× 3a

14
,

and the critical value is

Φ(z3) = Φ(z4) = −192

76
a(28a− 25)(7a− 10).

□
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12.3. Homework-3.

Exercise 12.3.1. For which λ ∈ C we have
C := {[x : y : z] ∈ P2 | x3 + y3 + z3 + 3λxyz = 0}

is smooth? For such λ, compute the degree and critical values for
Φ: C → P1, [x : y : z] 7→ [x : z]

and find the genus of C.

Proof. Let F (x, y, z) = x3 + y3 + z3 + 3λxyz and consider the following
equations

(12.1)


∂F
∂x = 3x2 + 3λyz = 0
∂F
∂y = 3y2 + 3λxz = 0
∂F
∂z = 3z2 + 3λxy = 0

It’s clear that if (x, y, z) is a solution of (12.1), then it’s also a solution
of F (x, y, z) = 0. Thus if we want to find for which λ the curve C will
be singular, it suffices to find non-zero solutions of (12.1). If (x, y, z) is a
solution of (12.1) with x 6= 0, then both y and z are non-zero, otherwise we
will obtain x = 0. Note that

0 = xz2 + λx2y = xz2 − λ2y2z = xz2 + λ3xz2.

This shows that if 1+ λ3 6= 0, then the curve C must be non-singular. Now
if C is non-singular, then the genus formula implies

gC =
(3− 1)(3− 2)

2
= 1.

□
Exercise 12.3.2. Assume affine plane curves C1 = {f = 0}, C2 = {g =
0} ⊆ C2 are smooth at p = (0, 0). Define the intersection number (C1, C2)p
of C1, C2 at p to be multpG, where

G : C1 → C
(x, y) 7→ g(x, y).

Prove
(C1, C2)p = (C2, C1)p.

Proof. □
Exercise 12.3.3. In many branches of mathematics, we use partubation
method to solve equations. For example, if we want to solve the quadratic
equation

x5 − x =
1

2
,

we may start by solving
x5 − x = 0.
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We have five solutions x = 0,±1,±
√
−1. For the solution x1 = 0, we

introduce a parameter t and try to solve x5 − x = t by power series

x1(t) = a0 + a1t+ · · ·+ akt
k + · · ·

where x1(t) = a0 = 0 recursively by comparing the coefficients of Taylor
expansion of both sides

x51(t)− x1(t) = t.

What is the convergence radius of x1(t)?

Proof. Consider the affine plane curve C ⊆ C2 defined by x5−x− t = 0 and
the following holomorphic map

Φ: C → C
(x, t) 7→ t.

For t = 0, there are 5 preimages of 0, which are 0,±1 and ±
√
−1. Further-

more, if the equation x5 − x− t = 0 has no multiple roots, then F is also a
covering map. In other words, if

|t| < 4

5
×
(
1

5

) 1
4

,

then F is a covering map. For the curve t 7→ t in C, the curve x1(t) con-
structed in the exercise is a lifting of this curve starting from the preimage
x1 = 0. Thus |t| = 4

5 ×
(
1
5

) 1
4 is the maximal radius of lifting. □

Exercise 12.3.4. Find two smooth conic curves (conic means degree two)
in P2 which meet at one point with multiplicity 4.

Proof. By Bezout theorem if two smooth conic curves intersect at one point,
then this point must have multiplicity 4, so it suffices to construct two conic
curves which intersect at one point.

Consider the curve C1 defined by x2 − yz = 0 and the curve C2 defined
by y2 − 4xy + 6yz − 4xz + z2 = 0. Then the only intersection is [1 : 1 : 1],
which has multiplicity 4. □

Exercise 12.3.5. Let X,Y be two compact connected Riemann surfaces of
genus gX > gY . Prove that every holomorphic map from Y to X is constant.

Proof. In fact we prove the following equivalent statement: If there exists
a non-constant holomorphic map Φ: Y → X between compact Riemann
surfaces, then gY ≥ gX .

Now let’s begin the proof: If gX = 0, it’s trivial. Otherwise, by Hurwitz
formula we have

2gY − 2 = deg(Φ)(2gX − 2) +B(Φ) ≥ 2gX − 2

since deg(Φ) ≥ 1 and B(Φ) ≥ 0. □
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Exercise 12.3.6. Try to define smooth algebraic curve in
P1 × P1 = {[x1 : y1], [x2 : y2]}

by considering homogeneous polynomial of bidegree (d1, d2) in C[x1, y1, x2, y2],
in which

deg x1 = deg y1 = (1, 0),

deg x2 = deg y2 = (0, 1).

Proof. Note that a homogenous polynomial F of bidegree (d1, d2) can be
regarded as a section s of line bundle O(d1) ⊗O(d2), and the non-singular
algebraic curve C defined by F is exactly the zero divisor of s. By adjunction
formula one has

KC
∼= O(d1 − 2)⊗O(d2 − 2),

and thus
2gC − 2 = KC · C = (d1 − 2)d2 + (d2 − 2)d1.

This shows gC = (d1 − 1)(d2 − 1). □
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12.4. Homework-4.

Exercise 12.4.1. Let X be a compact Riemann surface. Prove that

OX(X) = {constant functions}.

Proof. Suppose f : X → C be a non-constant holomorphic map. Then by
open map theorem one has f is an open map, and thus f(X) ⊆ C is open.
On the other hand, since X is compact and then f(X) is compact in C.
Thus f(X) ⊆ is both open and closed in C, which implies f(X) = C. But
C is not compact, which leads to a contradiction. □

Exercise 12.4.2. Let w1, w2 be R-linearly independent complex numbers,
and C = C /L, where L = Zw1 + Zw2.
(1) Prove that ω = dz defines a holomorphic 1-form on C, where z is the

coordinate of C.
(2) Compute dimCΩ1

C(C).

