
COMMUTATIVE ALGEBRA

BOWEN LIU

Abstract. It’s a lecture note I typed for seminar organized by CUHKSZ
and SDU, which is about commutative algebra. This note will only con-
tains main definitions, propositions and theorems without proof. Read-
ers can refer to Atiyah’s Introduction to commutative algebra for de-
tailed proof. Furthermore, this note will contain some solutions to the
exercises we discussed in the seminar.
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1. Rings and Ideals

1.1. Rings and ring homomorphism.
Definition 1.1.1 (ring). A ring A is a set with two binary operations, called
addition and multiplication, such that
(1) A is an abelian group with respect to addition.
(2) The multiplication is associative and distributive over addition.
We shall consider only rings which are commutative:
(3) The multiplication is commutative.
and have the identity element
(4) There exists 1 ∈ A such that x1 = 1x = x for all x ∈ A.

In this note we only consider about commutative rings with an identity
element. In particular, identity element may be zero. In this case the ring
only has one element 0, is called zero ring.
Definition 1.1.2 (morphism of rings). A ring homomorphism is a mapping
f of a ring A into a ring B such that
(1) f is a homomorphism of abelian groups.
(2) f(xy) = f(x)f(y) for all x, y ∈ A.
(3) f(1A) = 1B.
Remark 1.1.1. Since f is a group homomorphism, we must have f(0) = 0,
but if we only require f(xy) = f(x)f(y), we may not have f(1A) = 1B.
Indeed,

f(1A) = f(1A · 1A) = f(1A)f(1A) =⇒ f(1A)(1S − f(1A)) = 0

In a general ring xy = 0 won’t implies x = 0 or y = 0.
Definition 1.1.3 (subring). A subset S of a ring A is a subring of A if S is
closed under addition and multiplication and contains the identity element
of A.
Remark 1.1.2. You may wonder why don’t we define a subring as follows:
A subset S of a ring A is a subring of A if S itself is a ring with respect
to the addition and multiplication of A? In fact, these two definitions are
a little different. For a ring A, there may exist a subset B such that B is a
ring with respect to the addition and multiplication of A, but 1B 6= 1A. For
example: Let A = R1 × R2 and B = R1 × {0}. Then 1A = (1R1 , 1R2) but
1B = (1R1 , 0), where R1, R2 are two rings.
1.2. Ideals, quotient rings.
Definition 1.2.1 (ideals). An ideal a of a ring A is a subset of A which is
an additive subgroup and is such that Aa ⊆ a.
Definition 1.2.2 (quotient rings). Let a ⊆ A be an ideal of a ring A.
The quotient group inherits a uniquely defined multiplication from A which
makes it into a ring, called quotient ring.
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1.3. Zero divisors, nilpotent elements and units.

Proposition 1.3.1. Let A be a ring 6= 0. Then the following statements
are equivalent.
(1) A is a field.
(2) The only ideals in A are 0 and (1).
(3) Every homomorphism of A into a non-zero ring B is injective.

1.4. Prime ideals and maximal ideals.

Proposition 1.4.1. Let A be a ring.
(1) An ideal p is prime if and only if A/p is an integral domain.
(2) An ideal m is maximal if and only if A/m is a field.

Proposition 1.4.2. Let f : A → B be a ring homomorphism. For a prime
ideal p in B, f−1(p) is a prime ideal in A, and there is an isomorphism

A/f−1(p) ∼= B/p

as rings.

However, the pullback of maximal ideal may not be a maximal ideal.

Example 1.4.1. Let A = Z, B = Q and f : Z → Q be inclusion map.
Consider zero ideal in Q, it’s a maximal ideal, since Q is a field, but zero
ideal in Z is not maximal.

Definition 1.4.1 (local ring). A ring with exactly one maximal ideal is
called a local ring.

Proposition 1.4.3.
(1) Let A be a ring and m 6= (1) be an ideal of A such that every x ∈ A \m

is a unit in A. Then A is a local ring and m is its maximal ideal.
(2) Let A be a ring and m be a maximal ideal such that every element of

1 +m is a unit in A. Then A is a local ring.

