Solutions to Homework
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Chapter 1

Homework-1

Exercise. Check that the zero element and identity element of a Ting are unique. For any
r € R, its opposite —x and inverse x~ ! (if exists) are also unique.

Proof. If there exist two zero elements a,b € R, then a = a + b = b. So the zero element of a
ring is unique and we denote it by 0. Similarly, if there exist two identity elements c,d € R,
then ¢ = c¢d = d. So the identity element of a ring is unique, and we denote it by 1.

For any x € R, if it has two opposites y,y’, then

y=y+0=y+@+y)=@w+z)+y =0+y =y

So the opposite of x is unique.
Similarly, if it has two inverses z, 2/, then

z=z-1=2(22)=(z2)d =12 =7

So if £ has an inverse, this inverse is unique. ]
Exercise. Suppose R is a ring. Show that for all a,b,c € R we have

(a) a(b—c)=ab—ac and (b— c)a = ba — ca

() n(ab) = (na)b = a(nb) for any integer n

Proof. Let’s prove (b) first, and then deduce (a). For (b), we prove it through case by case
discussion.

1. When n > 0, we prove the formula by induction on n. It obviously holds when n = 1.
Suppose we have already proven this for n — 1. Then n(ab) = (n — 1)(ab) + ab = ((n —
1a)b+ab = ((n — 1)a+ a)b = (na)b. Similarly we have n(ab) = a(nb). So the formula
holds for all n > 0.

2. When n = 0, notice that a-0=a-(0+0)=a-0+4+a-0. So a-0=0. Similarly 0-b = 0.
So0-ab=0=a(0-b) = (0-a)b.

3. When n = —1, notice that ab + a(—b) = a(b+ (=b)) = a-0 = 0 and ab + (—a)b =
(a4 (—a))b=0-b=0. We have —ab = a(—b) = (—a)b.

4. When n < 0, notice that for any r € R, by definition we have nr = (—n)(—r). So n(ab) =
(=n)(—ab) = (—n)((—a)b) = ((—n)(—a))b = (na)b. Similarly n(ab) = (—n)(—ab) =
(=n)(a(=b)) = a((=n)(=b)) = a(nb).
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For (a), we have
a(b—c)=a(b+ (—c)) =ab+ a(—c) = ab+ (—ac) = ab— ac

and
(b—c)a=(b+ (—c))a=ba+ (—c)a =ba+ (—ca) = ba — ca

O

Exercise. Let R be a set with two operations satisfying all ring azioms except the commutative
law for addition. Use the distributive law to prove that the commutative law for addition holds,
so that R is a ring.

Proof. For any z,y € R, consider (z + y)(1+ 1). On one hand,
@+ A+ =(z+y) - 1+(x+y) l=z+y+a+y
On the other hand,
+y)Q+)=z1+1)+y(l+1)=z+z+y+y
So x +y = y + x, which implies that the commutative law for addition holds. O

Exercise. Let R be the set of continuous functions from R to R. Define addition and multipli-
cation on R by (f +9)(x) = f(z) + g(x) and (f - g)(z) = f(g(x)).

(a) Determine which of the ring axiom hold for R and which fail.
(b) Find two operations on R which makes it a ring.

Solution. For (a), since R is an abelian group with respect to the addition, R is an abelian
group with respect to the addition. The associative law for multiplication holds since function
composition is associative. Furthermore, the identity map id(x) = x satisfies that f-id =id-f =
f holds for any f € R. And for any f,g,h € R, for any x € R, (f + g)h(x) = (f + g)(h(z)) =
f(h(x)) + g(h(z)). So (f + g)h = fh + gh. The only axiom that fails is f(g + h) = fg + fh.
Here’s a counterexample. Let f(x) = g(z) = h(x) = x + 1. Then (f + f)(x) = 2z + 2. So we

have
(f(f+ @) =22+3
(f-f+f-Nz)=20+4

So f(f+N#f-F+rf-f
For (b), define (f + g)(z) = f(z) + g(x) and (f - g)(z) = f(z)g(z). Since R is a ring, R is a
ring with respect to these two operations. O

Exercise. Show that Q[v/—1] = {a + bv/—1la,b € Q} is a field.

Proof. Notice that Q[v/—1] is a subset of a field C and it contains 0 and 1. So we only need to
verify that Q[v/—1] is closed under addition, multiplication, taking the opposite and taking the

inverse. For any a + bv/—1,c + dv/—1 € Q[/—1], we have
(a+by=1)+ (c+dy=1)=a+c+ (c+d)v—1€ Q1]
(a+ byv/—1)(c + dv—1) = ac — bd + (bc + ad)v/—1 € Q[v/—1]
—(a+bv/=1) = —a+ (-b)v-1 € Q[V-I]
(a+by=T)"t = Lo = el = S+ V1 e QY] if a+ by/=T #£0

So Q[v/—1] is a field. O
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Exercise. Determine the units in Z,,.

Solution. For any n € Z, denote by @ its congruent class modulo m.

On one hand, for any unit 7 in Z,, it has an inverse k € Z,,. Sonk = 1. Sonk = 1 (mod m),
which implies ged(m,n) = 1.

On the other hand, for any integer n such that ged(m,n) = 1, according to the Bézout’s
identity, there exist integers a,b such that am +bn = 1. So b = b = bn = 1 — am = 1, which
implies 7 is a unit in Z,,.

In conclusion, all units in Z,, form a set {m|n € Z, ged(m,n) = 1}. O

Exercise. Let A and B be matrices with coefficients in a commutative ring. Check that
(At = A, (A+ B)! = A + Bt, and (AB)! = B'A!(whenever the sum A + B or the product
AB is well-defined).

Proof. Suppose A = (a; j)i1<i<m,1<j<n is an m x n matrix. Then Al = (aij)1<j<ni<i<m- SO
(A" = (aij)i<icmi<j<n = A
When A + B is well-defined, B is an m x n matrix. Suppose B = (b; j)1<i<m,i<j<n. Then
(A+B)" = (ai; + biji<jcni<i<m = (ai)1<j<n1<i<m + (Big)i<j<n1<i<m = A" + B

When AB is well-defined, B is an n x [ matrix. Suppose B = (b;;)i<i<n,1<j<i- Then

n
AB = () aikbkj)1<i<ma<j<i- SO
k=1

n
(AB) = (D aipbr)i<iti<icm = (0 1<j<t1<hzn (g )1<kn1icm = BT A’
k=1

O

Exercise. Check that the set of upper-triangular/lower-triangular/diagonal matrices of order
n over a ring R form a ring.

Proof. Let U, L, D be the set of upper-triangular, lower-triangular, diagonal matrices of order n
over R, respectively. Notice that they are all subsets of M« (R) and contain the zero element
0,, and the identity element I,,. So we only need to verify that U, L, D are closed under addition,
multiplication and taking the opposite.
For any A = (a;;), B = (b; ;) € U, we have a;; = b; ; = 0 for any ¢ > j. So for any i > j,
n

a;j + bi’j = Z aiykbk,j = —a;; = 0. So A+ B,AB,—A € U. So U is aring.
k=1

Notice that taking the transpose is a bijection from U to L. According to the conclusion
from the previous exercise, the fact that U is a ring implies that L is a ring.
Finally, D = U N L is a ring. O

Exercise. Assume F' is a field. Show that if A = (a;;) € My (F) is a diagonal matriz and
a;; # ajj for any i # j, then any matric B € M, (F) that commutes with A is also diagonal.

Proof. Suppose B = (b; ;). Then AB = (a;;b;;)ij, BA = (b;ja;;)ij. Since AB = BA and
a;; # ajj for any i # j, we have b; ; = 0 for any ¢ # j. So B is diagonal. O

Exercise. The trace tr(A) of a square matrix A is the sum of the entries on the diagonal of A.
For any commutative ring R and any matrices A, B € M, (R), show that

(a) tr(A+ B) = tr(A) + tr(B) and tr(A?) = tr(A)
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(b) for any a € R, tr(aA) = atr(A)
(c) tr(AB) = tr(BA).
Proof. Suppose A = (a;;) and B = (b; ;) are n X n matrices.
For (a), tr(A+B) = 3. (aii+bis) = 30 @i+ 3 by = tr(A) +tr(B) and tr(A") = 3" a;; =
w(A) i=1 i=1 i=1 i=1

For (b), tr(ad) = > aa;; =a ) a;; = atr(A).
i=1 i=1
For (c), tr(AB) = Z Z a; bk = > > bgiair = tr(BA). O
i=1 k=1 k=1i=1

Exercise. Determine the products AB and BA for the following values of A and B.

-8 —4
(a) A:E § i’],B: 9 5
-3 =2
1 4 6 —4
oa-ft ot 5]
Solution.
For (a),
10 —20 —28 -—28
AB [0 1] , BA=1]24 33 32
-9 —-12 -11
For (b),
18 4 2 16
AL [12 0} = [5 16}
O
b1
Exercise. Let A = [al an} be a row vector, and let B = | : | be a column vector.
bn,
Compute the product AB and BA.
Solution. ~
biar - bra,
B= [;aibz} . BA=
bpay --- bnan_
O

- 1
Exercise. Verify the associative law for the matriz product [(1) ﬂ 01 2} 41.
3

Proof. On one hand,

(R R I
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On the other hand,

1 2 01 2 le |1 2] {10] (38
01 1 1 3 3 |0 1] (14| |14
({1 2}{012})1_[1 2] {012}1
0 1|1 1 3 3 0 1 11 3 3
So this matrix product follows the associative law. O
n
Exercise. Compute [1 Cll] [1 ﬂ and F ﬂ .

Solution.

A g0
SRk

So by induction, for n > 0,

So for n < 0,
1 al” |1 —a " |1 na
1 1 o 1
So the above formula holds for all n € Z. O
11 17"
Exercise. Find a formula for 1 1| , and prove it by induction.
1
Solution. . i)
nn
1 11 1 n —5—
1 1 = 1 n
1 1

For n > 0, we will prove it by induction on n. The above formula obviously holds for n = 0.
If we have already proven this for n — 1, then we have

111" 1 1"t 1 n—1 0507111 1 p noth
1 1 = 1 1 1 1] = 1 n—1 1 1| = 1 n
1 1 1 1 1 1
So this formula holds for all n € Z~.
For n < 0, notice that
1 —n —n(—2n+1) 1 n n(n2+1) 1 n n(n2+1) 1 —n = (—2n+1) 1
1 —-n 1 n = 1 n 1 —-n = 1
1 1 1 1 1
So we have
1 1 11" 11 117" - 1 —n M -t 1 n n(n2+1)
1 1| = 11 = 1 -n = 1 n
1 1 1 1
So this formula holds for all n € Z. O
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Chapter 2

Homework-2

Exercise. Show that two different reduced row echelon system of linear equations have different
solutions (if the solutions exist). Derive that the reduced row echelon matriz associated to a
given matrix s unique.

Proof. For the first part, suppose reduced row echelon systems A1 X = 0, A3 X = 0 have the same
solutions and show the row echelon system. Then the number of pivots and free unknowns are
same, and the solutions of A; X = 0, As X = 0 are given by the combinations of these unknowns
and entries of A; and As respectively. As a result A; = Ag since A1 X =0 and A2 X = 0 have
the same solutions.

For the second part, if A is reduced to Ay and As, then A1 X = 0 has the same solutions as
Ay X =0, since both of them have the same solutions as AX = 0, and thus A; = A,. ]

Exercise. Find all solutions of the equation x1 + xo + 2x3 — x4 = 3.

Proof. All possible solutions in R are given by

where a,b,c € R. O
Exercise. Find all solutions of the system of equations AX = B when
1 2 1 1
A=13 0 0 4
1 -4 -2 2

and
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()

0

B=|2

2

Proof. For (a). By Gaussian elimination one has
12 1 10 1 2 1 10 1 2 1 10 1 2
[A|Bl=13 0 0 40]=(0 6 -310]=1|0 -6 -3 10]=10 -6
14 -220 0 2 =310 0 0 —4 30 0 0

This shows all possible solutions over R is given by

—3p
4
t(=3a+1b)
a

b

Tr = 5

where a,b € R. Similarly one can show the solutions of (b) is empty set and (c) are given by

4
4p

3
2
—5a+

b

8

|
Wl
o=

@@[\JM—!|

where a,b € R. O

Exercise. Find the inverse of the following matriz by elementary row reduction:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Proof. The inverse of above matrix is given by

1 0 0 0 0
-1 1 0 0 0
1 -2 1 0 0
-1 3 -3 1 0
1 -4 6 —-4 1

O]

Exercise. Write the following permutations as products of transpositions, and determine their
sign.

(a) 1,3,5,2,4,8,6,7,
(b) 9,5,3,8,4,6,2,1,7,

(c) 7,1,6,2,5,3,4.

1
-3
0

1

1
0

0
0
0
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Proof. For (a). Firstly note that the permutation
1,2,3,4,5,6,7,8
1,3,5,2,4,8,6,7

can be written as (1)(2,3,5,4)(6,8,7), and thus it can be written as products of transpositions
as follows

(1)(23)(25)(24)(68)(67),

which implies it’s an odd permutation. By the same method one can write the other permuta-
tions as products of transpositions. O

Exercise. FEvaluate the following determinants:

2 01

(e O 1 O],
1 0 2
1 0 00
5 2 00

(d) 8 6 3 0
09 7 4

Proof. The determinants are 2 — 24, —2, 3, 24 respectively. ]

Exercise. Compute the determinant of the following n X n matriz using induction on n :

2 -1
-1 2 -1
-1 2 -1
-1

Proof. Let T,, denote above n x n matrix. It’s clear det 77 = 2 and det 75 = 3. Now let’s prove

detT,, = n + 1 by induction. Suppose it holds for n < k. Then for n = k, by expansion along
the first row one has

det T, = 2detTp_1 — (—1) X (—1) detTp_o =2k —(k—1)=k+1.

Exercise. Suppose R = K]|t] is the polynomial ring and A = (a;;) € M, (R). Show that

(a)
Odet A
ot

where A; is obtained from A by taking the derivative of the i-th row and keep the other rows.

=det A; + -+ + det Ay,
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GdetA . Z-_Hﬁaij B
ot = Z(—l) Wdeta”,

1]

where a;; = A° <;)

Proof. For (a). Note that

OdetA 0
= ( Z Sgn(a)ala(l) s ana(n))

ot ot =
Oy (i
— Z Z sgn(o) (ala(l) . Bt( ) .. .am(n))
k o€S,

=det A1 + --- +det 4,.

For (b). It suffices to note that

SOay;
A = Z(*l)kﬂai?flku‘-

Then by (a), one has

3 80@
det A =det Ay + -+ det A, = Y (—1) ﬂaitJAi,j

i?j
O
T Yy z
Exercise. Supposedet | 3 0 2| =1. Compute the following determinant.
1 1 1
20 2y 2z
3
W2 01
1 1 1
x Y z

(2) [32+3 3y 3z+2
z+1 y+1 z+1

z—1 y—1 2—-1

@ 4 1 3
1 1 1

Proof. By elementary operations, one can see all of above three determinants equal to the

determinant of

— w8
— o
= DN W

Exercise. Cualculate the Vandermonde determinant

1 1 o 1

01 0 ... O,

det . ) .
0?71 972171 . 92—1

9
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Proof. Now let’s prove the Vandermonde determinant equals [, jgn(gj — 6;) by induction.
It holds for n = 2, and suppose it holds for n < k. Let V denote the Vandermonde matrix.
Then

1 1 o 1
0 0y — 04 e 0, — 0,
detV =det | . . )
0 o5t -t ... gt ght
0y — 04 e 0, — 01
I R S S
o5t —ort . oyt !
1 1 i 1 0y — 61 0
0y + 01 03 + 0 0 + 01 0 03 — 04
= det : : : ' '
PO D Dy -l BRI D 0 0
Note that
1 1 - 1
02 + 01 03 + 01 0 + 61
it 05 P06y o g6
1 0o --- 0 1 1 ... 1
61 1 0 92 93 Hk
o : 0 : : :
0% op? 1) \o57> 652 0

Then by induction hypothesis one has

k
detV = H(xj — 1) H (15 — ;) = H (zj — i)
j=2

2<i<j<k 1<i<j<k

as desired. ]
. ) ) . A B )

Exercise. Let a 2n x 2n matriz be given in the form M = c D) where each block is an

n X n matriz. Suppose that A is invertible and that AC = CA. Use block multiplication to
prove that det M = det(AD — CB). Give an example to show that this formula need not hold
if AC #£ CA.

