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Chapter 1

Homework-1

Exercise. Check that the zero element and identity element of a ring are unique. For any
x ∈ R, its opposite −x and inverse x−1 (if exists) are also unique.

Proof. If there exist two zero elements a, b ∈ R, then a = a + b = b. So the zero element of a
ring is unique and we denote it by 0. Similarly, if there exist two identity elements c, d ∈ R,
then c = cd = d. So the identity element of a ring is unique, and we denote it by 1.

For any x ∈ R, if it has two opposites y, y′, then

y = y + 0 = y + (x+ y′) = (y + x) + y′ = 0 + y′ = y′

So the opposite of x is unique.
Similarly, if it has two inverses z, z′, then

z = z · 1 = z(xz′) = (zx)z′ = 1 · z′ = z′

So if x has an inverse, this inverse is unique.

Exercise. Suppose R is a ring. Show that for all a, b, c ∈ R we have

(a) a(b− c) = ab− ac and (b− c)a = ba− ca

(b) n(ab) = (na)b = a(nb) for any integer n

Proof. Let’s prove (b) first, and then deduce (a). For (b), we prove it through case by case
discussion.

1. When n > 0, we prove the formula by induction on n. It obviously holds when n = 1.
Suppose we have already proven this for n − 1. Then n(ab) = (n − 1)(ab) + ab = ((n −
1)a)b + ab = ((n − 1)a + a)b = (na)b. Similarly we have n(ab) = a(nb). So the formula
holds for all n > 0.

2. When n = 0, notice that a · 0 = a · (0 + 0) = a · 0 + a · 0. So a · 0 = 0. Similarly 0 · b = 0.
So 0 · ab = 0 = a(0 · b) = (0 · a)b.

3. When n = −1, notice that ab + a(−b) = a(b + (−b)) = a · 0 = 0 and ab + (−a)b =
(a+ (−a))b = 0 · b = 0. We have −ab = a(−b) = (−a)b.

4. When n < 0, notice that for any r ∈ R, by definition we have nr = (−n)(−r). So n(ab) =
(−n)(−ab) = (−n)((−a)b) = ((−n)(−a))b = (na)b. Similarly n(ab) = (−n)(−ab) =
(−n)(a(−b)) = a((−n)(−b)) = a(nb).
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For (a), we have

a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab+ (−ac) = ab− ac

and
(b− c)a = (b+ (−c))a = ba+ (−c)a = ba+ (−ca) = ba− ca

Exercise. Let R be a set with two operations satisfying all ring axioms except the commutative
law for addition. Use the distributive law to prove that the commutative law for addition holds,
so that R is a ring.

Proof. For any x, y ∈ R, consider (x+ y)(1 + 1). On one hand,

(x+ y)(1 + 1) = (x+ y) · 1 + (x+ y) · 1 = x+ y + x+ y

On the other hand,

(x+ y)(1 + 1) = x(1 + 1) + y(1 + 1) = x+ x+ y + y

So x+ y = y + x, which implies that the commutative law for addition holds.

Exercise. Let R be the set of continuous functions from R to R. Define addition and multipli-
cation on R by (f + g)(x) = f(x) + g(x) and (f · g)(x) = f(g(x)).

(a) Determine which of the ring axiom hold for R and which fail.

(b) Find two operations on R which makes it a ring.

Solution. For (a), since R is an abelian group with respect to the addition, R is an abelian
group with respect to the addition. The associative law for multiplication holds since function
composition is associative. Furthermore, the identity map id(x) = x satisfies that f ·id = id ·f =
f holds for any f ∈ R. And for any f, g, h ∈ R, for any x ∈ R, (f + g)h(x) = (f + g)(h(x)) =
f(h(x)) + g(h(x)). So (f + g)h = fh + gh. The only axiom that fails is f(g + h) = fg + fh.
Here’s a counterexample. Let f(x) = g(x) = h(x) = x + 1. Then (f + f)(x) = 2x + 2. So we
have

(f(f + f))(x) = 2x+ 3
(f · f + f · f)(x) = 2x+ 4

So f(f + f) 6= f · f + f · f .
For (b), define (f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x)g(x). Since R is a ring, R is a

ring with respect to these two operations.

Exercise. Show that Q[
√
−1] = {a+ b

√
−1|a, b ∈ Q} is a field.

Proof. Notice that Q[
√
−1] is a subset of a field C and it contains 0 and 1. So we only need to

verify that Q[
√
−1] is closed under addition, multiplication, taking the opposite and taking the

inverse. For any a+ b
√
−1, c+ d

√
−1 ∈ Q[

√
−1], we have

(a+ b
√
−1) + (c+ d

√
−1) = a+ c+ (c+ d)

√
−1 ∈ Q[

√
−1]

(a+ b
√
−1)(c+ d

√
−1) = ac− bd+ (bc+ ad)

√
−1 ∈ Q[

√
−1]

−(a+ b
√
−1) = −a+ (−b)

√
−1 ∈ Q[

√
−1]

(a+ b
√
−1)−1 = 1

a+b
√
−1

= a−b
√
−1

a2+b2
= a

a2+b2
+ −b

a2+b2

√
−1 ∈ Q[

√
−1], if a+ b

√
−1 6= 0

So Q[
√
−1] is a field.
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Exercise. Determine the units in Zm.

Solution. For any n ∈ Z, denote by n its congruent class modulo m.
On one hand, for any unit n in Zm, it has an inverse k ∈ Zm. So nk = 1. So nk ≡ 1 (mod m),

which implies gcd(m,n) = 1.
On the other hand, for any integer n such that gcd(m,n) = 1, according to the Bézout’s

identity, there exist integers a, b such that am+ bn = 1. So nb = bn = bn = 1− am = 1, which
implies n is a unit in Zm.

In conclusion, all units in Zm form a set {n|n ∈ Z, gcd(m,n) = 1}.

Exercise. Let A and B be matrices with coefficients in a commutative ring. Check that
(At)t = A, (A + B)t = At + Bt, and (AB)t = BtAt(whenever the sum A + B or the product
AB is well-defined).

Proof. Suppose A = (ai,j)1≤i≤m,1≤j≤n is an m× n matrix. Then At = (ai,j)1≤j≤n,1≤i≤m. So

(At)t = (ai,j)1≤i≤m,1≤j≤n = A

When A+B is well-defined, B is an m× n matrix. Suppose B = (bi,j)1≤i≤m,1≤j≤n. Then

(A+B)t = (ai,j + bi,j)1≤j≤n,1≤i≤m = (ai,j)1≤j≤n,1≤i≤m + (bi,j)1≤j≤n,1≤i≤m = At +Bt

When AB is well-defined, B is an n × l matrix. Suppose B = (bi,j)1≤i≤n,1≤j≤l. Then
AB = (

n∑
k=1

ai,kbk,j)1≤i≤m,1≤j≤l. So

(AB)t = (
n∑

k=1

ai,kbk,j)1≤j≤l,1≤i≤m = (bk,j)1≤j≤l,1≤k≤n(ai,k)1≤k≤n,1≤i≤m = BtAt

Exercise. Check that the set of upper-triangular/lower-triangular/diagonal matrices of order
n over a ring R form a ring.

Proof. Let U,L,D be the set of upper-triangular, lower-triangular, diagonal matrices of order n
over R, respectively. Notice that they are all subsets of Mn×n(R) and contain the zero element
0n and the identity element In. So we only need to verify that U,L,D are closed under addition,
multiplication and taking the opposite.

For any A = (ai,j), B = (bi,j) ∈ U , we have ai,j = bi,j = 0 for any i > j. So for any i > j,
ai,j + bi,j =

n∑
k=1

ai,kbk,j = −ai,j = 0. So A+B,AB,−A ∈ U . So U is a ring.

Notice that taking the transpose is a bijection from U to L. According to the conclusion
from the previous exercise, the fact that U is a ring implies that L is a ring.

Finally, D = U ∩ L is a ring.

Exercise. Assume F is a field. Show that if A = (ai,j) ∈ Mn(F ) is a diagonal matrix and
ai,i 6= aj,j for any i 6= j, then any matrix B ∈Mn(F ) that commutes with A is also diagonal.

Proof. Suppose B = (bi,j). Then AB = (ai,ibi,j)i,j , BA = (bi,jaj,j)i,j . Since AB = BA and
ai,i 6= aj,j for any i 6= j, we have bi,j = 0 for any i 6= j. So B is diagonal.

Exercise. The trace tr(A) of a square matrix A is the sum of the entries on the diagonal of A.
For any commutative ring R and any matrices A,B ∈Mn(R), show that

(a) tr(A+B) = tr(A) + tr(B) and tr(At) = tr(A)
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(b) for any a ∈ R, tr(aA) = a tr(A)

(c) tr(AB) = tr(BA).

Proof. Suppose A = (ai,j) and B = (bi,j) are n× n matrices.
For (a), tr(A+B) =

n∑
i=1

(ai,i+ bi,i) =
n∑

i=1
ai,i+

n∑
i=1

bi,i = tr(A)+ tr(B) and tr(At) =
n∑

i=1
ai,i =

tr(A).
For (b), tr(aA) =

n∑
i=1

aai,i = a
n∑

i=1
ai,i = a tr(A).

For (c), tr(AB) =
n∑

i=1

n∑
k=1

ai,kbk,i =
n∑

k=1

n∑
i=1

bk,iai,k = tr(BA).

Exercise. Determine the products AB and BA for the following values of A and B.

(a) A =

[
1 2 3
3 3 1

]
, B =

−8 −4
9 5
−3 −2


(b) A =

[
1 4
1 2

]
, B =

[
6 −4
3 2

]
.

Solution.
For (a),

AB =

[
1 0
0 1

]
, BA =

−20 −28 −28
24 33 32
−9 −12 −11


For (b),

AB =

[
18 4
12 0

]
, BA =

[
2 16
5 16

]

Exercise. Let A =
[
a1 · · · an

]
be a row vector, and let B =

b1...
bn

 be a column vector.

Compute the product AB and BA.

Solution.

AB =
[∑
i=1

aibi
]
, BA =

b1a1 · · · b1an
... . . . ...

bna1 · · · bnan



Exercise. Verify the associative law for the matrix product
[
1 2
0 1

] [
0 1 2
1 1 3

]14
3

.
Proof. On one hand,

([
1 2
0 1

] [
0 1 2
1 1 3

])14
3

 =

[
2 3 8
1 1 3

]14
3

 =

[
38
14

]
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On the other hand,[
1 2
0 1

][0 1 2
1 1 3

]14
3

 =

[
1 2
0 1

] [
10
14

]
=

[
38
14

]
So ([

1 2
0 1

] [
0 1 2
1 1 3

])14
3

 =

[
1 2
0 1

][0 1 2
1 1 3

]14
3


So this matrix product follows the associative law.

Exercise. Compute
[
1 a

1

] [
1 b

1

]
and

[
1 a

1

]n
.

Solution. [
1 a

1

] [
1 b

1

]
=

[
1 a+ b

1

]
So by induction, for n ≥ 0, [

1 a
1

]n
=

[
1 na

1

]
So for n < 0, [

1 a
1

]n
=

[
1 −a

1

]−n

=

[
1 na

1

]
So the above formula holds for all n ∈ Z.

Exercise. Find a formula for

1 1 1
1 1

1

n

, and prove it by induction.

Solution. 1 1 1
1 1

1

n

=

1 n n(n+1)
2

1 n
1


For n ≥ 0, we will prove it by induction on n. The above formula obviously holds for n = 0.

If we have already proven this for n− 1, then we have1 1 1
1 1

1

n

=

1 1 1
1 1

1

n−1 1 1 1
1 1

1

 =

1 n− 1 (n−1)n
2

1 n− 1
1

1 1 1
1 1

1

 =

1 n n(n+1)
2

1 n
1


So this formula holds for all n ∈ Z>0.

For n < 0, notice that1 −n −n(−n+1)
2

1 −n
1

1 n n(n+1)
2

1 n
1

 =

1 n n(n+1)
2

1 n
1

1 −n −n(−n+1)
2

1 −n
1

 =

1 1
1


So we have1 1 1

1 1
1

n

=


1 1 1

1 1
1

−n


−1

=

1 −n −n(−n+1)
2

1 −n
1

−1

=

1 n n(n+1)
2

1 n
1


So this formula holds for all n ∈ Z.
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Chapter 2

Homework-2

Exercise. Show that two different reduced row echelon system of linear equations have different
solutions (if the solutions exist). Derive that the reduced row echelon matrix associated to a
given matrix is unique.

Proof. For the first part, suppose reduced row echelon systems A1X = 0, A2X = 0 have the same
solutions and show the row echelon system. Then the number of pivots and free unknowns are
same, and the solutions of A1X = 0, A2X = 0 are given by the combinations of these unknowns
and entries of A1 and A2 respectively. As a result A1 = A2 since A1X = 0 and A2X = 0 have
the same solutions.

For the second part, if A is reduced to A1 and A2, then A1X = 0 has the same solutions as
A2X = 0, since both of them have the same solutions as AX = 0, and thus A1 = A2.

Exercise. Find all solutions of the equation x1 + x2 + 2x3 − x4 = 3.

Proof. All possible solutions in R are given by

x =


a
b
c

a+ b+ 2c− 3

 ,

where a, b, c ∈ R.

Exercise. Find all solutions of the system of equations AX = B when

A =

1 2 1 1
3 0 0 4
1 −4 −2 2


and

(a)

B =

0
0
0


(b)

B =

1
1
0
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(c)

B =

0
2
2


Proof. For (a). By Gaussian elimination one has

[A | B] =

1 2 1 1 0
3 0 0 4 0
1 4 −2 2 0

 =⇒

1 2 1 1 0
0 −6 −3 1 0
0 2 −3 1 0

 =⇒

1 2 1 1 0
0 −6 −3 1 0
0 0 −4 4

3 0

 =⇒

1 2 1 1 0
0 −6 −3 1 0
0 0 0 0 0

 .

This shows all possible solutions over R is given by

x =


−3

4b
1
6(−3a+ b)

a
b

 ,

where a, b ∈ R. Similarly one can show the solutions of (b) is empty set and (c) are given by

x =


3
2 −

4
3b

−1
3 −

1
2a+

1
6b

a
b

 ,

where a, b ∈ R.

Exercise. Find the inverse of the following matrix by elementary row reduction:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1


Proof. The inverse of above matrix is given by

1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1



Exercise. Write the following permutations as products of transpositions, and determine their
sign.

(a) 1, 3, 5, 2, 4, 8, 6, 7,

(b) 9, 5, 3, 8, 4, 6, 2, 1, 7,

(c) 7, 1, 6, 2, 5, 3, 4.
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Proof. For (a). Firstly note that the permutation(
1, 2, 3, 4, 5, 6, 7, 8
1, 3, 5, 2, 4, 8, 6, 7

)
can be written as (1)(2, 3, 5, 4)(6, 8, 7), and thus it can be written as products of transpositions
as follows

(1)(23)(25)(24)(68)(67),

which implies it’s an odd permutation. By the same method one can write the other permuta-
tions as products of transpositions.

Exercise. Evaluate the following determinants:

(a)

(
1 i

2− i 3

)
,

(b)

(
1 1
1 −1

)
,

(c)

2 0 1
0 1 0
1 0 2

,

(d)


1 0 0 0
5 2 0 0
8 6 3 0
0 9 7 4

.

Proof. The determinants are 2− 2i,−2, 3, 24 respectively.

Exercise. Compute the determinant of the following n× n matrix using induction on n :

2 −1
−1 2 −1

−1 2 −1
−1 ·

·
2 −1
−1 2


.

Proof. Let Tn denote above n× n matrix. It’s clear detT1 = 2 and detT2 = 3. Now let’s prove
detTn = n + 1 by induction. Suppose it holds for n < k. Then for n = k, by expansion along
the first row one has

detTk = 2detTk−1 − (−1)× (−1) detTk−2 = 2k − (k − 1) = k + 1.

Exercise. Suppose R = K[t] is the polynomial ring and A = (aij) ∈Mn(R). Show that

(a)
∂ detA

∂t
= detA1 + · · ·+ detAn,

where Ai is obtained from A by taking the derivative of the i-th row and keep the other rows.

8



(b)
∂ detA

∂t
=
∑
i,j

(−1)i+j ∂aij
∂t

det aij ,

where aij = Ac

(
i
j

)
.

Proof. For (a). Note that

∂ detA

∂t
=

∂

∂t

(∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n)

)

=
∑
k

∑
σ∈Sn

sgn(σ)

(
a1σ(1) . . .

∂akσ(k)

∂t
. . . anσ(n)

)
= detA1 + · · ·+ detAn.

For (b). It suffices to note that

Ak =
∑
i

(−1)k+j ∂akj
∂t

Ak,j .

Then by (a), one has

detA = detA1 + · · ·+ detAn =
∑
i,j

(−1)i+j ∂aij
∂t

Ai,j

Exercise. Suppose det

x y z
3 0 2
1 1 1

 = 1. Compute the following determinant.

(1)

2x 2y 2z
3
2 0 1
1 1 1

.

(2)

 x y z
3x+ 3 3y 3z + 2
x+ 1 y + 1 z + 1

.

(3)

x− 1 y − 1 z − 1
4 1 3
1 1 1

.

Proof. By elementary operations, one can see all of above three determinants equal to the
determinant of x y z

3 0 2
1 1 1



Exercise. Calculate the Vandermonde determinant

det


1 1 . . . 1
θ1 θ2 . . . θn
...

...
...

θn−1
1 θn−1

2 · · · θn−1
n

 .

9



Proof. Now let’s prove the Vandermonde determinant equals
∏

1≤i<j≤n(θj − θi) by induction.
It holds for n = 2, and suppose it holds for n < k. Let V denote the Vandermonde matrix.
Then

detV = det


1 1 · · · 1
0 θ2 − θ1 · · · θk − θ1
...

...
...

0 θk−1
2 − θk−1

1 · · · θk−1
k − θk−1

1



= det


θ2 − θ1 · · · θk − θ1
θ22 − θ21 · · · θ2k − θ21

...
...

...
θk−1
2 − θk−1

1 · · · θk−1
k − θk−1

1



= det


1 1 · · · 1

θ2 + θ1 θ3 + θ1 · · · θk + θ1
...

... · · ·
...∑k−2

i=0 θ
k−2−i
2 θi1

∑k−2
i=0 θ

k−2−i
3 θi1 · · ·

∑k−2
i=0 θ

k−2−i
k θi1



θ2 − θ1 0 · · · 0

0 θ3 − θ1 · · · 0
...

...
...