1.5. Nilradical and Jacobson radical.

Definition 1.5.1 (nilradical). Let A be a ring. The set of N of all nilpotent
elements in a ring A is an ideal, called the nilradical of A.

Proposition 1.5.1. The nilradical of a ring A is the intersection of all the
prime ideals of A.

Definition 1.5.2 (Jacobson radical). The Jacobson radical R of a ring A
is defined to be the intersection of all the maximal ideals of A.

Proposition 1.5.2. Let A be a ring. x ∈ R if and only if 1− xy is a unit
in A for all y ∈ A.
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1.6. Operations on ideals.

Definition 1.6.1 (coprime). Two ideals a, b are said to be coprime if a+b =
(1).

Proposition 1.6.1 (Chinese remainder theorem). Let A be a ring and
a1, . . . , an be ideals of A. Consider the following ring homomorphism

φ : A→
n∏

i=1

(A/ai)

x 7→ (x+ a1, . . . , x+ an)

(1) If ai, aj are coprime whenever i 6= j, then
∏

ai =
⋂
ai.

(2) φ is surjective ⇔ ai, aj are coprime whenever i 6= j.
(3) φ is injective ⇔

⋂
ai = (0).

Proposition 1.6.2. Let p1, . . . , pn be prime ideals and a be an ideal con-
tained in

⋃n
i=1 pi. Then a ⊆ pi for some i.

Proof. Prove it by induction on n in the form

a ⊊ pi(1 ≤ i ≤ n) =⇒ a ⊊
n⋃

i=1

pi

It’s clear when n = 1. If n > 1 and the result is true for n − 1. Assume
a 6⊆ pi for each i, then by induction for each i there exists xi ∈ a such that
xi 6∈ pj when i 6= j. If for some i we have xi 6∈ pi, then we’re done. If not,
then xi ∈ pi for all i. Consider

y =

n∑
i=1

x1x2 . . . xi−1xi+1xi+2 . . . xn

we have y ∈ a and y 6∈ pi for each i. This completes the proof. □
Proposition 1.6.3. Let a1, . . . , an be ideals and p be an prime ideal con-
taining

⋂n
i=1 ai. Then p ⊇ ai for some i. If p =

⋂n
i=1 ai, then p = ai for some

i.

Proof. Suppose ai 6= p for each i, then there exists xi ∈ ai, xi 6= p for each
i, and therefore

∏
xi ∈

∏
ai ⊆

⋂
ai. But

∏
xi 6∈ p since p is prime, hence⋂

ai ⊊ p, a contradiction. Finally if p =
⋂
ai, then p ⊆ ai, which implies

p = ai. □
Definition 1.6.2 (ideal quotient). If a, b are ideals in a ring A, their ideal
quotient is

(a : b) = {x ∈ A : xb ⊆ a}
which is an ideal.

Exercise 1.6.1.
(1) a ⊆ (a : b)
(2) (a : b)b ⊆ a
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(3) ((a : b) : c) = (a : bc) = ((a : c) : b)
(4) (

⋂
i ai : b) =

⋂
i(ai : b)

(5) (a :
∑

i bi) =
⋂

i(a : bi)

Proof. (1) and (2) are almost obvious by definitions. For (3). x ∈ ((a : b) : c)
is equivalent to

xcb ⊆ a ⇐⇒ x ∈ ((a : c) : b)

Note that our ring is commutative, so that’s equivalent to
xbc ⊆ a ⇐⇒ x ∈ (a : bc)

For (4). x ∈ (
⋂

i ai : b) is equivalent to xb ∈
⋂

i ai, that is equivalent to
xb ∈ ai for each i. Thus x ∈

⋂
i(ai : b).