Proof. Note that

A B
det M = det (C D>

(A B
~“\O D-CA'B

= det A-det(D — CA™'B)
= det(AD — ACA™'B)
= det(AD — CB).

10

O — 01
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Exercise. Suppose a;; > 0 and a;; < 0 for i # j. Suppose in addition thaty ;| ai; > 0 for all
J. Show that det(a;;) > 0.

Proof. Let’s prove this by induction. For n =1,
det(aij) =ay; > 0.

Now suppose it holds for n < k. Then for n = k, note that

al a12 - Qg ail a12 T Al
a
a1 ag - Az 0 agy—glaz -+ ag
det ] . ] = det .
Akl k2t Qkk 0 are— 22ak - akk
aze — $2asr cc- ag
= a1 det
a
k2 = G20kl - (kg
a2 a2 ai2 . .
Note that ags — —=ag; > 0 and ——=(ag1 + -+ +ax1) > ———(—aq1) = a12. Then by induction
) an an an
hypothesis
a
agy — g2az1 - Ggk
det : 1 >0
a
k2 = go0k1 - Gkk
This completes the proof. O

Exercise. Suppose A € My, xs(R) and B € Mgy, (R). Prove

0 n > s;
det A - det B, =
det(AB) - . "
det A -det B o<
21§k1<k2<---<kn§s <k1k2 R kn> ( 12.--n >

Proof. If n > s, then there exists a non-zero x such that Bx = 0, and thus ABx = 0. This
shows the system of linear equations ABX = 0 has a non-zero solution, and thus det AB = 0.
If n = s, then both A, B are square matrices, so

det AB =det A -det B

by properties of determinants. If n < s, consider the matrix

A 0
=i %)

which is a (n + s) X (n + s) matrix. On one hand, one has

B A O\ O —-AB\ nstn
det M = det (Is B) = det (Is B ) =(-1) det AB.

On the other hand, by Laplacian expansion one has

detM= 3 ()T e (klzf o )detM (nk+ YRR +8) ,
1<k < <kn<s 1R2 n n+1Rn+2 n+s

11
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y kn+s} is a permutation of {1,...,n + s}. Note that among the first n rows, the
last n columns are zeros, so if

12...n
det A (klkrg...k:n> 70,

1<ki,...,k, <s. In particular, one has

M<n+1n+2...n+5>:<j_s< 12...s > B),
kn+1kn+2 te kn+s M1,y Hs—n

Jkn}U{p, o pus—nt = {1,2,...,s}. Again by Laplacian expansion one has

n+ln+2---n+s (s=n)(s=n+1) 4\ o kiks ...
= (-1 5 pitetps—n det B <
< kn+1kn+2 e kn—l—s > ( )

det M — (_1)n(n2+1)+(S—n)(;—n+1)+k1+---+kn+,u1+---+’u,s_" Z det A ( 12..-n

keiks -k

1<k1<-<kn<s

thit ket g =07+ 5%+

Note that
nn+1) (s—n)(s—n+1)
2 2

kn,
12...n )~

Jouo

S§—Nns

=ns+n (mod 2).

This completes the proof.

12

kiko - - -
12- ..
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Chapter 3

Homework-3

Exercise. Let A = (a;;) and B = (a; j+). Show that det B = det A+ x- Em-(—l)”j det A; ;.

Proof. For any square matrix M, denote by M; the i-th row vector of M. View det M as a
function D of its row vectors M;. Then by definition D is an alternating multilinear function.

Suppose A is an n X n matrix and v is the n-dimensional row vector whose entries are all 1.
Then we have

det B = D(A; +av,---, A, + av)

1
= > D(61 AL+ (1 —01)zv, -+, 0pAn + (1 —0p)zv)  (since D is multilinear)

517"' 76n:0
n
= D(Ay, - ,A)+ > DAy, - ,Ai_1,20, Ay, -+, Ay)  (since D is alternating)
i=1
n o n
= det A+ > (—1)"Mx(> det 4; ) (by Laplacian expansion)
i=1 j=1
n . .
= detA+z- Y (1) det 4;;
ij=1
]

Exercise. Suppose A € Myxs(R) and B € Mgyn(R) (with R commutative). Prove that
det(l, +AB) = det(I; +BA).

Proof. Consider the block matrix C' = [I" _IA] It’s a square matrix of order n + s. Notice
S

B
that
L, —A||l,+AB 0| C— I, 0 I, —-A
0 I B I,|] ~  |B I;+BA| |0 I
So det(I, +AB) = det C' = det(I; + BA). O
Exercise. Compute the following determinant.
1+ay+b; a1 + b al + by
az + by 1+as+by --- as + by,
an + b1 an + bo coo 14an+0b,
Solution. Notice that
l14+a+b ay + by ay + by ap 1
as + by 1+ag+by --- as + by, I ay 1 1 1 --- 1
: I I e N R
an + b1 an + ba - 1+4+a,+b, a, 1

13
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So by the conclusion of Exercise 2,

1+a1+b1 a1 +b a1 + by
as + by 14+ as + by as + by, 1
. } ) =det | b+
: : : b1 by
an + b1 an + b 14+an+0b,

So the given determinant is equal to

I+ar+-+ap
aiby + -+ apby

n

L+by+-- = (I4+ar+- +an)(L1+bi+- - +by)

+ by

Exercise. Use Cramer’s rule to find solutions of the following equations

/

201 +x0 —bx3+ 24 =8
x1 — 3x9g — 64 =9

229 — x3+ 224 = —H

x1 + 4x9g — Tx3+ 624 =0

(1)

To+xz3+xs=1
T1+x3+ T4 =2
1+ T2+ x4 =3
1+ 29 +x3=4

2 1 -5 1 8 1 -5
. 1 -3 0 -6 9 -3 0
Solution. For (1), |A| = P 27, |A1p| = D. »
1 4 -7 6 0o 4 -7
2 8 =5 1 2 1 8 1 2
1 9 0 -6 1 -3 9 -6 1
0 -5 —1 2 - _1087 |A37Q| - 0 2 -5 2 B _277 ’A4,b| - 0
1 0 -7 6 1 4 0 6 1
Hence x1 =3, xo = —4, x3=—1, 24 = 1.
01 11 1 111
1 011 2 011
1 110 4 1 1 0
01 11 0111
1 0 2 1 1 01 2
BRI | i il R S s
1140 1 11 4
0 7 4 1 2
ence x - = pa=— = ——.
1=73 T2 3 3= 3, T 3

1

bn

a11

:|a21

a, 1

—n(a1by+- - +anby)

O
1
—6
o | = 8L [Azy| =
6
1 -5 8
3 0 9
o 1 _sl=27.
4 —7 0
01 1 1
1211
130 1|- 4
1 410
O

Exercise. Find the ranks of the following matrices by reducing to reduced row echelon forms.

31
94
94
32

17
53
54
20

43
132
134

48

(1)

14



[24 19 36 72 -38
2) 25 21 37 75 —42

73 59 98 219 -—-118
47 36 71 141 -T2

1
2
-1
-1
0o -1 1 -1

3)

SN = O
SN = O

b
v)
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Solution. For (1), we obtain a reduced row echelon form of the given matrix via following row

elementary operations:

1
-3
-3
-1

1
0
0
0

S O = O
O = OO

—_
O = O O

o O o

o o o~
O = O

0

0
0
1
0

_ o O O — o O O

_ o O O

0
0
0

1

So the rank of the given matrix is 3.
For (2), we obtain a reduced row echelon form of the given matrix via following row elemen-

tary operations:

|
w
o
— o O = O
OO O = SR O O
O~ O O

o O O =
oS O = O
—_

_ o O O
[\)
ot

19
21
99
36

O O = O

25

(25 31
7 94
7 94
25 32

[\)
ot
w
O O = O e

[\
ot

36 72
37 75

98 219
71 141

19 36

2
2

1
—10

-2 -1

o O O

O O = O

17
53
54
20

17
2
3
3

o= O O

43
132
134
48

—38
—42

72
3
3

-3

12
1

o O W o

—118
—72

—38
—4
—4

25 31 17 43
0 1 2 3
0 1 3 5
0 1 3 5

25 0 —45 —50

o1 2 3

00 1 2

00 1 2

25 0 0 40
0 10 -1
0 01 2
0 00 0
1o0oo0 2
010 -1
001 2
000 0

24
1
1

o O o

19 36 72
2 1 3
2 —10 3
—2 -1 -3
—29 12 0
2 1 3
0 —11 0
0 0 0
2 1 3
12
1 -2 0
0 1 0
0 0 0
2 0 3 —4
100 -2
010 0
000 0

—38
—4
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1 -2 0 01 2 0 3 —4 100 3 0
0 1. 0001 O0O0 -2, 101 00 -2
0O 0 10/|0O1TO0 Of (0010 O
0 0 0 1100 0 0 O 0000 O

So the rank of the given matrix is 3.
For (3), we obtain a reduced row echelon form of the given matrix via following row elemen-
tary operations:

1 0 0 0 0 1 0 1 0 1 0 1 0
-3 1 0 00 3 1 2 1 o 1 -1 1
-1 01 00 1 2 -1 2|=1]0 2 -2 2

1 001 O0f(|-1 0 -1 0 0O 0 0 O

0 0 0 0 1 0o -1 1 -1 o -1 1 -1

1 0 0 0 O][1 O 1 0 10 1 O
0O 1 0O0O0OJj0 1 -1 1 01 -1 1
0O -2 1000 2 =2 2(=(00 0 0
O 0 01 0/)]0 0 0 O 00 0 O
O 1 00 1}]]0 -1 1 -1 00 0 O
So the rank of the given matrix is 2 ]

Exercise. Let K be a field. Suppose A’ is a submatriz of A € M,(K) of order r such that
det A" # 0. Sippose for any submatriz A” of A of order r+1 containing A’, we have det A” = 0.
Show that A has rank r.

12...r

are linearly independent, and similarly for the first columns. By definition rank A > r. If
rank A > r+ 1, then the number of vectors in a maximal subset of linearly independent vectors
contained in the rows of A is greater than r. So there exists i > r such that the first r rows
and the i-th row are linearly independent. They form an (r 4+ 1) x n matrix B.Notice that
rank B = r + 1 > r and the first r columns of B are linearly independent since det A" # 0. So
similarly there exists j > r such that the first r columns and the j-th column of B are linearly

independent. So det A (i ; :;) = 0, which contradicts the condition. So rank A = 7. O

Proof. WLOG we may assume A’ = A Since det A’ # 0, the first r rows of A

Exercise. Let K be a field and suppose A € M, (K) has rank r. Suppose the first r rows of A

are linearly independent, and similarly for the first columns. Show that det A (E ;) #0.

Proof. Denote by B the submatrix consisting of the first r columns of A. Since they are
linearly independent, rank B = r. Since rank A = r and the first r rows of A are linearly
independent, every row of A is a linear combination of these r rows. So every row of B is a

12"'7“) =rank B =r. So

linear combination of the first r» rows of B, which implies rank A ( 19 r

12...r
detA(12~-r) #0. O

Exercise. A skew-symmetric matriz is a matriz A such that A' = —A. Suppose A € M, (R) is
skew-symmetric, show that

(a) If det A # 0 then n is an even number

(b) rank A is even.

16
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What about skew-symmetric matrices over other fields K ¢

Proof. For (a), since det A = det A® = det(—A) = (—1)"det A and det A # 0, we have (—1)" =
1. So n is even.

For (b), suppose rank A = r. Then there exist r rows of A such that they are linearly
independent. WLOG we may assume they are the first » rows. Since A = —A, the first r

12 T> # 0. Combining (a) with the fact

columns are also linearly independent. So det A ( 12y

127
thatA(lQ---r

This proof still holds when R is replaced by a field K such that char(K) # 2. When
char(K') = 2, here’s a counter-example: the 1 x 1 matrix [1] is skew-symmetric and invertible.

is a skew-symmetric matrix, we obtain that rank A = r is even.

O
Exercise. Suppose uy,- - ,uy are linearly independent and each of them is a linear combination
of vi,-++ ,v,. Prove that there is some vy such that vg,us, -+ , Uy are linearly independent.
Proof. Notice that us,--- , u,, are linearly independent. So if for any 1 < k < n, vg,uz, -, Un
are not linearly independent, then vy, is a linear combination of us, - - - , u,, for any k. Since u; is a
linear combination of vy, --- ,v,, u1 is a linear combination of us, - - - , Uy, which contradicts the
fact that wy,--- ,up, are linearly independent. So there exists some vi such that vg, uo, -+, um
are linearly independent. O

Exercise. Find a mazimal set of linearly independent vectors in each of the following sets of
vectors. (For accuracy they are all regarded as real vectors.)

(1) (1,2,3), (4,8,12), (3,0,1), (4,5,8)
(2) (1a273747576)7 (170717071a0)7 <_171717_171a1)7 (_27372737477)
(3) (1,2,3,4), (1,0,1,0), (—1,1,1,—-1), (—2,3,2,3).

Solution. For (1), since (4,8,12) = 4(1,2,3), (4,5,8) = 5(1,2,3)+1(3,0,1) and (1,2,3), (3,0, 1)
are obviously linearly independent, {(1,2,3),(3,0,1)} is a maximal set of linearly independent
vectors.

For (2), if there exists a, b, ¢ € R such that a(1,2,3,4,5,6)+b(—1,1,1,—-1,1,1)+¢(1,0,1,0,1,0) =
(0,0,0,0,0,0), then a—b+c = 2a+b = 3a+b+c = 0. So a = b = ¢ = 0, which implies these three
vectors are linearly independent. Since (—2,3,2,3,4,7) = (1,2,3,4,5,6) + (—1,1,1,—-1,1,1) —
2(1,0,1,0,1,0), {(1,2,3,4,5,6),(-1,1,1,-1,1,1),(1,0,1,0,1,0)} is a maximal set of linearly
independent vectors.

For (3), if there exists a,b,c € R such that a(1,2,3,4) + b(—1,1,1,-1) + ¢(1,0,1,0) =
(0,0,0,0), thena —b+c=2a+b=6a+b=0. Soa=>b=c=0, which implies these three
vectors are linearly independent. Since (-2,3,2,3) = (1,2,3,4) + (-1,1,1,-1) — 2(1,0,1,0),
{(1,2,3,4),(—1,1,1,—-1),(1,0,1,0)} is a maximal set of linearly independent vectors. O

Exercise. Prove that the set of functions f : R — R is a wvector space over R. Is it finite
dimensional? Prove your conclusion.

Proof. Denote this set by F'. Define (f+g)(z) = f(z)+g(z), (kf)(z) = kf(x). Obviously they

17
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are well-defined. Then for any f,g,h € F', k,l € R, x € R, we have

((f+9)+h)(z) = f(x) +g(z) + h(z) = (f+ (g+h))(z)
(f+9)(x) = f(z) +g(z) = g(x) + f(z) = (9 + )(x)
f(@)+0=0+ f(z) = f(z)

f(@) + (= f(2)) = (= f(z) + f(x) =

(1-f)(x) =1 f(z) = f(x)
(kL) (x) = KI(f(x)) = (kLf)(x)
(k(f +9))(x) = kf(x) + kg(x) = (kf)(z) + (kg)(z)

(E+Df) (@)= (k+Df(z) =kf(x) +1f(x) = (kf)(x) + (If)(z)

So F' is a vector space over R.

It’s infinite dimensional. To prove this, consider f(z) = zF € F. For any n > 0, fo, - , fn
are linearly independent over R, which implies F' can’t be spanned by n vectors (otherwise
dim F' < n, which contradicts the fact that F' contains n + 1 linearly independent vectors). So
F is infinite dimensional. O

Exercise.

(a) Let K be a field. Show that the set of symmetric matrices (A = A) and the set of skew-
symmetric matrices are both linear subspaces of My(K), and compute their dimensions.

(b) Prove that M,(R) is the direct sum of the space of symmetric matrices and the space of
skew-symmetric matrices.

(¢) Let W C M, (R) be the subspace of matrices whose trace is 0. Find a subspace W' of M, (R)
such that M,(R) =W @ W',

Proof. Let Sym,,(K) be the set of symmetric matrices of order n over K, Skew,(K) be the set
of skew-symmetric matrices of order n over K.