0 0 · · · θk − θ1


Note that 

1 1 · · · 1
θ2 + θ1 θ3 + θ1 · · · θk + θ1

...
... · · ·

...∑k−2
i=0 θ

k−2−i
2 θi1

∑k−2
i=0 θ

k−2−i
3 θi1 · · ·

∑k−2
i=0 θ

k−2−i
k θi1



=


1 0 · · · 0
θ1 1 · · · 0
...

... · · · 0

θn−2
1 θn−3

1 · · · 1




1 1 · · · 1
θ2 θ3 · · · θk
...

...
...

θk−2
2 θk−2

3 · · · θk−2
k

 .

Then by induction hypothesis one has

detV =
k∏

j=2

(xj − x1)
∏

2≤i<j≤k

(xj − xi) =
∏

1≤i<j≤k

(xj − xi)

as desired.

Exercise. Let a 2n × 2n matrix be given in the form M =

(
A B
C D

)
, where each block is an

n × n matrix. Suppose that A is invertible and that AC = CA. Use block multiplication to
prove that detM = det(AD − CB). Give an example to show that this formula need not hold
if AC 6= CA.

Proof. Note that

detM = det

(
A B
C D

)
=

(
A B
O D − CA−1B

)
= detA · det(D − CA−1B)

= det(AD −ACA−1B)

= det(AD − CB).
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Exercise. Suppose aii > 0 and aij < 0 for i 6= j. Suppose in addition that
∑n

i=1 aij > 0 for all
j. Show that det(aij) > 0.

Proof. Let’s prove this by induction. For n = 1,

det(aij) = a11 > 0.

Now suppose it holds for n < k. Then for n = k, note that

det


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ak1 ak2 · · · akk

 = det


a11 a12 · · · a1k
0 a22 − a12

a11
a21 · · · a2k

...
...

...
0 ak2 − a12

a11
ak1 · · · akk



= a11 det

a22 −
a12
a11
a21 · · · a2k

...
...

ak2 − a12
a11
ak1 · · · akk


Note that a22−

a12
a11

a21 > 0 and −a12
a11

(a21 + · · ·+ ak1) > −
a12
a11

(−a11) = a12. Then by induction
hypothesis

det

a22 −
a12
a11
a21 · · · a2k

...
...

ak2 − a12
a11
ak1 · · · akk

 > 0.

This completes the proof.

Exercise. Suppose A ∈Mn×s(R) and B ∈Ms×n(R). Prove

det(AB) =


0, n > s;

detA · detB, n = s;∑
1≤k1<k2<···<kn≤s detA

(
12 · · ·n

k1k2 · · · kn

)
· detB

(
k1k2 · · · kn
12 · · ·n

)
, n < s.

Proof. If n > s, then there exists a non-zero x such that Bx = 0, and thus ABx = 0. This
shows the system of linear equations ABX = 0 has a non-zero solution, and thus detAB = 0.
If n = s, then both A,B are square matrices, so

detAB = detA · detB

by properties of determinants. If n < s, consider the matrix

M =

(
A O
Is B

)
,

which is a (n+ s)× (n+ s) matrix. On one hand, one has

detM = det

(
A O
Is B

)
= det

(
O −AB
Is B

)
= (−1)ns+n detAB.

On the other hand, by Laplacian expansion one has

detM =
∑

1≤k1<···<kn≤s

(−1)
n(n+1)

2
+k1+···+kn detA

(
12 · · ·n

k1k2 · · · kn

)
detM

(
n+ 1n+ 2 · · ·n+ s
kn+1kn+2 · · · kn+s

)
,
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where {k1, . . . , kn+s} is a permutation of {1, . . . , n+ s}. Note that among the first n rows, the
last n columns are zeros, so if

detA

(
12 . . . n

k1k2 . . . kn

)
6= 0,

we must have 1 ≤ k1, . . . , kn ≤ s. In particular, one has

M

(
n+ 1n+ 2 · · ·n+ s
kn+1kn+2 · · · kn+s

)
=

(
Is

(
12 . . . s

µ1, . . . , µs−n

)
B

)
,

where {k1, . . . , kn} ∪ {µ1, . . . , µs−n} = {1, 2, . . . , s}. Again by Laplacian expansion one has

detM

(
n+ 1n+ 2 · · ·n+ s
kn+1kn+2 · · · kn+s

)
= (−1)

(s−n)(s−n+1)
2

+µ1+···+µs−n detB

(
k1k2 . . . kn
12 . . . n

)
.

Then

detM = (−1)
n(n+1)

2
+

(s−n)(s−n+1)
2

+k1+···+kn+µ1+···+µs−n
∑

1≤k1<···<kn≤s

detA

(
12 · · ·n

k1k2 · · · kn

)
·detB

(
k1k2 · · · kn
12 · · ·n

)
.

Note that

n(n+ 1)

2
+

(s− n)(s− n+ 1)

2
+ k1 + · · ·+ kn + µ1 + · · ·+ µs−n = n2 + s2 + s− ns

≡ ns+ n (mod 2).

This completes the proof.
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Chapter 3

Homework-3

Exercise. Let A = (ai,j) and B = (ai,j+x). Show that detB = detA+x ·
∑

i,j(−1)i+j detAi,j.
Proof. For any square matrix M , denote by Mi the i-th row vector of M . View detM as a
function D of its row vectors Mi. Then by definition D is an alternating multilinear function.

Suppose A is an n×n matrix and v is the n-dimensional row vector whose entries are all 1.
Then we have
detB = D(A1 + xv, · · · , An + xv)

=
1∑

δ1,··· ,δn=0

D(δ1A1 + (1− δ1)xv, · · · , δnAn + (1− δn)xv) (since D is multilinear)

= D(A1, · · · , An) +
n∑

i=1
D(A1, · · · , Ai−1, xv,Ai+1, · · · , An) (since D is alternating)

= detA+
n∑

i=1
(−1)i+jx(

n∑
j=1

detAi,j) (by Laplacian expansion)

= detA+ x ·
n∑

i,j=1
(−1)i+j detAi,j

Exercise. Suppose A ∈ Mn×s(R) and B ∈ Ms×n(R) (with R commutative). Prove that
det(In+AB) = det(Is+BA).

Proof. Consider the block matrix C =

[
In −A
B Is

]
. It’s a square matrix of order n + s. Notice

that [
In −A
0 Is

] [
In+AB 0
B Is

]
= C =

[
In 0
B Is+BA

] [
In −A
0 Is

]
So det(In+AB) = detC = det(Is+BA).

Exercise. Compute the following determinant.∣∣∣∣∣∣∣∣∣
1 + a1 + b1 a1 + b2 · · · a1 + bn
a2 + b1 1 + a2 + b2 · · · a2 + bn

...
... . . . ...

an + b1 an + b2 · · · 1 + an + bn

∣∣∣∣∣∣∣∣∣
Solution. Notice that

1 + a1 + b1 a1 + b2 · · · a1 + bn
a2 + b1 1 + a2 + b2 · · · a2 + bn

...
... . . . ...

an + b1 an + b2 · · · 1 + an + bn

 = In+


a1 1
a2 1
...

...
an 1


[
1 1 · · · 1
b1 b2 · · · bn

]
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So by the conclusion of Exercise 2,∣∣∣∣∣∣∣∣∣
1 + a1 + b1 a1 + b2 · · · a1 + bn
a2 + b1 1 + a2 + b2 · · · a2 + bn

...
... . . . ...

an + b1 an + b2 · · · 1 + an + bn

∣∣∣∣∣∣∣∣∣ = det

I2+

[
1 1 · · · 1
b1 b2 · · · bn

]
a1 1
a2 1
...

...
an 1




So the given determinant is equal to∣∣∣∣1 + a1 + · · ·+ an n
a1b1 + · · ·+ anbn 1 + b1 + · · ·+ bn

∣∣∣∣ = (1+a1+ · · ·+an)(1+b1+ · · ·+bn)−n(a1b1+ · · ·+anbn)

Exercise. Use Cramer’s rule to find solutions of the following equations

(1)


2x1 + x2 − 5x3 + x4 = 8
x1 − 3x2 − 6x4 = 9
2x2 − x3 + 2x4 = −5
x1 + 4x2 − 7x3 + 6x4 = 0

(2)


x2 + x3 + x4 = 1
x1 + x3 + x4 = 2
x1 + x2 + x4 = 3
x1 + x2 + x3 = 4

Solution. For (1), |A| =

∣∣∣∣∣∣∣∣
2 1 −5 1
1 −3 0 −6
0 2 −1 2
1 4 −7 6

∣∣∣∣∣∣∣∣ = 27, |A1,b| =

∣∣∣∣∣∣∣∣
8 1 −5 1
9 −3 0 −6
−5 2 −1 2
0 4 −7 6

∣∣∣∣∣∣∣∣ = 81, |A2,b| =

∣∣∣∣∣∣∣∣
2 8 −5 1
1 9 0 −6
0 −5 −1 2
1 0 −7 6

∣∣∣∣∣∣∣∣ = −108, |A3,b| =

∣∣∣∣∣∣∣∣
2 1 8 1
1 −3 9 −6
0 2 −5 2
1 4 0 6

∣∣∣∣∣∣∣∣ = −27, |A4,b| =

∣∣∣∣∣∣∣∣
2 1 −5 8
1 −3 0 9
0 2 −1 −5
1 4 −7 0

∣∣∣∣∣∣∣∣ = 27.

Hence x1 = 3, x2 = −4, x3 = −1, x4 = 1.

For (2), |A| =

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

∣∣∣∣∣∣∣∣ = −3, |A1,b| =

∣∣∣∣∣∣∣∣
1 1 1 1
2 0 1 1
3 1 0 1
4 1 1 0

∣∣∣∣∣∣∣∣ = −7, |A2,b| =

∣∣∣∣∣∣∣∣
0 1 1 1
1 2 1 1
1 3 0 1
1 4 1 0

∣∣∣∣∣∣∣∣ = −4,

|A3,b| =

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 2 1
1 1 3 1
1 1 4 0

∣∣∣∣∣∣∣∣ = −1, |A4,b| =

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 1 2
1 1 0 3
1 1 1 4

∣∣∣∣∣∣∣∣ = 2.

Hence x1 =
7

3
, x2 =

4

3
, x3 =

1

3
, x4 = −

2

3
.

Exercise. Find the ranks of the following matrices by reducing to reduced row echelon forms.

(1)


25 31 17 43
75 94 53 132
75 94 54 134
25 32 20 48


14



(2)


24 19 36 72 −38
25 21 37 75 −42
73 59 98 219 −118
47 36 71 141 −72



(3)


1 0 1 0
3 1 2 1
1 2 −1 2
−1 0 −1 0
0 −1 1 −1


Solution. For (1), we obtain a reduced row echelon form of the given matrix via following row
elementary operations:

1 0 0 0
−3 1 0 0
−3 0 1 0
−1 0 0 1



25 31 17 43
75 94 53 132
75 94 54 134
25 32 20 48

 =


25 31 17 43
0 1 2 3
0 1 3 5
0 1 3 5



1 −31 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1



25 31 17 43
0 1 2 3
0 1 3 5
0 1 3 5

 =


25 0 −45 −50
0 1 2 3
0 0 1 2
0 0 1 2



1 0 45 0
0 1 −2 0
0 0 1 0
0 0 −1 1



25 0 −45 −50
0 1 2 3
0 0 1 2
0 0 1 2

 =


25 0 0 40
0 1 0 −1
0 0 1 2
0 0 0 0




1
25 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



25 0 0 40
0 1 0 −1
0 0 1 2
0 0 0 0

 =


1 0 0 8

5
0 1 0 −1
0 0 1 2
0 0 0 0


So the rank of the given matrix is 3.

For (2), we obtain a reduced row echelon form of the given matrix via following row elemen-
tary operations:

1 0 0 0
−1 1 0 0
−3 0 1 0
−2 0 0 1



24 19 36 72 −38
25 21 37 75 −42
73 59 98 219 −118
47 36 71 141 −72

 =


24 19 36 72 −38
1 2 1 3 −4
1 2 −10 3 −4
−1 −2 −1 −3 4



1 −24 0 0
0 1 0 0
0 −1 1 0
0 1 0 1



24 19 36 72 −38
1 2 1 3 −4
1 2 −10 3 −4
−1 −2 −1 −3 4

 =


0 −29 12 0 58
1 2 1 3 −4
0 0 −11 0 0
0 0 0 0 0




0 1 45 0
− 1

29 0 0 0
0 0 − 1

11 0
0 0 0 1



0 −29 12 0 58
1 2 1 3 −4
0 0 −11 0 0
0 0 0 0 0

 =


1 2 1 3 −4
0 1 −12

29 0 −2
0 0 1 0 0
0 0 0 0 0



1 0 −1 0
0 1 12

29 0
0 0 1 0
0 0 0 1



1 2 1 3 −4
0 1 −12

29 0 −2
0 0 1 0 0
0 0 0 0 0

 =


1 2 0 3 −4
0 1 0 0 −2
0 0 1 0 0
0 0 0 0 0
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1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 2 0 3 −4
0 1 0 0 −2
0 0 1 0 0
0 0 0 0 0

 =


1 0 0 3 0
0 1 0 0 −2
0 0 1 0 0
0 0 0 0 0


So the rank of the given matrix is 3.

For (3), we obtain a reduced row echelon form of the given matrix via following row elemen-
tary operations:

1 0 0 0 0
−3 1 0 0 0
−1 0 1 0 0
1 0 0 1 0
0 0 0 0 1




1 0 1 0
3 1 2 1
1 2 −1 2
−1 0 −1 0
0 −1 1 −1

 =


1 0 1 0
0 1 −1 1
0 2 −2 2
0 0 0 0
0 −1 1 −1



1 0 0 0 0
0 1 0 0 0
0 −2 1 0 0
0 0 0 1 0
0 1 0 0 1



1 0 1 0
0 1 −1 1
0 2 −2 2
0 0 0 0
0 −1 1 −1

 =


1 0 1 0
0 1 −1 1
0 0 0 0
0 0 0 0
0 0 0 0


So the rank of the given matrix is 2.

Exercise. Let K be a field. Suppose A′ is a submatrix of A ∈ Mn(K) of order r such that
detA′ 6= 0. Sippose for any submatrix A′′ of A of order r+1 containing A′, we have detA′′ = 0.
Show that A has rank r.

Proof. WLOG we may assume A′ = A

(
12 · · · r
12 · · · r

)
. Since detA′ 6= 0, the first r rows of A

are linearly independent, and similarly for the first columns. By definition rankA ≥ r. If
rankA ≥ r+1, then the number of vectors in a maximal subset of linearly independent vectors
contained in the rows of A is greater than r. So there exists i > r such that the first r rows
and the i-th row are linearly independent. They form an (r + 1) × n matrix B.Notice that
rankB = r + 1 > r and the first r columns of B are linearly independent since detA′ 6= 0. So
similarly there exists j > r such that the first r columns and the j-th column of B are linearly

independent. So detA

(
12 · · · ri
12 · · · rj

)
6= 0, which contradicts the condition. So rankA = r.

Exercise. Let K be a field and suppose A ∈Mn(K) has rank r. Suppose the first r rows of A

are linearly independent, and similarly for the first columns. Show that detA
(
12 · · · r
12 · · · r

)
6= 0.

Proof. Denote by B the submatrix consisting of the first r columns of A. Since they are
linearly independent, rankB = r. Since rankA = r and the first r rows of A are linearly
independent, every row of A is a linear combination of these r rows. So every row of B is a

linear combination of the first r rows of B, which implies rankA

(
12 · · · r
12 · · · r

)
= rankB = r. So

detA

(
12 · · · r
12 · · · r

)
6= 0.

Exercise. A skew-symmetric matrix is a matrix A such that At = −A. Suppose A ∈Mn(R) is
skew-symmetric, show that

(a) If detA 6= 0 then n is an even number

(b) rankA is even.
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What about skew-symmetric matrices over other fields K?

Proof. For (a), since detA = detAt = det(−A) = (−1)n detA and detA 6= 0, we have (−1)n =
1. So n is even.

For (b), suppose rankA = r. Then there exist r rows of A such that they are linearly
independent. WLOG we may assume they are the first r rows. Since At = −A, the first r

columns are also linearly independent. So detA

(
12 · · · r
12 · · · r

)
6= 0. Combining (a) with the fact

that A
(
12 · · · r
12 · · · r

)
is a skew-symmetric matrix, we obtain that rankA = r is even.

This proof still holds when R is replaced by a field K such that char(K) 6= 2. When
char(K) = 2, here’s a counter-example: the 1× 1 matrix

[
1
]

is skew-symmetric and invertible.

Exercise. Suppose u1, · · · , um are linearly independent and each of them is a linear combination
of v1, · · · , vn. Prove that there is some vk such that vk, u2, · · · , um are linearly independent.

Proof. Notice that u2, · · · , um are linearly independent. So if for any 1 ≤ k ≤ n, vk, u2, · · · , um
are not linearly independent, then vk is a linear combination of u2, · · · , um for any k. Since u1 is a
linear combination of v1, · · · , vn, u1 is a linear combination of u2, · · · , um, which contradicts the
fact that u1, · · · , um are linearly independent. So there exists some vk such that vk, u2, · · · , um
are linearly independent.

Exercise. Find a maximal set of linearly independent vectors in each of the following sets of
vectors. (For accuracy they are all regarded as real vectors.)

(1) (1, 2, 3), (4, 8, 12), (3, 0, 1), (4, 5, 8)

(2) (1, 2, 3, 4, 5, 6), (1, 0, 1, 0, 1, 0), (−1, 1, 1,−1, 1, 1), (−2, 3, 2, 3, 4, 7)

(3) (1, 2, 3, 4), (1, 0, 1, 0), (−1, 1, 1,−1), (−2, 3, 2, 3).

Solution. For (1), since (4, 8, 12) = 4(1, 2, 3), (4, 5, 8) = 5
2(1, 2, 3)+

1
2(3, 0, 1) and (1, 2, 3), (3, 0, 1)

are obviously linearly independent, {(1, 2, 3), (3, 0, 1)} is a maximal set of linearly independent
vectors.

For (2), if there exists a, b, c ∈ R such that a(1, 2, 3, 4, 5, 6)+b(−1, 1, 1,−1, 1, 1)+c(1, 0, 1, 0, 1, 0) =
(0, 0, 0, 0, 0, 0), then a−b+c = 2a+b = 3a+b+c = 0. So a = b = c = 0, which implies these three
vectors are linearly independent. Since (−2, 3, 2, 3, 4, 7) = (1, 2, 3, 4, 5, 6) + (−1, 1, 1,−1, 1, 1)−
2(1, 0, 1, 0, 1, 0), {(1, 2, 3, 4, 5, 6), (−1, 1, 1,−1, 1, 1), (1, 0, 1, 0, 1, 0)} is a maximal set of linearly
independent vectors.