For (5). x ∈ (a :
∑

i bi) is equivalent to x(
∑

i bi) ∈ a, that’s also equivalent
to xbi ∈ a for each i by definition of

∑
i bi. So x ∈

⋂
i(ai : b). □

Definition 1.6.3 (radical of an ideal). If a is any ideal of A, the radical of
a is

r(a) = {x ∈ A : xn ∈ a for some n > 0}

Exercise 1.6.2.
(1) r(a) ⊇ a
(2) r(r(a)) = r(a)
(3) r(ab) = r(a ∩ b) = r(a) ∩ r(b)
(4) r(a) = (1) ⇔ a = (1)
(5) r(a+ b) = r(r(a) + r(b))
(6) if p is prime, r(pn) = p for all n > 0.

Proof. (1) and (2) are almost obvious by definition. For (3). Note that
(a ∩ b)2 ⊆ ab ⊆ a ∩ b

Then by (2) we obtain
r(a ∩ b) = r((a ∩ b)2) ⊆ r(ab) ⊆ r(a ∩ b)

which implies r(ab) = r(a ∩ b). For the half part. If x ∈ a ∩ b, then there
exists m,n such that xm ∈ a, xn ∈ b. Then xmax{m,n} ∈ a ∩ b, and converse
is clear.

For (4). r(a) = (1) is equivalent to for all x ∈ (1), there exists n such that
xn ∈ a. Take x = 1 implies 1 ∈ a, so we have a = (1), and converse is clear.

For (5). Consider m + n, where m ∈ r(a), n ∈ r(b), then there exists a
sufficiently large N such that (m+n)N ∈ a+b, just by considering binomial
expansion. So if there exists n such that xn ∈ r(a)+ r(b), then xnN ∈ a+b,
which implies x ∈ r(a+ b), and converse is clear.

For (6). Just note that xn ∈ p is equivalent to x ∈ p for a prime ideal
p. □

Proposition 1.6.4. Let a, b be ideals in a ring A such that r(a) and r(b)
are coprime. Then a, b are coprime.
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Proof. By (4) of Exercise 1.6.2, it suffices to show r(a + b) = (1). And by
(5) of Exercise 1.6.2, we have

r(a+ b) = r(r(a) + r(b)) = r((1)) = (1)

This completes the proof. □
1.7. Extension and contraction. Let f : A → B be a ring homomor-
phism. Although for any ideal b ∈ B, f−1(b) is an ideal in A, called the
contraction bc of b, if a is an ideal in A, the set of f(a) may not be an ideal
in B.
Example 1.7.1. Let f be the embedding of Z in Q, and consider any non-
zero ideal, since only ideals in Q is zero or (1).

We define the extension ae of a to be the ideal Bf(a) generated by f(a)
in B. To be explicit. ae is the set of all sums

∑
yif(xi) where xi ∈ a and

yi ∈ B. If b is a prime ideal of B, so is its contraction. But if a is a prime
ideal in A, then its extension may not by prime. So as you can see, the
property of extension may be quite complicated. The classical example is
from algebraic number theory.
Example 1.7.2. Consider Z → Z[

√
−1], and consider the extension of

prime ideal of Z, the situations is as follows.
(1) (2)e = ((1 +

√
−1)2).

(2) If p ≡ 1 (mod 4), then (p)e is the product of two distinct prime ideals.
(3) If p ≡ 3 (mod 4), then (p)e is prime in Z[

√
−1].

Proposition 1.7.1.
(1) a ⊆ aec, b ⊇ bce.
(2) bc = bcec, ae = aece.
(3) If C is the set of contracted ideals in A and if E is the set of extended

ideals in B, then C = {a | aec = a}, E = {b | bce = b}, and a 7→ ae is a
bijective map of C onto E, whose inverse if b 7→ bc.