For (a), since Sym,, (K), Skew,,(K) are subsets of a vector space M, (K), we only need to
verify that they are closed under addition and scalar multiplication. For any A, B € Sym,,(K)
and k € K, since (kA)! = kA' = kA and (A + B)! = A" + B' = A+ B, we have kA, A+ B €
Sym,, (K). A similar conclusion holds for Skew,,(K). So they are both linear subspace of M, (K).

Furthermore, denote by e;; € M, (K) the matrix which has an 1 in the (4, j) position as
its only nonzero entry. For i < j, let x;; = em +eji € Sym,,(K), yij = eij — eji € Skewy(K).
Then for any A = (a;;) € Sym,,(K), A = Z ajieq; + Y aijxi; since a;; = aj;. Since ({zy; | i <

=1 1<j
JtU{eii | 1 <i < n})is a set of linearly independent vectors in Sym,, (K ), it’s a basis. So
dim Sym,, (K) = w Similarly, for any B = (b;;) € Skew,(K), B = Z:lb“e“ + > bijyij
1= 1<j
since b;; = —bj;. When char(K) # 2, b; is always zero, so {y;; | ¢ < j} is a basis of
Skew,, (K). So dim Skew, (K) = w Otherwise char(K) = 2, then Skew,,(K) = Sym,,(K).
So dim Skew,, (K) = w
A+ A A— A A+ A A— A

For (b), for any A € M, (R), A = ; + 5 Since a € Sym,, (R) and €
Skew, (R), M,(R) = Sym,,(R) + Skew,,(R). Furthermore, for any A € Sym,,(R) N Skew,, (R),
A=A"=—A, s0o A=0. So M,(R) = Sym,,(R) & Skew,,(R).

For (c), let W/ = {cI,, | ¢ € R} be the linear span of I,,. Then for any A € M,(R), A =
(A—Ltr(A)1,)+ L tr(A) L. Since tr((A—1Ltr(A)1,)) = tr(4) —tr(4) = 0 and L tr(A) L, € W/,
we have M,(R) = W + W’. Furthermore, W N W' = {cI, | nc = tr(cl,) = 0} = 0. So
M,(R) =W & W". O

Exercise. Let Vi,---, Vi be subspace of a wvector space V' such that V. = Y V. Suppose
VinV, =0, (V1+V'2)ﬂ‘/3:0, ,(V1+V2+-'-+Vk_1)ﬂvk:0. Show that V = V.
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Proof. Suppose v; € V; such that v;1 +--- 4+ v = 0. We only need to prove that v; = 0 for
all 4. If there exist some v; # 0, let ig be the maximal subscript ¢ such that v; # 0. Then
v+ 40, =0. So vy = —v1—- - —vig—1 € (Vi+Va+---+V;,—1)NV;, = 0, which contradicts
the fact that v;, # 0. So v; =0 for all i. So V = @V;. O
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Chapter 4

Homework-4

Exercise. Show that rank(AB) = rank B if and only if the solution space of ABx = 0 is the
same as the solution space of Bx = 0. Moreover, show that in this case, for any C, we have
rank(ABC') = rank(BC) whenever the product is well defined.

Proof. Firstly it’s clear the solution space of Bx = 0 is included in the one of ABx = 0. In other
words, ker B C ker AB. Then ker A = ker AB if and only if dimker B = dim ker AB, which is
equivalent to rank B = rank AB since rank B = n — dimker B and rank AB = n — dim ker AB,
where n is the number of columns of B.

In the case of ker B = ker AB, suppose C = (v1,...,vp) with v; € R". Then Buv;,,..., Bv;,
are linearly independent if and only if

1y + -+ vy, EkerB = ¢ =---=¢;, =0.

But ker B = ker AB, this shows that Bv;,...,Bv;, are linearly independent if and only if
ABv;,, ..., ABuv;, are linearly independent. This shows rank ABC = rank BC' O

Exercise. Suppose A € M, (R). Show that rank(A*A) = rank A.

Proof. Tt suffices to show that the equations Az = 0 and A*Az = 0 have the same solution
space. It’s clear that Az = 0 implies A’Az = 0. On the other hand, if A*Az = 0, then

' A Az = (Az) Az = 0.
This shows Az = 0. O

Exercise. Find a basis of the space of symmetric and skew-symmetric matrices over a field K,
and compute their dimensions.

Proof. 1t depends on the characteristic of the field K. If charK # 2, then we have already
shown in the Homework3 that

{Eij + Ejitiz; U{Eii}
gives a basis of the space of symmetric matrices, and thus the dimension of the space of sym-
metric matrices is n(n + 1)/2. On the other hand,

{Eij + Eji}iz

gives a basis of the space of skew-symmetric matrices, and thus the dimension of the space of
skewsymmetric matrices is n(n — 1)/2. However, if charK = 2, then the space of symmetric
matrices and skew-symmetric matrices concide, both have dimension n(n +1)/2. O

Exercise. Let K = 7, be a finite field with p elements, where p is a prime. For positive integer
n, compute the number of different basis of K™.
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Proof. Note that it suffices to compute § GL(n,Z,), since any two basis of K™ differs a unique
element in GL(n,Z,). (In other words if you like, GL(n,Z,) acts on the set of basis of K"
transitively with trivial stabilizer.)

For A € GL(n,Z,), there are p" — 1 choices for the first row, and if we have fixed the first
columns, there are p™ — p choices for the second row since the second row has to be linearly
independent with the first column. Repeat above arguments one can see there are

" =D —p)...(0" —p").

Exercise.

(a) Prove that the set B = ((1,2,0)",(2,1,2)%,(3,1,1)!) is a basis of R®.

(b) Find the coordinate vector of the vector v = (1,2,3)" with respect to this basis.

(c) Let B' = ((0,1,0)%,(1,0,1)%,(2,1,0)"). Determine the basechange matriz P from B to B'.

Proof. For (a). It suffices to compute the determinant of the matrix given by this basis.
For (b). It suffices to solve a system of linear equations.
For (c). It suffices to solve three systems of linear equations. O

Exercise. Let U, VW be three subspaces of a vector space. Is the following formula correct?
Find a proof or a counterexample.

dim(U +V + W) =dim(U) + dim(V) + dim(W)
— dim(U N V) = dim(U N W) = dim(V N W)
+dim(U NV AW)

Proof. 1t’s wrong. Just consider the
U={(z,0)|zeR}, V=A{(0)]zeR}, W={(x,z)|zeR}

Then
UNnv=0nw=vnWw=U0UnvVnWw ={0}

But
dim(U+V+W)=2#3=dimU +dimV + dim W.

O]

Exercise. Consider the linear transform: T': R3 — R? such that (1,22, :B3)t — (x1 + 229,11 — xg)t.
Compute the matriz of T with respect to the basis o, aa, a3 of R® and 51, Ba of R?:

(@) a1 =(1,0,0)", 02 = (0,1,0)", a3 = (0,0, 1)"; 81 = (1,0)", B2 = (0, 1)";

(b) a1 = (1,1, 1), a2 = (0,1,1)", 3 = (0,0,1)"; 51 = (1, 1), B2 = (1,0)7;

() a1 =(1,2,3)", 02 = (0,1,-1)", a3 = (-1,-2,3)"; 81 = (1,2)", B = (2, ).

Proof. A routine computation. O

Exercise. Let 0 be a real number. Consider the complex matrices

s V=10
A 0950 sin 0 . B= e 0 ‘
sind cosf 0 e~ V10
Find a complex matriz P such that P"'AP = B.
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Proof. Note that
eV — cosf ++/—1siné.

() ) (5 )= (5 )

Exercise. Let W be a subspace of V', let m: V. — V /W be the projection map. Let g: V/W —
V/W be a linear transformation. Is there always a linear transformation f:V — V such that
gom=mof ?

Then

O]

Proof. Suppose dim W = k with basis {wy, ..., wy}. Firstly we extend the basis of W to a basis
of Vas {ey,...,en_k,wi,...,wi}, and then {e; + W,... e, + W} is a basis of V/W.
Given a linear transformation g: V/W — V/W, one has

gom(e;) =glei+W)=g(e;) + W
gom(wj) =g(W)=W.

Then we define a linear transformation f: V' — V by evaluating on basis {e1, ..., ep_k, w1, ..., wg}
as

flei) = g(ei)

fw;) = w;.
Then it’s a linear transformation which extends g. O

Exercise. Let f(x) # 0 € K|[z], where K is a field. Let f(x)- K[x] be the subspace of K|x]
consisting of polynomials divisible by f(x).

(a) Find a basis of V.= Klz|/(f(z) - K[z]) and compute its dimension.

(b) Consider the linear transformation T:V — V such that g(x) — Z - g(x). Find the matriz
representing T with respect to your basis.

Proof. For (a). Suppose the degree of f(z) is n. Then
{1,z,2%, ..., 2" 1}

is a basis of K[z|/(f(z)K|[z]). Indeed, it’s clear above elements are linearly independent over K,
and for any element g(z) in K[z] with degree higher than n, we can use division with remainders
to write

9(x) = q(z)f(x) + r(z)

where degr(z) < n. This shows in K|z|/(f(z)K|[z]) one has g(z) is the same as r(z), which
implies g(z) is a linear combination of {1,z,22%,..., 2" 1}.

For (b). Suppose f(z) = apa™+ -+ +ay,_12" 1 +---+a1x +ag. Then for z* withi <n—1,
one has T(z') = z*!, and

T(@" ) = 2" = ——(an_12" ' + - + a1z + ag),
n

This shows T has the matrix representation as

000 - 0 -2
100 - 0 -2
010 - 0 -2
00 0 1 —ge=t
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Exercise. Let V' be a vector space.

(a) LetVi,Va and V{,Vy be subspaces of V' such that dim V;NV; = dim VN V] for every possible
i,j (in particular, dimV; = dimV}). Show that there is an isomorphism T:V — V such
that T (V;) = V.

(b) *(open question, no need to submit) Let Vi, Va, Vs and V|, V4, V3 be subspaces of V' such that
dimV;NV; NV =dimV/n V/ NV} and dim V; N (V; + Vi) = dim V/ N <V]' + V,;) for every
possible i, j, k. Is there always an isomorphism T:V — V such that T (V;) =V ¢

(¢) *Mopen question, no need to submit) What about subspaces Vi, Va, V3, Vy, and more?

Proof. For (a). Let {e1,..., e} be a basis of ViNVs and {e],..., e} be a basis of V/NV;. Then

we extend {eq,...,er} to a basis of V; by adding vectors u1, ..., u,, and extend {eq,..., e} to
a basis of V5 by adding vectors vy, ..., v,. Finally we extend
{e1, -, ep Uty ey Um, U1, ., U}

to a basis of V' by adding vectors o1, ..., ;. Similarly, we can do the same thing to the basis
{€},...,€}} and obtain a basis

/ / / / / / / /
{€1, ey €y ULy ey Uy, VYo ey Uy Pls o5 P )

of V. Then we define T as follows

T(ea) = €q
T(up) = ug
T(vy) = vr,
T(ps) = T(ws)-
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Chapter 5

Homework-5

Exercise. Find the kernel and image of the linear transformation T : May(R) — R? given by

eI
a+b=c—d:0}:{{—ad ?l]

maqdeR}—RQ

Solution.

mT:HZﬂem@)

mr={ |17

Exercise. Let A € M, (K). Let Ta : Mp(K) — My (K) be the linear transformation such that
TA(X) = AX. Show that T is an isomorphism if and only if A is invertible.

a,dER}

O]

Proof. Sufficiency: When A is invertible, T4 has an inverse given by T,-1 since AA7!X =
A7LAX = X for any X € M,(K). So Ty is an isomorphism.

Necessity: When T4 is an isomorphism, there exist X € M,,(K) such that AX = Ty(X) =
I,,. So X is the inverse of A and A is invertible. O

Exercise.

(a) Suppose T is a diagonalizable operator on V- and W is an invariant subspace of T. Show
that T|w is also diagonalizable.

A 0

(b) Let M be a matriz made up of two diagonal blocks: M = [0 D

]. Prove that M is
diagonalizable if and only if A and D are diagonalizable.

Proof. For (a), suppose A1,---, A are all distinct eigenvalues of T' and FEi,--- , E} are their

corresponding eigenspaces, respectively. Since T is diagonalizable, V = E; @& --- & Ej, and
k

[1(T —Xid) = 0. Let fi(x) = [] ;:A/\JJ € Klz]. By definition we have im f;(T) C E;. By
i=1 g#i

Lagrange interpolation formula, we have fi(x)+---+ fr(z) = 1. So fi(T)+---+ fi(T) =id. So
for any w e W, w = fi(T)w+ --- + fr(T)w. Since W is T-invariant, f;(T)w € W Nim f;(T) C
WnNE;. SoW = (WﬂEl)—l---'—i-(WﬂEk) = (WﬁEl)EB"'@(WmEk)(SiHCG WNE; C Ez)
Notice that W N E; is exactly the eigenspace of \; for T'|yy when W N E; # 0. This implies T'|w
is diagonalizable.
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For (b), sufficiency is obvious: If A, D are diagonalizable, there exist matrices P, Q) such that
P71'AP,Q7'DQ is diagonal. Then

P o]t [P 0] _[PlAP 0
oo v el =["0" o g
is diagonal. So M is diagonalizable.

For necessity, suppose the orders of M, A, D are n,r, s respectively and consider the linear
operator T : K™ — K", x +— Mux. Let V be the subspace of K™ consisting of vectors whose last
s components are zeros and W be the subspace consisting of vectors whose first » components
are zeros. Since M is made up of two diagonal blocks A and D, V, W is T-invariant. By (a) we
have T'|y, T|w are diagonalizable. Since they correspond to matrices A, D respectively, A, D is
diagonalizable. O

Remark. We give an explanation for the polynomials appearing in the proof of (a). In fact we
only need to prove that for any w € W C V and its unique decomposition w = wy + - - - + wi
w.r.t. the direct sum V = E; @ --- @ Ej, we have w; € W. Naturally we consider 7™ (w) =
AT'wy +- -+ Af'wg, € W and want to express w; as a linear combination of them. By computing
the Vandemonde determinant this is possible, and in detail what we obtain are just polynomials
in the proof of (a).

Exercise. Suppose T and S are linear operators on a vector space V. Suppose T oS = SoT.
(a) Show that kerT and im T are invariant subspaces of S.
(b) Let X be an eigenvalue of T. Define the generalized eigenspace to be
E\={z eV |\ —=T)"(z) =0 for some m > 0}.
Show that both the eigenspace Ex of T and EY are invariant subspaces of S.

(¢) Suppose S and T are both diagonalzable. Show that there exists a basis {e;}; of V consisting
of common eigenvectors of S and T.

Proof. For (a), since for any = € ker T, T'(S(x)) = S(T(x)) = 0, we have ker T is S-invariant.
For any x € V, S(T'(z)) = T(S(z)) € imT. So im T is S-invariant.

For (b), for any =z € E\, T(S(z)) = S(T(x)) = AS(x). So S(x) € E\. So E) is S-
invariant. For any x € FE}, there exists m > 0 such that (A\I —T)™(x) = 0. Since T'S = ST,
M =T)"S =S -T)". So (M -T)™(S(z)) = S(M —T)™(x)) =0. So S(z) € EY. So E}
is S-invariant.

For (¢), suppose A1,---, A\, are all distinct eigenvalues of T'. Since T' is diagonalizable,
V =FE\ & - ®E),. By (b) we have E),(1 < i < k) are S-invariant. By the conclusion of
Exercise 3(b), S|g, (1 <1i < k) are all diagonalizable. So for any 1 <1 < k, there exists a basis
of E), consisting of eigenvectors of S|g, . These vectors are common eigenvectors of S and T'.
Combining them together we obtain a basis of V consisting of common eigenvectors of S and
T. O

Exercise. Assume the underlying field is not of characteristic 2. Suppose T is a linear
operator on' V' such that T? is the identity operator. Show that £1 are all possible eigenvalues
of T andV =FE1 @& E_q.

Proof. If ) is an eigenvalue of T and x is an eigenvector of A, then z = T?(x) = A2x. Since
r#0, 2 =1. So A= +1.