Proof. For (1). If we write z = x+
√
−1y, then firstly

dz = dx+
√
−1dy

is a 1-form on C, and it’s holomorphic since
∂

∂z
dz =

1

2
(
∂

∂x
+
√
−1

∂

∂y
)(dx+

√
−1dy) = 0.

Moreover, above computation also shows that up to constants dz is the only
holomorphic 1-form on C.

For (2). If ω is a holomorphic 1-form on C, then it can be extended to be a
holomorphic 1-form on C. Thus dimCΩ1

C(C) ≤ 1. On the other hand, since
points in C which are be identified in the torus only differs constants, dz
descends to a holomorphic 1-form on C. This shows dimCΩ1

C(C) = 1. □

Exercise 12.4.3. For any two points p 6= q ∈ P1, construct a meromorphic
1-form ω with ordp ω = and ordq ω = −1.

Proof. Without lose of generality we may assume q = ∞ and p = [λ : 1].
Then the meromorphic 1-form ω = 1/(z − λ)dz on the affine piece {[z : 1]}
gives a meromorphic 1-form on P1 such that ordp ω = ordq ω = −1. □

Exercise 12.4.4. Show that

{([x0 : x1], [y0 : y1]) | (x20 + x21)(y
2
0 + y21) = x0x1y0y1}

is a smooth curve in P1 × P1, and compute its genus.

Proof. Suppose U0, U1 and V0, V1 are affine pieces for the first factor and
second factor of P1×P1 respectively. Then {Ui×Vj} gives an atlas for P1×P1,
and it suffices to check the curve C defined by (x20+x

2
1)(y

2
0+y

2
1) = x0x1y0y1

is smooth on each affine piece.
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Since the symmetry between x0, x1 and y0, y1, it suffices to check the curve
C is smooth on the affine piece {[1 : x]} × {[1 : y]}. On this affine piece C
is defined by

f(x, y) = (x2 + 1)(y2 + 1)− xy = 0.

Now it suffices to show the following system of equations has no solution
f(x, y) = (x2 + 1)(y2 + 1)− xy = 0
∂f
∂x = 2x(y2 + 1)− y
∂f
∂y = 2y(x2 + 1)− x

If (x0, y0) is a solution, then one has 4y20x0 = y0.
(1) If y0 = 0, then by the second equation one has x0 = 0, which contradicts

to the first equation.
(2) If y0 6= 0, then one has 4x0y0 = 1. By the first equation one has

(x20 + 1)(y20 + 1) =
1

4
.

On the other hand, the symmetry between x0, y0 implies x0 = y0 = ±1
2 ,

which is a contradiction.
This shows C is smooth. For the genus of C, as it’s shown in the last exercise
of Homework-3, one has gC = (2− 1)(2− 1) = 1. □

Exercise 12.4.5. Let C be a smooth conic in P2, A,B,C,D,E, F ∈ C are
six distinct points.
(1) Prove that line AB connecting A,B intersect with C at exactly two

points A,B.
(2) Let f be the product of lines AB,CD,EF , g be the product of lines

BC,DE,FA. Choose P /∈ C \ {A,B,C,D,E, F}. Prove that there
exists λ ∈ C such that f + λg vanishes on P .

(3) If C = {h = 0}, prove that h | f + λg.
(4) If AB ∩DE = G,CD ∩ AF = H,EF ∩ BC = K. Prove that G,H,K

are colinear (on the line (f + λg)/h).

Proof. For (1). It follows from Bezout theorem that AB intersects with C
on at most two points, since C is a smooth conic, and AB is a smooth line.
On the other hand, since A,B ∈ C, then the two intersection are exactly
points A,B.

For (2). By evaluating at point P , we can regard Φ(p)+λg(P ) as a linear
function of λ, which must admit a zero in C, which is also unique.

For (3). If h - f+λg, then by Bezout theorem there are at most 2×3 inter-
sections between C and {f +λg = 0}, but it already has seven intersections
A,B,C,D,E, F, P .

For (4). Firstly by definition it’s clear f +λg vanishes on points G,H,K,
and since (f + λg)/h has degree one, it defines a line. Thus G,H,K are
colinear on this line. □
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Exercise 12.4.6. Let R be a UFD and f1, f2, g ∈ R[X] with deg f1 =
m, deg g = n. Prove that
(1) R(f1, g) = (−1)mnR(g, f1).
(2) R(f1f2, g) = R(f1, g)R(f2, g).

Proof. For (1). It reduces to a problem of linear algebra: ForA ∈M(m+n)×m(R)
and B ∈M(m+n)×n(R), one has

det(A | B) = (−1)mn det(B | A).
□
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12.5. Homework-5.

Exercise 12.5.1. Prove Riemann-Hurwitz theorem by Poincaré-Hopf the-
orem.

Proof. Suppose Φ: X → Y is a holomorphic map between Riemann surfaces.
For meromorphic 1-form 0 6= θ ∈ M(1)(Y ), one has Φ∗(θ) is a meromorphic
1-form on X. Thus by Poincaré-Hopf theorem one has∑

q∈Y
ordq θ = −χ(Y ) = 2gY − 2

∑
p∈X

ordpΦ
∗(θ) = −χ(X) = 2gX − 2.

Thus it suffices to show∑
p∈X

ordp(Φ
∗(θ)) = deg(Φ)(

∑
q∈Y

ordq(θ)) +
∑
p∈X

(multpΦ− 1),

Firstly let’s establish the following lemma.

Lemma 12.5.1. Notations as above. For any p ∈ X,
ordp(Φ

∗(θ)) + 1 = (ordΦ(p)(θ) + 1) ·multpΦ

Proof. Choose local coordinate w centered at p and local coordinate z at
Φ(p) such that Φ is given by

z = wn,

where n = multpΦ. If k = ordΦ(p)(θ), then θ is given by

θ = (
∞∑
j=k

cjz
j)dz, ck 6= 0.