Exercise 1.7.1. Let f : A → B be a homomorphism of rings. If a1, a2 are
ideals of A and if b1, b2 are ideals of B, then

(a1 + a2)
e = ae1 + ae2 (b1 + b2)

c ⊇ bc1 + bc2
(a1 ∩ a2)

e ⊆ ae1 ∩ ae2 (b1 ∩ b2)
c = bc1 ∩ bc2

(a1a2)
e = ae1a

e
2 (b1b2)

c ⊇ bc1b
c
2

(a1 : a2)
e ⊆ (ae1 : a

e
2) (b1 : b2)

c ⊆ (bc1 : b
c
2)

r(a)e ⊆ r(ae) r(b)c = r(bc)

Proof. For extension: For (1). By definition we have
(a1 + a2)

2 = Bf(a1 + a2) = Bf(a1) +Bf(a2) = ae1 + ae2

(2) and (3) are similar to (1), since f preserves multiplication and intersec-
tion. For (4). By definition we need to check (a1 : a2)

eae2 ⊆ ae1. Directly
check as follows:
Bf((a1 : a2))Bf(a2) = Bf((a1 : a2))f(a2) = B(f(a1 : a2)a2) ⊆ Bf(a1)
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As desired. For (5). Note that the extension of a prime ideal may not be
prime.

For contraction: (1), (2), (3) and (4) are similar to cases in extension.
For (5). Note that r(b) is the intersection of all prime ideal containing b
and contraction preserves prime. □

1.8. Part of solutions of Chapter 1.

Exercise 1.8.1. Let x be a nilpotent element of a ring A. Show that 1+ x
is a unit of A. Deduce that the sum of a nilpotent element and a unit is a
unit.

Proof. If x is a nilpotent element, then x ∈ N ⊆ R. By Proposition 1.5.2 we
have 1− xy is unit for any y ∈ A. Take y = −1 we obtain 1+ x is a unit. If
y is unit, then we have x+ y = y−1(y−1x+1). Since y−1x is also nilpotent,
we have y−1x+ 1 is unit, thus x+ y is unit. □
Exercise 1.8.2. Let A be a ring and let A[x] be the ring of polynomials in an
indeterminate x, with coefficients in A. Let f = a0+a1x+ · · ·+anxn ∈ A[x].
Prove that
(1) f is a unit in A[x] ⇔ a0 is a unit in A and a1, . . . , an are nilpotent.
(2) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.
(3) f is a zero-divisor ⇔ there exists a 6= 0 in A such that af = 0.
(4) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈

A[x], then fg is primitive ⇔ f and g are primitive.

Proof. For (1). Use g =
∑m

i=0 bix
i to denote the inverse of f . Since fg = 1

and if we use ck to denote
∑

m+n=k ambn, then we have{
c0 = 1

ck = 0, k > 0

But c0 = a0b0, thus a0 is unit. Now let’s prove ar+1
n bm−r = 0 by induction

on r: r = 0 is trivial, since anbm = cn+m = 0. If we have already proven
this for k < r. Then consider cm+n−r, we have

0 = cm+n−r = anbm−r + an−1bm−r+1 + . . .

and multiply arn we obtain
0 = ar+1

n bm−r+an−1 arnbm−r+1︸ ︷︷ ︸
by induction this term is 0

+an−2an ar−1
n bm−r+2︸ ︷︷ ︸

by induction this term is 0

+ . . .

which completes the proof of claim. Take r = m, we obtain am+1
n b0 = 0. But

b0 is unit, thus an is nilpotent and anx
n is a nilpotent element in A[x]. By

Exercise 1.8.1, we know that f − anx
n is unit, then we can prove an−1, an−2

is also nilpotent by induction on degree of f . Conversely, if a0 is unit and
a1, . . . , an is nilpotent. We can imagine that if you power f enough times,
then we will obtain unit. Or you can see

∑n
i=1 aix

i is nilpotent, then unit
plus nilpotent is also unit.
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For (2)1. If a0, . . . , an are nilpotent, then clearly f is. Conversely, if f is
nilpotent, then clearly an is nilpotent, and we have f − anx

n is nilpotent,
then by induction on degree of f to conclude.