For (3), if there exists a, b, c ∈ R such that a(1, 2, 3, 4) + b(−1, 1, 1,−1) + c(1, 0, 1, 0) =
(0, 0, 0, 0), then a − b + c = 2a + b = 6a + b = 0. So a = b = c = 0, which implies these three
vectors are linearly independent. Since (−2, 3, 2, 3) = (1, 2, 3, 4) + (−1, 1, 1,−1) − 2(1, 0, 1, 0),
{(1, 2, 3, 4), (−1, 1, 1,−1), (1, 0, 1, 0)} is a maximal set of linearly independent vectors.

Exercise. Prove that the set of functions f : R → R is a vector space over R. Is it finite
dimensional? Prove your conclusion.

Proof. Denote this set by F . Define (f + g)(x) = f(x)+ g(x), (kf)(x) = kf(x). Obviously they
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are well-defined. Then for any f, g, h ∈ F , k, l ∈ R, x ∈ R, we have

((f + g) + h)(x) = f(x) + g(x) + h(x) = (f + (g + h))(x)
(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)
f(x) + 0 = 0 + f(x) = f(x)
f(x) + (−f(x)) = (−f(x)) + f(x) = 0
(1 · f)(x) = 1 · f(x) = f(x)
(k(lf))(x) = kl(f(x)) = (klf)(x)
(k(f + g))(x) = kf(x) + kg(x) = (kf)(x) + (kg)(x)
((k + l)f)(x) = (k + l)f(x) = kf(x) + lf(x) = (kf)(x) + (lf)(x)

So F is a vector space over R.
It’s infinite dimensional. To prove this, consider fk(x) = xk ∈ F . For any n > 0, f0, · · · , fn

are linearly independent over R, which implies F can’t be spanned by n vectors (otherwise
dimF ≤ n, which contradicts the fact that F contains n+ 1 linearly independent vectors). So
F is infinite dimensional.

Exercise.

(a) Let K be a field. Show that the set of symmetric matrices (At = A) and the set of skew-
symmetric matrices are both linear subspaces of Mn(K), and compute their dimensions.

(b) Prove that Mn(R) is the direct sum of the space of symmetric matrices and the space of
skew-symmetric matrices.

(c) Let W ⊆Mn(R) be the subspace of matrices whose trace is 0. Find a subspace W ′ of Mn(R)
such that Mn(R) =W ⊕W ′.

Proof. Let Symn(K) be the set of symmetric matrices of order n over K, Skewn(K) be the set
of skew-symmetric matrices of order n over K.

For (a), since Symn(K), Skewn(K) are subsets of a vector space Mn(K), we only need to
verify that they are closed under addition and scalar multiplication. For any A,B ∈ Symn(K)
and k ∈ K, since (kA)t = kAt = kA and (A + B)t = At + Bt = A + B, we have kA,A + B ∈
Symn(K). A similar conclusion holds for Skewn(K). So they are both linear subspace of Mn(K).

Furthermore, denote by eij ∈ Mn(K) the matrix which has an 1 in the (i, j) position as
its only nonzero entry. For i < j, let xij = eij + eji ∈ Symn(K), yij = eij − eji ∈ Skewn(K).
Then for any A = (aij) ∈ Symn(K), A =

n∑
i=1

aiieii +
∑
i<j

aijxij since aij = aji. Since ({xij | i <

j} ∪ {eii | 1 ≤ i ≤ n}) is a set of linearly independent vectors in Symn(K), it’s a basis. So
dimSymn(K) = n(n+1)

2 . Similarly, for any B = (bij) ∈ Skewn(K), B =
n∑

i=1
biieii +

∑
i<j

bijyij

since bij = −bji. When char(K) 6= 2, bii is always zero, so {yij | i < j} is a basis of
Skewn(K). So dimSkewn(K) = n(n−1)

2 . Otherwise char(K) = 2, then Skewn(K) = Symn(K).
So dimSkewn(K) = n(n+1)

2 .

For (b), for any A ∈Mn(R), A =
A+At

2
+
A−At

2
. Since A+At

2
∈ Symn(R) and A−At

2
∈

Skewn(R), Mn(R) = Symn(R) + Skewn(R). Furthermore, for any A ∈ Symn(R) ∩ Skewn(R),
A = At = −A, so A = 0. So Mn(R) = Symn(R)⊕ Skewn(R).

For (c), let W ′ = {c In | c ∈ R} be the linear span of In. Then for any A ∈ Mn(R), A =
(A− 1

n tr(A) In)+
1
n tr(A) In. Since tr((A− 1

n tr(A) In)) = tr(A)−tr(A) = 0 and 1
n tr(A) In ∈W ′,

we have Mn(R) = W + W ′. Furthermore, W ∩ W ′ = {c In | nc = tr(c In) = 0} = 0. So
Mn(R) =W ⊕W ′.

Exercise. Let V1, · · · , Vk be subspace of a vector space V such that V =
∑
Vi. Suppose

V1 ∩ V2 = 0, (V1 + V2) ∩ V3 = 0, · · · , (V1 + V2 + · · ·+ Vk−1) ∩ Vk = 0. Show that V = ⊕Vi.
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Proof. Suppose vi ∈ Vi such that v1 + · · · + vk = 0. We only need to prove that vi = 0 for
all i. If there exist some vi 6= 0, let i0 be the maximal subscript i such that vi 6= 0. Then
v1+ · · ·+vi0 = 0. So vi0 = −v1−· · ·−vi0−1 ∈ (V1+V2+ · · ·+Vi0−1)∩Vi0 = 0, which contradicts
the fact that vi0 6= 0. So vi = 0 for all i. So V = ⊕Vi.
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Chapter 4

Homework-4

Exercise. Show that rank(AB) = rankB if and only if the solution space of ABx = 0 is the
same as the solution space of Bx = 0. Moreover, show that in this case, for any C, we have
rank(ABC) = rank(BC) whenever the product is well defined.

Proof. Firstly it’s clear the solution space of Bx = 0 is included in the one of ABx = 0. In other
words, kerB ⊆ kerAB. Then kerA = kerAB if and only if dimkerB = dimkerAB, which is
equivalent to rankB = rankAB since rankB = n− dimkerB and rankAB = n− dimkerAB,
where n is the number of columns of B.

In the case of kerB = kerAB, suppose C = (v1, . . . , vm) with vi ∈ Rn. Then Bvi1 , . . . , Bvik
are linearly independent if and only if

c1vi1 + · · ·+ ckvik ∈ kerB =⇒ c1 = · · · = ck = 0.

But kerB = kerAB, this shows that Bvi1 , . . . , Bvik are linearly independent if and only if
ABvi1 , . . . , ABvik are linearly independent. This shows rankABC = rankBC.

Exercise. Suppose A ∈Mn(R). Show that rank(AtA) = rankA.

Proof. It suffices to show that the equations Ax = 0 and AtAx = 0 have the same solution
space. It’s clear that Ax = 0 implies AtAx = 0. On the other hand, if AtAx = 0, then

xtAtAx = (Ax)tAx = 0.

This shows Ax = 0.

Exercise. Find a basis of the space of symmetric and skew-symmetric matrices over a field K,
and compute their dimensions.

Proof. It depends on the characteristic of the field K. If charK 6= 2, then we have already
shown in the Homework3 that

{Eij + Eji}i ̸=j ∪ {Eii}

gives a basis of the space of symmetric matrices, and thus the dimension of the space of sym-
metric matrices is n(n+ 1)/2. On the other hand,

{Eij + Eji}i ̸=j

gives a basis of the space of skew-symmetric matrices, and thus the dimension of the space of
skewsymmetric matrices is n(n − 1)/2. However, if charK = 2, then the space of symmetric
matrices and skew-symmetric matrices concide, both have dimension n(n+ 1)/2.

Exercise. Let K = Zp be a finite field with p elements, where p is a prime. For positive integer
n, compute the number of different basis of Kn.
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Proof. Note that it suffices to compute ]GL(n,Zp), since any two basis of Kn differs a unique
element in GL(n,Zp). (In other words if you like, GL(n,Zp) acts on the set of basis of Kn

transitively with trivial stabilizer.)
For A ∈ GL(n,Zp), there are pn − 1 choices for the first row, and if we have fixed the first

columns, there are pn − p choices for the second row since the second row has to be linearly
independent with the first column. Repeat above arguments one can see there are

(pn − 1)(pn − p) . . . (pn − pn−1).

Exercise.

(a) Prove that the set B =
(
(1, 2, 0)t, (2, 1, 2)t, (3, 1, 1)t

)
is a basis of R3.

(b) Find the coordinate vector of the vector v = (1, 2, 3)t with respect to this basis.

(c) Let B′ =
(
(0, 1, 0)t, (1, 0, 1)t, (2, 1, 0)t

)
. Determine the basechange matrix P from B to B′.

Proof. For (a). It suffices to compute the determinant of the matrix given by this basis.
For (b). It suffices to solve a system of linear equations.
For (c). It suffices to solve three systems of linear equations.

Exercise. Let U, V,W be three subspaces of a vector space. Is the following formula correct?
Find a proof or a counterexample.

dim(U + V +W ) =dim(U) + dim(V ) + dim(W )

− dim(U ∩ V )− dim(U ∩W )− dim(V ∩W )

+ dim(U ∩ V ∩W )

Proof. It’s wrong. Just consider the

U = {(x, 0) | x ∈ R}, V = {(x, 0) | x ∈ R}, W = {(x, x) | x ∈ R}.

Then
U ∩ V = U ∩W = V ∩W = U ∩ V ∩W = {0}

But
dim(U + V +W ) = 2 6= 3 = dimU + dimV + dimW.

Exercise. Consider the linear transform: T : R3 → R2 such that (x1, x2, x3)t 7→ (x1 + 2x2, x1 − x2)t.
Compute the matrix of T with respect to the basis α1, α2, α3 of R3 and β1, β2 of R2:

(a) α1 = (1, 0, 0)T, α2 = (0, 1, 0)T, α3 = (0, 0, 1)T;β1 = (1, 0)T, β2 = (0, 1)T;

(b) α1 = (1, 1, 1)T, α2 = (0, 1, 1)T, α3 = (0, 0, 1)T;β1 = (1, 1)T, β2 = (1, 0)T;

(c) α1 = (1, 2, 3)T, α2 = (0, 1,−1)T, α3 = (−1,−2, 3)T;β1 = (1, 2)T, β2 = (2, 1)T.

Proof. A routine computation.

Exercise. Let θ be a real number. Consider the complex matrices

A =

(
cos θ − sin θ
sin θ cos θ

)
, B =

(
e
√
−1θ 0

0 e−
√
−1θ

)
.

Find a complex matrix P such that P−1AP = B.
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Proof. Note that
e
√
−1θ = cos θ +

√
−1 sin θ.

Then (√
−1 1
1

√
−1

)−1(
cos θ − sin θ
sin θ cos θ

)(√
−1 1
1

√
−1

)
=

(
e
√
−1θ 0

0 e−
√
−1θ

)
.

Exercise. Let W be a subspace of V , let π : V → V/W be the projection map. Let g : V/W →
V/W be a linear transformation. Is there always a linear transformation f : V → V such that
g ◦ π = π ◦ f ?
Proof. Suppose dimW = k with basis {w1, . . . , wk}. Firstly we extend the basis of W to a basis
of V as {e1, . . . , en−k, w1, . . . , wk}, and then {e1 +W, . . . , en−k +W} is a basis of V/W .

Given a linear transformation g : V/W → V/W , one has

g ◦ π(ei) = g(ei +W ) = g(ei) +W

g ◦ π(wj) = g(W ) =W.

Then we define a linear transformation f : V → V by evaluating on basis {e1, . . . , en−k, w1, . . . , wk}
as

f(ei) = g(ei)

f(wi) = wi.

Then it’s a linear transformation which extends g.

Exercise. Let f(x) 6= 0 ∈ K[x], where K is a field. Let f(x) · K[x] be the subspace of K[x]
consisting of polynomials divisible by f(x).
(a) Find a basis of V = K[x]/(f(x) ·K[x]) and compute its dimension.

(b) Consider the linear transformation T : V → V such that ḡ(x) 7→ x̄ · ḡ(x). Find the matrix
representing T with respect to your basis.

Proof. For (a). Suppose the degree of f(x) is n. Then

{1, x, x2, . . . , xn−1}

is a basis of K[x]/(f(x)K[x]). Indeed, it’s clear above elements are linearly independent over K,
and for any element g(x) in K[x] with degree higher than n, we can use division with remainders
to write

g(x) = q(x)f(x) + r(x)

where deg r(x) < n. This shows in K[x]/(f(x)K[x]) one has g(x) is the same as r(x), which
implies g(x) is a linear combination of {1, x, x2, . . . , xn−1}.

For (b). Suppose f(x) = anx
n+ · · ·+ an−1x

n−1+ · · ·+ a1x+ a0. Then for xi with i < n− 1,
one has T (xi) = xi+1, and

T (xn−1) = xn = − 1

an
(an−1x

n−1 + · · ·+ a1x+ a0).

This shows T has the matrix representation as
0 0 0 · · · 0 − a0

an
1 0 0 · · · 0 − a1

an
0 1 0 · · · 0 − a2

an...
...

...
...

...
0 0 0 · · · 1 −an−1

an

 .
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Exercise. Let V be a vector space.

(a) Let V1, V2 and V ′
1 , V

′
2 be subspaces of V such that dimVi∩Vj = dimV ′

i ∩V ′
j for every possible

i, j (in particular, dimVi = dimV ′
i ). Show that there is an isomorphism T : V → V such

that T (Vi) = V ′
i .

(b) *(open question, no need to submit) Let V1, V2, V3 and V ′
1 , V

′
2 , V

′
3 be subspaces of V such that

dimVi ∩ Vj ∩ Vk = dimV ′
i ∩ V ′

j ∩ V ′
k and dimVi ∩ (Vj + Vk) = dimV ′

i ∩
(
V ′
j + V ′

k

)
for every

possible i, j, k. Is there always an isomorphism T : V → V such that T (Vi) = V ′
i ?

(c) *(open question, no need to submit) What about subspaces V1, V2, V3, V4, and more?

Proof. For (a). Let {e1, . . . , ek} be a basis of V1∩V2 and {e′1, . . . , e′k} be a basis of V ′
1∩V ′

2 . Then
we extend {e1, . . . , ek} to a basis of V1 by adding vectors u1, . . . , um and extend {e1, . . . , ek} to
a basis of V2 by adding vectors v1, . . . , vn. Finally we extend

{e1, . . . , ek, u1, . . . , um, v1, . . . , vn}

to a basis of V by adding vectors ϕ1, . . . , ϕl. Similarly, we can do the same thing to the basis
{e′1, . . . , e′k} and obtain a basis

{e′1, . . . , e′k, u′1, . . . , u′m, v′1, . . . , v′n, ϕ′
1, . . . , ϕ

′
l}

of V . Then we define T as follows
T (eα) = e′α

T (uβ) = u′β

T (vγ) = v′γ

T (ϕδ) = T (ϕ′
δ).
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Chapter 5

Homework-5

Exercise. Find the kernel and image of the linear transformation T :M2(R)→ R2 given by[
a b
c d

]
7→
[
a− b
c+ d

]
Solution.

kerT =

{[
a b
c d

]
∈M2(R)

∣∣∣∣ a+ b = c− d = 0

}
=

{[
a a
−d d

]∣∣∣∣ a, d ∈ R
}

imT =

{[
a− b
c+ d

]∣∣∣∣ a, b, c, d ∈ R
}

= R2

Exercise. Let A ∈ Mn(K). Let TA : Mn(K)→ Mn(K) be the linear transformation such that
TA(X) = AX. Show that TA is an isomorphism if and only if A is invertible.

Proof. Sufficiency: When A is invertible, TA has an inverse given by TA−1 since AA−1X =
A−1AX = X for any X ∈Mn(K). So TA is an isomorphism.

Necessity: When TA is an isomorphism, there exist X ∈Mn(K) such that AX = TA(X) =
In. So X is the inverse of A and A is invertible.

Exercise.

(a) Suppose T is a diagonalizable operator on V and W is an invariant subspace of T . Show
that T |W is also diagonalizable.

(b) Let M be a matrix made up of two diagonal blocks: M =

[
A 0
0 D

]
. Prove that M is

diagonalizable if and only if A and D are diagonalizable.

Proof. For (a), suppose λ1, · · · , λk are all distinct eigenvalues of T and E1, · · · , Ek are their
corresponding eigenspaces, respectively. Since T is diagonalizable, V = E1 ⊕ · · · ⊕ Ek, and
k∏

i=1
(T − λi id) = 0. Let fi(x) =

∏
j ̸=i

x−λj

λi−λj
∈ K[x]. By definition we have im fi(T ) ⊆ Ei. By

Lagrange interpolation formula, we have f1(x)+ · · ·+fk(x) = 1. So f1(T )+ · · ·+fk(T ) = id. So
for any w ∈W , w = f1(T )w + · · ·+ fk(T )w. Since W is T -invariant, fi(T )w ∈W ∩ im fi(T ) ⊆
W ∩Ei. So W = (W ∩E1) + · · ·+ (W ∩Ek) = (W ∩E1)⊕ · · · ⊕ (W ∩Ek)(since W ∩Ei ⊆ Ei).
Notice that W ∩Ei is exactly the eigenspace of λi for T |W when W ∩Ei 6= 0. This implies T |W
is diagonalizable.
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For (b), sufficiency is obvious: If A,D are diagonalizable, there exist matrices P,Q such that
P−1AP,Q−1DQ is diagonal. Then[

P 0
0 Q

]−1

M

[
P 0
0 Q

]
=

[
P−1AP 0

0 Q−1DQ

]
is diagonal. So M is diagonalizable.

For necessity, suppose the orders of M,A,D are n, r, s respectively and consider the linear
operator T : Kn → Kn, x 7→Mx. Let V be the subspace of Kn consisting of vectors whose last
s components are zeros and W be the subspace consisting of vectors whose first r components
are zeros. Since M is made up of two diagonal blocks A and D, V,W is T -invariant. By (a) we
have T |V , T |W are diagonalizable. Since they correspond to matrices A,D respectively, A,D is
diagonalizable.

Remark. We give an explanation for the polynomials appearing in the proof of (a). In fact we
only need to prove that for any w ∈ W ⊆ V and its unique decomposition w = w1 + · · · + wk

w.r.t. the direct sum V = E1 ⊕ · · · ⊕ Ek, we have wi ∈ W . Naturally we consider Tm(w) =
λm1 w1+ · · ·+λmk wk ∈W and want to express wi as a linear combination of them. By computing
the Vandemonde determinant this is possible, and in detail what we obtain are just polynomials
in the proof of (a).