Thus
Φ∗(θ) = (ck(w

n)k + higher order terms)nwn−1dw

= (nckw
n(k+1)−1 + higher order terms)dw.

This shows
ordp(Φ

∗(θ)) + 1 = (ordΦ(p)(θ) + 1) ·multp(Φ).

□
Note that Φ: X → Y is a non-constant holomorphic map, and thus it’s

surjective by Corollary 1.1.1. Then by above Lemma one has∑
p∈X

ordp(Φ
∗(θ)) =

∑
p∈X

{(ordΦ(p)(θ) + 1) ·multpΦ− 1}

= (
∑
p∈X

ordΦ(p)(θ)) ·multpΦ+
∑
p∈X

(multpΦ− 1)

= deg(Φ)(
∑
q∈Y

ordq(θ)) +
∑
p∈X

(multpΦ− 1).
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□
Exercise 12.5.2. Let f(x, y) = x3 − x2 + y2. Prove that
(1) f(x, y) is irreducible in C[x, y].
(2) f(x, y) is reducible in C{x}[y].
(3) Is f(x, y) reducible in C{y}[x]?
Proof. For (1). If f(x, y) is irreducible in C[x, y], then the only possible
decomposition must be of the form

f(x, y) = (y + g(x))(y + h(x)).

This gives the equalities {
g(x) + h(x) = 0

g(x)h(x) = x3 − x2.

However, there is no polynomial g(x) = −h(x) such that
g2(x) = x2 − x3.

This shows f(x, y) is irreducible in C[x, y].
For (2). In C{x}[y] one has

f(x, y) = (y − x
√
1− x)(y + x

√
1− x).

For (3). Since one has f(x, y) is reducible in C{x}[y], then it’s reducible
in C{x, y}. On the other hand, since f(x, 0) is not identitcally zero, then by
Weierstrass preparation theorem one has f(x, y) is also reducible in C{y}[x].

□
Exercise 12.5.3 (Miranda IV.3 E). Let τ be a complex number with strictly
positive imaginary part. Let h be a meromorphic function on C which is
(Z+ Zτ)-periodic; in other words, h(z + 1) = h(z + τ) = h(z) for all z. For
any point p in C, let γp be the path which is the counterclockwise boundary
of the parallelogram with vertices p, p+1, p+ τ +1, p+ τ, p (in that order).
Assume p is chosen so that there are no zeroes or poles of h on γp. Show
that

1

2π
√
−1

ˆ
γp

z
h′(z)

h(z)
dz

is an element of the lattice (Z+Z τ).
Proof. Firstly we divide above integration into the following four parts

1

2π
√
−1


ˆ p+1

p
z
h′(z)

h(z)
dz︸ ︷︷ ︸

A

+

ˆ p+τ+1

p+1
z
h′(z)

h(z)
dz︸ ︷︷ ︸

B

+

ˆ p+τ

p+τ+1
z
h′(z)

h(z)
dz︸ ︷︷ ︸

C

+

ˆ p

p+τ
z
h′(z)

h(z)
dz︸ ︷︷ ︸

D

 .

Since h is (Z+Z τ)-periodic, one has

A+ C =

ˆ p+1

p
z
h′(z)

h(z)
dz +

ˆ p

p+1
(z + τ)

h′(z + τ)

h(z + τ)
dz = −τ

ˆ p+1

p

h′(z)

h(z)
dz.
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Now let’s prove ˆ p+1

p

h′(z)

h(z)
dz ∈ 2π

√
−1Z .

Since there is no zeros or poles of h on γp, we may choose a sufficiently small
open neighborhood U of path p 7→ p + 1 and write h : U → C∗. Consider
the following commutative diagram

[0, 1] U

C C∗

γ

h̃ h

exp

Since exp: C → C∗ is the universal covering, there exists a lifting of h ◦ γ,
denoted by h̃. Moreover, one hasˆ p+1

p

h′(z)

h(z)
dz =

ˆ 1

0
h̃(w)dw = h̃(1)− h̃(0).

Since h̃ is a lifting of h ◦ γ, and h(p + 1) = h(p), one has exp(h̃(1)) =

exp(h̃(0)), and thus
h̃(1)− h̃(0) ∈ 2π

√
−1Z .

By the same argument one can show B + D ∈ Z, and this completes the
proof. □
Exercise 12.5.4 (Miranda IV.3 F). Check by direct computation that if
r(z) is a rational function of z, then the meromorphic 1-form r(z)dz on the
Riemann sphere C∞ satisfies the residue theorem.

Proof. Without lose of generality we may assume the rational function f(z)
is of the form
r(z) =

α1

(z − λ1)a1
+ · · ·+ αk

(z − λk)ak
+ β1(z − γ1)

b1 + · · ·+ βl(z − γl)
bl ,

where ai, bj > 0 for all i, j. Then the summation of residues of meromorphic
1-form θ = r(z)dz of point except ∞ is given by∑

p∈C∞ \{∞}

Resp(θ) =
k∑
i=1

αiδai1.

To see the residue at the infty point ∞, note that

r(
1

z
)(− 1

z2
)dz = −

k∑
i=1

αiz
ai−2

(1− λ1z)ai
−

l∑
j=1

βj(1− γjz)
bj

zbj+2
.

It’s clear that bj + 2 > 1 by definition. Thus the residue of θ at infty point
∞ is exactly

Res∞(θ) = −
k∑
i=1

αiδai1,
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as desired. □
Exercise 12.5.5 (Miranda IV.3 G). Check that if L is a lattice in C and
h(z) is an L-periodic meromorphic function, then the meromorphic 1-form
ω = h(z)dz, considered as a form on the complex torus C /L, satisfies the
residue theorem.
Proof. If h(z) is a L-periodic meromorphic function defined on C /L, then
there exists a meromorphic function h̃(z) defined on C such that h̃ = h ◦ π,
where π : C → C /L is the canonical projection.