Forany x € V, z = x+§(x) + xig(x) (There we need char # 2). Since T2 = id, T(%(z)) =

%(x) and T(x_g(m)) = T(mQ)_m, which implies V = E; + E_;. Since F1 N E_; = 0, its a direct

sum. OJ
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Exercise. Find all invariant subspaces of the real linear operator whose matriz is

@ "
[1
® | 2

Solution. For (a), any nontrivial invariant subspace of this matrix must be 1-dimensional, i.e.,
spanned by an eigenvector. Notice that the characteristic polynmial is (A — 1)?> and E; =
{(z,0)! | x € R} is 1-dimensional. So the only nontrivial invariant subspace of this matrix is
Ei. So all invariant subspaces of this matrix are 0, R? and E;.

For (b), since this matrix is diagonal, by the conclusion of Exercise 3(a) we have all of its
invariant subspaces are spanned by eigenvectors. Notice that the characteristic polynmial is
(A —1)(A = 2)(A = 3) and E; = Span(e;) is 1-dimensional, where e; = (1,0,0)!, e = (0,1,0)?,
e3 = (0,0,1)". Therefore, all invariant subspaces of this matrix are {Span(A4) | A C B} where
B:{61,62,63}. O

Remark. In general, for a diagonalizable matrix A, all its invariant subspaces may not be
{Span(A) | A C B} where B is a basis consisting of eigenvectors of A. For example, when
A =1, R" has subspaces different from those spanned by some subset of {eq, - ,e,}.

Exercise. Let P be the real vector space of polynomials p(x) = ag + a1x + - - - + apx™ of degree
at most n, and let D denote the derivative %, considered as a linear operator on P.

(a) Prove that D is a nilpotent operator, meaning that D* = 0 for sufficiently large k.
(b) Find the matriz of D with respect to a convenient basis.
(¢) Determine all D-invariant subspaces of P.

Proof. For (a), notice that D(ag + a1z + -+ apz™) = a1 + 2a2x + - - - +napz™ L. By induction
(k—;l)!ak+1x + -+ (nﬁi!k)!anx"_k for
1 < k < n. In particular D"(ag +aix+---+a,z") = nla,. So D" (ag+a1x+---+a,z") = 0.
So D™t =0, which implies D is nilpotent.

For (b), choose the basis {1,z,---,2"} of P. Since D(ap + a1z + -+ + apz™) = a1 + 2a9z +
-+ + na,z™ L, the corresponding matrix is

it’s easy to prove D¥(ag + a12 + --- + apa™) = klag +

010 - 0
002 -0
000 - n
000 -~ 0

For (c), let Py be the subspace of polynomials of degree at most k. Then by definition
0cCc PhC P C---C P, =P is a sequence of D-invariant subspaces. For any nonzero D-
invariant subspace V of P, there exists a minimal k such that V C P;. By minimality of
k, there exists a polynomial p(x) of degree k. Then D (p(x)) € V is a polynomial of degree
(k—j) for any 0 < j < k. Since their degrees are distinct, they are R-linearly independent. So
dimV > k+1 = dim P,. Combining with V' C Pj, we obtain V = Pj. Therefore, all D-invariant
subspaces of P are 0, Py, Py, -+, P,(= P). O

Exercise. Let T be a linear operator on a finite-dimensional vector space for which every
nonzero vector is an eigenvector. Prove that T is multiplication by a scalar.
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Proof. Denote this vector space by V. Choose a basis ey, - - - , e, of V. By the assumption there
exists \; € K such that T'(e;) = A\;e; for any i. For any i # j, by the assumption there exists
A € K such that A\je; + A\je; = T'(e; + €5) = A(e; + €;). Since e;, ej are K-linearly independent,
Ai = A =Aj. So Ay = --- = A, which implies T" is multiplication by the scalar A;. O

Exercise. A linear operator T is called nilpotent if T* = 0 for some positive number k. Show
that a linear operator of a vector space over C is nilpotent if and only if all its eigenvalues are
0.

Proof. Necessity: When a linear operator T' of a vector space over C is nilpotent, then for
any eigenvalue \ of T and any eigenvector z of ), since there exists k& > 0 such that 7% = 0,
0 =T"(x) = \x. Since x # 0, A = 0.

Sufficiency: When all eigenvalues of a linear operator T' of a vector space over C are 0,
all roots of the polynomial det(Aid —7) are 0. So Aid —T is invertible for any A # 0. Let
m(A) be the monic minimal polynomial of 7. Decompose m(\) into the product of linear
polynomials m(A) = (A — A1) -+ (A= X;). Forany 1 <i <[, if \; # 0, then the polynomial

m(})

mi(A) = 5= satisfies m;(T) = (T'— A; id)~'m(T) = 0, which contradicts the minimality of m.

SoA=---=XN=0.S0 T =m(T)=0. So T is nilpotent. O

Exercise. Compute the characteristic polynomials and the complex eigenvalues and eigenvectors

@ |5 3

[cosf® —sinf
| sin 6 cos |’

Solution. Always denote the given matrix by A.
For (a), det(A\I—A) = A2 = XA —2 = (A —2)(A+1). So the complex eigenvalues are 2 and

—1.
4 =2 . 1
2I-A= [2 _1]. So the eigenvectors of 2 are {c [2] c# 0}.
1 -2 . 2
—1-A= [2 _4]. So the eigenvectors of —1 are {c [1] c# 0}.

For (b), det(A\T—A) = A% — 2\ = A\(A — 2). So the complex eigenvalues are 2 and 0.

07&0}.
C#O}.

For (c), det(A\T—A) = A2 —2cosOA + 1 = (A — e?)(A — e~®). So the complex eigenvalues
are € and e=. When 6 = kn(k € Z) they are the same, and the corresponding eigenvectors
are all nonzero vectors in C2. Now assume that 6 # k.

c# O}.

2I-A= [:ZL _12] . So the eigenvectors of 2 are {c [i]

—A= [,1 _Z] . So the eigenvectors of 0 are {c B]

7sinf  sinf
—sinf isin@

efT—A= [ } . So the eigenvectors of ¢ are {c [_14
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el -A=|"" s.m@ s.1n.0 . So the eigenvectors of e=% are < ¢ 1 c#05p. O
—sinf —isinf i
Exercise. Let V be a vector space with basis (vo,- -+ ,v,) and let ag, - -+ , a, be scalars. Define a

linear operator T on V' by the rules T'(v;) = viy1 if i < n and T(vy,) = agvg + a1vy + - -+ + apvy,.
Determine the matrixz of T with respect to the given basis, and the characteristic polynomial of
T.

I 0 --- 0 ap ]
1 0 cee 0 aq
Proof. The matrix corresponding to 7' under the basis (vg,- - ,v,) is | : : :
0 an-
10 1 an |
IP) 0 0 —ap |
—1 A 0 —aq
So the matrix corresponding to Aid —7T is :
. . A —Aanp—1
0 -« o =1 A—ap

From bottom to top, add Ax((n — ¢)-th row) to the (n — i — 1)-th row (i =1,2,--- ,n —2).
Then we obtain

[0 0 -+ 0 Al —g\"—- —aqq ]
100 - 0 AN gl g
0 —1 -+ 0 Nl—gA\"2—...—qy
0 0 - -1 A= ap ]
So the characteristic polynomial of T is det(Aid —T) = A"t — g, A" — - - — aq. O

Exercise. In each case, find a complex matriz P such that P~YAP is diagonal.

(1 4
@ |4
0 0 1
) [1 0 0],
0 1 0
(0) [cos® —sin6
¢ [sinf cos@ |’

Solution. For (a), choose P = E i] Then P71AP = [8 g} is diagonal.
1 1 1 B 1
For (b), choose P = |1 w? w |, wherew =e3 . ThenP 'AP = w is diagonal.
1 w w? w?
1 i . e”® 07 . .
For (c¢), choose P = Pt Then P~"AP = 0 0| diagonal. O

Remark. In this remark I'll show you how to find a P. In fact, the column vectors exactly form
a basis consisting of eigenvectors since for this kind of P, we have

AP = Pdiag(\, -+, \n)
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where )\; is the eigenvalue corresponding to the i-th column.

So we reduce this problem to compute the eigenvalues and eigenvectors of A, which we have
done in Exercise 10. So we just need to compute the characteristic polynomial first, then we
will find the eigenvalues. Then we solve the linear equations corresponding to the eigenvalues
and obtain P.
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Chapter 6

Homework-6

Exercise. Suppose A € My, xn(K) and B € Myxm(K). Show that the nonzero eigenvalues of
AB are the same as the nonzero eigenvalues of BA. If m = n, show that the eigenvalues of AB
are the same as the eigenvalues of BA.

Mu A\ | (Mw—AB A\ _ (Mu—AB 0
B I, 0 I, 0 I
Mo A\ | (Mn A (M 0

B I, 0 I,-1BA 0 I,-iBA

1
I, — )\BA’ = A" det |\I,, — BA|

Proof. Note that

and

This shows that

det |\, — AB| = det | Al | det

As a consequence, they have the same nonzero eigenvalues. In particular, if m = n, then their
characteristic polynomials are the same, and thus have the same eigenvalues. O

Exercise. Find lim,_,, A", where A =

EN IS [[SCN ([N
NN N [[OV)
SN ([SEN{[9Y)

Proof. Note that

11 1\ /-2 L[ 0 -1
A=[1 -2 1 —2 3 1 -1
-2 1 1 1 1 1 1
Then
1 1 1\ /0 L1 0 -1
lim A"=[1 -2 1 0 st !
e —2 1 1 1 1 1 1
111
1
111

O

11 2
Exercise. Find the inverse matriz of the matricr A= [9 2 0] wusing the Cayley-Hamilton
50 3

theorem.

30



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

Proof. Note that the characteristic polynomials of A is A? — 6A% — 8\ + 41, and thus
A(A? —6A—813) = —411;

As a consequence

) L [6 3 4
A= - (AP =6A-8I) = - |27 7T 18
10 -5 7

Exercise. Let A € M3(R) such that det A =1 and (—1++/—3)/2 is an eigenvalue of A.
(1) Find all eigenvalues of A.
(2) Suppose A = aA? +bA + cl, determine a,b,c.

Proof. For (1). The characteristic polynomial of A is of real coefficient, and (—1 4 +/—3)/2 is
a root. Then (—1 —+1/—3)/2 is also a root which is also an eigenvalue. Since the product of all
eigenvalues are det A = 1, one has all eigenvalues of A are

~14+v=3 -1-y=3
2 2

1.

For (2). Note that the characteristic polynomial of A is A3 —1. By Cayley-Hamilton theorem
one has A3 = I5. Therefore

A0 = A =qA? 4+ bA+cl3 = aA? + (b—1)A+cl3 =0

However, the eigenvalues of A are distinct, and thus the characteristic polynomial of A is the
minimal polynomial of A as well. Then

O]

Exercise. Let V' be a vector space over K and f,g € V* such that f(v) = 0 if and only if
g(v) = 0. Show that f = cg for some 0 # ¢ € K.

Proof. If f = cg for some 0 # ¢ € K, it’s clear f(v) = 0 if and only if g(v) = 0. On the other
hand, assume that f(v) = 0 if and only if g(v) = 0.

(1) If f =0, then for any v € V one has g(v) = 0 and thus g = f = 0.

(2) If f #0, then f(v) = 0 if and only if g(v) = 0 is equivalent to say ker f = ker g = W, where
W is a linear subspace with codimension one. Suppose V. =W @ S with 0 # vy € S, and
take ¢ = f(vo)/g(vog). For any x € V', it can be written uniquely as

r=tvyg+w, weW.

Thus

) = £ (e -+ ) =15 (o) = £ e () = eg 10+ w) = eg(o)

Therefore f = cg.
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Exercise. Let o = (1,0,—1), a2 = (1,1,1), a3 = (2,2,0) be a basis of C3. Find the coordinates
of the dual basis of oy with respect to the dual basis of the standard basis of C3.

Proof. Suppose {f'} is a dual basis of {a;}. For convenien@e we write f¢ = Z?zl aije’, where
e, €2, €3 are dual basis for standard basis of C*. Note that f!(a;) = &;;. Then it suffices to solve
several systems of linear equations to find out

1 1
fled @ pPod_218, f3:_§€1+62_§63_

O]

Exercise. Let V' be the vector space of all polynomial functions p from R to R that have degree
2 or less:
p(z) =co+crz+ cox?.

Define three linear functionals on V' by

1 2 —1
fi(p) = /0 p(a)de,  falp) = /0 p(a)de,  fs(p) = /0 p(z)da

Show that { f1, f2, f3} is a basis for V* by exhibiting the basis for V' of which it is dual.

Proof. For p(x) = cg + c1z + cox?, a direct computation shows

c c 8
) =cot+ =+ 2, folp) =2c0 +2c1 + ~ca, f3(p) = —co+ = — 2.

2 3 3 2 3
Then a dual basis can be taken as
3 1 1 1
p1($)21+$—§$2, pg(l‘):—g—kf.’ﬂ , p3($):—§+1$—§$2

This is a basis since

1 1 -3

det -2 0 2 ]=-1 #0
_i 1 _21 2
3 2

O]

Exercise. Let W be the supspace Of]R5 spanned by the vectors a; = e;+2ea+e3, a0 = ea+3e3+
3eq + e5, a3 = e1 + 4deg + 6e3 + 4eq + e5, where e; are the standard basis of R5. Find a basis for
W in terms of the dual basis of e;.

Proof. Suppose f € W+ is given by Z?Zl a;€'. Then one has the following system of linear
equations

a1
1 0 0 4 3 (6%
010 -3 -2 a3 | =0
001 2 1 oy

as

Thus W can be viewed as a solution space, which is generated by
{—461 +3e2 -2 + et -3 + 22 — 3 + 65} .
O

Exercise. Let n be a positive integer and K a field. Let W be the set of vectors (x1,...,xzy) in
K™ such that Y x; = 0.
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(1) Prove that W+ consists of all linear functionals f of the form f (x1,...,x,) =Y. ;.

(2) Suppose K =R. Show that W* can be naturally identified with the set of linear functionals
f=> cx; on K™ such that Y ¢; = 0.

Proof. For (1). Suppose f € W+ and we denote f (e;) = ¢; for convenience. Since e; —e; € W,
one has

ci—cj=[f(e)— flej)=f(ei—e;)=0.
This shows ¢; = ¢ for all i. Therefore

f(xl,...,:cn):f(:nlel—l—"-—i-xnen)::rlf(el)+~-+xnf(en):chi.

On the other hand, it’s obvious that f (z1,...x,) =0 if f is of this form.
For (2). Note that there is a natural identification between W and W* by

v* > (v,-).

Under this identification, the linear functional f = ) . ¢;z; on K™ corresponds to the vector
(c1y...,¢). Thus it gives a linear functional on W if and only if (ci,...,¢,) € W, that is,

Exercise. Suppose f € M, (R)* such that f(AB) = f(BA) for all A,B € M,(K) and f(I) = n.
Show that f is the trace function.

Proof. Let E;j € M,(R) denote the matrix with (7, j) entry 1 and the others. Then
[ (Ey) = [ (EaEyj) = f (ErjEi) = 655 f (Er) -
On the other hand, note that
f(Ei) = f (EijEji) = f (EjiEij) = f (Ejj).

for any 4, j. Thus
f)=nf(Ey)=n= f(E;)=1.
Therefore
[ (Eij) = 0ij.
Then for any A € M,,(R), one has

FA) = F\ D aiEiy | =) aiyf(Ey) =) aysy =Y ay = tr(A).
i ij i i=1

Therefore f is the trace function. O

33



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

Chapter 7

Homework-7

Exercise. Show that a bilinear form on a real vector space is a sum of a symmetric form and
a skew-symmetric form.

Proof. For a bilinear form ¢ : V xV — R on a real vector space V, consider @1, 2 : VXV — R,
e1(v,w) = (v, w) + @(w,v)), p2(v,w) = 2(p(v,w) — ¢(w,v)). By definition we have ¢ is a

symmetric form and 9 is a skew-symmetric form, and ¢ = 1 + 2. O

Exercise. Let A € M,(C) such that X'AX is real for any X € M,(C). Is A Hermitian?