Exercise. Suppose T and S are linear operators on a vector space V . Suppose T ◦ S = S ◦ T .

(a) Show that kerT and imT are invariant subspaces of S.

(b) Let λ be an eigenvalue of T . Define the generalized eigenspace to be

E′
λ = {x ∈ V | (λI − T )m(x) = 0 for some m ≥ 0}.

Show that both the eigenspace Eλ of T and E′
λ are invariant subspaces of S.

(c) Suppose S and T are both diagonalzable. Show that there exists a basis {ei}i of V consisting
of common eigenvectors of S and T .

Proof. For (a), since for any x ∈ kerT , T (S(x)) = S(T (x)) = 0, we have kerT is S-invariant.
For any x ∈ V , S(T (x)) = T (S(x)) ∈ imT . So imT is S-invariant.

For (b), for any x ∈ Eλ, T (S(x)) = S(T (x)) = λS(x). So S(x) ∈ Eλ. So Eλ is S-
invariant. For any x ∈ E′

λ, there exists m ≥ 0 such that (λI − T )m(x) = 0. Since TS = ST ,
(λI − T )mS = S(λI − T )m. So (λI − T )m(S(x)) = S((λI − T )m(x)) = 0. So S(x) ∈ E′

λ. So E′
λ

is S-invariant.
For (c), suppose λ1, · · · , λk are all distinct eigenvalues of T . Since T is diagonalizable,

V = Eλ1 ⊕ · · · ⊕ Eλk
. By (b) we have Eλi

(1 ≤ i ≤ k) are S-invariant. By the conclusion of
Exercise 3(b), S|Eλi

(1 ≤ i ≤ k) are all diagonalizable. So for any 1 ≤ i ≤ k, there exists a basis
of Eλi

consisting of eigenvectors of S|Eλi
. These vectors are common eigenvectors of S and T .

Combining them together we obtain a basis of V consisting of common eigenvectors of S and
T .

Exercise. Assume the underlying field is not of characteristic 2. Suppose T is a linear
operator on V such that T 2 is the identity operator. Show that ±1 are all possible eigenvalues
of T and V = E1 ⊕ E−1.

Proof. If λ is an eigenvalue of T and x is an eigenvector of λ, then x = T 2(x) = λ2x. Since
x 6= 0, λ2 = 1. So λ = ±1.

For any x ∈ V , x = x+T (x)
2 + x−T (x)

2 (There we need char 6= 2). Since T 2 = id, T (x+T (x)
2 ) =

x+T (x)
2 and T (x−T (x)

2 ) = T (x)−x
2 , which implies V = E1 +E−1. Since E1 ∩E−1 = 0, its a direct

sum.
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Exercise. Find all invariant subspaces of the real linear operator whose matrix is

(a)

[
1 1

1

]
,

(b)

1 2
3

.
Solution. For (a), any nontrivial invariant subspace of this matrix must be 1-dimensional, i.e.,
spanned by an eigenvector. Notice that the characteristic polynmial is (λ − 1)2 and E1 =
{(x, 0)t | x ∈ R} is 1-dimensional. So the only nontrivial invariant subspace of this matrix is
E1. So all invariant subspaces of this matrix are 0, R2 and E1.

For (b), since this matrix is diagonal, by the conclusion of Exercise 3(a) we have all of its
invariant subspaces are spanned by eigenvectors. Notice that the characteristic polynmial is
(λ − 1)(λ − 2)(λ − 3) and Ei = Span(ei) is 1-dimensional, where e1 = (1, 0, 0)t, e2 = (0, 1, 0)t,
e3 = (0, 0, 1)t. Therefore, all invariant subspaces of this matrix are {Span(A) | A ⊆ B} where
B = {e1, e2, e3}.

Remark. In general, for a diagonalizable matrix A, all its invariant subspaces may not be
{Span(A) | A ⊆ B} where B is a basis consisting of eigenvectors of A. For example, when
A = In, Rn has subspaces different from those spanned by some subset of {e1, · · · , en}.

Exercise. Let P be the real vector space of polynomials p(x) = a0 + a1x+ · · ·+ anx
n of degree

at most n, and let D denote the derivative d
dx , considered as a linear operator on P .

(a) Prove that D is a nilpotent operator, meaning that Dk = 0 for sufficiently large k.

(b) Find the matrix of D with respect to a convenient basis.

(c) Determine all D-invariant subspaces of P .

Proof. For (a), notice that D(a0+a1x+ · · ·+anxn) = a1+2a2x+ · · ·+nanxn−1. By induction
it’s easy to prove Dk(a0 + a1x + · · · + anx

n) = k!ak + (k+1)!
1! ak+1x + · · · + n!

(n−k)!anx
n−k for

1 ≤ k ≤ n. In particular Dn(a0+a1x+ · · ·+anxn) = n!an. So Dn+1(a0+a1x+ · · ·+anxn) = 0.
So Dn+1 = 0, which implies D is nilpotent.

For (b), choose the basis {1, x, · · · , xn} of P . Since D(a0 + a1x+ · · ·+ anx
n) = a1 + 2a2x+

· · ·+ nanx
n−1, the corresponding matrix is

0 1 0 · · · 0
0 0 2 · · · 0
...

...
... . . . ...

0 0 0 · · · n
0 0 0 · · · 0


For (c), let Pk be the subspace of polynomials of degree at most k. Then by definition

0 ⊂ P0 ⊂ P1 ⊂ · · · ⊂ Pn = P is a sequence of D-invariant subspaces. For any nonzero D-
invariant subspace V of P , there exists a minimal k such that V ⊆ Pk. By minimality of
k, there exists a polynomial p(x) of degree k. Then Dj(p(x)) ∈ V is a polynomial of degree
(k − j) for any 0 ≤ j ≤ k. Since their degrees are distinct, they are R-linearly independent. So
dimV ≥ k+1 = dimPk. Combining with V ⊆ Pk we obtain V = Pk. Therefore, all D-invariant
subspaces of P are 0, P0, P1, · · · , Pn(= P ).

Exercise. Let T be a linear operator on a finite-dimensional vector space for which every
nonzero vector is an eigenvector. Prove that T is multiplication by a scalar.
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Proof. Denote this vector space by V . Choose a basis e1, · · · , en of V . By the assumption there
exists λi ∈ K such that T (ei) = λiei for any i. For any i 6= j, by the assumption there exists
λ ∈ K such that λiei + λjej = T (ei + ej) = λ(ei + ej). Since ei, ej are K-linearly independent,
λi = λ = λj . So λ1 = · · · = λn, which implies T is multiplication by the scalar λ1.

Exercise. A linear operator T is called nilpotent if T k = 0 for some positive number k. Show
that a linear operator of a vector space over C is nilpotent if and only if all its eigenvalues are
0.

Proof. Necessity: When a linear operator T of a vector space over C is nilpotent, then for
any eigenvalue λ of T and any eigenvector x of λ, since there exists k > 0 such that T k = 0,
0 = T k(x) = λkx. Since x 6= 0, λ = 0.

Sufficiency: When all eigenvalues of a linear operator T of a vector space over C are 0,
all roots of the polynomial det(λ id−T ) are 0. So λ id−T is invertible for any λ 6= 0. Let
m(λ) be the monic minimal polynomial of T . Decompose m(λ) into the product of linear
polynomials m(λ) = (λ − λ1) · · · (λ − λl). For any 1 ≤ i ≤ l, if λi 6= 0, then the polynomial
mi(λ) =

m(λ)
λ−λi

satisfies mi(T ) = (T − λi id)−1m(T ) = 0, which contradicts the minimality of m.
So λ1 = · · · = λl = 0. So T l = m(T ) = 0. So T is nilpotent.

Exercise. Compute the characteristic polynomials and the complex eigenvalues and eigenvectors
of

(a)

[
−2 2
−2 3

]
,

(b)

[
1 i
−i 1

]
,

(c)

[
cos θ − sin θ
sin θ cos θ

]
.

Solution. Always denote the given matrix by A.
For (a), det(λ I−A) = λ2 − λ − 2 = (λ − 2)(λ + 1). So the complex eigenvalues are 2 and

−1.
2 I−A =

[
4 −2
2 −1

]
. So the eigenvectors of 2 are

{
c

[
1
2

]∣∣∣∣ c 6= 0

}
.

− I−A =

[
1 −2
2 −4

]
. So the eigenvectors of −1 are

{
c

[
2
1

]∣∣∣∣ c 6= 0

}
.

For (b), det(λ I−A) = λ2 − 2λ = λ(λ− 2). So the complex eigenvalues are 2 and 0.

2 I−A =

[
1 −i
i 1

]
. So the eigenvectors of 2 are

{
c

[
i
1

]∣∣∣∣ c 6= 0

}
.

−A =

[
−1 −i
i −1

]
. So the eigenvectors of 0 are

{
c

[
1
i

]∣∣∣∣ c 6= 0

}
.

For (c), det(λ I−A) = λ2 − 2 cos θλ + 1 = (λ − eiθ)(λ − e−iθ). So the complex eigenvalues
are eiθ and e−iθ. When θ = kπ(k ∈ Z) they are the same, and the corresponding eigenvectors
are all nonzero vectors in C2. Now assume that θ 6= kπ.

eiθ I−A =

[
i sin θ sin θ
− sin θ i sin θ

]
. So the eigenvectors of eiθ are

{
c

[
1
−i

]∣∣∣∣ c 6= 0

}
.
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e−iθ I−A =

[
−i sin θ sin θ
− sin θ −i sin θ

]
. So the eigenvectors of e−iθ are

{
c

[
1
i

]∣∣∣∣ c 6= 0

}
.

Exercise. Let V be a vector space with basis (v0, · · · , vn) and let a0, · · · , an be scalars. Define a
linear operator T on V by the rules T (vi) = vi+1 if i < n and T (vn) = a0v0 + a1v1 + · · ·+ anvn.
Determine the matrix of T with respect to the given basis, and the characteristic polynomial of
T .

Proof. The matrix corresponding to T under the basis (v0, · · · , vn) is


0 0 · · · 0 a0
1 0 · · · 0 a1
... . . . . . . ...

...
... . . . 0 an−1

0 · · · · · · 1 an



So the matrix corresponding to λ id−T is


λ 0 · · · 0 −a0
−1 λ · · · 0 −a1
... . . . . . . ...

...
... . . . λ −an−1

0 · · · · · · −1 λ− an


From bottom to top, add λ×((n− i)-th row) to the (n− i− 1)-th row (i = 1, 2, · · · , n− 2).

Then we obtain 
0 0 · · · 0 λn+1 − anλn − · · · − a0
−1 0 · · · 0 λn − anλn−1 − · · · − a1
0 −1 · · · 0 λn−1 − anλn−2 − · · · − a2
...

... . . . ...
...

0 0 · · · −1 λ− an


So the characteristic polynomial of T is det(λ id−T ) = λn+1 − anλn − · · · − a0.

Exercise. In each case, find a complex matrix P such that P−1AP is diagonal.

(a)

[
1 i
−i 1

]
,

(b)

0 0 1
1 0 0
0 1 0

,
(c)

[
cos θ − sin θ
sin θ cos θ

]
.

Solution. For (a), choose P =

[
1 i
i 1

]
. Then P−1AP =

[
0 0
0 2

]
is diagonal.

For (b), choose P =

1 1 1
1 ω2 ω
1 ω ω2

, where ω = e
2πi
3 . ThenP−1AP =

1 ω
ω2

 is diagonal.

For (c), choose P =

[
1 i
i 1

]
. Then P−1AP =

[
e−iθ 0
0 eiθ

]
is diagonal.

Remark. In this remark I’ll show you how to find a P . In fact, the column vectors exactly form
a basis consisting of eigenvectors since for this kind of P , we have

AP = P diag(λ1, · · · , λn)
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where λi is the eigenvalue corresponding to the i-th column.
So we reduce this problem to compute the eigenvalues and eigenvectors of A, which we have

done in Exercise 10. So we just need to compute the characteristic polynomial first, then we
will find the eigenvalues. Then we solve the linear equations corresponding to the eigenvalues
and obtain P .
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Chapter 6

Homework-6

Exercise. Suppose A ∈ Mm×n(K) and B ∈ Mn×m(K). Show that the nonzero eigenvalues of
AB are the same as the nonzero eigenvalues of BA. If m = n, show that the eigenvalues of AB
are the same as the eigenvalues of BA.

Proof. Note that (
λIm A
B In

)
→
(
λIm −AB A

0 In

)
→
(
λIm −AB 0

0 In

)
and (

λIm A
B In

)
→
(
λIm A
0 In − 1

λBA

)
→
(
λIm 0
0 In − 1

λBA

)
This shows that

det |λIm −AB| = det |λIm| det
∣∣∣∣In − 1

λ
BA

∣∣∣∣ = λm−n det |λIn −BA|

As a consequence, they have the same nonzero eigenvalues. In particular, if m = n, then their
characteristic polynomials are the same, and thus have the same eigenvalues.

Exercise. Find limn→∞An, where A =

1
7

3
7

3
7

3
7

1
7

3
7

3
7

3
7

1
7

.

Proof. Note that

A =

 1 1 1
1 −2 1
−2 1 1

−2
7
−2

7
1

 1

3

1 0 −1
1 −1 0
1 1 1


Then

lim
n→∞

An =

 1 1 1
1 −2 1
−2 1 1

0
0

1

 1

3

1 0 −1
1 −1 0
1 1 1


=

1

3

1 1 1
1 1 1
1 1 1



Exercise. Find the inverse matrix of the matrix A =

1 1 2
9 2 0
5 0 3

 using the Cayley-Hamilton

theorem.
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Proof. Note that the characteristic polynomials of A is λ3 − 6λ2 − 8λ+ 41, and thus

A
(
A2 − 6A− 8I3

)
= −41I3

As a consequence

A−1 = − 1

41

(
A2 − 6A− 8I3

)
=

1

41

−6 3 4
27 7 −18
10 −5 7



Exercise. Let A ∈M3(R) such that detA = 1 and (−1 +
√
−3)/2 is an eigenvalue of A.

(1) Find all eigenvalues of A.

(2) Suppose A100 = aA2 + bA+ cI, determine a, b, c.

Proof. For (1). The characteristic polynomial of A is of real coefficient, and (−1 +
√
−3)/2 is

a root. Then (−1−
√
−3)/2 is also a root which is also an eigenvalue. Since the product of all

eigenvalues are detA = 1, one has all eigenvalues of A are

−1 +
√
−3

2
,
−1−

√
−3

2
, 1.

For (2). Note that the characteristic polynomial of A is λ3−1. By Cayley-Hamilton theorem
one has A3 = I3. Therefore

A100 = A = aA2 + bA+ cI3 ⇒ aA2 + (b− 1)A+ cI3 = 0

However, the eigenvalues of A are distinct, and thus the characteristic polynomial of A is the
minimal polynomial of A as well. Then

a = 0, b = 1, c = 0.

Exercise. Let V be a vector space over K and f, g ∈ V ∗ such that f(v) = 0 if and only if
g(v) = 0. Show that f = cg for some 0 6= c ∈ K.

Proof. If f = cg for some 0 6= c ∈ K, it’s clear f(v) = 0 if and only if g(v) = 0. On the other
hand, assume that f(v) = 0 if and only if g(v) = 0.

(1) If f = 0, then for any v ∈ V one has g(v) = 0 and thus g = f = 0.

(2) If f 6= 0, then f(v) = 0 if and only if g(v) = 0 is equivalent to say ker f = ker g =W , where
W is a linear subspace with codimension one. Suppose V = W ⊕ S with 0 6= v0 ∈ S, and
take c = f(v0)/g(v0). For any x ∈ V , it can be written uniquely as

x = tv0 + w, w ∈W.

Thus
f(x) = f (tv0 + w) = tf (v0) =

f (v0)

g (v0)
tg (v0) = cg (tv0 + w) = cg(x).

Therefore f = cg.
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Exercise. Let α1 = (1, 0,−1), α2 = (1, 1, 1), α3 = (2, 2, 0) be a basis of C3. Find the coordinates
of the dual basis of αi with respect to the dual basis of the standard basis of C3.

Proof. Suppose {f i} is a dual basis of {αi}. For convenience we write f i =
∑3

j=1 aijε
j , where

ε1, ε2, ε3 are dual basis for standard basis of C3. Note that f i(αj) = δij . Then it suffices to solve
several systems of linear equations to find out

f1 = ε1 − ε2, f2 = ε1 − ε2 + ε3, f3 = −1

2
ε1 + ε2 − 1

2
ε3.

Exercise. Let V be the vector space of all polynomial functions p from R to R that have degree
2 or less:

p(x) = c0 + c1x+ c2x
2.

Define three linear functionals on V by

f1(p) =

ˆ 1

0
p(x)dx, f2(p) =

ˆ 2

0
p(x)dx, f3(p) =

ˆ −1

0
p(x)dx

Show that {f1, f2, f3} is a basis for V ∗ by exhibiting the basis for V of which it is dual.

Proof. For p(x) = c0 + c1x+ c2x
2, a direct computation shows

f1(p) = c0 +
c1
2

+
c2
3
, f2(p) = 2c0 + 2c1 +

8

3
c2, f3(p) = −c0 +

c1
2
− c2

3
.

Then a dual basis can be taken as

p1(x) = 1 + x− 3

2
x2, p2(x) = −

1

6
+

1

2
x2, p3(x) = −

1

3
+ 1x− 1

2
x2.

This is a basis since

det

 1 1 −3
2

−1
6 0 1

2
−1

3 1 −1
2

 = −1

2
6= 0

Exercise. Let W be the supspace of R5 spanned by the vectors α1 = e1+2e2+e3, α2 = e2+3e3+
3e4 + e5, α3 = e1 + 4e2 + 6e3 + 4e4 + e5, where ei are the standard basis of R5. Find a basis for
W⊥ in terms of the dual basis of ei.

Proof. Suppose f ∈ W⊥ is given by
∑5

i=1 αiε
i. Then one has the following system of linear

equations 1 0 0 4 3
0 1 0 −3 −2
0 0 1 2 1



α1

α2

α3

α4

α5

 = 0

Thus W⊥ can be viewed as a solution space, which is generated by{
−4ε1 + 3ε2 − 2ε3 + ε4,−3ε1 + 2ε2 − ε3 + ε5

}
.

Exercise. Let n be a positive integer and K a field. Let W be the set of vectors (x1, . . . , xn) in
Kn such that

∑
xi = 0.
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(1) Prove that W⊥ consists of all linear functionals f of the form f (x1, . . . , xn) = c
∑
xi.

(2) Suppose K = R. Show that W ∗ can be naturally identified with the set of linear functionals
f =

∑
cixi on Kn such that

∑
ci = 0.