However, the summation of orders of a meromorphic function defined on
C is zero, and thus the summation of orders of a L-periodic meromorphic
function defined on C /L is zero. Then residue theorem holds since genus of
a complex torus is 1. □
Exercise 12.5.6. Let f(x, y) = fd(x, y) + fd+1(x, y) + · · ·+ ∈ C{x, y},
where fi(x, y) are homogeneous with respect to (x, y) and deg fi = i or
fi = 0. Prove that if fd(x, y) has d distinct linear factors, then f(x, y)
decomposes as product of d irreducible factors in C{x, y}.
(1) Reduce the question to fd(x, y) =

∏
(y − αix)

(2) Denote by w = y/x,

g(x,w) =
f(x, xw)

xd
∈ C{x, y}.

Prove that g converges in a product of discs
Dρ1 ×Dρ2 = {(x,w) | |x| < ρ1, |w| < ρ2}

that contains (0, αi).
(3) Prove that g(0, αi) = 0 and ∂g

∂w (0, αi) 6= 0 and hence g(x,w) = 0 has a
solution w = hi(x) near (0, αi) with hi(x) ∈ C{x} and hi(0) = αi.

(4) Prove that
∏
(y − xhi(x)) | f(x, y) and f(x, y) is the product of m

irreducible factors up to units in C{x, y}.
Proof. For (1). Suppose fd(x, y) is decomposed into d distinct linear factors
as follows

fd(x, y) =
d∏
i=1

(βiy − αix).

Without lose of generality we may assume x - fd(x, y), and thus we can
reduce to the case βi = 1 for all i by dividing

∏d
i=1 βi.

For (2). For fk(x, y) with k ≥ d+ 1, it’s clear

gk(x, y) =
fk(x, xw)

xd
= 0

since the degree of x in fk(x, xw) is k, which is bigger than d, so it suffices
to show fd(x, y)/x

d converges when (x, y) tends to (0, αi). Since fd(x, y) is
a homogenous polynomial of degree d with respect to (x, y), one has

fd(x, xw)

xd
= fd(1, w).
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This shows gd(x, y) converges in a sufficiently small product of discs Dρ1 ×
Dρ2 , so does g(x, y).

For (3). From the proof of (2) one can see g(0, αi) = fd(1, αi) = 0. On
the other hand, note that

∂g

∂w
=

∂

∂w
(
f(x, xw)

xd
) =

1

xd
∂y

∂w

∂f(x, y)

∂y
=
fy(x, y)

xd−1
.

This shows
∂g

∂w
(0, αi) = fy(1, αi) 6= 0,

since these linear factors are distinct. Thus by the implicit function theorem,
g(x,w) = 0 has a solution w = hi(x) with w = hi(x) near (0, αi) ∈ C{x}
and hi(0) = αi.

For (4). Now consider the following function

α(x, y) =
f(x, y)∏d

i=1(y − xhi(x))
.

By construction of hi(x) one can see α(x, y) has a non-zero constant term
α(0, 0), and thus α(x, y) ∈ C{x, y}∗. This shows f(x, y) is decomposed into
d irreducible linear factors in C{x, y}. □
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12.6. Homework-6.

Exercise 12.6.1. Let x1, . . . , xn be distinct points on C, and let

C = {yd = (x− x1)
a1 · · · (x− xn)

an} ⊆ C2

where d, ai ∈ Z>0 and gcd(d, a1, . . . , an) = 1. Let C ⊆ C2 be the corre-
sponding projective plane curve. Prove C is irreducible and compute the
genus of the normalization of C.

Proof. To prove C is irreducible, it suffices to prove the polynomial

yd = (x− x1)
a1 . . . (x− xn)

an

is irreducible, since C is the closure of C in P2. Consider the projection
Φ: C → C given by (x, y) 7→ x. Then it’s a d-covering from C \ Φ−1(B) to
C \B, where B = {x1, . . . , xn}. Since the base C \B is connected, it suffices
to show that the monodromy is transitive on each fiber. Note that the local
monodromy at point xi is given by ξ

ai/d
d , where ξd is the d-th unit root.

Since gcd(d, a1, . . . , an) = 1, there exists k, k1, . . . , kn ∈ Z such that

kd+ k1a1 + · · ·+ knan = 1.

Thus by winding x1 by k1 times and winding x2 by k2 times and so on, one
construct a monodromy given by

ξk1a1+···+knan
d = ξ1−kdd = ξd.

Thus the monodromy acts on fiber transitively.
Now let’s figure out the type of singularities of C to compute the genus of

the normalization of C. Firstly, by blowing up finitely times, one can prove
the following lemma, which is a generalization of Example 5.5.2.

Lemma 12.6.1. For ym = xn, the δ-invariance of (0, 0) is

δ(m,n) =
(m− 1)(n− 1)

2
− 1 + d,

where d = gcd(m,n).

For f(x, y) = yd − (x− x1)
a1 . . . (x− xn)

an , a direct computation shows

∂f

∂y
= dyd−1

∂f

∂x
= −

n∑
i=1

ai(x− x1)
a1 . . . (x− xi)

ai−1 . . . (x− xn)
an .

Thus (0, xi) is a singularity of f(x, y) = 0 if and only if ai > 1, and the δ-
invariance for (0, xi) is δ(d, ai). Let F (x, y, z) be the homogenous polynomial
corresponding to f(x, y). Then
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(1) If d >
∑

i ai, then F (x, y, z) = yd − zd−
∑

i ai(x− x1z)
a1 . . . (x− xnz)

an ,
and thus the infinity point is [1 : 0 : 0]. On the affine piece {x = 1}, the
equation is given by

F (1, y, z) = yd − zd−
∑

i ai(1− x1z)
a1 . . . (1− xnz)

an .