For (3). af = 0 for a 6= 0 implies f is a zero-divisor is clear. Conversely
choose a g =

∑m
i=0 bix

i of least degree m such that fg = 0, then we have
anbm = 0, hence ang = 0, since angf = 0 and has degree less than m. Then
consider

0 = fg − anx
ng = (f − anx

n)g

Then f − anx
n is a zero-divisor with degree n − 1, so we can conclude by

induction on degree of f .
For (4). Note that (a0, . . . , an) = 1 is equivalent to there is no maximal

ideal m contains a0, . . . , an, it’s an equivalent description for primitive poly-
nomials. For f ∈ A[x], f is primitive if and only if for all maximal ideal m,
we have f 6∈ m[x]. Note that we have the following isomorphism

A[x]/m[x] ∼= (A/m)[x]

Indeed, consider the following homomorphism
ϕ : A[x] → (A/m)[x]
n∑

i=0

aix
i 7→

n∑
i=0

(ai +m)xi

Clearly kerϕ = m[x] and use the first isomorphism theorem. So in other
words, f ∈ A[x] is primitive if and only if f 6= 0 ∈ (A/m)[x] for any maximal
ideal m. Since A/m is a field, then (A/m)[x] is an integral domain by (3), so
fg 6= 0 ∈ (A/m)[x] if and only if f 6= 0 ∈ (A/m)[x], g 6= 0 ∈ (A/m)[x]. This
completes the proof. □
Exercise 1.8.3. Generalize the results of Exercise 1.8.2 to a polynomial
ring A[x1, . . . , xr] in several indeterminate.

Proof. It suffices to consider the case of A[x, y], since we can do induction
on r to conclude general case. Consider A[x, y] = A[x][y] = B[y], where
B = A[x]. For f ∈ B[y], we write it as

f =
∑
ij

aijx
iyj =

∑
k

bky
k, bk =

∑
i

aikx
i ∈ B

For (1). f is a unit in B[y] if and only if b0 is a unit in B and bk is
nilpotent for k > 0, if and only if a00 is a unit, and aij is nilpotent for
otherwise.

For (2). f is a nilpotent in B[y] if and only if bk is nilpotent for all k, if
and only if aij is nilpotent for all i, j.

1An alternative proof of (2). Note that

N(A[x]) =
∩

p[x] = (
∩

p)[x] = N(A)[x]
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For (3). f is a zero divisor in B[y] if and only if there exists a ∈ A such
that af = 0. Indeed, if f is a zero divisor in B[y], then there exists b ∈ B
such that bf = 0, then bbk = 0 for all k, then for each k there exists ak such
that akbk = 0, then consider a =

∏
k ak, then af = 0.

For (4). fg is primitive if and only if f and g are primitive. Indeed, proof
in Exercise 1.8.2 still holds in this case. □

Exercise 1.8.4. In the ring A[x], the Jacobson radical is equal to the nil-
radical

Proof. Since we already have N ⊆ R, it suffices to show for any f ∈ R, it’s
nilpotent. Note that by Proposition 1.5.2, we have 1 − fg is unit for any
g ∈ A[x]. Choose g to be x, then by (1) of Exercise 1.8.1 we know that all
coefficients of f is nilpotent in A, and by (2) of Exercise 1.8.1, f is nilpotent.
This completes the proof. □

Exercise 1.8.5. Let A be a ring and let A[[x]] be the ring of formal power
series f =

∑∞
n=0 anx

n with coefficients in A. Show that
(1) f is a unit in A[[x]] ⇔ a0 is a unit in A.
(2) If f is nilpotent, then an is nilpotent for all n ⩾ 0. Is the converse true?
(3) f belongs to the Jacobson radical of A[[x]] ⇔ a0 belongs to the Jacobson

radical of A.
(4) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A,

and m is generated by mc and x.
(5) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. For (1). Let g =
∑∞

j=1 bjx
j be the inverse of f . Since fg = 1, then

clearly we have a0b0 = 1, thus a0 is a unit. Conversely, if a0 is a unit, then
consider the Taylor expansion of 1/f at x = 0 to conclude.

For (2). If f =
∑∞

i=0 aix
i is nilpotent, then a0 must be nilpotent, so f−a0

is also nilpotent. Consider (f −a0)/x which is also nilpotent, we will obtain
a1 is nilpotent. Repeat what we have done to conclude a0, a1, a2, . . . are
nilpotent. The converse holds when A is a Noetherian ring.