Proof. For (1). Suppose f ∈W⊥ and we denote f (ei) = ci for convenience. Since ei − ej ∈W ,
one has

ci − cj = f (ei)− f (ej) = f (ei − ej) = 0.

This shows ci = c for all i. Therefore

f (x1, . . . , xn) = f (x1e1 + · · ·+ xnen) = x1f (e1) + · · ·+ xnf (en) = c
∑

xi.

On the other hand, it’s obvious that f (x1, . . . xn) = 0 if f is of this form.
For (2). Note that there is a natural identification between W and W ∗ by

v∗ ←→ 〈v, -〉.

Under this identification, the linear functional f =
∑

i cixi on Kn corresponds to the vector
(c1, . . . , cn). Thus it gives a linear functional on W if and only if (c1, . . . , cn) ∈ W , that is,∑

i ci = 0.

Exercise. Suppose f ∈Mn(R)∗ such that f(AB) = f(BA) for all A,B ∈Mn(K) and f(I) = n.
Show that f is the trace function.

Proof. Let Eij ∈Mn(R) denote the matrix with (i, j) entry 1 and the others. Then

f (Eij) = f (EikEkj) = f (EkjEik) = δijf (Ekk) .

On the other hand, note that

f (Eii) = f (EijEji) = f (EjiEij) = f (Ejj) .

for any i, j. Thus
f(I) = nf (Eii) = n⇒ f (Eii) = 1.

Therefore
f (Eij) = δij .

Then for any A ∈Mn(R), one has

f(A) = f

∑
i,j

aijEij

 =
∑
i,j

aijf (Eij) =
∑
i,j

aijδij =

n∑
i=1

aii = tr(A).

Therefore f is the trace function.

33



Chapter 7

Homework-7

Exercise. Show that a bilinear form on a real vector space is a sum of a symmetric form and
a skew-symmetric form.

Proof. For a bilinear form ϕ : V ×V → R on a real vector space V , consider ϕ1, ϕ2 : V ×V → R,
ϕ1(v, w) =

1
2(ϕ(v, w) +ϕ(w, v)), ϕ2(v, w) =

1
2(ϕ(v, w)−ϕ(w, v)). By definition we have ϕ1 is a

symmetric form and ϕ2 is a skew-symmetric form, and ϕ = ϕ1 + ϕ2.

Exercise. Let A ∈Mn(C) such that Xt
AX is real for any X ∈Mn(C). Is A Hermitian?

Solution. A is Hermitian. Denote by Eij the complex matrix which has an 1 in the (i, j) position
as its unique nonzero entry and suppose A = (aij)1≤i,j≤n. Then for any 1 ≤ i ≤ n, aiiE11 =

Ei1
t
AEi1 is real, so aii is real, i.e., aii = aii. For any i 6= j, (Ei1 +

√
−1Ej1)

t
A(Ei1+

√
−1Ej1) =

(aii − ajj + (aij − aji)
√
−1)E11 and (Ei1 + Ej1)

t
A(Ei1 + Ej1) = (aii − ajj + aij + aji)E11 are

real, which implies bij = aij + aji, cij = (aij − aji)
√
−1 are real. So

aij =
1

2
(bij − cij

√
−1) = 1

2
(bij + cij

√
−1) = aji

for any i 6= j. So At
= A, i.e., A is Hermitian.

Exercise. The set of Hermitian matrices of order n forms a real vector space. Find a basis for
this space.

Solution. Mn(C) can be viewed as a real vector space and the set of Hermitian matrices of order
n, denoted by H, is a subset of Mn(C). Since for any Hermitian matrix A,B ∈ H and λ, µ ∈ R,
(λA+ µB)

t
= λA

t
+ µB

t
= λA+ µB, H is a subspace of Mn(C). So H is a real vector space.

Still denote by Eij the complex matrix of order n which has an 1 in the (i, j) position as
its unique nonzero entry. Consider Bij = Eij + Eji ∈ H and Cij =

√
−1(Eij − Eji) ∈ H.

Then B = {Bij | i ≥ j} ∪ {Cij | i > j} is an R-linearly independent subset of H. And for any
A = (aij) ∈ H, suppose aij = bij + cij

√
−1, where bij , cij ∈ R. Since aij = aji, cij = −cji and

bij = bji. So A =
∑
i≥j

bijBij +
∑
i>j

cijCij . So B spans H, which implies it’s a basis of H.

Exercise. Use the characteristic polynomial to prove that the eigenvalues of a Hermitian matrix
of order 2 are real.

Proof. For a Hermitian matrix A = (aij)1≤i,j≤2 of order 2, its characteristic polynomial is
f(λ) = λ2 − (a11 + a22)λ+ a11a22 − a12a21 and a11, a22 ∈ R, a12 = a21. So the discriminant of
this polynomial is ∆ = (a11 + a22)

2 − 4(a11a22 − a12a21) = (a11 − a22)2 + 4|a12|2 ≥ 0. So the
characteristic polynomial of A has two real roots, which implies eigenvalues of A are real.

Exercise. What is the inverse of a real matrix whose columns are orthogonal and nonzero?
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Solution. Suppose the columns of this matrix A are v1, · · · , vn and let λi = 〈vi, vi〉 for any
1 ≤ i ≤ n. By definition, for any 1 ≤ i, j ≤ n, 〈vi, vj〉 = vtivj . So AtA = (〈vi, vj〉)1≤i,j≤n =
diag(λ1, · · · , λn). So A−1 = diag(λ−1

1 , · · · , λ−1
n )At.

Remark. For complex matrices, At in the answer should be replaced by At.

Exercise. Find an orthogonal basis for the form on Rn whose matrix is

(a)

[
1 1
1 1

]
,

(b)

1 0 1
0 2 1
1 1 1

.
Solutions. For (a). Choose e1 =

[
1
0

]
, e2 =

[
1
−1

]
. They form a basis of R2. Since

[
1 1
0 −1

]t [
1 1
1 1

] [
1 1
0 −1

]
=

[
1 0
0 0

]
is diagonal, this basis is orthogonal.

For (b). Choose e1 =

10
0

, e2 =

01
0

, e3 =

−2−1
2

 They form a basis of R2. Since

1 0 −2
0 1 −1
0 0 2

t 1 0 1
0 2 1
1 1 1

1 0 −2
0 1 −1
0 0 2

 =

1 0 0
0 2 0
0 0 −2


is diagonal, this basis is orthogonal.

Exercise. Let W1,W2 be subspaces of a vector space V with a symmetric bilinear form. Prove

(a) (W1 +W2)
⊥ =W⊥

1 ∩W⊥
2 ,

(b) W ⊂W⊥⊥,

(c) If W1 ⊂W2, then W⊥
1 ⊃W⊥

2 .

Proof. Suppose this symmetric bilinear form is 〈 , 〉.
For (a).

(W1 +W2)
⊥ = {v ∈ V | 〈v, w〉 = 0, ∀w ∈W1 +W2}

= {v ∈ V | 〈v, w1〉 = 〈v, w2〉 = 0, ∀w1 ∈W1, w2 ∈W2}
= {v ∈ V | 〈v, w〉 = 0, ∀w ∈W1} ∩ {v ∈ V | 〈v, w〉 = 0, ∀w ∈W2}
= W⊥

1 ∩W⊥
2

For (b). For any w ∈ W , by the definition of W⊥ we have 〈w, v〉 = 〈v, w〉 = 0 for any
v ∈W⊥. So w ∈W⊥⊥. So W ⊂W⊥⊥.

For (c). For any v ∈ W⊥
2 , we have 〈v, w〉 = 0 for any w ∈ W1 ⊂ W2. So v ∈ W⊥

1 . So
W⊥

1 ⊃W⊥
2 .

Exercise. Show that the rank of a skew-symmetric matrix is even if char(K) 6= 2.

35



Proof. Suppose this skew-symmetric matrix A has order n and induces a linear transformation
T on Kn by left multiplication. Choose a complementary space W of kerT . Then we only
need to prove that dimW = rankA is even. Consider the following bilinear form ϕ on Kn:
ϕ(v1, v2) = vt1Av2 = vt1T (v2) for any v1, v2 ∈ Kn. It’s antisymmetric since A is skew-symmetric
and its restriction on W is also an antisymmetric bilinear form. Notice that for any v ∈ kerT
and any w ∈ W , ϕ(w, v) = wtT (v) = 0. So if a fixed w ∈ W satisfies that ϕ(w,w′) = 0 for any
w′ ∈ W , then ϕ(w, v) = 0 for any v ∈ Kn, which implies w ∈ kerT since ϕ(w, v) = wtAv =
−(Aw)tv. Since W ∩ kerT = 0, w = 0. So ϕ induces an injective linear map ψ : W → W ∗,
w 7→ ϕ(w,−). Since dimW = dimW ∗, ψ is an isomorphism.

By Zorn’s lemma, there exists a maximal subspace W0 of W such that the restriction of ϕ on
W is identically zero. By definition ψ(W0) ⊂ (W0)

⊥ = {f ∈W ∗ | f(w) = 0, ∀w ∈W0}(there we
use the definition in the note Lec6, Page 2, line 28). For any w ∈ ψ−1((W0)

⊥), since kerψ(w) =
{w′ ∈W | ϕ(w,w′) = 0} ⊃ (W0∪{w}), the restriction of ϕ on W0+Span(w) is identically zero.
So by the maximality of W0 we have w ∈W0. So ψ−1((W0)

⊥) =W0. Since ψ is an isomorphism,
it induces an isomorphism from W0 to (W0)

⊥. So dimW0 = dim(W0)
⊥ = dimW − dimW0. So

rankA = dimW = 2dimW0 is even.

Remark. This exercise is the same as Exercise 8 in hw3. Here I provide a new solution, which
is essentially the same as the previous one.
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Chapter 8

Homework-8

Exercise. Let A = (aij) be a symmetric real matrix. Suppose aii >
∑

j ̸=i |aij |. Show that A is
positive definite.

Proof. As shown in Exercise 12 of Homework-2, one has all leading principle minors of A is
positive, and thus A is positive definite.

Exercise. A real symmetric matrix A = (aij) of order n is semi-positive definite if
∑

i,j aijxixj ≥
0 for all (x1, · · · , xn) in Rn. Prove that the following are equivalent:

(a) A is semi-positive definite

(b) A = P t

(
Ir 0
0 0

)
P for some real invertible matrix P

(c) A = QtQ for some real matrix Q

(d) all principal minors of A are non-negative.

State the corresponding conclusion for semi-positive definite Hermitian matrices. Is it equivalent
to that all leading principal minors of A are non-negative?

Proof. From (a) to (b). Since A is a real symmetric matrix, there exists some invertible matrix
P such that

A = P t

Ir −Is
O

P

for some r, s ∈ Z≥0. On the other hand, since A is semi-positive definite, s must be zero as
desired.

From (b) to (c). It suffices to set Q =

(
Ir 0
0 0

)
P .

From (c) to (a). Note that

xtAx = xtQtQx = (Qx)tQx ≥ 0.

From (a) to (d). For the principal minors A
(
k1 k2 . . . ks
k1 k2 . . . ks

)
, now we’re going to show

that it’s semi-definite, and thus detA
(
k1 k2 . . . ks
k1 k2 . . . ks

)
≥ 0. Suppose x = (xk1 , . . . , xks)

t such

that
xtA

(
k1 k2 . . . ks
k1 k2 . . . ks

)
x < 0.

Then consider x̃ = (0, . . . , xk1 , . . . , xks , . . . , 0), one has x̃Ax̃ < 0, a contradiction.
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From (d) to (a). If all principal minors of A are non-negative, then the characteristic
polynomials f(λ) ≥ λn for all λ > 0 since the coefficients of f(λ) are positive combinations of
principal minors. This shows all eigenvalues of A are non-negative, and thus A is semi-positive
definite.

However, the corresponding conclusion for semi-positive definite Hermitian matrices fails.

Exercise. Use Gram-Schimidt procedure to construct an orthonormal basis of R4 from the
following:

(a) (0, 0, 2, 1)t, (0, 3, 7, 2)t, (1, 1, 6, 2)t, (−1, 4,−1,−1)t;

(b) (1, 1, 1, 1)t, (1, 0, 1, 1)t, (1, 1, 0, 1)t, (1, 1, 1, 0)t.

Proof. It’s a routine computation, and here we only show the results.
For (a).

1√
5
(0, 0, 2, 1)t,

1√
30

(0, 5, 1,−2)t, 1√
42

(6,−1, 1,−2)t, 1√
7
(1, 1,−1, 2)t.

For (b)
1

2
(1, 1, 1, 1)t,

1√
12

(1,−3, 1, 1)t, 1√
6
(1, 0,−2, 1)t, 1√

2
(1, 0, 0,−1)t.

Exercise. Prove that the maximal entries of a positive definite, symmetric, real matrix A are
on the diagonal.

Proof. Suppose ai0j0 = maxi,j aij . If i0 6= j0, then ai0i0aj0j0 − a2i0j0 > 0, since the determinant
of principal minors A(i0, j0) is > 0. Thus ai0j0 < max{ai0i0 , aj0j0} since both ai0i0 and aj0j0 are
positive, a contradiction.

Exercise. Let 〈-, -〉 be a positive definite Hermitian form on a complex vector space V , and let
{-, -}, and [-, -] be its real and imaginary parts, the real-valued forms defined by

〈v, w〉 = {v, w}+ [v, w]i.

Prove that when V is made into a real vector space by restricting scalars to R,{-, -} is a positive
definite symmetric form, and [-, -] is a skew-symmetric form.

Proof. For v, w ∈ V , one has

〈v, w〉+ 〈w, v〉 = 〈v, w〉+ 〈v, w〉 = 2{v, w}.

This shows [v, w] + [w, v] = 0, and thus [-, -] is a skew-symmetric form. On the other hand, one
has

{v, w} = 1

2
(〈x+ y, x+ y〉 − 〈x, x〉 − 〈y, y〉) = {y, x}.

This shows {-, -} is a symmetric form, and it’s positive definite since {x, x} = 〈x, x〉.

Exercise. Let V = R2×2 be the vector space of real 2× 2 matrices.

(a) Determine the matrix of the bilinear form 〈A,B〉 = tr(AB) on V with respect to the standard
basis {eij}.

(b) Determine the signature of this form.

(c) Find an orthogonal basis for this form.
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(d) Determine the signature of the form trace AB on the space Rn×n of real n× n matrices.

Proof. For (a). Note that

tr(AB) = a11b11 + a12b21 + a21b12 + a22b22.

A direct computation shows that the matrix is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

For (b) and (c). The orthogonal basis is given by(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)
,

(
0 0
0 1

)
,

and thus the signature is 3− 1 = 2.
For (d). One can construct an orthogonal basis of Rn×n by define

αij =


Eij i = j

Eij + Eji i < j

Eij − Eji i > j.

A direct computation shows

〈αij , αkl〉 =


0, (i, j) 6= (k, l)

1, i = j = k = l

2, i = k, j = l, i < j

−2, i = k, j = l, i > j.

This shows the signature is
n2 + n

2
− n2 − n

2
= n.

Exercise. Let W be a subspace of a Euclidean space/Hermitian space V . Show that W =W⊥⊥

Proof. On one hand, it’s clear W ⊆W⊥⊥. On the other hand, one has

dimW⊥⊥ + dimW⊥ = dimV = dimW + dimW⊥.

This shows W =W⊥⊥.

Exercise. Show that the Gram determinant det((αi, αj)) of n real vectors α1, . . . , αn in Rn is
non-zero if and only if the vectors are linearly independent.

Proof. Note that det ((αi, αj)) = det
(
AtA

)
= det2A 6= 0 if and only if detA 6= 0, which is

equivalent to say the αi ’s are linearly independent.

Exercise. Let V be a Euclidean space.

(a) Prove the parallelogram law |v + w|2 + |v − w|2 = 2|v|2 + 2|w|2.

(b) Prove that if |v| = |w|, then (v + w) ⊥ (v − w).
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Proof. For (a).

|u+ v|2 + |u− v|2 = |u|2 + 2(u, v) + |v|2 + |u|2 − 2|u‖v|+ |v|2 = 2|u|2 + 2|v|2.

For (b).
(v + w, v − w) = |v|2 + (w, v)− (v, w)− |u|2 = 0.

Exercise. Let T be a linear operator on V = Rn whose matrix A is a real symmetric matrix.

(a) Prove that V is the orthogonal sum V = (kerT )⊕ (imT ).

(b) Prove that T is an orthogonal projection onto imT if and only if, in addition to being
symmetric, A2 = A.

Proof. For (a), For v ∈ kerT and u = T (w) ∈ imT , one has

(v, u) = (v, T (w)) = (T (v), w) = (0, w) = 0

Therefore kerT ⊥ imT . On the other hand, one has

dimkerT + dim imT = dimV.

Thus V is their orthogonal sum.
For (b). Suppose T is an orthogonal projection onto imT . Then for every v ∈ V with

v = v1 + v2, where v1 ∈ kerT, v2 ∈ imT , one has Tv = v2 and Tv2 = v2. This shows T 2v = Tv
for every v ∈ V , and thus A2 = A. Conversely, if A2 = A, then for every v ∈ V , one has
A2v = Av, and thus Av − v ∈ kerT . This shows T is an orthogonal projection onto imT since
v = v −Av +Av.

Exercise. LetW be the subspace of R3 spanned by the vectors (1, 1, 0)t and (0, 1, 1)t. Determine
the orthogonal projection of the vector (1, 0, 0)t to W .

Proof. Note that W⊥ can be spanned by (1,−1, 1)t. Suppose

(1, 0, 0)t = a(1, 1, 0)t + b(0, 1, 1)t + c(1,−1, 1)t

Then c = 1/3, and thus the orthogonal projection is

(1, 0, 0)t − 1

3
(1,−1, 1)t = 1

3
(2, 1,−1)t.

Exercise. Let V be the real vector space of 3 × 3 matrices with the bilinear form 〈A,B〉 =
tr(AtB), and let W be the subspace of skew-symmetric matrices. Compute the orthogonal
projection to W with respect to this form, of the matrix1 2 0

0 0 1
1 3 0

 .

Proof. If A ∈ W⊥, then tr(AtB) = 0 for all B ∈ W . Since W is spanned by an orthonormal
basis can be taken as

E12 − E21, E13 − E31, E23 − E32,
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it reduces to
tr(At(E12 − E21)) = 0

tr(At(E13 − E31)) = 0

tr(At(E23 − E32)) = 0.

This is equivalent to A is a symmetric matrix. Thus W⊥ consists of the symmetric matrices.
Note that 1 2 0

0 0 1
1 3 0

 =

1 1 1
2

1 0 2
1
2 2 0

+

 0 1 −1
2

−1 0 −1
1
2 1 0

 .