To see (0, 0) is a singularity of F (1, y, z) or not, a direct computation
shows that

∂F (1, y, z)

∂y
=dyd−1

∂F (1, y, z)

∂z
=− (d−

∑
i

ai)z
d−

∑
i ai−1(1− x1z)

a1 . . . (1− xnz)
an

− zd−
∑

i ai

(
−

n∑
i

aixi(1− x1z)
a1 . . . (1− xiz)

ai−1 . . . (1− xnz)
an

)
.

Thus (0, 0) is not a singularity of F (1, y, z) if and only if d =
∑

i ai + 1,
and the δ-invariance for (0, 0) is δ(d, d−

∑
i ai).

(2) If d =
∑

i ai, then F (x, y, z) = yd − (x− x1z)
a1 . . . (x− xnz)

an . On the
infinity line {z = 0}, the equation is given by yd = xd, and thus there
are d points of C on the infinity line, given by {[1, ξid : 0] | i = 1, . . . , d},
which are non-singular.

(3) If d <
∑

i ai, then F (x, y, z) = ydz
∑

i ai−d − (x− x1z)
a1 . . . (x− xnz)

an ,
and thus the infinity point is [0 : 1 : 0]. On the affine piece {y = 1}, the
equation is given by

F (x, 1, z) = z
∑

i ai−d − (x− x1z)
a1 . . . (x− xnz)

an .

To see (0, 0) is a singularity of F (x, 1, z) or not, a direct computation
shows that

∂F (x, 1, z)

∂x
=−

∑
i

ai(x− x1z)
a1 . . . (x− xiz)

ai−1 . . . (x− xnz)
an

∂F (x, 1, z)

∂z
=(
∑
i

ai − d)z
∑

i ai−d−1 +
∑
i

aixi(x− x1z)
a1 . . . (x− xiz)

ai−1 . . . (x− xnz)
an .

Thus (0, 0) is not a singularity of F (x, 1, z) if and only if
∑

i ai = d+ 1.
To compute the δ-invariance, after once blow up one has

g(x,w) =
F (x, 1, xw)

x
∑

i ai−d
= w

∑
i ai−d − xd(1− x1w)

a1 . . . (1− xnw)
an .

Then it reduces to the standard model w
∑

i ai−d = xd, and thus the
δ-invariance for this case is(∑

i ai − d

2

)
+ δ(d,

∑
i

ai − d).
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As a consequence, the genus of the normalization of C is

(d− 1)(d− 2)/2−
∑n

i=1 δ(d, ai)− δ(d, d−
∑

i ai), d >
∑

i ai + 1

(d− 1)(d− 2)/2−
∑n

i=1 δ(d, ai), d =
∑

i ai + 1

(d− 1)(d− 2)/2−
∑n

i=1 δ(d, ai), d =
∑

i ai

(
∑

i ai − 1)(
∑

i ai − 2)/2−
∑n

i=1 δ(d, ai), d =
∑

i ai − 1

(
∑

i ai − 1)(
∑

i ai − 2)/2−
∑n

i=1 δ(d, ai)− δ(d,
∑

i ai − d)−
(∑

i ai−d
2

)
, d <

∑
i ai − 1

□
Exercise 12.6.2. A projective plane curve is called rational if it’s irreducible
and its normalization has genus zero. Find a rational curve for each degree
d.

Proof. Consider the the projective plane curve C defined by yd = xd−1z. On
the affine piece z = 1, it’s given by yd = xd−1. Then (0, 0) is a singularity
with δ-invariance

(d− 1)(d− 2)

2
.

On the other hand, [1 : 0 : 0] is not a singularity of yd = xd−1z. Thus by
Bezout theorem, the genus of the normalization of C is

(d− 1)(d− 2)

2
− (d− 1)(d− 2)

2
= 0.

□
Exercise 12.6.3. Determine y2−(x2y2+x4) is irreducible or not in C{x, y}.
This is an example of tacnode singularity.

Proof. Firstly consider the blow up g(x,w), that is

g1(x,w) =
f(x, xw)

x2
= w2 − x2w2 + x2.

It’s still singular at (0, 0), so consider

g2(x, t) =
g1(x, xt)

x2
= t2 − x2t2 + 1.

Note that
∂g2
∂t

∣∣∣∣
x=0,t=±1

6= 0.

Then by implicit function theorem, there exists t1(x), t2(x) ∈ C{x} such
that t1(0) = 1 and t2(0) = −1, and thus in C{x, y}, there is the following
decomposition

y2 − (x2y2 + x4) = u(y − x2t1(x))(y − x2t2(x)),

where u is a unit in C{x, y}. □
Exercise 12.6.4. Compute the genus of the curve

C = {x2y2 − z2(x2 + y2) = 0} ⊆ P2
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Proof. For convenience we denote F (x, y, z) = x2y2−z2(x2+y2). Note that
∂F (x, y, 1)

∂x
= 2xy2 − 2x

∂F (x, y, 1)

∂y
= 2x2y − 2y.

Then (0, 0) is a singularity of F (x, y, 1). On the infinity line {z = 0}, there
are two points on C, that is, [1 : 0 : 0] and [0 : 1 : 0]. Note that (0, 0) is also
a singularity for F (x, 1, z), since

∂F (x, 1, z)

∂x
= 2x− 2xz2

∂F (x, 1, z)

∂z
= −2z(x2 + 1).

By the same argument one can show [1 : 0 : 0] is also a singularity for
F (1, y, z). This shows there are three singularities of the projective plane
curve defined by F , that is, [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. Now it suffices
to compute the δ-invariance for these singularities.

Note that by blow up f(x, y) = F (x, y, 1) once, one has
g(x,w) = x2w2 − 1− w2,

which is non-singular at (0,±
√
−1), and thus the δ-invariance for [0 : 0 : 1]

is
(
2
2

)
= 1. For singularity [0 : 1 : 0], the same computation shows that the

δ-invariance of it is 1, so is the one of [1 : 0 : 0]. Then by Plücker formula
one has the genus of C is

(4− 1)(4− 2)

2
− 3 = 0.