For (3). f ∈ R(A[[x]]) if and only if 1− fg is unit for all g ∈ A[[x]]. Note
that the zero term of 1− fg is 1− a0b0, so by (1) we obtain 1− fg is unit if
and only if 1−a0b0 is unit for all b0 ∈ A, and that’s equivalent to a0 ∈ R(A).

For (4). For maximal ideal m ∈ A[[x]], we have (x) ⊆ m, since by (3) we
have x ∈ R(A[[x]]). Then mc = m− (x), that is m = mc+(x). Furthermore,
note that

A[[x]]/m = A[[x]]/(mc + (x)) ∼= A/mc

implies mc is maximal. The last isomorphism holds since for a ring A and
two ideals b ⊆ a, we have

A/a ∼= (A/b)/(a/b)

just by considering A/a → A/b and use first isomorphism theorem.
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For (5). Let p be a prime ideal in A. Consider the ideal q which is
generated by p and x. Clearly qc = p and q is prime since

A[[x]]/q ∼= A/p

□
Exercise 1.8.6. A ring A is such that every ideal not contained in the
nilradical contains a nonzero idempotent (that is, an element e such that
e2 = e 6= 0 ). Prove that the nilradical and Jacobson radical of A are equal.

Proof. Take x ∈ R which is not in N. Then (x) is an ideal not contained
in N. Thus there exists a nonzero idempotent e = xy ∈ (x). Note that an
important property of idempotent is that an idempotent is a zero-divisor,
since e(1 − e) = 0. Thus 1 − e = 1 − xy is not a unit. So by Proposition
1.5.2 we have x 6∈ R, a contradiction. □
Exercise 1.8.7. Let A be a ring in which every element x satisfies xn = x
for some n > 1 (depending on x). Show that every prime ideal in A is
maximal.

Proof. The proof is quite similar to above Exercise: Note that every prime
ideal is maximal if and only if nilradical and Jacobson radical are equal. If
not, take x ∈ R which is not in N, then from xn = x we know that 1−xn−1

is not a unit, a contradiction to x ∈ R. □
Exercise 1.8.8. Let A be a ring 6= 0. Show that the set of prime ideals of
A has minimal elements with respect to inclusion.

Proof. Let SpecA denote the set of all prime ideals of A. Clearly it’s not
empty, since there exists a maximal ideal. We order SpecA by reverse
inclusion, that is pa ≤ pb if pb ⊆ pa. By Zorn lemma, it suffices to show
every chain in SpecA has a upper bound in SpecA.

For a chain {pi}i∈I , it’s natural to consider the intersection of all pi, denote
by p. It’s an ideal clearly. Now it suffices to show it’s prime. Suppose xy ∈ p
and x, y 6∈ p. Then there exists pi, pj such that x 6∈ pi, y 6∈ pj . Without lose
of generality we may assume pi ⊂ pj . Then x, y 6∈ pi. But xy ∈ p implies
xy ∈ pi, a contradiction to the fact pi is prime. This completes the proof.

Remark 1.8.1. At first I want to check the nilradical is a prime ideal to
complete the proof. However, this statement fails in general. And it’s easy to
explain why: If there exists at least two minimal prime ideals, then nilradical
can not be prime. Indeed, the intersections of distinct minimal prime ideal
can not be prime, since if p1, . . . , pn is minimal and if p = p1 ∩ · · · ∩ pn is
prime, then by Proposition 1.6.3 we must have p = pi for some i, which
implies pi is contained in other pj , i 6= j, a contradiction to minimality.
Furthermore, as you can see, nilradical of a ring A is prime if and only if A
only has one minimal prime ideal.

□
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Exercise 1.8.9. Let a be an ideal 6= (1) in a ring A. Show that a = r(a) ⇔ a
is an intersection of prime ideals.
Proof. One direction is clear, since r(a) is the intersection of all prime ideal
containing a. Conversely, if a is an intersection of prime ideals, denoted by
a =

⋂
i pi. If xn ∈ a, then xn ∈ pi for each i, then by property of prime

ideal we obtain x ∈ pi for each i, which implies x ∈ a. This completes the
proof. □
Exercise 1.8.10. Let A be a ring, N its nilradical. Show that the following
statements are equivalent.
(1) A has exactly one prime ideal.
(2) every element of A is either a unit or nilpotent.
(3) A/N is a field.
Proof. (1) to (3): Since A has exactly one prime ideal, it must be a maximal
ideal, in this case A is a local ring and clearly A/N is a field.