Solution. A is Hermitian. Denote by E;; the complex matrix which has an 1 in the (7, j) position
as its unique nonzero entry and suppose A = (ai;)i<ij<n. Then for any 1 < i < n, a;E11 =

EiltAEil is real, so a;; is real, i.e., a;; = a;. For any ¢ # j, (F;j + \/—lEjl)bA<Ei1 +vV—1Ej) =
—_—

(aii — aj; + (a,’j — ajz-)\/—l)En and (Eil + Ejl) A(Eij + Ejl) = (a,’i —aj; +a; + aﬂ)En are

real, which implies b;; = ai; + aji, ¢ij = (a;; — a;;)v/—1 are real. So

ol 1
aij = 5 (bij — eV =1) = S (bij + ci;V—=1) = aji

for any i # j. So A= A, i.e., A is Hermitian. O

Exercise. The set of Hermitian matrices of order n forms a real vector space. Find a basis for
this space.

Solution. M, (C) can be viewed as a real vector space and the set of Hermitian matrices of order
n, denoted by H, is a subset of M,,(C). Since for any Hermitian matrix A, B € H and A\, u € R,
(N + ,uB)t =+ u?t = AA+ uB, H is a subspace of M,(C). So H is a real vector space.
Still denote by Ej;; the complex matrix of order n which has an 1 in the (7,j) position as
its unique nonzero entry. Consider B;; = FE;; + E;; € H and Cj; = \/—71(EZ - Ej) € H.
Then B = {B;; | i > j} U{Cj; | i > j} is an R-linearly independent subset of H. And for any
A = (a;;) € H, suppose a;j = b;j + cijm, where b;;,c;; € R. Since a;; = @j;, ¢;j = —cj; and
bij =bji. So A= b;Bij + > ¢;;Cij. So B spans H, which implies it’s a basis of H. O
i>] 1>
Exercise. Use the characteristic polynomial to prove that the eigenvalues of a Hermitian matriz
of order 2 are real.

Proof. For a Hermitian matrix A = (a;j)1<sj<2 of order 2, its characteristic polynomial is
F(A) = A2 — (a11 + a22)\ + ajrags — ajoas; and ajy,as € R, ajo = ao1. So the discriminant of
this polynomial is A = (a11 + a22)2 - 4(@110,22 — a12a21> = (an — a22)2 + 4‘&12‘2 Z 0. So the
characteristic polynomial of A has two real roots, which implies eigenvalues of A are real. [

Exercise. What is the inverse of a real matriz whose columns are orthogonal and nonzero?
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Solution. Suppose the columns of this matrix A are vi,---,v, and let \; = (v;,v;) for any
1 < i < n. By definition, for any 1 < i,j < n, <Ui,’Uj> = Uf’Uj. So AtA = (<Ui,vj>)1§i,j§n =
diag(A1, -+, An). So A71 = diag(A\[ !, -, A1) AL O

Remark. For complex matrices, A? in the answer should be replaced by A

Exercise. Find an orthogonal basis for the form on R™ whose matriz is

11
(a,)_ll}

[1 0 1
(b |0 2 1.

111

Solutions. For (a). Choose e; = B], eg = [_11] They form a basis of R2. Since

ER N

is diagonal, this basis is orthogonal.

1 0 —2
For (b). Choose e; = 0|, ea = |1|, e3 = | —1| They form a basis of R?. Since
0 0 | 2
10 -2]"[1 0 171 0 —2 10 0
01 -1 0 2 1110 1 —-1{=1]10 2 O
00 2 1 1 1[0 0 2 0 0 -2
is diagonal, this basis is orthogonal. O

Exercise. Let Wi, Wy be subspaces of a vector space V- with a symmetric bilinear form. Prove
(a) (Wi +Wa)t = Wi NnWs,

(b) W Wt

(¢) If Wy C Wa, then Wit D W5-.

Proof. Suppose this symmetric bilinear form is ( , ).
For (a).

(Wi +Wo)t = {veV|{vw) =0, Ywe W, + W}
= {veV|(v,u)=(v,wy) =0, Yw; € Wy, wy € Wy}
= {veV|{vw) =0, Vwe Wi}n{ve V| (v,w) =0, Yw € W}
= Winwst

For (b). For any w € W, by the definition of W+ we have (w,v) = (v,w) = 0 for any
veWt Sowe Wt SoWw c Wt

For (c). For any v € W3-, we have (v,w) = 0 for any w € Wi C Wa. So v € Wi-. So
Wit > Wi O

Exercise. Show that the rank of a skew-symmetric matriz is even if char(K) # 2.
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Proof. Suppose this skew-symmetric matrix A has order n and induces a linear transformation
T on K™ by left multiplication. Choose a complementary space W of kerT. Then we only
need to prove that dim W = rank A is even. Consider the following bilinear form ¢ on K™:
©(v1,v9) = vi Avg = viT(vg) for any vy, v € K™. It’s antisymmetric since A is skew-symmetric
and its restriction on W is also an antisymmetric bilinear form. Notice that for any v € ker T
and any w € W, o(w,v) = w!T(v) = 0. So if a fixed w € W satisfies that ¢(w,w’) = 0 for any
w' € W, then p(w,v) = 0 for any v € K™, which implies w € ker T' since p(w,v) = w'Av =
—(Aw)tv. Since W NkerT = 0, w = 0. So ¢ induces an injective linear map v : W — W*,
w +— p(w, —). Since dim W = dim W*, v is an isomorphism.

By Zorn’s lemma, there exists a maximal subspace Wy of W such that the restriction of ¢ on
W is identically zero. By definition v(Wy) C (Wo)* = {f € W* | f(w) = 0, Yw € Wy} (there we
use the definition in the note Lec6, Page 2, line 28). For any w € ¢~ ((Wy)1), since ker ¢ (w) =
{w" e W | p(w,w") =0} D (WoU{w}), the restriction of ¢ on W+ Span(w) is identically zero.
So by the maximality of Wy we have w € Wy. So ¢~1((Wp)+) = Wy. Since 1 is an isomorphism,
it induces an isomorphism from Wy to (Wp)*. So dim Wy = dim(Wp)+ = dim W — dim Wj. So
rank A = dim W = 2dim W is even. O

Remark. This exercise is the same as Exercise 8 in hw3. Here I provide a new solution, which
is essentially the same as the previous one.
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Chapter 8

Homework-8

Exercise. Let A= (a;;) be a symmetric real matriz. Suppose ai; > 3, |aij|. Show that A is
positive definite.

Proof. As shown in Exercise 12 of Homework-2, one has all leading principle minors of A is
positive, and thus A is positive definite. O

Exercise. A real symmetric matriz A = (a;j) of order n is semi-positive definite ifzi’j AT T >
0 for all (x1,--+ ,x,) in R™. Prove that the following are equivalent:

(a) A is semi-positive definite

(b) A= Pt (I(; 8) P for some real invertible matriz P

(c) A= Q'Q for some real matriz Q
(d) all principal minors of A are non-negative.

State the corresponding conclusion for semi-positive definite Hermitian matrices. Is it equivalent
to that all leading principal minors of A are non-negative?

Proof. From (a) to (b). Since A is a real symmetric matrix, there exists some invertible matrix
P such that

I
A= P —I P
@)
for some 7,5 € Z>p. On the other hand, since A is semi-positive definite, s must be zero as
desired.
From (b) to (c). It suffices to set Q = (1;; 8) P.

From (c) to (a). Note that
r'Ar = 2'Q'Qr = (Qx)'Qx > 0.

ki ko ... ks

From (a) to (d). For the principal minors A
ki ko ... ks

>, now we're going to show

that it’s semi-definite, and thus det A (Zl Z2 o ZS> > 0. Suppose & = (g, ., 2k,)" such
1 2 P s
that
t 1 2 s
a:A(kl ky ... ks>x<0.
Then consider 7 = (0,...,%k,...,Zk,,-..,0), one has TAT < 0, a contradiction.

37



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

From (d) to (a). If all principal minors of A are non-negative, then the characteristic
polynomials f(A) > A" for all A > 0 since the coefficients of f()\) are positive combinations of
principal minors. This shows all eigenvalues of A are non-negative, and thus A is semi-positive
definite.

However, the corresponding conclusion for semi-positive definite Hermitian matrices fails.

O

Exercise. Use Gram-Schimidt procedure to construct an orthonormal basis of R* from the
following:

((I) (07 07 27 1)t7 (07 37 7> Q)tv (1> 1) 67 2)t7 (_17 47 _]-7 _1)t;
() (1,1,1,1)%,(1,0,1,1)t,(1,1,0, 1), (1,1,1,0).

Proof. 1t’s a routine computation, and here we only show the results.

For (a).
1 1 1 1
—(0,0,2,1)¢, 0,5,1,—2), 6,—1,1,-2)", —(1,1,—1,2)%.
5( ) 30( ) 42( ) ﬁ( )
For (b)
1(1 1,1,1) i(l -3,1,1) i(l 0,-2,1)" ! (1,0,0, —1)
2 ) b b 7\/@ ) ) ) b 6 ) b ) b 2 b b b *

O

Exercise. Prove that the maximal entries of a positive definite, symmetric, real matriz A are
on the diagonal.

Proof. Suppose a;,j, = max; ; a;;. If ig # jo, then a;yi a5, — a?ojo > 0, since the determinant
of principal minors A(ig, jo) is > 0. Thus a;yj, < max{aiyi,, @jj, } since both a;;, and ajj, are
positive, a contradiction. O

Exercise. Let (-, -) be a positive definite Hermitian form on a complex vector space V', and let
{-,-}, and [-, -] be its real and imaginary parts, the real-valued forms defined by

(v,wy = {v,w} + [v, wli.

Prove that when V' is made into a real vector space by restricting scalars to R,{-, -} is a positive
definite symmetric form, and [-,-] is a skew-symmetric form.

Proof. For v,w € V, one has
(v, w) + (w,v) = (v,w) + (v, w) = 2{v, w}.

This shows [v, w] + [w,v] = 0, and thus [-,-] is a skew-symmetric form. On the other hand, one
has

1
{va} = 5((% TY, T+ y> - <.’E,.%'> - <y7y>> = {y,x}
This shows {-,-} is a symmetric form, and it’s positive definite since {z,z} = (z, x). O

Exercise. Let V = R?*2 be the vector space of real 2 x 2 matrices.

(a) Determine the matriz of the bilinear form (A, B) = tr(AB) on V' with respect to the standard
basis {ei;}.

(b) Determine the signature of this form.

(¢) Find an orthogonal basis for this form.
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(d) Determine the signature of the form trace AB on the space R™™ of real n X n matrices.

Proof. For (a). Note that
tr(AB) = a11b11 + a12b21 + a21b12 + az2bas.

A direct computation shows that the matrix is

OO O
o = O O
O O = O
— o O O

For (b) and (c). The orthogonal basis is given by

o) G a)(5 o) 6 ).

and thus the signature is 3 — 1 = 2.
For (d). One can construct an orthogonal basis of R™*" by define

E;; 1=
aij = By + By 1<
Ei‘—Ej‘ 1> 7.

A direct computation shows

0, (i,7) # (k1)
(g o) = >
, 1=k, =11 <
-2, 1=k, g=01i>j
This shows the signature is
n?+n B n?—n n

O
Exercise. Let W be a subspace of a Euclidean space/Hermitian space V. Show that W = Wt
Proof. On one hand, it’s clear W C W=+, On the other hand, one has
dim W + dim Wt = dim V = dim W + dim W+.
This shows W = W+, O

Exercise. Show that the Gram determinant det((cy,c;)) of n real vectors aq, ..., o in R™ is
non-zero if and only if the vectors are linearly independent.

Proof. Note that det (o, o)) = det (A*A) = det? A # 0 if and only if det A # 0, which is
equivalent to say the «; ’s are linearly independent. O

Exercise. Let V be a Euclidean space.
(a) Prove the parallelogram law |v + w|? + [v — w|?* = 2Jv|? + 2|w|>.

(b) Prove that if |v| = |w|, then (v+w) L (v—w).
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Proof. For (a).
[+ 0+ Ju = v = [uf® + 2(u, v) + [0 + [ul* = 2fullv] + |v|* = 2Jul® + 2[v]*.

For (b).
(v +w,v —w) = [v]* + (w,v) — (v,w) — |ul> = 0.

O
Exercise. Let T be a linear operator on V = R"™ whose matriz A is a real symmetric matriz.
(a) Prove that V is the orthogonal sum V = (kerT) & (imT).

(b) Prove that T is an orthogonal projection onto imT if and only if, in addition to being
symmetric, A?> = A.

Proof. For (a), For v € kerT and u = T'(w) € im T, one has
(v,u) = (v, T(w)) = (T(v),w) = (0,w) =0
Therefore ker " L imT'. On the other hand, one has
dimker 7'+ dimim 7 = dim V.

Thus V is their orthogonal sum.

For (b). Suppose T is an orthogonal projection onto im7. Then for every v € V with
v = v1 + vy, where vy € ker T, vy € im T, one has Tv = vy and T'wy = vy. This shows T2%v = Tv
for every v € V, and thus A? = A. Conversely, if A> = A, then for every v € V, one has
A%y = Av, and thus Av — v € ker T. This shows T is an orthogonal projection onto im 7" since
v=1v— Av + Av. O

Exercise. Let W be the subspace of R3 spanned by the vectors (1,1,0) and (0,1,1)t. Determine
the orthogonal projection of the vector (1,0,0)! to W.

Proof. Note that W+ can be spanned by (1, —1,1)*. Suppose
(1,0,0)" = a(1,1,0)" + b(0,1, 1) + ¢(1,—1,1)"

Then ¢ = 1/3, and thus the orthogonal projection is

1 1
(1,0,0) — g(1, —1,1) = 5(2’ 1,-1).

O]

Exercise. Let V' be the real vector space of 3 x 3 matrices with the bilinear form (A, B) =
tr(A'B), and let W be the subspace of skew-symmetric matrices. Compute the orthogonal
projection to W with respect to this form, of the matrix

1
0
1

w O N
S = O

Proof. If A € W+, then tr(A'B) = 0 for all B € W. Since W is spanned by an orthonormal
basis can be taken as
Eyg — Eo1, B3 — 31, Eaz — E3a,
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it reduces to

tI‘(At(Elg - Egl)) =0
tr(At(Elg — Egl)) =0
tr(At(Egg — Egz)) =0.

This is equivalent to A is a symmetric matrix. Thus W consists of the symmetric matrices.

Note that

1 20
0 0 1| =
1 30

Ol= = =

Thus the orthogonal projection is exactly

1

S NN

41

), dF 42 REAHK

Qiuzhen College, Tsinghua University



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

Chapter 9

Homework-9

Exercise. Let V be a Euclidean space and o :' V. — V a map. Suppose (z,y) = (o(x),0(y)) for
any x,y € V. Show that o is a linear operator.

Proof. For any x,y € V, a,b € R, we have ||o(az + by) — ac(x) — bo(y)||* = ||o(ax + by)||* —
2a(o(az + by), o(2)) — (o (az + by), o)) + 2ab(0(2),0 (1)) + @l|o(@)|? + BPllo@)|2 = |Jaz +
byl|? — 2a(az + by, x) — 2b(az + by, y) + 2ab(z, y) + a?||z||* + b*||y||* = ||(az+by) —az —by||* = 0.
So o(ax + by) — ac(z) — bo(y) = 0. So o is a linear operator. O

Exercise. Let V be a 2-dimensional Euclidean space and T an orthogonal operator. Let {e1,es}
cosf sinf

) . Find an orthonormal
sinf —cosf

be an orthonormal basis such that T is represented by [

basis of V' such that T is represented by [1 _1] .

Solution. Choose e’l = COoS gel + sin geg, e’2 = sin gel — Ccos geg. Then by direct computation

you can verify that Te}] = €], Te}), = —eb, (€],€]) = (€5, ¢5) =1 and (e}, ¢e5) = 0. So {e],eh} is
. . 1

an orthonormal basis of V' such that T is represented by ]

—1

Exercise. For the following symmetric matriz S, find a real orthogonal matriz P such that
PtSP is diagonal.

3 2 0 2 2 -2 (1)(1)1}
2 4 =205 12 5 45| o
0 -2 5 -2 —4 5 L 110

Solution. The following matrices meet the requirements respectively:

1 1 1
i1 -1 -1
21-1 1 -1

2 2
“lr o2 2yt 2 2|;
2 2 -1 -1 1

1 -2

U T W G WY

Remark. You can find these matrices just by computing the eigenvectors of S.