□
Exercise 12.6.5. C1, C2 ⊆ P2 are curves of degree n. Assume C1, C2 inter-
sect at n2 distinct points. If mn of these points lie on an irreducible curve
C3 of degree m, then the remaining (n−m)n points lie on a curve of degree
n−m.

Proof. Suppose C1, C2, C3 are defined by homogenous polynomials F1, F2, F3

respectively. Suppose p is a point on C3 which does not lie on C1∩C2, Then
the curve C4 of degree n, defined by

λF1 + µF2 = 0,

where λ = F2(p), µ = −F1(p) intersects with C3 at least mn + 1 points.
Then C3 must be a component of C4, otherwise it contradicts to the Bezout
theorem. Thus there exists a homogenous polynomial G such that

λF1 + µF2 = F3G,

where degG = n − m. Note that there are n2 distinct points such that
F1 = F2 = 0, and only mn of them such that F3 = 0. This shows that there
are (n−m)n of them such that G = 0, which completes the proof. □



139

Exercise 12.6.6. If a degree n projective plane curve C has [n2 ]+1 singular
points on a line L, then L is necessarily a component of C.

Proof. If L is not a component of C, then by Bezout theorem one has∑
p∈C∩L

(C,L)p = n.

Note that for p ∈ C ∩L, if (C,L)p = 1, then p must be a non-singular point
since every linear polynomial is non-singular. Thus∑

p∈C∩L
(C,L)p ≥ 2× ([

n

2
] + 1) > n,

a contradiction. □
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12.7. Homework-7.
Exercise 12.7.1. Let D ∈ Div(X) and |D| is base-point-free. Prove |nD|
is base-point-free for all n ∈ Z>0.
Proof. If |D| is base-point-free, then Supp

⋂
E∈|D|E = ∅. As a consequence,

one has Supp
⋂
E∈|D| nE = ∅. On the other hand, one has {nE | E ∈ |D|} ⊆

|nD|, and thus
Supp

⋂
E∈|nD|

E ⊆ Supp
⋂

E∈|D|

nE = ∅.

This shows |nD| is base-point-free. □
Exercise 12.7.2. For D ∈ Div(X), prove that
(1) If degD < 0, then `(D) = 0.
(2) If degD = 0, then `(D) = 0 or 1.
(3) For X = C /Zω1 + Zω2, and use the fact that

Div0(X)/PDiv(X) ' X

to find all divisors D ∈ Div0(X) such that `(D) = 0 and all D such that
`(D) = 1.

Proof. For (1). If deg(D) < 0, then Γ(X,O(D)) = {0}, and thus `(D) = 0.
For (2). If deg(D) = 0 and `(D) 6= 0, then for any non-constant mero-

morphic function f ∈ Γ(X,O(D)), one has
0 = deg(div(f) +D) ≥ 0,

which implies D = −div(f) is a principal divisor, and thus `(D) = 1.
For (3). By (2), one has every divisor D with degree zero and `(D) = 1

is a principal divisor. Then for any D ∈ Div0(X), if D = p − 0 for some
p ∈ X, then `(D) = 0, otherwise `(D) = 1. □
Exercise 12.7.3. Let X be a smooth cubic curve, show that there exists
f ∈ MX(X) such that div(f) is divisable by 2 but f is not a square of a
function in MX(X).
Proof. Since X is a smooth cubic curve, one has gX = 1. In particular,
for any point p ∈ X, one has `(p) = 1, otherwise X is isomorphic to P1.
Moreover, `(2p) = 2, since 2p is base-point-free (by the following exercise).
Thus there exists a non-constant meromorphic function f ∈ Γ(X,O(2p)) and
div(f) is divisable by 2. On the other hand, if f = g2 for some g ∈ MX(X),
then g ∈ Γ(X,O(p)), which implies f is a constant, since `(p) = 1. □
Exercise 12.7.4. Let D ∈ Div(X).
(1) If deg(D) ≥ 2g, then |D| is base-point-free.
(2) If deg(D) ≥ 2g + 1, then D is very ample.
Proof. For (1). If deg(D) ≥ 2g, then deg(K −D) ≤ 2g − 2− 2g = −2, and
thus `(K −D) = 0. By Riemann-Roch theorem, one has

`(D) = 1− g + deg(D).
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On the other hand, since deg(D − p) = 2g − 1, by the same argument one
has

`(D − p) = 1− g + deg(D)− 1.

This shows `(D− p) = `(D)− 1 for every p ∈ X, and thus |D| is base-point-
free.

For (2). By the same arguments used in the proof of (1), one can show
for every p, q ∈ X, one has

`(D − p− q) = `(D)− 2.

This shows D is every ample. □

Exercise 12.7.5 (Theta function).
(1) If w1, w2 ∈ C are R-linearly independent, then X = C /Zw1 + Zw2 is

isomorphic to C /Z+Z τ for some τ ∈ H = {τ ∈ C | Imτ > 0}.
(2) If z ∈ C, Imτ > 0, define

θ(z) =
∞∑

n=−∞
eπ

√
−1(n2τ+2nz).

Prove the series converges absolutely and uniformly on compact subsets
of C.

(3) Prove
θ(z + 1) = θ(z),

θ(z + τ) = e−π
√
−1(τ+2z)θ(z)

(4) Consider the parallelogram with vertices p, p+1, p+1+ τ, p+ τ and use
integration of

1

2π
√
−1

ˆ
θ′

θ
dz

to conclude that θ has a simple zero inside this parallelogram for a
generic p.

(5) For any x ∈ C, let θ(x)(z) = θ(z − 1
2 − τ

2 − x). Prove that

θ(x)(z + 1) = θ(x)(z).

θ(x)(z + τ) = −e−2π
√
−1(z−x)θ(x)(z).