(3) to (2): If A/N is a field, thus if an element in A is not a nilpotent,
then it must be a unit.

(2) to (1): Consider the set of all nilpotent elements in A, it’s clear it’s
an ideal. Then by (1) of Proposition 1.4.3 to conclude. □
Exercise 1.8.11. A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean
ring A, show that
(1) 2x = 0 for all x ∈ A.
(2) every prime ideal p is maximal, and A/p is a field with two elements.
(3) every finitely generated ideal in A is principal.
Proof. For (1). Note that for x ∈ A, we have −x = (−x)2 = x2 = x, thus
2x = 0 for all x ∈ A.

For (2). From Exercise 1.8.7 we know that every prime ideal in Boolean
ring is maximal. Furthermore A/p is field with two elements, since A/p is a
domain and element in it satisfies x(1− x) = 0.

For (3). It suffices to show that for any x, y ∈ A, then (x, y) is principal.
Let z = x+ y − xy, clearly (z) ⊆ (x, y), but{

xz = x2 + xy − x2y = x

yz = y

This completes the proof. □
Exercise 1.8.12. A local ring contains no idempotent 6= 0, 1.
Proof. Let (A,m) be a local ring, and x ∈ A is an idempotent e which is
not equal to 0, 1. Since e is not unit, then we have e ∈ m = R. But 1 − e
is also not a unit, then by Proposition 1.5.2 we must have e 6∈ R = m, a
contradiction. □
Exercise 1.8.13 (Construction of an algebraic closure of a field). Let K
be a field and let Σ be the set of all irreducible monic polynomials f in one
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indeterminate with coefficients in K. Let A be the polynomial ring over K
generated by indeterminate xf , one for each f ∈ Σ. Let a be the ideal of A
generated by the polynomials f(xf ) for all f ∈ Σ. Show that a 6= (1).

Let m be a maximal ideal of A containing a, and let K1 = A/m. Then
K1 is an extension field of K in which each f ∈ Σ has a root. Repeat the
construction with K1 in place of K, obtaining a field K2, and so on. Let
L =

⋃∞
n=1Kn. Then L is a field in which each f ∈ Σ splits completely into

linear factors. Let R be the set of all elements of L which are algebraic over
K. Then R is an algebraic closure of K.

Proof. For a 6= (1): If we have
a1f(xf1) + · · ·+ anf(xfn) = 1, ai ∈ A, fi ∈ Σ

But we know that there is some field extension K ′ of K in which the polyno-
mials fi have root αi. Working in K ′, we substitute in αi for xfi we obtain
0 = 1, and this is impossible, since K ⊆ K ′ implies K ′ is not a field with
only one element. □
Exercise 1.8.14. In a ring A, let Σ be the set of all ideals in which every
element is a zero-divisor. Show that the set Σ has maximal elements and
that every maximal element of Σ is a prime ideal. Hence the set of zero-
divisors in A is a union of prime ideals.

Proof. We still need to use Zorn lemma: Order Σ by inclusion and it suffices
to show every chain {ai}i∈I has an upper bound in Σ. Consider a =

⋃
i ai,

clear it consists of zero-divisors and it’s an ideal. Now let p be a maximal
element of Σ, let’s show it’s prime by definition: if x, y 6∈ p, then (x) + p
contains a non-zero-divisor, the same for (y) + p, so there exists a non-zero-
divisor in (xy) + p, so xy 6∈ p. This shows that p is prime.