Exercise. For the following orthogonal matriz A, (1) find a real orthogonal matriz P such that
PYAP is block-wise diagonal where each block has order at most 2; (2) find a unitary matriz Q
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such that @tAQ s diagonal.

L1 1 17 i 1 1 17
2 2 2 2 2 2 2 2
L1 _1 _1 i1 _1 _1
2 2 2 2 2 2 2 2
i1 1 1|7 |_1 1 _1 1
2 2 2 2 2 2 2 2
L1 _1 1 11 1 _1
L2 2 2 240 L7z 2 2 2

Solution. For (1). The following matrices meet the requirements respectively:

1 1 1 1 1 0 0 -1
1|-1 1 1 -1 1 |1 0 0 1
201 -1 1 —1]" 20 1 1 0

1 1 -1 -1 0 -1 1 0

For (2). The following matrices meet the requirements respectively:

1 1 1 1 V20 —i -1
(-1 1 1 -1 1|v2 0 i 1
211 -1 1 —=1{"2l0 V2 1 |’

where ¢ = /—1. O
Exercise. Let V be the space of differentiable complex-valued functions on the unit circle in the
complex plane, and for f,g € V, define

2

(fi9) = f(0)g(6)do

0

(a) Show that this form is Hermitian and positive definite.

(b) Let W be the subspace of V' of functions f(e?), where f is a polynomial of degree < n. Find
an orthogonal basis for W.

(¢) Show that T = id% is a Hermitian operator on V', and determine ils eigenvalues on W.

Proof. For (a). Obviously this form is sesquilinear. Since

27
@ﬁ=£sﬁﬁ@w= F@)9(0)d0 = F, g)

0

for any f,g € V, this form is Hermitian. Since

27
mﬁ=A FO)2d0 > 0

when f € V is a nonzero element, this form is positive definite.

For (b). Choose fi.(0) = \/%—Fe“fo e W,0 <k <mn. Since {1,z,---,z"} spans the vector

space consisting of polynomials of degree < n, these n + 1 functions span W. Notice that

2w
L 11 ik—jelT" _ )
<fj7fk>=217r/ el(kj)ecw:{ o7 " -7 I 0 =0, when k #j
0

= (2m) =1, when k = j

Since (—, —) is a positive definite Hermitian form, fo,--- , f, are linearly independent and
they form an orthogonal basis for W.
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For (c). Since for any f,g € V,

(Tf.9) = Jo igs(®)g(6)d6
= o ~ids(F(0))g(0)do
2 I

= —if@90)| ~ Ji"~ifO)F©)do

= [T FO)i%(0))ds

= (/,Tg)

So T is a Hermitian operator on V. Since T f;(6) = —\/%eika = —kfr(0), W is T-invariant

and fp, -, fn form a basis consisting of eigenvectors of T'. So all of its eigenvalues on W are
0,—1,--+,—n. 0

Exercise. Let A be a positive definite real symmetric matriz. Show that A* is positive definite.

Proof. Since A is a real symmetric matrix, there exist an orthogonal matrix P and a diagonal
matrix D = diag(a1,- - - ,a,) such that P"'AP = D. Since A is positive definite, ay,--- ,a, > 0.
So P~1A*P = D* = diag(af, - - - ,ak) is positive definite. So A* is positive definite. O

r'n

Exercise. Let A, B be positive definite real symmetric matrices. Show that
(a) AB is positive definite symmetric matriz if and only if AB = BA.
(b) if A — B is positive definite, then B~' — A~ is positive definite.

Proof. For (a). When AB is positive definite symmetric matrix, AB = (AB)" = B'A* = BA.
Conversely, when AB = BA, (AB)! = BA = AB is a real symmetric matrix. Since A, B are real
symmetric matrices, both of them are diagonalizable. Combining with AB = BA, there exists
an invertible matrix P such that both P~'AP and P~'BP are diagonal. Suppose P~1AP =
diag(a1,- - ,a,) and P"'BP = diag(b1,--- ,b,). Then P~*ABP = diag(aiby,- -+ ,anb,). Since
A, B are positive definite, a;,b; > 0. So a;b; > 0, which implies all of eigenvalues of AB are
positive. Combining with AB is real symmetric we have AB is positive definite.

For (b). By definition the sum of two positive definite real symmetric matrices is positive
definite. A positive definite matrix is invertible and its inverse is also positive definite since its
eigenvalues are all positive. Notice that

(B'—-A™Y)YB+B(A-B)"'B) =AY (A-B)B'BI+(A-B)"'B)= A"Y(A-B)+A™'B=1

So B! — A7 = (B+ B(A — B)"!'B)~!. Since A — B is positive definite, B(A — B)"'B =
BY(A — B)™!B is also positive definite. Combining with B is positive definite we have B~! —
A7l = (B + B(A — B)"'B)~! is positive definite. O

Exercise. Let ( = e%, and let A be the n X n matriz whose entries are a;, = % Prove that
A is unitary.

Proof. Notice that for any 1 < j, k < n,

” no G [ b ok .
Zaw?l = Z < = CF*1n 0, when j #k
=1 j = " L, when j =k

So AA' = I,. So A is unitary.
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Exercise. Let A, B be Hermitian matrices that commute. Prove that there is a unitary matriz

P such that P'AP and P'BP are both diagonal.

Proof. We prove it by induction on the order n of A, B. The conclusion obviously holds for
n = 1. Suppose that we have already proven it for n — 1. Since A, B are complex matrices
that commute, there exists a common eigenvector v of A and B. By rescaling we may assume
|lv|]] = 1. Extend v to an orthonormal basis {v,ei, - ,ep—1} of C". Let Py be the unitary
matrix whose columns form this basis. By definition we have

-y 2] won-[; 3

where \, u € R, Ay, By are Hermitian matrices of order (n — 1) that commute. By the induction
hypothesis there exists a unitary matrix P; such that EtAlpl and EtBlPl are both diagonal.

Choose P = Py E} g} It’s still unitary and both P'AP and P'BP are diagonal. So the
1
conclusion holds for n. O
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Chapter 10

Homework-10

Exercise. Let T be a linear operator on a Fuclidean/Hermitian space V' and W be a subspace
of V.. Show that if W is T-invariant, then W+ is T invariant; if W is T*-invariant then
W is T-invariant.

Proof. For w € W+, note that
(v, T*) = (Tw,w) = 0

holds for every v € W, since W is W is T-invariant. This shows W= is T?-invariant, and by
the same argument one can show W is T-invariant if W is 724 -invariant. O

Exercise. Show that a linear operator T on a Euclidean/Hermitian space V' is normal if and
only if (Tw,Tv) = (T, T*) for any v € V (this was mentioned in class but details not
verified).

Proof. Recall that a linear operator T is called normal if 7721 = T2dT. If T is normal, then
for any v € V', one has

(T2, T*y) = (TT*,v) = (T*Tw,v) = (Tv, Tv).
Similarly, if (Tv, Tv) = (T*d, T2W) for all v € V, then (v, Pv) = 0 for all v € V, where
P=ToT* -T*oT.

Note that P is a self-adjoint operator, and (v, Pv) = 0 implies the quadratic form defined by P
is zero, and thus P = 0, as desired. ]

Exercise. Fill in the details of the following statements.

(a) Suppose A € My, (R). Show that there is an orthogonal matriz P such that

A * *
PT'AP = ST
Am,

where A; are either real numbers or real matrices of order 2 with no real eigenvalue.

(b) Suppose A € M, (C). Show that there is a unitary matriz P such that P~YAP is upper-
triangular.

Proof. Firstly let’s prove (2) by induction on n, which is easier and more intuitive. It’s clear
that the statement holds for n = 1, and suppose it holds for n = k—1. For a matrix A € M (C),
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we choose an eigenvector v with respect to eigenvalue A\, and extend v/|v| to a unitary basis.
Thus there exists a unitary matrix P with the first column v/|v| such that

A U
-1 (M
poap= (3 1),

where A1 € Mj,_;(C). By induction there exists a unitary matrix P; such that P, LA, Py is an
upper-triangular matrix. Then

~ 1 0

P = P

is a unitary matrix such that P~1AP is an upper-triangular matrix.

For (1). Let’s prove by induction on n. It’s clear that the statement holds for n = 1,2, and
suppose it holds for n = k — 1. For a matrix A € M(R), if A has a real eigenvector, then by
the same argument as above, one can reduce it to the low dimension case, and use induction
hypothesis to conclude. Otherwise although A has no real eigenvector, it a 2-dimensional
invariant subspace, and we choose an orthonormal basis {z,y} of this invariant subspace, and
extend it to an orthonormal basis {x,y, ...} of R", which gives a unitary matrix P such that

PlAP — <A1 0 )

0 A27
where A; = (_ab 2) Then use induction hypothesis to conclude the desired result. O
Exercise. Let A = (ai;) be a real symmetric matriz of order n. Suppose x(0) = (xgo), cee I%O)) €

R™ is a vector on the unit sphere
S"l={xeR": 22+ - +22 =1}

such that the quadratic form Q(x) = 3, ; aijv;x; reaches its mazimal value A on sr=1 ot x©),
Prove that

xg()) JJ%O)
ngO) 1‘1(10)

Proof. Since the maximal value of the quadratic form @ on S*~! is A, then for any « € S"~ 1,
one has
Q(z) = o' Az < 2"\,

Thus for any = € R", one has

iL't xT

LN, — A >0,
] Tl

that is, B = AI,, — A is semi-positive definite. On the other hand, one has (l'(o))thL‘(O) =0, and
thus Bz(® = 0, that is, Az(®) = X\z(©). O

Exercise. Let R be a ring. Show that every ideal of M, (R) is of the form M,(I) where I is
an ideal of R.

Proof. Let M be an ideal of M, (R) and let

I ={a € R| ais an entry of some matrix in M}.
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Then M C M, (I) because A € M implies that entries of A belong to I. Next we need to show
that I is an ideal. To that end let a,b € I. Suppose a is the (7, s)-th entry of some matrix A in
M. Then we have

Fij(a) = Er(lR)Ast(lR) S M, 1<1,5 <n,

where Fj;(a) denotes the matrix in M, (R) with a as its (i, j)-th entry and zeroes elsewhere. In
particular, one has F1(a), F11(b) € M. Since M is an ideal we have Fi1(a—b) = F11(a)—F11(b) €
M or rather a — b € I. Next let r € R,z € I. Then

Fn(m:) = F11(7’)F11(x) eM
FH(J}T) = Fn(x)Fn(T) e M.

Therefore ar,rz € I, and thus I is an ideal of R. Finally we need to show that M, (I) C M.
Suppose A = (a;;) € My(I). Then each entry of A is an entry of some matrix in M, and thus
Fij(ai;) € M for all 1 <1, j < n, This shows

A=) Fij(ai;) € M.
i=1 j=1
as desired. Hence M = M,,(I). O
Exercise. Find generators for the kernels of the following maps:
(a) Rlz,y] = R defined by f(z,y) ~ f(0,0),
(b) Rlz] - C defined by f(z) ~ 2+ V=),
(c) Z[] - R defined by f(x) ~ (1 +/2),

Proof. For (a). The kernel consists of the polynomials which have zero constant terms, and
thus it’s (x,y).

For (b).Note that if 24+ v/—1 is a root of a real coefficient polynomial, so is 2 — /—1. Thus
the kernel is generated by (2 + v/—1)(2 — v/—1) = 22 — 4z + 5.

For (c). By the same argument in (b), the kernel is generated by z? — 2z — 1. O

Exercise. Let T and T' be normal operators on a Fuclidean/Hermitian space V. Suppose
ImT L ImT’. Show that T +T" is a normal operator.

Proof. Since imT 1 im T, then for any v,w € V, one has
(T, w) = (Tv, T'w) = 0.

This shows 77T = 0, and thus 7247 = 0. By the same argument, one can show that 77724 =
T'T*d = 0. Thus

(T + T/)(Tad + Tlad) _ TTad + T/Tlad — TadT + TladT/ _ (Tad + T/ad)(T + T/)
]

Exercise. Show that a complex matriz A is normal if and only if At = AU for some unitary
matriz U.

Proof. If A' = AU for some unitary matrix U, then by taking conguate and transpose, one has
A=U"14" since U"! =U". Thus
A=U"14AU,
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which implies AU = UA. Then

AARM — AAY = AtUTAY = A'UTAU = At A.

Conversely, if A is normal, then there exists a unitary matrix P such that A = P~!diag{\1,..., \,0,...

Then ~ o -
Al = P~V diag{)\{,...,\,0,...,0}P
Ar

:P_ldiag{/\l, coy Ary O}PP dia, {’ 1’ ,‘)\ ‘,1, ,1}P

= AU,
where \

U=P" dlag{‘ 1| ..,’)\T’,l, ,1}P

is a unitary matrix. O

Exercise. Suppose the matrices A, B, AB are all normal, show that so is BA.

Proof. Note that

where \;’s are all eigenvalues of AB, since AB is normal. On the other hand, since det(AI —
AB) = det(A] — BA), one has AB and BA have the same eigenvalues, and thus BA is normal.
O

Exercise. Prove that the ideals of Z are of the form nZ = {nx | x € Z} for some integer n.

Proof. For any ideal I C Z, there exists a minimum ng € 1. If there exists some n € I such
that ng t n, then by division with remainders, there exists

n=mnoeq+r,

where ¢, € Z and r is smaller than ng, which is a contradictory. Then for any n € I,n = kng
and this gives that I = ng Z. O

Exercise. Let p: Clz,y] — C[t] be the homomorphism that sends x ~ t+1 and y ~ t3 — 1.
Determine the kernel K of ¢, and prove that every ideal I of Clx,y] that contains K can be
generated by two elements.

Proof. Note that

Then
oy — (¢° = 32% + 30 — 2)) = 0,

and thus
(® =322 +32 -2 —y) CK.
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For any element f(z,y) € K, by division with remainders one has
Flz,y) = (2% = 32" + 32 = 2 = y)g(w,y) + ().
Then ¢(f(x,y)) = 0 if and only if r(¢(z)) = 0, that is, r(t+1) = 0. In other words, f(z,y) € K
if and only if r(z) = 0. Thus K = (23 — 322 + 32 — 2 — y).
Suppose I C Clz,y]| is an ideal that contains K. For the ideal I generated by ¢(I), one has
I = (r(x)) for some r(z) € C[z] since C[z] is a PID. Then

I= (o (r(x)), 2> = 32> + 32 — 2 —y).
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Chapter 11

Homework-11

Exercise. (a) An element x of a ring R is called nilpotent if some power is zero. Prove that if
x is nilpotent, then 1 4+ x is a unit.

(b) Suppose that R has prime characteristic p # 0. Prove that if a is nilpotent then 1+ a is
unipotent, that is, some power of 1 4+ a is equal to 1.

Proof. For (a). Suppose 2 = 0. Then (—z)” = 0. So

n—1 n—1
(1+2)Q_(-2)) = Q (o))l +2) =1— ()" =1
=0 =0

So 1 + z is inveritble, i.e., it’s a unit.
For (b). Since a is nilpotent, a = 0 for sufficiently large integer n. In particular, there
exists m € Zsq such that a?" = 0. Notice that p\(pk ) forany 1 <k <p™—1. So

3

p

(l—i-a)pm:Z(pk)ak:l—i-apm:l

k=0
So 1 + a is unipotent. O

Exercise. Let R be a ring of prime characteristic p. Prove that the map R — R defined by
x ~ aP is a ring homomorphism. (It is called the Frobenius map.)

P
Proof. Notice that p| (i) forany 1< k<p-—1 So(x+yP=> (i)mkyp_k = zP + yP for any

x,y € R. Combining with the facts (zy)? = 2Py? and 17 =1 we have the given map is a ring
homomorphism. O

Exercise. Consider the homomorphism Zlx| — Z that sends x ~~ 1. Ezplain what the Corre-
spondence Theorem, when applied to this map, says about ideals of Z[x].