Thus the orthogonal projection is exactly 0 1 −1
2

−1 0 −1
1
2 1 0

 .
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Chapter 9

Homework-9

Exercise. Let V be a Euclidean space and σ : V → V a map. Suppose (x, y) = (σ(x), σ(y)) for
any x, y ∈ V . Show that σ is a linear operator.

Proof. For any x, y ∈ V , a, b ∈ R, we have ||σ(ax + by) − aσ(x) − bσ(y)||2 = ||σ(ax + by)||2 −
2a(σ(ax+ by), σ(x))− 2b(σ(ax+ by), σ(y)) + 2ab(σ(x), σ(y)) + a2||σ(x)||2 + b2||σ(y)||2 = ||ax+
by||2−2a(ax+by, x)−2b(ax+by, y)+2ab(x, y)+a2||x||2+b2||y||2 = ||(ax+by)−ax−by||2 = 0.
So σ(ax+ by)− aσ(x)− bσ(y) = 0. So σ is a linear operator.

Exercise. Let V be a 2-dimensional Euclidean space and T an orthogonal operator. Let {e1, e2}

be an orthonormal basis such that T is represented by
[
cos θ sin θ
sin θ − cos θ

]
. Find an orthonormal

basis of V such that T is represented by
[
1
−1

]
.

Solution. Choose e′1 = cos θ
2e1 + sin θ

2e2, e′2 = sin θ
2e1 − cos θ

2e2. Then by direct computation
you can verify that Te′1 = e′1, Te′2 = −e′2, (e′1, e′1) = (e′2, e

′
2) = 1 and (e′1, e

′
2) = 0. So {e′1, e′2} is

an orthonormal basis of V such that T is represented by
[
1
−1

]
Exercise. For the following symmetric matrix S, find a real orthogonal matrix P such that
P tSP is diagonal.

3 2 0
2 4 −2
0 −2 5

 ;

 2 2 −2
2 5 −4
−2 −4 5

 ;


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
Solution. The following matrices meet the requirements respectively:

1

3

2 −2 1
1 2 2
2 1 −2

 ;
1

3

2 −2 1
1 2 2
2 1 −2

 ;
1

2


1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

 .

Remark. You can find these matrices just by computing the eigenvectors of S.

Exercise. For the following orthogonal matrix A, (1) find a real orthogonal matrix P such that
P tAP is block-wise diagonal where each block has order at most 2; (2) find a unitary matrix Q
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such that Qt
AQ is diagonal.

1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2 −1

2

1
2 −1

2 −1
2

1
2

 ;


1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

−1
2

1
2 −1

2
1
2

−1
2

1
2

1
2 −1

2


Solution. For (1). The following matrices meet the requirements respectively:

1

2


1 1 1 1
−1 1 1 −1
1 −1 1 −1
1 1 −1 −1

 ;
1√
2


1 0 0 −1
1 0 0 1
0 1 1 0
0 −1 1 0

 .
For (2). The following matrices meet the requirements respectively:

1

2


1 1 1 1
−1 1 1 −1
1 −1 1 −1
1 1 −1 −1

 ;
1

2


√
2 0 −i −1√
2 0 i 1

0
√
2 1 i

0 −
√
2 1 i

 ,
where i =

√
−1.

Exercise. Let V be the space of differentiable complex-valued functions on the unit circle in the
complex plane, and for f, g ∈ V , define

〈f, g〉 =
ˆ 2π

0
f(θ)g(θ)dθ

(a) Show that this form is Hermitian and positive definite.

(b) Let W be the subspace of V of functions f(eiθ), where f is a polynomial of degree ≤ n. Find
an orthogonal basis for W .

(c) Show that T = i d
dθ is a Hermitian operator on V , and determine its eigenvalues on W .

Proof. For (a). Obviously this form is sesquilinear. Since

〈g, f〉 =
ˆ 2π

0
g(θ)f(θ)dθ =

ˆ 2π

0
f(θ)g(θ)dθ = 〈f, g〉

for any f, g ∈ V , this form is Hermitian. Since

〈f, f〉 =
ˆ 2π

0
|f(θ)|2dθ > 0

when f ∈ V is a nonzero element, this form is positive definite.
For (b). Choose fk(θ) = 1√

2π
eikθ ∈ W , 0 ≤ k ≤ n. Since {1, x, · · · , xn} spans the vector

space consisting of polynomials of degree ≤ n, these n+ 1 functions span W . Notice that

〈fj , fk〉 =
1

2π

ˆ 2π

0
ei(k−j)θdθ =

{
1
2π ·

1
(k−j)ie

i(k−j)θ
∣∣∣2π
0

= 0, when k 6= j
1
2π · (2π) = 1, when k = j

Since 〈−,−〉 is a positive definite Hermitian form, f0, · · · , fn are linearly independent and
they form an orthogonal basis for W .
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For (c). Since for any f, g ∈ V ,

〈Tf, g〉 =
´ 2π
0 i dfdθ (θ)g(θ)dθ

=
´ 2π
0 −i

d
dθ (f(θ))g(θ)dθ

= − if(θ)g(θ)
∣∣∣2π
0
−
´ 2π
0 −if(θ)

dg
dθ (θ)dθ

=
´ 2π
0 f(θ)(idgdθ (θ))dθ

= 〈f, Tg〉

So T is a Hermitian operator on V . Since Tfk(θ) = − k√
2π
eikθ = −kfk(θ), W is T -invariant

and f0, · · · , fn form a basis consisting of eigenvectors of T . So all of its eigenvalues on W are
0,−1, · · · ,−n.

Exercise. Let A be a positive definite real symmetric matrix. Show that Ak is positive definite.

Proof. Since A is a real symmetric matrix, there exist an orthogonal matrix P and a diagonal
matrix D = diag(a1, · · · , an) such that P−1AP = D. Since A is positive definite, a1, · · · , an > 0.
So P−1AkP = Dk = diag(ak1, · · · , akn) is positive definite. So Ak is positive definite.

Exercise. Let A,B be positive definite real symmetric matrices. Show that

(a) AB is positive definite symmetric matrix if and only if AB = BA.

(b) if A−B is positive definite, then B−1 −A−1 is positive definite.

Proof. For (a). When AB is positive definite symmetric matrix, AB = (AB)t = BtAt = BA.
Conversely, when AB = BA, (AB)t = BA = AB is a real symmetric matrix. Since A,B are real
symmetric matrices, both of them are diagonalizable. Combining with AB = BA, there exists
an invertible matrix P such that both P−1AP and P−1BP are diagonal. Suppose P−1AP =
diag(a1, · · · , an) and P−1BP = diag(b1, · · · , bn). Then P−1ABP = diag(a1b1, · · · , anbn). Since
A,B are positive definite, ai, bi > 0. So aibi > 0, which implies all of eigenvalues of AB are
positive. Combining with AB is real symmetric we have AB is positive definite.

For (b). By definition the sum of two positive definite real symmetric matrices is positive
definite. A positive definite matrix is invertible and its inverse is also positive definite since its
eigenvalues are all positive. Notice that

(B−1−A−1)(B+B(A−B)−1B) = A−1(A−B)B−1B(I+(A−B)−1B) = A−1(A−B)+A−1B = I

So B−1 −A−1 = (B +B(A−B)−1B)−1. Since A−B is positive definite, B(A−B)−1B =
Bt(A − B)−1B is also positive definite. Combining with B is positive definite we have B−1 −
A−1 = (B +B(A−B)−1B)−1 is positive definite.

Exercise. Let ζ = e
2πi
n , and let A be the n× n matrix whose entries are ajk = ζjk√

n
. Prove that

A is unitary.

Proof. Notice that for any 1 ≤ j, k ≤ n,

n∑
l=1

ajlakl =

n∑
l=1

ζ l(j−k)

n
=

{
ζ(j−k)(n+1)−ζj−k

(ζj−k−1)n
= 0, when j 6= k

1, when j = k

So AAt
= In. So A is unitary.
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Exercise. Let A,B be Hermitian matrices that commute. Prove that there is a unitary matrix
P such that P t

AP and P t
BP are both diagonal.

Proof. We prove it by induction on the order n of A,B. The conclusion obviously holds for
n = 1. Suppose that we have already proven it for n − 1. Since A,B are complex matrices
that commute, there exists a common eigenvector v of A and B. By rescaling we may assume
||v|| = 1. Extend v to an orthonormal basis {v, e1, · · · , en−1} of Cn. Let P0 be the unitary
matrix whose columns form this basis. By definition we have

P0
t
AP0 =

[
λ 0
0 A1

]
, P0

t
BP0 =

[
µ 0
0 B1

]
where λ, µ ∈ R, A1, B1 are Hermitian matrices of order (n−1) that commute. By the induction
hypothesis there exists a unitary matrix P1 such that P1

t
A1P1 and P1

t
B1P1 are both diagonal.

Choose P = P0

[
1 0
0 P1

]
. It’s still unitary and both P

t
AP and P

t
BP are diagonal. So the

conclusion holds for n.
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Chapter 10

Homework-10

Exercise. Let T be a linear operator on a Euclidean/Hermitian space V and W be a subspace
of V . Show that if W is T -invariant, then W⊥ is T ad-invariant; if W is T ad-invariant then
W⊥ is T -invariant.

Proof. For w ∈W⊥, note that
(v, T adw) = (Tv,w) = 0

holds for every v ∈ W , since W is W is T -invariant. This shows W⊥ is T ad-invariant, and by
the same argument one can show W⊥ is T -invariant if W is T ad -invariant.

Exercise. Show that a linear operator T on a Euclidean/Hermitian space V is normal if and
only if (Tv, Tv) = (T adv, T adv) for any v ∈ V (this was mentioned in class but details not
verified).

Proof. Recall that a linear operator T is called normal if TT ad = T adT . If T is normal, then
for any v ∈ V , one has

(T adv, T adv) = (TT adv, v) = (T adTv, v) = (Tv, Tv).

Similarly, if (Tv, Tv) = (T adv, T adv) for all v ∈ V , then (v, Pv) = 0 for all v ∈ V , where

P = T ◦ T ad − T ad ◦ T.

Note that P is a self-adjoint operator, and (v, Pv) = 0 implies the quadratic form defined by P
is zero, and thus P = 0, as desired.

Exercise. Fill in the details of the following statements.

(a) Suppose A ∈Mn(R). Show that there is an orthogonal matrix P such that

P−1AP =

A1 ∗ ∗
. . . ∗

Am


where Ai are either real numbers or real matrices of order 2 with no real eigenvalue.

(b) Suppose A ∈ Mn(C). Show that there is a unitary matrix P such that P−1AP is upper-
triangular.

Proof. Firstly let’s prove (2) by induction on n, which is easier and more intuitive. It’s clear
that the statement holds for n = 1, and suppose it holds for n = k−1. For a matrix A ∈Mk(C),
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we choose an eigenvector v with respect to eigenvalue λ, and extend v/|v| to a unitary basis.
Thus there exists a unitary matrix P with the first column v/|v| such that

P−1AP =

(
λ1 u
0 A1

)
,

where A1 ∈ Mk−1(C). By induction there exists a unitary matrix P1 such that P−1
1 A1P1 is an

upper-triangular matrix. Then

P̃ =

(
1 0
0 P1

)
P

is a unitary matrix such that P̃−1AP̃ is an upper-triangular matrix.
For (1). Let’s prove by induction on n. It’s clear that the statement holds for n = 1, 2, and

suppose it holds for n = k − 1. For a matrix A ∈ Mk(R), if A has a real eigenvector, then by
the same argument as above, one can reduce it to the low dimension case, and use induction
hypothesis to conclude. Otherwise although A has no real eigenvector, it a 2-dimensional
invariant subspace, and we choose an orthonormal basis {x, y} of this invariant subspace, and
extend it to an orthonormal basis {x, y, . . . } of Rn, which gives a unitary matrix P such that

P−1AP =

(
A1 0
0 A2,

)

where A1 =

(
a b
−b a

)
. Then use induction hypothesis to conclude the desired result.

Exercise. Let A = (aij) be a real symmetric matrix of order n. Suppose x(0) = (x
(0)
1 , . . . , x

(0)
n ) ∈

Rn is a vector on the unit sphere

Sn−1 = {x ∈ Rn : x21 + · · ·+ x2n = 1}

such that the quadratic form Q(x) =
∑

i,j aijxixj reaches its maximal value λ on Sn−1 at x(0).
Prove that

A

x
(0)
1
...

x
(0)
n

 = λ

x
(0)
1
...

x
(0)
n

 .

Proof. Since the maximal value of the quadratic form Q on Sn−1 is λ, then for any x ∈ Sn−1,
one has

Q(x) = xtAx ≤ xtλInx.

Thus for any x ∈ Rn, one has
xt

|x|
(λIn −A)

x

|x|
≥ 0,

that is, B = λIn−A is semi-positive definite. On the other hand, one has (x(0))tBx(0) = 0, and
thus Bx(0) = 0, that is, Ax(0) = λx(0).

Exercise. Let R be a ring. Show that every ideal of Mn(R) is of the form Mn(I) where I is
an ideal of R.

Proof. Let M be an ideal of Mn(R) and let

I = {a ∈ R | a is an entry of some matrix in M}.
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Then M ⊆Mn(I) because A ∈M implies that entries of A belong to I. Next we need to show
that I is an ideal. To that end let a, b ∈ I. Suppose a is the (r, s)-th entry of some matrix A in
M. Then we have

Fij(a) = Fir(1R)AFsj(1R) ∈M, 1 ≤ i, j ≤ n,

where Fij(a) denotes the matrix in Mn(R) with a as its (i, j)-th entry and zeroes elsewhere. In
particular, one has F11(a), F11(b) ∈M. Since M is an ideal we have F11(a−b) = F11(a)−F11(b) ∈
M or rather a− b ∈ I. Next let r ∈ R, x ∈ I. Then

F11(rx) = F11(r)F11(x) ∈M

F11(xr) = F11(x)F11(r) ∈M.

Therefore xr, rx ∈ I, and thus I is an ideal of R. Finally we need to show that Mn(I) ⊆ M.
Suppose A = (aij) ∈ Mn(I). Then each entry of A is an entry of some matrix in M, and thus
Fij(aij) ∈M for all 1 ≤ i, j ≤ n, This shows

A =

n∑
i=1

n∑
j=1

Fij(aij) ∈M.

as desired. Hence M =Mn(I).

Exercise. Find generators for the kernels of the following maps:

(a) R[x, y]→ R defined by f(x, y)⇝ f(0, 0),

(b) R[x]→ C defined by f(x)⇝ f(2 +
√
−1),

(c) Z[x]→ R defined by f(x)⇝ f(1 +
√
2),

Proof. For (a). The kernel consists of the polynomials which have zero constant terms, and
thus it’s 〈x, y〉.

For (b).Note that if 2 +
√
−1 is a root of a real coefficient polynomial, so is 2−

√
−1. Thus

the kernel is generated by (2 +
√
−1)(2−

√
−1) = x2 − 4x+ 5.

For (c). By the same argument in (b), the kernel is generated by x2 − 2x− 1.

Exercise. Let T and T ′ be normal operators on a Euclidean/Hermitian space V . Suppose
ImT ⊥ ImT ′. Show that T + T ′ is a normal operator.

Proof. Since imT ⊥ imT ′, then for any v, w ∈ V , one has

(T ′adTv,w) = (Tv, T ′w) = 0.

This shows T ′adT = 0, and thus T adT = 0. By the same argument, one can show that TT ′ad =
T ′T ad = 0. Thus

(T + T ′)(T ad + T ′ad) = TT ad + T ′T ′ad = T adT + T ′adT ′ = (T ad + T ′ad)(T + T ′).

Exercise. Show that a complex matrix A is normal if and only if Āt = AU for some unitary
matrix U .

Proof. If Āt = AU for some unitary matrix U , then by taking conguate and transpose, one has
A = U−1Āt since U−1 = U

t. Thus
A = U−1AU,
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which implies AU = UA. Then

AAad = AĀt = ĀtU−1Āt = ĀtU−1AU = ĀtA.

Conversely, ifA is normal, then there exists a unitary matrix P such thatA = P−1 diag{λ1, . . . , λr, 0, . . . , 0}P .
Then

Āt = P−1 diag{λ1, . . . , λr, 0, . . . , 0}P

= P−1 diag{λ1, . . . , λr, 0, . . . , 0}PP−1 diag{|λ1|
λ1

, . . . ,
|λr|
λr

, 1, . . . , 1}P

= AU,

where
U = P−1 diag{|λ1|

λ1
, . . . ,

|λr|
λr

, 1, . . . , 1}P

is a unitary matrix.

Exercise. Suppose the matrices A,B,AB are all normal, show that so is BA.

Proof. Note that
tr(BABA

t
) = tr(BAA

t
B

t
)

= tr(AA
t
B

t
B)

= tr(A
t
ABB

t
)

= tr(ABB
t
A

t
)

=
n∑

i=1

|λi|2,

where λi’s are all eigenvalues of AB, since AB is normal. On the other hand, since det(λI −
AB) = det(λI −BA), one has AB and BA have the same eigenvalues, and thus BA is normal.

Exercise. Prove that the ideals of Z are of the form nZ = {nx | x ∈ Z} for some integer n.

Proof. For any ideal I ⊂ Z, there exists a minimum n0 ∈ I+. If there exists some n ∈ I such
that n0 ∤ n, then by division with remainders, there exists

n = n0q + r,

where q, r ∈ Z and r is smaller than n0, which is a contradictory. Then for any n ∈ I, n = kn0
and this gives that I = n0 Z.

Exercise. Let ϕ : C[x, y] → C[t] be the homomorphism that sends x ∼ t + 1 and y ∼ t3 − 1.
Determine the kernel K of ϕ, and prove that every ideal I of C[x, y] that contains K can be
generated by two elements.

Proof. Note that

ϕ(y) = t3 − 1 = (ϕ(x)− 1)3 − 1 = ϕ3(x)− 3ϕ2(x) + 3ϕ(x)− 2.

Then
ϕ(y − (x3 − 3x2 + 3x− 2)) = 0,

and thus
〈x3 − 3x2 + 3x− 2− y〉 ⊆ K.
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For any element f(x, y) ∈ K, by division with remainders one has

f(x, y) = (x3 − 3x2 + 3x− 2− y)g(x, y) + r(x).

Then ϕ(f(x, y)) = 0 if and only if r(ϕ(x)) = 0, that is, r(t+1) = 0. In other words, f(x, y) ∈ K
if and only if r(x) = 0. Thus K = 〈x3 − 3x2 + 3x− 2− y〉.