(6) Conclude that θ(x)(z) has simple zeros at x+m+nτ with m,n ∈ Z and
no other zeros.

(7) Let

R(z) =

∏m
i=1 θ

(xi)(z)∏n
j=1 θ

(yj)(z)

for x1, . . . , xm, y1, . . . , yn ∈ C. Then R(z + 1) = R(z), and if
∑m

i=1 xi−∑n
j=1 yj ∈ Z, then R(z + τ) = R(z).
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(8) Use (7) to prove for X = C /Z+Z τ ,
PDiv(X) = kerA,

where A is the Abel-Jacobi map.
Proof. For (1). Given a lattice L = Zw1 + Zw2, multiplying by 1/w1 gives
an isomorphism between

Zw1 + Zw2 → Z+Z τ,

where τ = w2/w1, and we may assume Imτ > 0, since Z+Z τ = Z+Z(−τ).
□

For (2). Notice that

eπ
√
−1(n2τ+2nz) = eπ

√
−1τn2

e2π
√
−1nz.

Let z = x+
√
−1y and τ = u+

√
−1v, where Imτ = v > 0. Then

|eπ
√
−1τn2

e2π
√
−1nz| = |eπ

√
−1(u+

√
−1v)n2 ||e2π

√
−1n(x+

√
−1y)|

= |eπ
√
−1un2−πvn2 ||e2π

√
−1nx−2πny|

= |eπ
√
−1un2 ||e−πvn2 ||e2π

√
−1nx||e−2πny|

= e−πvn
2
e−2πny

= e−πn(vn+2y).

For n large enough, |n| ⩽ πn(vn + 2y), and thus |eπ
√
−1(n2τ+2nz)| ⩽ e−|n|.

As a result, ∑
n∈Z

eπ
√
−1(n2τ+2nz)

converges absolutely and uniformly on compact subsets of C.
For (3). It’s clear that θ(z + 1) = θ(z) since e2π

√
−1 = 1. For the other

equality, it suffices to note that∑
n∈Z

eπ
√
−1{(n2+2n)τ+2nz} n=m−1

=
∑
m∈Z

e−π
√
−1(τ+2z)eπ

√
−1(m2τ+2mz).

For (4). A direct computation shows that

θ

(
1 + τ

2

)
=
∑
n∈Z

eπ
√
−1(n2τ+nτ+n)

=
∑
n∈Z

eπ
√
−1(4n2+2n)τ −

∑
n∈Z

eπ
√
−1{(2n+1)2+2n+1}τ

set n=m−1
in second term=

∑
n∈Z

eπ
√
−1(4n2+2n)τ −

∑
m∈Z

eπ
√
−1(4m2−2m)τ

set m=−n
in second term=

∑
n∈Z

eπ
√
−1(4n2+2n)τ −

∑
n∈Z

eπ
√
−1(4n2+2n)τ

= 0.
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This shows (1 + τ)/2 is a zero of θ, and now we’re going to show it’s simple
zero by considering the path γ consisting of four straight lines

γ1 : p→ p+ 1

γ2 : p+ 1 → p+ 1 + τ

γ3 : p+ 1 + τ → p+ τ

γ4 : p+ τ → p,

where p is generic, that is, no zeros of θ is on these paths. For convenience
we denote f(z) = θ′(z)/θ(z). Since θ has no poles, it suffices to show the
integration of f(z) along γ1 → γ2 → γ3 → γ4 equals to 2π

√
−1. Note that

f(z + 1) = f(z)

f(z + τ) = −2π
√
−1 + f(z)

Then ˆ
γ
f(z)dz =

ˆ
γ1

f(z)− f(z + τ)dz +

ˆ
γ2

f(z)− f(z + 1)dz

=

ˆ
γ1

2π
√
−1dz

= 2π
√
−1.

For (5) and (6). Note that θ(x) is the translation of θ by −(1 + τ)/2− x.
Then by the double periodicity of θ, one has

θ(x)(z + 1) = θ(x)(z)

θ(x)(z + τ) = −e−2π
√
−1(z−x)θ(x)(z),

and the simple zeros of θ(x) are m+ nτ + x, since (1 + τ)/2 is a simple zero
of θ, as shown in the proof of (4).

For (7). It’s clear that R(z+1) = R(z). For the second equality, a direct
computation shows

R(z + τ) = (−1)m−n
∏m
j=1 e

−2π
√
−1(z−xj)θ(xi)(z)∏n

k=1 e
−2π

√
−1(z−yk)θ(yk)(z)

= (−1)m−ne2π
√
−1{(m−n)z+

∑m
j=1 xj−

∑n
k=1 yk}R(z)

If m = n and
∑m

i=1 xi−
∑n

j=1 yj ∈ Z, then R(z + τ) = R(z).
For (8). Now it suffices to show kerA ⊆ PDiv(X). For D ∈ Div0(X), we

write it as
D =

n∑
i=1

xi −
n∑
j=1

yj ,

where we allow xi = xi′ for i 6= i′ and yj = yj′ for j 6= j′. If A(D) = 0, then∑n
i=1 xi −

∑n
j=1 yj = 0, and thus by (7) one may construct a meromorphic

function R(z) on compact torus such that div(R(z)) = D.
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12.8. Homework-8.

Exercise 12.8.1 (gonality). Let C be an algebraic curve. Define

gon(C) = min{degΦ | Φ: C → P1 is a non-constant holomorphic map}.
Prove that
(1) If C is a non-singular projective plane curve of degree d > 1, then

gon(C) ≤ d− 1.
(2) If C has genus g, then gon(C) ≤ g + 1.

Proof. For (1). Choose an arbitrary point p ∈ C and then we can project C
with center p to a line outside the point p. This gives a holomorphic map
C → P1 with degree d− 1, and thus gon(C) ≤ d− 1.