Solution. Denote this homomorphism by ¢. For any n € Z, ¢(nx) = n. So ¢ is surjective.
Notice that ¢ maps = and the identity 1 to the identity 1. So ¢(f(z)) = f(1). Sokerp = {f €
Zlz] | f(1) = 0}. The Correspondence Theorem says that there is a bijective correspondence
between the set of ideals of Z and the set of ideals of Z[z]| that contains all polynomials f
satisfying that f(1) = 0. This correspondence is given by taking the preimage under (. O

Exercise. Identify the following rings: (a) Z[z]/(x?—3,2z+4), (b) Z[i]/(2+1), (¢) Z[z]/ (6,27 —
1), (d) Z[z]/(22% — 4,42 — 5), (e) Z[z]/(x* + 3,5).
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Solution. In the sequel, denote the given ring by R and Z /nZ by Z,,.

For (a). Since 2 = 2(2% —3) — (z — 2)(2z + 4) € (2% — 3,2z + 4), (22 — 3,22 +4) =
(22 = 3,20 +4,2) = ((x — 1)%,2). So R =Z[z]/((z — 1)2,2) = Zso[z]/((x — 1)?) = Zs[t]/(t?).

For (b). Since Z[i] & Z[x]/(2% + 1), where i — z, R = Z[z]/(2? + 1, + 2). Since 5 =
?24+1—(r—-2)(x+2) € @+ 1L,z+2), (@*+1L,z+2) = (22 + 1,2 +2,5) = (z+1,5). So
R=12Z[z]/(x 4+ 1,5) = Zs[x]/(x + 1) = Zs.

For (c¢). Since 3 = 6x — 3(2x — 1) € (6,22 — 1), (6,2x — 1) = (6,22 — 1,3) = (3,2 — x). So
R=127Z[z]/(3,2 —x) = Z3[x]/(2 — x) = Zs.

For (d). Since 7 = (4x + 5)(4x — 5) — 8(22% — 4) € (222 — 4,42 — 5), (222 — 4,42 —5) =
(22%2—4,42—5,7) = (v—3,7) (for 1—3 = 2(42—5)—Tz+7, 222 —4 = 2(z—3)(x+3)+2-7, 42—5 =
4(x —3)+ 7). So R=Z[z]/(x — 3,7) = Zr[x]/(x — 3) = Z7.

For (e). R = Z[z]/(z* + 3,5) = Zs[z]/(z* + 3). In fact, it’s isomorphic to the finite field of
25 elements Fo5 since x2 + 3 is irreducible in Zs[z], Zs is a field and |R| = [{ax +b|0 < a,b <
4}| = 25. O

Exercise. Let P; be finitely many prime ideals of R. Let I be an ideal of R such that I C UP;.
Show that there is some i such that I C P;.

Proof. We prove it by induction on the number n of prime ideals. The conclusion obviously
holds when n = 1. Now suppose the conclusion holds for n = m — 1 and consider the case
n = m. If there exists i such that I C |J P; then the conclusion has already held by the

J#i
induction hypothesis. Otherwise for any i there exists z; € I N P; such that « ¢ P; for any
m—1
j # i. Then consider y = [] x; + xm € I. Since P,, is prime and z; ¢ P, for any i < m,
i=1

m—1
‘Hl x; ¢ Py,. Combining with z,, € P,, we have y ¢ P,,. And for any j < m, since z; € P},
1=

m—1 m
[[ z; € P;. Combining with z,, ¢ P; we have y ¢ P;. Soy ¢ |J F;, which contradicts the fact
=1

=1 7

I C UP;. So the conclusion holds when n = m. ]

Exercise. Let I; be finitely many ideals of R and P be a prime ideal of R. Suppose NI; C P.
Show that there is some © such that I; C P.

Proof. 1f the conclusion does not hold, then for any i there exists x; € I; such that x; ¢ P.
Consider y = [[z;. (It’s well-defined since it’s a finite product.) Since P is prime and z; ¢ P,
y ¢ P. But y € [[; € N1;, which contradicts the fact NI; C P. So the conclusion holds. [

Exercise. Are the rings Z[z]/(2* + 7) and Z[x]/(2x* + 7) isomorphic?

Solution. No, they are not isomorphic. Let A = Z[z]/(z* + 7), B = Z[z]/(22% + 7). For a
polynomial f € Z[z], denote by [f]a its equivalence class in A, similarly define [f]p. If there
exists an isomorphism ¢ : A — B, since ¢([1]4) = [1], ©([2]4) = [2]s. Since 2(z? + 4) =
(222 +7) + 1, [2]p is a unit of B. But [2]4 is not a unit of A since A/2A = Fa[z]/(22 +7) # 0,
which draws a contradiction. So A and B are not isomorphic. O

Exercise. State and prove the second and third isomorphism theorem for quotient modules.

Solution.

Second isomorphism theorem for modules. Let R be a ring and M be an R-module.
Suppose N1, N are submodules of M. Then (N7 + N2)/N2 = N1 /Ny N No.
Proof. Consider ¢ : N; < N1+ No — (N7 + No)/Ns. It’s a homomorphism of R-modules since
it’s the composition of two homomorphisms. ker¢ = {z € Ny | z € N2} = N1 N Ny. Notice
that for any x +y € N1 4+ No, where x € N1 and y € No, x + y and x are in the same coset of
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N1 4+ N» with respect to Na. So ¢ is surjective. By the first isomorphism theorem for modules
we have Nl/Nl NNy = Nl/kergp = (N1 + NQ)/NQ
Third isomorphism theorem for modules. Let R be a ring and M be an R-module.

Suppose N1 C Ny are submodules of M. Then M /Ny = ]]\\é//]\\fﬁl

Proof. Let m; : M — M/N; be the natural projections. Consider ¢ : M/N; — M/Na,
P(mi(m)) = ma(m) for any m € M. Since Ni C Na, 9 is well-defined. Obviously ¢ is a
surjective homomorphism of R-modules. kervy = {m(m) | m € No} = No/N;. So by the first

isomorphism theorem for modules we have ]]\\,/2//]]\[\,11 >~ M/Ns. O

Exercise. Let V' be an abelian group. Prove that if V' has a structure of Q-module with its
given law of composition as addition, then that structure is uniquely determined.

Proof. Suppose there are two structures of Q-modules on V' with the given law of composition as
addition. Denote these two corresponding Q-modules by V; and V5 respectively. By definition,
the identity map on the underlying space V' induces an isomorphism of abelian groups between
V1 and V5, which we denote it by ¢ : Vi — Va. Then we prove that it’s a homomorphism of
Q-modules. For any rational number g € Q, where p,q € Z and ¢ # 0, for any v € V1, consider
w = Lp(v) — ¢(2v). Since ¢ is a homomorphism of Z-modules, we have

qu = pp(v) — q@(gv) = pp(v) — p(pv) = 0

Since q # 0, ¢ is invertible in Q. So w = ¢ 'qw = 0. So %(p(v) = (p(%@) holds for any
rational number g € Q and v € Vq, i.e., ¢ is Q-linear. Combining with the fact that ¢ is the
identity map on the underlying space V', we have these two Q-structures are the same, which
implies the uniqueness. O

Exercise. A module is called simple if it is not the zero module and if it has no proper submodule.

(a) Prove that any simple R-module is isomorphic to an R-module of the form R/M , where M
is a mazimal ideal.

(b) Prove Schur’s Lemma: Let ¢ : S — S’ be a homomorphism of simple modules. Then ¢ is
either zero, or an isomorphism.

Proof. For (a). For any simple R-module N, choose a nonzero element ¢ € N in it. Consider
the map ¢ : R — N, ¥(r) =r-a for any r € R. It’s a homomorphism of R-modules since N is
an R-module. im ¢ is a nonzero submodule of N. Since N is simple, N = im . Let M = ker 1.
Then M is a submodule of R, i.e., an ideal of R and by the first isomorphism theorem, N
is isomorphic to R/M. By the Correspondence Theorem, submodules of R/M correspond to
submodules of R containing M, i.e., ideals of R containing M. Since R/M is simple, M is a
maximal ideal of R.

For (b). im¢ is a submodule of S’. Since S’ is simple, im¢ = 0 or S’. The former implies
o = 0, while the latter implies ¢ is surjective. Similarly, ker ¢ is a submodule of a simple module
S, so ¢ is either zero or an injective homomorphism. Combining these two conclusion together
we have ¢ is either zero or an isomorphism. O
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Chapter 12

Homework-12

Exercise. Let M be an R-module, where R commutative. Let S be a subset of M. Define the
annilator of S to be Ann(S) = {r € R|rs =0 for all s € S}. Show that Ann(S) is an ideal of
R.

Proof. 1t’s clear that Ann(S) is an additive subgroup of R, and for any r € R,z € Ann(95),
xs = 0 for all s € S implies that (rz)s = (zr)s = 0 for all s € S. This shows rx = zr € Ann(S5),
and thus Ann(S) is an ideal. O

Exercise. Let My and My be submodules of M. Definte My + My = {a1 +ag | a; € M;}. Show
that My + Ms is the submodule of M generated by My U Ms.

Proof. Firstly let’s show My 4+ My = {m1 +mg | my € My, mg € Ms} is a submodule of M. It’s
clear that My 4+ My is an additive subgroup of M, and for any r € R, m1 + mg € M, one has

r(my +mg) = rmy + rmg € My + M.

This shows M; + Ms is a submodule of M. For convenience, we use N to denote the submodule
generated by M; U M. It’s clear that N C My + Ms, since both M; and M, are submodules
of M1 + Ms. Conversely, M1 + My C N, since for any mq + mg € My + Ms, one has m, € My
and mg € Msy. Thus M; + My is generated by M; U Ms. O

Exercise. Let R be a commutative ring (containing the identity element 1). Suppose every
finitely generated R-module is free or zero module. Show that R is a field.

Proof. Suppose I C R is a proper ideal. Then R/I is a finitely generated R-module, which is
not zero, and thus by assumption it’s a free module. On the other hand, for any = € R/I and
r € I, one has rZ = 0, which is contradiction to R/I is free. ]

Exercise. Let A be the matriz of a homomorphism ¢: Z'" — 7™ of free Z-modules.
(a) Prove that ¢ is injective if and only if the rank of A, as a real matriz, is n.

(b) Prove that ¢ 1is surjective if and only if the greatest common divisor of the determinants of
the m x m minors of A is 1.

Proof. For (a). Suppose A = (aq,...,a,). Then ¢ is injective is equivalent to say for any
= (x1,...,2) €Z", ayz1 + -+ + px, = 0 implies x = 0. In other words, ¢ is injective if
and only if aq, ..., a, are Z-linearly independent, which is equivalent to the rank of A is n.

For (b). If ¢ is surjective, then there exists B € M, xm(Z) such that AB = I,,,. Then by
Cauchy—Binet formula one has

12...m klkg...km .
2. detA(klkg...km>detB< 12...m )_1’
1<k1<-+<km<n
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which implies the greatest common divisor of the determinants of the m x m minors of A is 1.
Conversely, suppose the greatest common divisor of the determinants of the m x m minors of
A is 1, and thus for any 1 < k; < .-+ < ky,, < n, there exists A(ki, ..., k) such that

> detA L2eeom N N k) = 1.
lerks .. km
lgklg"‘gkmgn

On the other hand, one has

12...m 12...m \" 12...m
A (kﬂcz . km> A (klk:g . k:m) = detd <k:1/-c2 . k:m> I
Then we use Ag,. k,, to denote the n x m matrix, which k;-th row is the same as the i-th row

12...m
OfA(klkg...km) Then

B= Z Apy ke MK, )

1<k1 < <km<m
is a matrix of n X m, which satisfies AB = 1,,. As a consequence, one has ¢ is surjective. [

Exercise. Let R = Clxz,y|, and let M be the ideal of R generated by the two elements x and y.
Is M a free R-module?

Proof. Suppose M is a free R-module. Since any two elements in R is R-linearly dependent,
and M C R, then M is generated by one element, denoted by f. Since M is generated by z, vy,
then the constant term of f is zero. Suppose x = a1 f and y = asf. Then by degree argument
one can see both a; and as has degree zero, and thus f € Clz] N Cly] = C, a contradiction. [

Exercise. Suppose M = My © My is an R-module. Show that M/M; = M.
Proof. Consider the following map

¢ZM—>M2

(a1,a2) — as.
It’s clear that ¢ is a surjective homomorphism of R-modules, and ker ¢ = M;. Then one has
M /M, = M/ ker ¢ = Ms.
O

Exercise. Suppose M = Rx is an module generated by one element x # 0. Show that M
contains a maximal proper submodule, namely, a proper submodule not contained in any other
proper submodule.

Proof. Let I be the maximal ideal of R, which exists by Zorn lemma. Then Iz C Rz is a proper
submodule not contained in any other proper submodule. O

Exercise. Show that Euclidean domains are principal ideal domains.
Proof. By the same argument in Exercise 11 of Homework-10. O

Exercise. Show that Z[v/2] = {a + bv/2 | a,b € Z} is a Euclidean domain.
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Proof. For any o = a1 + apV/2, we define its norm as
N(a) = a? — 2d3.

Let o = a3 4 asyv/2 and B = by + ba/2 be elements of Z[v/2] with 8 # 0. We wish to show that
there exist v and § in Z[/2] such that a = y3 4+ § and N(§) < N(B). To that end, note that
in Q(v/2) we have a/B = c¢1 + c2v/2, where

a1b; — 2a9bs asby — aiby
— 5 C = ——n
Roeg 0 T R

C1 =

Let g1 be an integer closest to ¢; and g2 an integer closest to ca. Then |c; — ¢i| < 1/2 and
|2 — q2| < 1/2. Now consider v = q1 + ¢2v2 € Z[v2] and 0 = (¢c1 — q1) + (c2 — g2)V2. By
definition one has 038 = a — y8. If we define § = 03, then a = v38 4+ d. Now it suffices to show
that N(0) < N(5). To that end, note that

N(O) = I(e1 — a1)* — 2(ca — @2)?] < l(e1 — @)l + | - 2(ez — 422,
by the triangle inequality. Thus we have
N(0) < (1 — q1)* +2(c2 — q2)° < (1/2)* +2(1/2)* = 3/4.
In particular, N(§) < 2N () as desired. O

Exercise. Let ¢: K[t] — K][t| be an isomorphism. Suppose ¢(f) = f for all constant polynomial
f- Find all possibilities of ¢.

Proof. Since ¢ is a homomorphism of rings which preserves the constant terms, one has

¢ air’) = aip(x),
i=0 =0

so it suffices to figure out ¢(z). Since ¢ is an isomorphism. one has deg(¢(x)) > 1, otherwise
¢ is not injective. If deg(¢(z)) > 1, then for any g = Y7  a;z’, one has deg(¢(g)) > 1, which
implies ¢ is not surjective. Then ¢(z) must be a linear polynomial. O

Exercise. Show that a degree n polynomial f € Q[t] is irreducible if and only if so is y”f(%)
Proof. If f = gh, then one has

y"f(;) = (yes9g(2)) (e hn(2)),

Y Yy
which implies y"f (i) is reducible. Conversely, if y"f (%) is reducible, we write y"f (%) =
9(y)h(y), and thus

1) = (y~ 989 (y)) (y~ 98" h(y)),

which is equivalent to

F(8) = (ees9g( L) e

; ;)

O]

Exercise. For which positive integers n does x> +z+1 divide x*+ 323+ 22+ 72 +5 in [Z /n Z][]
2
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Proof. Note that
4 3 2 _ 2 2
r+3+*+Tr+5=(2"+2r-2)(z"+x+ 1)+ Tz + 7.

Thus 22+ 2+ 1 divide 2* 4+ 323 + 22 4+ Tz +5 in [Z /n Z][] if and only if 72+ 7 = 0 in [Z /n Z][z].
In other words, n = 7. O

Exercise. Let F be a field. The set of all formal power series p(t) = ag + ait + agt® + - -+,
with a; in F, forms a ring that is often denoted by F[[t]]. By formal power series we mean
that the coefficients form an arbitrary sequence of elements of F'. There is no requirement of
convergence. Prove that F[[t]] is a ring, and determine the units in this ring.