Suppose I ⊆ C[x, y] is an ideal that contains K. For the ideal I generated by ϕ(I), one has
I = (r(x)) for some r(x) ∈ C[x] since C[x] is a PID. Then

I = 〈ϕ−1(r(x)), x3 − 3x2 + 3x− 2− y〉.
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Chapter 11

Homework-11

Exercise. (a) An element x of a ring R is called nilpotent if some power is zero. Prove that if
x is nilpotent, then 1 + x is a unit.

(b) Suppose that R has prime characteristic p 6= 0. Prove that if a is nilpotent then 1 + a is
unipotent, that is, some power of 1 + a is equal to 1.

Proof. For (a). Suppose xn = 0. Then (−x)n = 0. So

(1 + x)(
n−1∑
i=0

(−x)i) = (
n−1∑
i=0

(−x)i)(1 + x) = 1− (−x)n = 1

So 1 + x is inveritble, i.e., it’s a unit.
For (b). Since a is nilpotent, an = 0 for sufficiently large integer n. In particular, there

exists m ∈ Z>0 such that apm = 0. Notice that p|
(
pm

k

)
for any 1 ≤ k ≤ pm − 1. So

(1 + a)p
m
=

pm∑
k=0

(
pm

k

)
ak = 1 + ap

m
= 1

So 1 + a is unipotent.

Exercise. Let R be a ring of prime characteristic p. Prove that the map R → R defined by
x⇝ xp is a ring homomorphism. (It is called the Frobenius map.)

Proof. Notice that p|
(
p
k

)
for any 1 ≤ k ≤ p− 1. So (x+ y)p =

p∑
k=0

(
p
k

)
xkyp−k = xp + yp for any

x, y ∈ R. Combining with the facts (xy)p = xpyp and 1p = 1 we have the given map is a ring
homomorphism.

Exercise. Consider the homomorphism Z[x] → Z that sends x ⇝ 1. Explain what the Corre-
spondence Theorem, when applied to this map, says about ideals of Z[x].

Solution. Denote this homomorphism by ϕ. For any n ∈ Z, ϕ(nx) = n. So ϕ is surjective.
Notice that ϕ maps x and the identity 1 to the identity 1. So ϕ(f(x)) = f(1). So kerϕ = {f ∈
Z[x] | f(1) = 0}. The Correspondence Theorem says that there is a bijective correspondence
between the set of ideals of Z and the set of ideals of Z[x] that contains all polynomials f
satisfying that f(1) = 0. This correspondence is given by taking the preimage under ϕ.

Exercise. Identify the following rings: (a) Z[x]/(x2−3, 2x+4), (b) Z[i]/(2+i), (c) Z[x]/(6, 2x−
1), (d) Z[x]/(2x2 − 4, 4x− 5), (e) Z[x]/(x2 + 3, 5).
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Solution. In the sequel, denote the given ring by R and Z /nZ by Zn.
For (a). Since 2 = 2(x2 − 3) − (x − 2)(2x + 4) ∈ (x2 − 3, 2x + 4), (x2 − 3, 2x + 4) =

(x2 − 3, 2x+ 4, 2) = ((x− 1)2, 2). So R = Z[x]/((x− 1)2, 2) ∼= Z2[x]/((x− 1)2) ∼= Z2[t]/(t
2).

For (b). Since Z[i] ∼= Z[x]/(x2 + 1), where i 7→ x, R ∼= Z[x]/(x2 + 1, x + 2). Since 5 =
x2 + 1 − (x − 2)(x + 2) ∈ (x2 + 1, x + 2), (x2 + 1, x + 2) = (x2 + 1, x + 2, 5) = (x + 1, 5). So
R = Z[x]/(x+ 1, 5) ∼= Z5[x]/(x+ 1) ∼= Z5.

For (c). Since 3 = 6x − 3(2x − 1) ∈ (6, 2x − 1), (6, 2x − 1) = (6, 2x − 1, 3) = (3, 2− x). So
R = Z[x]/(3, 2− x) ∼= Z3[x]/(2− x) ∼= Z3.

For (d). Since 7 = (4x + 5)(4x − 5) − 8(2x2 − 4) ∈ (2x2 − 4, 4x − 5), (2x2 − 4, 4x − 5) =
(2x2−4, 4x−5, 7) = (x−3, 7) (for x−3 = 2(4x−5)−7x+7, 2x2−4 = 2(x−3)(x+3)+2·7, 4x−5 =
4(x− 3) + 7). So R = Z[x]/(x− 3, 7) ∼= Z7[x]/(x− 3) ∼= Z7.

For (e). R = Z[x]/(x2 + 3, 5) ∼= Z5[x]/(x
2 + 3). In fact, it’s isomorphic to the finite field of

25 elements F25 since x2 + 3 is irreducible in Z5[x], Z5 is a field and |R| = |{ax+ b | 0 ≤ a, b ≤
4}| = 25.

Exercise. Let Pi be finitely many prime ideals of R. Let I be an ideal of R such that I ⊂ ∪Pi.
Show that there is some i such that I ⊂ Pi.

Proof. We prove it by induction on the number n of prime ideals. The conclusion obviously
holds when n = 1. Now suppose the conclusion holds for n = m − 1 and consider the case
n = m. If there exists i such that I ⊂

⋃
j ̸=i

Pj then the conclusion has already held by the

induction hypothesis. Otherwise for any i there exists xi ∈ I ∩ Pi such that x /∈ Pj for any

j 6= i. Then consider y =
m−1∏
i=1

xi + xm ∈ I. Since Pm is prime and xi /∈ Pm for any i < m,
m−1∏
i=1

xi /∈ Pm. Combining with xm ∈ Pm we have y /∈ Pm. And for any j < m, since xj ∈ Pj ,
m−1∏
i=1

xi ∈ Pj . Combining with xm /∈ Pj we have y /∈ Pj . So y /∈
m⋃
i=1

Pi, which contradicts the fact

I ⊂ ∪Pi. So the conclusion holds when n = m.

Exercise. Let Ii be finitely many ideals of R and P be a prime ideal of R. Suppose ∩Ii ⊂ P .
Show that there is some i such that Ii ⊂ P .

Proof. If the conclusion does not hold, then for any i there exists xi ∈ Ii such that xi /∈ P .
Consider y =

∏
xi. (It’s well-defined since it’s a finite product.) Since P is prime and xi /∈ P ,

y /∈ P . But y ∈
∏
Ii ⊂ ∩ Ii, which contradicts the fact ∩Ii ⊂ P . So the conclusion holds.

Exercise. Are the rings Z[x]/(x2 + 7) and Z[x]/(2x2 + 7) isomorphic?

Solution. No, they are not isomorphic. Let A = Z[x]/(x2 + 7), B = Z[x]/(2x2 + 7). For a
polynomial f ∈ Z[x], denote by [f ]A its equivalence class in A, similarly define [f ]B. If there
exists an isomorphism ϕ : A → B, since ϕ([1]A) = [1]B, ϕ([2]A) = [2]B. Since 2(x2 + 4) =
(2x2 + 7) + 1, [2]B is a unit of B. But [2]A is not a unit of A since A/2A ∼= F2[x]/(x

2 + 7) 6= 0,
which draws a contradiction. So A and B are not isomorphic.

Exercise. State and prove the second and third isomorphism theorem for quotient modules.

Solution.
Second isomorphism theorem for modules. Let R be a ring and M be an R-module.

Suppose N1, N2 are submodules of M . Then (N1 +N2)/N2
∼= N1/N1 ∩N2.

Proof. Consider ϕ : N1 ↪→ N1 +N2 ↠ (N1 +N2)/N2. It’s a homomorphism of R-modules since
it’s the composition of two homomorphisms. kerϕ = {x ∈ N1 | x ∈ N2} = N1 ∩ N2. Notice
that for any x+ y ∈ N1 +N2, where x ∈ N1 and y ∈ N2, x+ y and x are in the same coset of
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N1 +N2 with respect to N2. So ϕ is surjective. By the first isomorphism theorem for modules
we have N1/N1 ∩N2 = N1/ kerϕ ∼= (N1 +N2)/N2.

Third isomorphism theorem for modules. Let R be a ring and M be an R-module.
Suppose N1 ⊂ N2 are submodules of M . Then M/N2

∼= M/N1

N2/N1
.

Proof. Let πi : M → M/Ni be the natural projections. Consider ψ : M/N1 → M/N2,
ψ(π1(m)) = π2(m) for any m ∈ M . Since N1 ⊂ N2, ψ is well-defined. Obviously ψ is a
surjective homomorphism of R-modules. kerψ = {π1(m) | m ∈ N2} = N2/N1. So by the first
isomorphism theorem for modules we have M/N1

N2/N1

∼=M/N2.

Exercise. Let V be an abelian group. Prove that if V has a structure of Q-module with its
given law of composition as addition, then that structure is uniquely determined.

Proof. Suppose there are two structures of Q-modules on V with the given law of composition as
addition. Denote these two corresponding Q-modules by V1 and V2 respectively. By definition,
the identity map on the underlying space V induces an isomorphism of abelian groups between
V1 and V2, which we denote it by ϕ : V1 → V2. Then we prove that it’s a homomorphism of
Q-modules. For any rational number p

q ∈ Q, where p, q ∈ Z and q 6= 0, for any v ∈ V1, consider
w = p

qϕ(v)− ϕ(
p
qv). Since ϕ is a homomorphism of Z-modules, we have

qw = pϕ(v)− qϕ(p
q
v) = pϕ(v)− ϕ(pv) = 0

Since q 6= 0, q is invertible in Q. So w = q−1qw = 0. So p
qϕ(v) = ϕ(pqv) holds for any

rational number p
q ∈ Q and v ∈ V1, i.e., ϕ is Q-linear. Combining with the fact that ϕ is the

identity map on the underlying space V , we have these two Q-structures are the same, which
implies the uniqueness.

Exercise. A module is called simple if it is not the zero module and if it has no proper submodule.

(a) Prove that any simple R-module is isomorphic to an R-module of the form R/M , where M
is a maximal ideal.

(b) Prove Schur’s Lemma: Let ϕ : S → S′ be a homomorphism of simple modules. Then ϕ is
either zero, or an isomorphism.

Proof. For (a). For any simple R-module N , choose a nonzero element a ∈ N in it. Consider
the map ψ : R→ N , ψ(r) = r · a for any r ∈ R. It’s a homomorphism of R-modules since N is
an R-module. imψ is a nonzero submodule of N . Since N is simple, N = imψ. Let M = kerψ.
Then M is a submodule of R, i.e., an ideal of R and by the first isomorphism theorem, N
is isomorphic to R/M . By the Correspondence Theorem, submodules of R/M correspond to
submodules of R containing M , i.e., ideals of R containing M . Since R/M is simple, M is a
maximal ideal of R.

For (b). imϕ is a submodule of S′. Since S′ is simple, imϕ = 0 or S′. The former implies
ϕ = 0, while the latter implies ϕ is surjective. Similarly, kerϕ is a submodule of a simple module
S, so ϕ is either zero or an injective homomorphism. Combining these two conclusion together
we have ϕ is either zero or an isomorphism.
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Chapter 12

Homework-12

Exercise. Let M be an R-module, where R commutative. Let S be a subset of M . Define the
annilator of S to be Ann(S) = {r ∈ R | rs = 0 for all s ∈ S}. Show that Ann(S) is an ideal of
R.

Proof. It’s clear that Ann(S) is an additive subgroup of R, and for any r ∈ R, x ∈ Ann(S),
xs = 0 for all s ∈ S implies that (rx)s = (xr)s = 0 for all s ∈ S. This shows rx = xr ∈ Ann(S),
and thus Ann(S) is an ideal.

Exercise. Let M1 and M2 be submodules of M . Definte M1 +M2 = {a1 + a2 | ai ∈Mi}. Show
that M1 +M2 is the submodule of M generated by M1 ∪M2.

Proof. Firstly let’s show M1+M2 = {m1+m2 | m1 ∈M1,m2 ∈M2} is a submodule of M . It’s
clear that M1 +M2 is an additive subgroup of M , and for any r ∈ R,m1 +m2 ∈M , one has

r(m1 +m2) = rm1 + rm2 ∈M1 +M2.

This shows M1+M2 is a submodule of M . For convenience, we use N to denote the submodule
generated by M1 ∪M2. It’s clear that N ⊆ M1 +M2, since both M1 and M2 are submodules
of M1 +M2. Conversely, M1 +M2 ⊆ N , since for any m1 +m2 ∈M1 +M2, one has m1 ∈M1

and m2 ∈M2. Thus M1 +M2 is generated by M1 ∪M2.

Exercise. Let R be a commutative ring (containing the identity element 1). Suppose every
finitely generated R-module is free or zero module. Show that R is a field.

Proof. Suppose I ⊆ R is a proper ideal. Then R/I is a finitely generated R-module, which is
not zero, and thus by assumption it’s a free module. On the other hand, for any x ∈ R/I and
r ∈ I, one has rx = 0, which is contradiction to R/I is free.

Exercise. Let A be the matrix of a homomorphism ϕ : Zn → Zm of free Z-modules.

(a) Prove that ϕ is injective if and only if the rank of A, as a real matrix, is n.

(b) Prove that ϕ is surjective if and only if the greatest common divisor of the determinants of
the m×m minors of A is 1.

Proof. For (a). Suppose A = (α1, . . . , αn). Then ϕ is injective is equivalent to say for any
x = (x1, . . . , xn) ∈ Zn, α1x1 + · · · + αnxn = 0 implies x = 0. In other words, ϕ is injective if
and only if α1, . . . , αn are Z-linearly independent, which is equivalent to the rank of A is n.

For (b). If ϕ is surjective, then there exists B ∈ Mn×m(Z) such that AB = Im. Then by
Cauchy–Binet formula one has∑

1≤k1≤···≤km≤n

detA

(
12 . . .m
k1k2 . . . km

)
detB

(
k1k2 . . . km
12 . . .m

)
= 1,
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which implies the greatest common divisor of the determinants of the m×m minors of A is 1.
Conversely, suppose the greatest common divisor of the determinants of the m ×m minors of
A is 1, and thus for any 1 ≤ k1 ≤ · · · ≤ km ≤ n, there exists λ(k1, . . . , km) such that

∑
1≤k1≤···≤km≤n

detA

(
12 . . .m
k1k2 . . . km

)
λ(k1, . . . , km) = 1.

On the other hand, one has

A

(
12 . . .m
k1k2 . . . km

)
A

(
12 . . .m
k1k2 . . . km

)∗
= detA

(
12 . . .m
k1k2 . . . km

)
Im .

Then we use Ak1...km to denote the n×m matrix, which ki-th row is the same as the i-th row

of A
(

12 . . .m
k1k2 . . . km

)
. Then

B =
∑

1≤k1≤···≤km≤m

Ak1...kmλ(k1, . . . , km)

is a matrix of n×m, which satisfies AB = Im. As a consequence, one has ϕ is surjective.

Exercise. Let R = C[x, y], and let M be the ideal of R generated by the two elements x and y.
Is M a free R-module?

Proof. Suppose M is a free R-module. Since any two elements in R is R-linearly dependent,
and M ⊆ R, then M is generated by one element, denoted by f . Since M is generated by x, y,
then the constant term of f is zero. Suppose x = a1f and y = a2f . Then by degree argument
one can see both a1 and a2 has degree zero, and thus f ∈ C[x] ∩C[y] = C, a contradiction.

Exercise. Suppose M =M1 ⊕M2 is an R-module. Show that M/M1
∼=M2.

Proof. Consider the following map

φ : M →M2

(a1, a2) 7→ a2.

It’s clear that φ is a surjective homomorphism of R-modules, and kerφ =M1. Then one has

M/M1
∼=M/ kerφ ∼=M2.

Exercise. Suppose M = Rx is an module generated by one element x 6= 0. Show that M
contains a maximal proper submodule, namely, a proper submodule not contained in any other
proper submodule.

Proof. Let I be the maximal ideal of R, which exists by Zorn lemma. Then Ix ⊆ Rx is a proper
submodule not contained in any other proper submodule.

Exercise. Show that Euclidean domains are principal ideal domains.

Proof. By the same argument in Exercise 11 of Homework-10.

Exercise. Show that Z[
√
2] = {a+ b

√
2 | a, b ∈ Z} is a Euclidean domain.
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Proof. For any α = a1 + a2
√
2, we define its norm as

N(α) = a21 − 2a22.

Let α = a1 + a2
√
2 and β = b1 + b2

√
2 be elements of Z[

√
2] with β 6= 0. We wish to show that

there exist γ and δ in Z[
√
2] such that α = γβ + δ and N(δ) < N(β). To that end, note that

in Q(
√
2) we have α/β = c1 + c2

√
2, where

c1 =
a1b1 − 2a2b2
b21 − 2b22

, c2 =
a2b1 − a1b2
b21 − 2b22

.

Let q1 be an integer closest to c1 and q2 an integer closest to c2. Then |c1 − q1| ≤ 1/2 and
|c2 − q2| ≤ 1/2. Now consider γ = q1 + q2

√
2 ∈ Z[

√
2] and θ = (c1 − q1) + (c2 − q2)

√
2. By

definition one has θβ = α− γβ. If we define δ = θβ, then α = γβ + δ. Now it suffices to show
that N(δ) < N(β). To that end, note that

N(θ) = |(c1 − q1)2 − 2(c2 − q2)2| ≤ |(c1 − q1)2|+ | − 2(c2 − q2)2|.

by the triangle inequality. Thus we have

N(θ) ≤ (c1 − q1)2 + 2(c2 − q2)2 ≤ (1/2)2 + 2(1/2)2 = 3/4.

In particular, N(δ) ≤ 3
4N(β) as desired.

Exercise. Let φ : K[t]→ K[t] be an isomorphism. Suppose φ(f) = f for all constant polynomial
f . Find all possibilities of φ.

Proof. Since φ is a homomorphism of rings which preserves the constant terms, one has

φ(
n∑

i=0

aix
i) =

∑
i=0

aiφ(x)
i,

so it suffices to figure out φ(x). Since φ is an isomorphism. one has deg(φ(x)) ≥ 1, otherwise
φ is not injective. If deg(φ(x)) > 1, then for any g =

∑n
i=0 aix

i, one has deg(φ(g)) > 1, which
implies φ is not surjective. Then φ(x) must be a linear polynomial.

Exercise. Show that a degree n polynomial f ∈ Q[t] is irreducible if and only if so is ynf( 1y ).