For (2). Choose an arbitrary point p ∈ C and consider the divisor D =
(g + 1) · p. By Riemann inequality one has

`(D) ≥ 1− g + deg(D) = 1− g + g + 1 = 2.

In particular, there exists a non-constant f ∈ Γ(X,OX(D)), which gives a
holomorphic map from C → P1 with degree g + 1. As a consequence, one
has gon(C) ≤ g + 1. □

Exercise 12.8.2. Show that
Φ: P2 → P5

[x0 : x1 : x2] 7→ [x20 : x
2
1 : x

2
2 : x0x1 : x1x2 : x0x2]

defines an embedding. Consider a non-singular projective plane curve C of
degree 5. Prove that the canonical map of C into P5 is Φ|C , and C is not
hyperelliptic.

Proof. It’s easy to show that Φ is an embedding by considering the restric-
tion of Φ onto affine pieces of P2. In fact, Φ is called the Veronese embedding.

Given a non-singular projective plane curve C of degree 5, there exists a
natural holomorphic 1-form η = dx/fy, and

{η, x2η, y2η, xη, yη, xyη}

forms a C-basis of Γ(X,Ω1
X). As a consequence, the canonical map of C

into P5 is exactly Φ|C , and thus C is not hyperelliptic since the canonical
map is an embedding. □

Exercise 12.8.3. Show that any non-singular projective plane curve C of
degree d ≥ 4 is not hyperelliptic.

Method one. By the same argument shown in the proof of above exercise,
the canonical map of a projective plane curve C of degree d ≥ 4, is exactly
the composite of the inclusion C ↪→ P2 and the Veronese embedding P2 →
P(

d−1
2
)−1. In particular, the canonical map is an embedding, and thus C is

not hyperelliptic. □
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Method two. By adjunction formula one has the canonicald divisor of C is
OP2(d − 3)|C , and thus it’s very ample if d ≥ 4. In particular, C is not
hyperelliptic. □

Exercise 12.8.4. Let X be an algebraic curve of genus g ≥ 2 and D a
divisor on X with deg(D) > 0.
(1) Show that if deg(D) ≤ 2g − 3, then `(D) ≤ g − 1.
(2) Show that if deg(D) = 2g − 2, then `(D) ≤ g.
Therefore we see that among divisors of degree 2g−2, the canonical divisors
have the most sections.

Proof. For (1). By Riemann-Roch theorem one has

`(D) = g − 2 + `(K −D).

If `(K −D) ≥ 1, then K −D is linearly equivalent to a degree one effective
divisor. In other words, K − D ∼ p for some point p ∈ X. On the other
hand, `(p) = 1 for any p ∈ X, otherwise X ∼= P1, which contradicts to g ≥ 2.
As a consequence, we have shown that `(K−D) ≤ 1, and thus `(D) ≤ g−1.

For (2). By Riemann-Roch theorem one has

`(D) = g − 1 + `(K −D).

If `(K−D) ≥ 1, then K−D is linearly equivalent to an degree zero effective
divisor, but the zero divisor is only effective divisor with degree zero, and
thus K ∼ D. In other words, we have shown that `(K − D) ≤ 1, and the
equality holds if and only if D ∼ K. As a consequence, one has `(D) ≤ g,
and the equality holds if and only if D ∼ K. □

Exercise 12.8.5. Let X be an algebraic curve of genus g.
(1) Show that if g ≥ 3, then mK is very ample for every m ≥ 2.
(2) Show that if g = 2, then mK is very ample for every m ≥ 3.
(3) Show that if g = 2, then map Φ2K maps X to a non-singular projective

plane conic, and that this map has degree 2.

Proof. For (1). Note that deg(mK) = (2g − 2)m > 2g + 1 holds for every
m ≥ 2 when g ≥ 3, and thus mK is very ample for every m ≥ 2.

For (2). Note that deg(mK) = 2m > 2g + 1 = 5 holds for every m ≥ 3,
and thus mK is very ample for every m ≥ 3.

For (3). Suppose {f, g} is a C-basis of Γ(X,OX(K)), since `(K) = 2.
Then {f2, fg, g2} forms a C-basis of Γ(X,OX(2K)), and thus the image of
Φ2K is a non-singular projective plane conic, which is defined by xz = y2,
and thus deg(Φ2K) = 2 follows from

4 = deg(2K) = deg(Φ∗
2K(H)) = deg(Φ2K)× 2,

where H ⊆ P2 is a hyperplane divisor. □

Exercise 12.8.6.
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(1) Suppose C ⊆ P4 is a canonical curve of genus 5. Show that C lies in
at least three linearly independent second-degree hypersurfaces Q1, Q2,
and Q3.

(2) Suppose C is a non-hyperelliptic curve of genus g = 5 which is trigonal,
that is, there exists a holomorphic map Φ: C → P1 with degree three.
Let

Φ−1(t) = Dt = p1(t) + p2(t) + p3(t) ∈ Div(C).

Then prove that the image of p1(t), p1(t) and p3(t) under the canonical
embedding are always collinear.

Proof. For (1). For the canonical embedding ΦK : C → P4, we consider the
following map

R2 : Sym2(C5) → Γ(C,OC(2K)).

Then
dimkerR2 ≥

(
6

2

)
− 3g + 3 = 3.

In other words, C lies in at least three linearly independent second-degree
hypersurfaces Q1, Q2, and Q3.

For (2). For any point t ∈ P1, one has `(p) = 2, and thus `(Dt) ≥ 2.
Then by Riemann-Roch theorem one has

`(K −Dt) = 1− g + 2g − 2− 3 + `(Dt) ≥ 3.

In other words, there exist linearly independent f1, f2, f3 ∈ Γ(X,OX(K −
Dt)) ⊆ Γ(X,OX(K)) such that the image of p1(t), p1(t) and p3(t) under the
canonical embedding are always on the line defined by {f1 = 0} ∩ {f2 =
0} ∩ {f3 = 0}. □
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