Proof. For formal power series p(t) = ag + ait + agt> + - -+ and q(t) = by + byt + bot? + - - - | the
addition

[e.o]

p(t) +q(t) =Y (ai + bi)t',

=0

and the multiplication is given by

[e's) k
p(t) - qt) =Y <Z aibki> k.

k=0 \i=1

A routine computation shows that F[[t]] is a ring with respect to above operations. Now let’s
show that the units in this ring are exactly formal power series such that the constant term is a
unit in . Suppose p(t) is a unit and ¢(t) = 3°72, b;t? is the inverse of p(t). Since p(t)-q(t) = 1,
then clearly we have agbg = 1, thus ag is a unit. Conversely, if ag is a unit, then consider the
Taylor expansion of 1/p(t) at t = 0 to conclude. O

57



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

Chapter 13

Homework-13

Exercise. Let p be a prime. Show that there is an irreducible polynomial of degree 3 in Zy|t].
Show that there is a finite field of order p3.

Proof. Consider f(t) = t> —t. Choose ¢ € Z, such that f(t) # c for any ¢t € Z,. Since
f(0) = f(1), there exists such c. Let g(t) = f(t) —c =13 —t —c € Zp[t]. If g is reducible, it
must have a linear factor by degree argument, which implies that g has a root in Z,. But this
contradicts the fact g(t) # 0 for any t € Z,. So g is irreducible. So Z,[t]/(g(t)) is a field of
order p3. ]

Exercise. Show that the rank of a matriz over KIt] is invariant under elementary matriz
operations.

Proof. Consider the fraction field K(t) = {% | f.g € KJt],g # 0} of K[t]. Since KJt] can
be embedded into K(t), for any matrix over K|[t], we can regard it as a matrix over K(¢) of
the same rank. Over K (t) we have the rank of a matrix is invariant under elementary matrix
operations. So the conclusion also holds when it comes to K[t]. O

Remark. You can also verify it directly by comparing the rank of the matrix before and after
operations

Exercise. Let R be a FEuclidean domain. Let A € My,xn(R). Show that, by row and column

elementary operations, A can be reduced to a matriz of the form diag(dy,--- ,d,,0,---,0), where
di |- | dy.

Proof. WLOG we may assume A # 0. First we prove the following lemma:

Lemma. By row and column elementary operations, A can be reduced to a matrixz of the form

[(él 121} , where dy € R, A1 € My _1)x(n—1)(R) and dy divides all entries of A;.
Proof of the lemma. Since R is a Euclidean domain, it’s equipped with a Euclidean function
d : R\0 = Z>¢. For any B = (b;j) € Mpyxn(R)\O, define 6(B) = min{d(b;;) | b;j # 0}. Let
S be the set consisting of all matrices obtained by performing row and column elementary
operations. Since Zxq is bounded below and discrete, there exists some C' = (¢;;) € S realizing
min{d(B) | B € S}. By interchanging rows and columns we may assume 6(c11) = min{d(c;;)}.
For any 1 < j < n, suppose ci; = ci11q1; + r1;j such that either ri; = 0 or 6(r;) < d(cnr).
Since we can perform a column elementary operation to change c;; into 71;, by minimality of
C we have 71; = 0. So c¢11 | ¢1; and by replacing the j-th column with (j-th column)—g;;(first
column), we may assume cj; = 0. Similarly we may assume ¢;; = 0 for ¢ > 1. So C has
[011 0
the form

0 C'] and we only need to prove ciy divides ¢;; for any 7,5 > 1. Suppose there
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exists some c¢;; such that c11 1 ¢;;. Then there exist some g;;,7;; such that ¢;; = ci11gi; + rij
and d(r;;) < d(c11). Replace the first column of C' with (first column)+(j-th column) and then
replace the i-th row with (i-th row)—g;;(first row). Then we obtain a matrix such that its
(4, 1)-position is r;;, which contradicts the minimality of C. So c¢11 | ¢;; for any 4,5 > 1 and C
meets the requirement. ]

Then we prove the original conclusion by induction on & = max{m,n}. The conclusion
obviously hold when k£ = 1. Suppose we have already proven it for k =1 — 1. When k = [, if
m = 1 or n = 1, by the lemma we have the conclusion holds. So we may assume m,n > 1.
d 0
0 A1l
be reduced to diag(ds,--- ,d;,0,---,0), where dy | --- | d,. Since d; divides all entries of Ay,
dy | da (since da must be an R-linear combination of entries of A;). So A can be reduced to
diag(dy,--- ,d,,0,---,0), where d; | --- | d,. So the conclusion holds for k = I. O

By the lemma A can be reduced to the form By the induction hypothesis A; can

Exercise. Let R be a principal ideal domain. Let A € Mpy,xn(R). Show that there exist
invertible matrices P,Q such that PAQ = diag(dy,--- ,d;,0,---,0) such that dy | --- | d,.

Proof. WLOG we may assume A # 0. First we prove the following lemma:

& 0], where dy € R,

Lemma. There exist invertible matrices Py, Q1 such that PLAQ1 = [0 A
1

A1 € My—1)x(n—1)(R) and dy divides all entries of A;.

Proof of the lemma. Since R is a principal ideal domain, it’s a unique factorization domain. So
for any nonzero element r € R, we can always decompose it into the product of irreducible
elements © = p; ---ps and define {(r) = s. For any B = (b;;) € Mp,xn(R)\O, define [(B) =
min{l(b;;) | bi; # 0}. Let S = {P1AQ: | P1,Q: are invertible}. Since Z>( is bounded below
and discrete, there exists some C' = (¢;5) € S realizing min{l(B) | B € S}. By interchanging
rows and columns we may assume I(c11) = min{l(c;;)}.

When n > 1, since R is a principal ideal domain, there exist x,y such that ci1x + c12y =

ged(err, c12). Let u = an v = 12 . Then T = [ v

sed(ciea)’ sed(creD) ] is invertible since its

—u
. . . T 0 . e
determinant is 1. Furthermore, the (1, 2)-position of C' 0 I is ged(c11, €12). By minimality
n—2
of C we have I(c11) < I(ged(er1,¢12)). So c11 | c12. By replacing the second column with (second
column)—£12 (first column), we may assume ci2 = 0. Similarly, we may assume c1;,¢;1 = 0 for

. c 0
1,7 > 1. So C' has the form [él cr

Suppose there exists some ¢;; such that ci1 1 ¢;5. Then I(ged(ci1,¢5)) < I(c11). Replace the
first row of C with (first row) + (i-th row). Then we obtain a matrix such that its (1,7)-
position is ¢;j. By an operation similar to the one mentioned above, we can turn this ¢;; into
ged(ci1, ¢ij), which contradicts the minimality of C. So c11 | ¢;; for any 4,5 > 1 and C' meets
the requirement. 0

} and we only need to prove cy; divides ¢;; for any 7,5 > 1.

Then we prove the original conclusion by induction on & = max{m,n}. The conclusion
obviously hold when k& = 1. Suppose we have already proven it for k =1 — 1. When k = [, if
m =1 or n =1, by the lemma we have the conclusion holds. So we may assume m,n > 1. By
a(l)l 14(1)1] and d; divides
all entries of A;. By the induction hypothesis there exist invertible matrices P,, Q)2 such that
P,A1Qo = diag(da, -+ ,d;,0,---,0), where ds | - - - | d,. Since d; divides all entries of Ay, d; | da
(since d2 must be an R-linear combination of entries of A;). there exist invertible matrices P, Q)

the lemma there exist invertible matrices P, Q1 such that PiAQ, = [

99



), dF 42 REAHK

7 ) Qiuzhen College, Tsinghua University

such that PAQ = diag(dy, - - -
k=1

,dy,0,---,0) such that dy | --- | d. So the conclusion holds for

O]

Remark. In general, a Euclidean domain is a principal domain but the converse is not true.
And you should pay attention to the fact that in this solution, the function [ is not a Euclidean
function and the matrix 7' is invertible but not elementary. These are the main differences
between the above two exercises.

Exercise. Find the Smith normal form of the following matrices over C

A1 A2 -1 A+1 A0 (A2 -1 0

M) 0 A}’(Q)[AH )\2+2>\+1]’(3>[0 )\+5}’(4)_ 0 (A—1)3]’
(A+1 A2+1 A2 A—2 -1 0 ]

(5) [3A =1 3X2—1 X2 +42Xx[;(6)| 0 AX—2 —1 |[.
A-1 A-1 A 0 0 A—2]

Solution. The followings are the required Smith normal forms:

1 0 A+1 0 1 0 A—1 0

W 1o )\2}(2)[ 0 (A+1)()\2—2)];(3) [0 )\()\+5)_;(4)[ 0 (/\+1)()\—1)3}
10 0 10 0

)0 A of;(6)l0 1 0 | 0
0 0 0 00 (A—2)3

Exercise. Find the invariant factors/determinant divisors/elementary factors/rational nor-

mal forms/Jordan canonical forms of the following matrices (over C), and determine whether
A;/B;/C; are similar.

32 -5 6 20 —34
A1 =12 6 10|, 4,= |6 32 —51],
12 -3 4 20 —32
6 6 —15] 37 —20 —4
Bi=1|15 —5|,By=|34 —-17 -4/,
12 -2 119 —70 —11
4 6 —15] 1 -3 3 ~13 =70 119
Ci=113 —5|,C,=1]-2 —6 13|,C3=|-4 —-19 34
1 2 —4] 1 -4 8 —4 -20 35

Solution. A; and As have the same data: the invariant factors are 1, A — 2, (A — 2)2, the de-
terminant divisors are 1, A — 2, (A — 2)3, the elementary factors are A — 2, (A — 2)?2, the rational

20 0 2 00
normal form is [0 0 —4| and the Jordan canonical form is [0 2 O0f. So they are similar.
01 4 01 2

Bj and By have the same data: the invariant factors are 1, A — 3, (A — 3)2, the determinant
divisors are 1, — 3, (A — 3)3, the elementary factors are A — 3, (A — 3)2, the rational normal

30 0 300
formis [0 0 —9| and the Jordan canonical form is {0 3 0]. So they are similar.
01 6 01 3

C; and Cs have the same data: the invariant factors are 1, A — 1, (A — 1)2, the determinant
divisors are 1, \— 1, (A —1)3, the elementary factors are A — 1, (A —1)2, the rational normal form

1 0 0 1 00
is [0 0 —1]| and the Jordan canonical formis |0 1 0]|. So they are similar. However, the
01 2 011

data of Cy are different: the invariant factors are 1,1, (X — 1)3, the determinant divisors are
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00 1
1,1, (A —1)3, the elementary factor is (A — 1)3, the rational normal formis |1 0 —3| and the
01 3
1 00
Jordan canonical form is |1 1 0]. So it’s not similar to Cj. ]
011

Exercise. Show that for any A € M,(C), there exists an invertible matriz P such that P~ AP =
5159, where S1 and So are symmetric matrices and S1 is invertible.

J/ﬁ ()‘1)
. . -1 Jk2 ()\2)
Proof. Suppose the Jordan canonical form of A is P7*AP =
Jks ()\5)
1 1 A
1 Y
For any k € N, X\ € C, define A, = g , Bk(\) = ] € My (C).
. 1 -
1 A
Then they are symmetric and Ay is invertible. Notice that for any 1 <i < s,
1 LA A
Aszkz(Al) = . . = . . = sz()‘l)
1 \; 1 N
Ap, By, (A1)
Ak By (A2
So choose S = : ] , Sy = :(%2)
Aks Bks ()\S)
They are symmetric, S; is invertible and P~1AP = §,5,. O
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Chapter 14

Homework-14

Exercise. Let A be an n x n matriz of real numbers with A> + 1 = 0. Prove that n = 2k must
be even and A is similar to
_ — 1,
b= <Ik )

Proof. It’s clear that the minimal polynomial of A is 22 + 1 since it’s irreducible over R, and
thus all possible eigenvalues of A over C are +v/—1. But since A is real, then the eigenvalues
must be conjugates of each other, and thus n = 2k must be even, and multiplicity of v/—1 is k,
so is —y/—1. In particular, A is similar to

<mjk —ﬁ&) h <fk _Ik>

over C. Therefore A\I — A is equivalent to A\I — B as C[A]-matrices, and since both of them are
real, they’re equivalent as R[A]-matrices. As a consequence, A is similar to B over R. O

by a matriz over R.

Exercise. Let R be a principle ideal domain and M be a free R-module of finite rank. Show
that any submodule N of M is free and finite rank.

Proof. Let’s prove it by induction on the rank of M. If M has rank one, that is, M = R,
then any submodule N of M is of the form (a), which is a principal ideal of R, and thus it’s
also free with finite rank. Now suppose the induction hypothesis holds for n < k£ and consider
the case n = k. Consider the projection of M = Ry @ --- & Ry to the last factor, denoted
by 7. By induction hypothesis, one has kerm N NV is a free module with finite rank. Suppose
ai,...,am—1 is a basis of ker N IV, and suppose the ideal generated by 7(NN) is of the form (b),
and suppose m(a,,) = b. Then it’s clear that N is generated by ai, ..., a,. Now it suffices to
show aji, ..., am, are linearly independent. If x1aq + -+ - + zpay, = 0 for x; € R, then

m(r1a1 + -+ Typun) = b =0,

and thus x,, = 0. On the other hand, since {a1, ..., ,—1} is a basis, then z; = - -+ = 2,1 = 0.
This completes the proof. ]

Exercise. Suppose a complex matriz A has characteristic polynomial (t — 2)*(t — 1)2. How
many possible Jordan canonical forms can A have? (Jordan forms obtained by reordering the
Jordan blocks are considered the same)

Proof. Tt suffices to consider all possibilities of elementary divisors. For (¢ — 2)?%, there are five
possibilities (this is exactly the number of partition of 4), and the same argument shows there
are two possibilities of (t — 1)2. Thus there are 2 x 5 = 10 possibilities of the Jordan canonical
block of A. O
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Exercise. Find the minimal polynomial of

2 -2 5 2
0 -4 0 1
A= 0 -3 -3 3
0 -1 0 =2

Proof. A direct computation shows the invariant divisors of A are 1,1, (¢t + 3), (t — 2)(t + 3)?,
and thus the minimal polynomial is (¢ — 2)(¢ + 3)2. O

Exercise. Suppose A € M, (C). Suppose 0 is an eigenvalue of A with algebraic multiplicity k.
Find all possible ranks of AF.

Proof. The only possible rank of A* is n — k. Since the algebraic multiplicity of eigenvalue 0
is k, the order of Jordan blocks of eigenvalue 0 must be less or equal to k, and all such Jordan
blocks are zero after raising to the k-th power. O

Exercise. Let A € M, (C). Suppose A" =0 and A"~! # 0. Show that there is no B € M,(C)
such that A = B2.

Proof. Without lose of generality we may assume n > 2. Suppose there exists B € M,,(C) such
that A = B2, Then B?" = 0 but B?>*~! # 0. On the other hand, the degree of the minimal
polynomial of B is less or equal to n, and it divides B%", so it must be B* with k < n. Thus it
leads to 2n — 1 < k < n, which contradicts to n > 2. ]

Exercise. A matriz A € M,(C) is called nilpotent if A™ = 0 for somem > 0. Let A, B € Mg(C)
be nilpotent matrices. Suppose A and B have same minimal polynomial and rank A = rank B.
Show that A is similar to B. What if A, B have order more than 6 ?

Proof. Since both A and B are nilpotent matrices, then the invariant divisors of A and B are
of the form t*. Moreover, since the ranks of A and B are same, and A has the same minimal
polynomial with B. Then it reduces to the following problem: Given two partitions of 6 with
the same length and the largest numbers in these two partitions are the same, does these two
partitions are the same? This can be done easily by enumerating all possibilities.

The statement fails when A, B have order more than 6. For example, consider

0 Jo(0)
A= J3(0) , B= J2(0)
J3(0) J3(0).

Both A and B have rank four, and the minimal polynomial is t3, but A is not similar to B. [

Exercise. Suppose K C K’ is a field extension. Let A € My, (K). What is the connection
between the minimal polynomial m(t) € K[t] of A over K and the minimal polynomial m'(t) €
K'[t] of A over K’ ?

Proof. The minimal polynomial doesn’t change after the field extension. O

Exercise. Let \i,...,\, be the eigenvalues of A € M, (C), counted with multiplicities. Show
that N, ... Ak are all the eigenvalues of AF.

Proof. Since every A € M,(C) is similar to some upper-triangular matrix with A;,..., A, on
the diagonal (For example, Jordan canonical form), and the k-th power of this upper-triangular
matrix has A¥,..., A\* on the diagonal. This shows that A¥,..., Ak are all the eigenvalues of
Ak, O
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