Proof. If f = gh, then one has

ynf(
1

y
) = (ydeg gg(

1

y
))(ydeg hh(

1

y
)),

which implies ynf( 1y ) is reducible. Conversely, if ynf( 1y ) is reducible, we write ynf( 1y ) =
g(y)h(y), and thus

f(
1

y
) = (y− deg gg(y))(y− deg hh(y)),

which is equivalent to
f(y) = (ydeg gg(

1

y
))(ydeg hh(

1

y
)),

Exercise. For which positive integers n does x2+x+1 divide x4+3x3+x2+7x+5 in [Z /nZ][x]
?
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Proof. Note that

x4 + 3x3 + x2 + 7x+ 5 = (x2 + 2x− 2)(x2 + x+ 1) + 7x+ 7.

Thus x2+x+1 divide x4+3x3+x2+7x+5 in [Z /nZ][x] if and only if 7x+7 = 0 in [Z /nZ][x].
In other words, n = 7.

Exercise. Let F be a field. The set of all formal power series p(t) = a0 + a1t + a2t
2 + · · · ,

with ai in F , forms a ring that is often denoted by F [[t]]. By formal power series we mean
that the coefficients form an arbitrary sequence of elements of F . There is no requirement of
convergence. Prove that F [[t]] is a ring, and determine the units in this ring.

Proof. For formal power series p(t) = a0 + a1t+ a2t
2 + · · · and q(t) = b0 + b1t+ b2t

2 + · · · , the
addition

p(t) + q(t) :=
∞∑
i=0

(ai + bi)t
i,

and the multiplication is given by

p(t) · q(t) :=
∞∑
k=0

(
k∑

i=1

aibk−i

)
tk.

A routine computation shows that F [[t]] is a ring with respect to above operations. Now let’s
show that the units in this ring are exactly formal power series such that the constant term is a
unit in F . Suppose p(t) is a unit and q(t) =

∑∞
j=1 bjt

j is the inverse of p(t). Since p(t) ·q(t) = 1,
then clearly we have a0b0 = 1, thus a0 is a unit. Conversely, if a0 is a unit, then consider the
Taylor expansion of 1/p(t) at t = 0 to conclude.
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Chapter 13

Homework-13

Exercise. Let p be a prime. Show that there is an irreducible polynomial of degree 3 in Zp[t].
Show that there is a finite field of order p3.

Proof. Consider f(t) = t3 − t. Choose c ∈ Zp such that f(t) 6= c for any t ∈ Zp. Since
f(0) = f(1), there exists such c. Let g(t) = f(t) − c = t3 − t − c ∈ Zp[t]. If g is reducible, it
must have a linear factor by degree argument, which implies that g has a root in Zp. But this
contradicts the fact g(t) 6= 0 for any t ∈ Zp. So g is irreducible. So Zp[t]/(g(t)) is a field of
order p3.

Exercise. Show that the rank of a matrix over K[t] is invariant under elementary matrix
operations.

Proof. Consider the fraction field K(t) = {f(t)g(t) | f, g ∈ K[t], g 6= 0} of K[t]. Since K[t] can
be embedded into K(t), for any matrix over K[t], we can regard it as a matrix over K(t) of
the same rank. Over K(t) we have the rank of a matrix is invariant under elementary matrix
operations. So the conclusion also holds when it comes to K[t].

Remark. You can also verify it directly by comparing the rank of the matrix before and after
operations

Exercise. Let R be a Euclidean domain. Let A ∈ Mm×n(R). Show that, by row and column
elementary operations, A can be reduced to a matrix of the form diag(d1, · · · , dr, 0, · · · , 0), where
d1 | · · · | dr.

Proof. WLOG we may assume A 6= 0. First we prove the following lemma:

Lemma. By row and column elementary operations, A can be reduced to a matrix of the form[
d1 0
0 A1

]
, where d1 ∈ R, A1 ∈M(m−1)×(n−1)(R) and d1 divides all entries of A1.

Proof of the lemma. Since R is a Euclidean domain, it’s equipped with a Euclidean function
δ : R\0 → Z≥0. For any B = (bij) ∈ Mm×n(R)\0, define δ(B) = min{δ(bij) | bij 6= 0}. Let
S be the set consisting of all matrices obtained by performing row and column elementary
operations. Since Z≥0 is bounded below and discrete, there exists some C = (cij) ∈ S realizing
min{δ(B) | B ∈ S}. By interchanging rows and columns we may assume δ(c11) = min{δ(cij)}.
For any 1 < j ≤ n, suppose c1j = c11q1j + r1j such that either r1j = 0 or δ(r1j) < δ(c11).
Since we can perform a column elementary operation to change c1j into r1j , by minimality of
C we have r1j = 0. So c11 | c1j and by replacing the j-th column with (j-th column)−q1j(first
column), we may assume c1j = 0. Similarly we may assume ci1 = 0 for i > 1. So C has

the form
[
c11 0
0 C ′

]
and we only need to prove c11 divides cij for any i, j > 1. Suppose there
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exists some cij such that c11 ∤ cij . Then there exist some qij , rij such that cij = c11qij + rij
and δ(rij) < δ(c11). Replace the first column of C with (first column)+(j-th column) and then
replace the i-th row with (i-th row)−qij(first row). Then we obtain a matrix such that its
(i, 1)-position is rij , which contradicts the minimality of C. So c11 | cij for any i, j > 1 and C
meets the requirement.

Then we prove the original conclusion by induction on k = max{m,n}. The conclusion
obviously hold when k = 1. Suppose we have already proven it for k = l − 1. When k = l, if
m = 1 or n = 1, by the lemma we have the conclusion holds. So we may assume m,n > 1.

By the lemma A can be reduced to the form
[
d1 0
0 A1

]
. By the induction hypothesis A1 can

be reduced to diag(d2, · · · , dr, 0, · · · , 0), where d2 | · · · | dr. Since d1 divides all entries of A1,
d1 | d2 (since d2 must be an R-linear combination of entries of A1). So A can be reduced to
diag(d1, · · · , dr, 0, · · · , 0), where d1 | · · · | dr. So the conclusion holds for k = l.

Exercise. Let R be a principal ideal domain. Let A ∈ Mm×n(R). Show that there exist
invertible matrices P,Q such that PAQ = diag(d1, · · · , dr, 0, · · · , 0) such that d1 | · · · | dr.

Proof. WLOG we may assume A 6= 0. First we prove the following lemma:

Lemma. There exist invertible matrices P1, Q1 such that P1AQ1 =

[
d1 0
0 A1

]
, where d1 ∈ R,

A1 ∈M(m−1)×(n−1)(R) and d1 divides all entries of A1.

Proof of the lemma. Since R is a principal ideal domain, it’s a unique factorization domain. So
for any nonzero element r ∈ R, we can always decompose it into the product of irreducible
elements r = p1 · · · ps and define l(r) = s. For any B = (bij) ∈ Mm×n(R)\0, define l(B) =
min{l(bij) | bij 6= 0}. Let S = {P1AQ1 | P1, Q1 are invertible}. Since Z≥0 is bounded below
and discrete, there exists some C = (cij) ∈ S realizing min{l(B) | B ∈ S}. By interchanging
rows and columns we may assume l(c11) = min{l(cij)}.

When n > 1, since R is a principal ideal domain, there exist x, y such that c11x + c12y =

gcd(c11, c12). Let u = c11
gcd(c11,c12)

, v = c12
gcd(c11,c12)

. Then T =

[
v x
−u y

]
is invertible since its

determinant is 1. Furthermore, the (1, 2)-position of C
[
T 0
0 In−2

]
is gcd(c11, c12). By minimality

of C we have l(c11) ≤ l(gcd(c11, c12)). So c11 | c12. By replacing the second column with (second
column)− c12

c11
(first column), we may assume c12 = 0. Similarly, we may assume c1j , ci1 = 0 for

i, j > 1. So C has the form
[
c11 0
0 C ′

]
and we only need to prove c11 divides cij for any i, j > 1.

Suppose there exists some cij such that c11 ∤ cij . Then l(gcd(c11, cij)) < l(c11). Replace the
first row of C with (first row) + (i-th row). Then we obtain a matrix such that its (1, j)-
position is cij . By an operation similar to the one mentioned above, we can turn this cij into
gcd(c11, cij), which contradicts the minimality of C. So c11 | cij for any i, j > 1 and C meets
the requirement.

Then we prove the original conclusion by induction on k = max{m,n}. The conclusion
obviously hold when k = 1. Suppose we have already proven it for k = l − 1. When k = l, if
m = 1 or n = 1, by the lemma we have the conclusion holds. So we may assume m,n > 1. By

the lemma there exist invertible matrices P1, Q1 such that P1AQ1 =

[
d1 0
0 A1

]
and d1 divides

all entries of A1. By the induction hypothesis there exist invertible matrices P2, Q2 such that
P2A1Q2 = diag(d2, · · · , dr, 0, · · · , 0), where d2 | · · · | dr. Since d1 divides all entries of A1, d1 | d2
(since d2 must be an R-linear combination of entries of A1). there exist invertible matrices P,Q
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such that PAQ = diag(d1, · · · , dr, 0, · · · , 0) such that d1 | · · · | dr. So the conclusion holds for
k = l.

Remark. In general, a Euclidean domain is a principal domain but the converse is not true.
And you should pay attention to the fact that in this solution, the function l is not a Euclidean
function and the matrix T is invertible but not elementary. These are the main differences
between the above two exercises.

Exercise. Find the Smith normal form of the following matrices over C

(1)

[
λ 1
0 λ

]
; (2)

[
λ2 − 1 λ+ 1
λ+ 1 λ2 + 2λ+ 1

]
; (3)

[
λ 0
0 λ+ 5

]
; (4)

[
λ2 − 1 0

0 (λ− 1)3

]
;

(5)

 λ+ 1 λ2 + 1 λ2

3λ− 1 3λ2 − 1 λ2 + 2λ
λ− 1 λ2 − 1 λ

; (6)
λ− 2 −1 0

0 λ− 2 −1
0 0 λ− 2

.
Solution. The followings are the required Smith normal forms:

(1)

[
1 0
0 λ2

]
; (2)

[
λ+ 1 0
0 (λ+ 1)(λ2 − 2)

]
; (3)

[
1 0
0 λ(λ+ 5)

]
; (4)

[
λ− 1 0
0 (λ+ 1)(λ− 1)3

]
;

(5)

1 0 0
0 λ 0
0 0 0

; (6)

1 0 0
0 1 0
0 0 (λ− 2)3

.

Exercise. Find the invariant factors/determinant divisors/elementary factors/rational nor-
mal forms/Jordan canonical forms of the following matrices (over C), and determine whether
Ai/Bi/Ci are similar.

A1 =

3 2 −5
2 6 10
1 2 −3

, A2 =

6 20 −34
6 32 −51
4 20 −32

,
B1 =

6 6 −15
1 5 −5
1 2 −2

, B2 =

 37 −20 −4
34 −17 −4
119 −70 −11

,
C1 =

4 6 −15
1 3 −5
1 2 −4

, C2 =

 1 −3 3
−2 −6 13
−1 −4 8

, C3 =

−13 −70 119
−4 −19 34
−4 −20 35


Solution. A1 and A2 have the same data: the invariant factors are 1, λ − 2, (λ − 2)2, the de-
terminant divisors are 1, λ− 2, (λ− 2)3, the elementary factors are λ− 2, (λ− 2)2, the rational

normal form is

2 0 0
0 0 −4
0 1 4

 and the Jordan canonical form is

2 0 0
0 2 0
0 1 2

. So they are similar.

B1 and B2 have the same data: the invariant factors are 1, λ− 3, (λ− 3)2, the determinant
divisors are 1, λ − 3, (λ − 3)3, the elementary factors are λ − 3, (λ − 3)2, the rational normal

form is

3 0 0
0 0 −9
0 1 6

 and the Jordan canonical form is

3 0 0
0 3 0
0 1 3

. So they are similar.

C1 and C3 have the same data: the invariant factors are 1, λ− 1, (λ− 1)2, the determinant
divisors are 1, λ−1, (λ−1)3, the elementary factors are λ−1, (λ−1)2, the rational normal form

is

1 0 0
0 0 −1
0 1 2

 and the Jordan canonical form is

1 0 0
0 1 0
0 1 1

. So they are similar. However, the

data of C2 are different: the invariant factors are 1, 1, (λ − 1)3, the determinant divisors are
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1, 1, (λ−1)3, the elementary factor is (λ−1)3, the rational normal form is

0 0 1
1 0 −3
0 1 3

 and the

Jordan canonical form is

1 0 0
1 1 0
0 1 1

. So it’s not similar to C1.

Exercise. Show that for any A ∈Mn(C), there exists an invertible matrix P such that P−1AP =
S1S2, where S1 and S2 are symmetric matrices and S1 is invertible.

Proof. Suppose the Jordan canonical form of A is P−1AP =


Jk1(λ1)

Jk2(λ2)
. . .

Jks(λs)



For any k ∈ N, λ ∈ C, define Ak =


1

1
. . .

1

 , Bk(λ) =


1 λ

. . . λ

1 . . .

λ

 ∈Mk(C).

Then they are symmetric and Ak is invertible. Notice that for any 1 ≤ i ≤ s,

AkiBki(λi) =


1

1

. . .

1




1 λi

. . . λi

1 . . .

λi

 =


λi
1 λi

. . . . . .
1 λi

 = Jki(λi)

So choose S1 =


Ak1

Ak2
. . .

Aks

 , S2 =

Bk1(λ1)

Bk2(λ2)
. . .

Bks(λs)

.

They are symmetric, S1 is invertible and P−1AP = S1S2.
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Chapter 14

Homework-14

Exercise. Let A be an n× n matrix of real numbers with A2 + I = 0. Prove that n = 2k must
be even and A is similar to

B =

(
−Ik

Ik

)
by a matrix over R.

Proof. It’s clear that the minimal polynomial of A is x2 + 1 since it’s irreducible over R, and
thus all possible eigenvalues of A over C are ±

√
−1. But since A is real, then the eigenvalues

must be conjugates of each other, and thus n = 2k must be even, and multiplicity of
√
−1 is k,

so is −
√
−1. In particular, A is similar to(√

−1Ik
−
√
−1Ik

)
∼
(

−Ik
Ik

)
over C. Therefore λI −A is equivalent to λI −B as C[λ]-matrices, and since both of them are
real, they’re equivalent as R[λ]-matrices. As a consequence, A is similar to B over R.

Exercise. Let R be a principle ideal domain and M be a free R-module of finite rank. Show
that any submodule N of M is free and finite rank.

Proof. Let’s prove it by induction on the rank of M . If M has rank one, that is, M = R,
then any submodule N of M is of the form (a), which is a principal ideal of R, and thus it’s
also free with finite rank. Now suppose the induction hypothesis holds for n < k and consider
the case n = k. Consider the projection of M = R1 ⊕ · · · ⊕ Rk to the last factor, denoted
by π. By induction hypothesis, one has kerπ ∩ N is a free module with finite rank. Suppose
a1, . . . , am−1 is a basis of kerπ∩N , and suppose the ideal generated by π(N) is of the form (b),
and suppose π(αm) = b. Then it’s clear that N is generated by α1, . . . , αm. Now it suffices to
show α1, . . . , αm are linearly independent. If x1α1 + · · ·+ xmαm = 0 for xi ∈ R, then

π(x1α1 + · · ·+ xmαm) = xmb = 0,

and thus xm = 0. On the other hand, since {α1, . . . , αm−1} is a basis, then x1 = · · · = xm−1 = 0.
This completes the proof.

Exercise. Suppose a complex matrix A has characteristic polynomial (t − 2)4(t − 1)2. How
many possible Jordan canonical forms can A have? (Jordan forms obtained by reordering the
Jordan blocks are considered the same)

Proof. It suffices to consider all possibilities of elementary divisors. For (t− 2)4, there are five
possibilities (this is exactly the number of partition of 4), and the same argument shows there
are two possibilities of (t− 1)2. Thus there are 2× 5 = 10 possibilities of the Jordan canonical
block of A.
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Exercise. Find the minimal polynomial of

A =


2 −2 5 2
0 −4 0 1
0 −3 −3 3
0 −1 0 −2

 .

Proof. A direct computation shows the invariant divisors of A are 1, 1, (t + 3), (t − 2)(t + 3)2,
and thus the minimal polynomial is (t− 2)(t+ 3)2.

Exercise. Suppose A ∈Mn(C). Suppose 0 is an eigenvalue of A with algebraic multiplicity k.
Find all possible ranks of Ak.

Proof. The only possible rank of Ak is n − k. Since the algebraic multiplicity of eigenvalue 0
is k, the order of Jordan blocks of eigenvalue 0 must be less or equal to k, and all such Jordan
blocks are zero after raising to the k-th power.

Exercise. Let A ∈Mn(C). Suppose An = 0 and An−1 6= 0. Show that there is no B ∈Mn(C)
such that A = B2.

Proof. Without lose of generality we may assume n ≥ 2. Suppose there exists B ∈Mn(C) such
that A = B2. Then B2n = 0 but B2n−1 6= 0. On the other hand, the degree of the minimal
polynomial of B is less or equal to n, and it divides B2n, so it must be Bk with k ≤ n. Thus it
leads to 2n− 1 < k ≤ n, which contradicts to n ≥ 2.

Exercise. A matrix A ∈Mn(C) is called nilpotent if Am = 0 for somem > 0. Let A,B ∈M6(C)
be nilpotent matrices. Suppose A and B have same minimal polynomial and rankA = rankB.
Show that A is similar to B. What if A,B have order more than 6 ?

Proof. Since both A and B are nilpotent matrices, then the invariant divisors of A and B are
of the form tk. Moreover, since the ranks of A and B are same, and A has the same minimal
polynomial with B. Then it reduces to the following problem: Given two partitions of 6 with
the same length and the largest numbers in these two partitions are the same, does these two
partitions are the same? This can be done easily by enumerating all possibilities.

The statement fails when A,B have order more than 6. For example, consider

A =

0
J3(0)

J3(0)

 , B =

J2(0) J2(0)
J3(0).


Both A and B have rank four, and the minimal polynomial is t3, but A is not similar to B.

Exercise. Suppose K ⊆ K ′ is a field extension. Let A ∈ Mn(K). What is the connection
between the minimal polynomial m(t) ∈ K[t] of A over K and the minimal polynomial m′(t) ∈
K ′[t] of A over K ′ ?

Proof. The minimal polynomial doesn’t change after the field extension.

Exercise. Let λ1, . . . , λn be the eigenvalues of A ∈ Mn(C), counted with multiplicities. Show
that λk1, . . . , λkn are all the eigenvalues of Ak.

Proof. Since every A ∈ Mn(C) is similar to some upper-triangular matrix with λ1, . . . , λn on
the diagonal (For example, Jordan canonical form), and the k-th power of this upper-triangular
matrix has λk1, . . . , λkn on the diagonal. This shows that λk1, . . . , λkn are all the eigenvalues of
Ak.
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