For a zero-divisor x ∈ A, consider the principal ideal generated by x,
then it must lie in some maximal element of Σ, that’s a prime ideal. This
completes the proof. □
Exercise 1.8.15 (spectrum of a ring). Let A be a ring and let X be the
set of all prime ideals of A. For each subset E of A, let V (E) denote the set
of all prime ideals of A which contain E. Prove that
(1) if a is the ideal generated by E, then V (E) = V (a) = V (r(a)).
(2) V ((0)) = X,V ((1)) = ∅.
(3) if (Ei)i∈I is any family of subsets of A, then

V (
⋃
i∈I

Ei) =
⋂
i∈I

V (Ei)

(4) V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideals a, b of A.
These results show that the sets V (E) satisfy the axioms for closed sets in
a topological space. The resulting topology is called the Zariski topology.
The topological space X is called the prime spectrum of A, and is written
SpecA.
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Proof. For (1). It’s clear V (E) = V (a). For the half part: Clearly V (r(a)) ⊆
V (a), since a ⊆ r(a). Conversely, if a prime ideal p contains a, then it must
contain r(a), since it’s the intersection of all prime ideal containing a.

For (2). Since every prime ideal contains (0), so V ((0)) = X. Note that
every ideal contains (1) must be the whole ring, so there is no prime ideal
containing (1).

For (3). If a prime ideal contains
⋃

i∈I Ei, then clearly it contains Ei for
each i ∈ I, thus V (

⋃
i∈I Ei) ⊆

⋂
i∈I V (Ei), and vice versa.

For (4). Note that by Exercise 1.6.2, we have r(ab) = r(a∩b) = r(a)∩r(b).
Then (1) implies

V (ab) = V (a ∩ b) = V (r(a) ∩ r(b))

But V (r(a) ∩ r(b)) = V (a) ∪ V (b). Indeed, clearly V (a) ∪ V (b) ⊆ V (r(a) ∩
r(b)). Conversely, note that r(a) ∩ r(b) is the intersection of all prime ideal
either containing a or b, and Proposition 1.6.3 tells the answer. □

Exercise 1.8.16. Draw pictures of Spec(Z), Spec(R), Spec(R[x]), Spec(C[x])
and Spec(Z[x]).

Proof. For Spec(Z): It’s known to all only prime ideals in Z taking the form
(0) and (p), where p is a prime number.

For Spec(R): There is only one prime ideal (0) in R, since R is a field.
For Spec(R[x]): The irreducible polynomials in R[x] are linear polynomi-

als and polynomials with degree 2 which have the following form

(x− α)(x+ α), α ∈ H = {α ∈ C | Imα > 0}

So points in Spec(R[x]) are real numbers together with the upper plane.
For Spec(C[x]): Things are a little bit easier, since every irreducible poly-

nomials in C[x] take the form x − α. So as a set Spec(C[x]) consists of
complex plane together with a point (0).

For Spec(Z[x]): All prime ideal of Z[x] are listed as follows:
(1) (0)
(2) (f(x)), where f(x) is an irreducible polynomial.
(3) (p), where p is a prime number.
(4) (p, f(x)), where p is a prime number and f(x) is an irreducible polyno-

mial module p.
□

Exercise 1.8.17. For each f ∈ A, let Xf denote the complement of V (f)
in X = SpecA. The sets Xf are open. Show that they form a basis of open
sets for the Zariski topology, and that
(1) Xf ∩Xg = Xfg.
(2) Xf = ∅ ⇔ f is nilpotent.
(3) Xf = X ⇔ f is a unit.
(4) Xf = Xg ⇔ r((f)) = r((g)).
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(5) X is quasi-compact2.
(6) More generally, each Xf is quasi-compact.
(7) An open subset of X is quasi-compact if and only if it is a finite union

of sets Xf The sets Xf are called basic open sets of X = SpecA.

Proof. For any open set U , write it as U = V (E)c for some E ⊆ A. Then
we have ⋃

f∈E
Xf =

⋃
f∈E

(V (f)c) = (
⋂
f∈E

V (f))c = (V (E))c

as desired.
For (1). By definition and (4) of Exercise 1.8.15 one has
Xf ∩Xg = (V (f))c ∩ (V (g))c = (V (f) ∪ V (g))c = (V (fg))c = Xfg

For (2). If f is nilpotent, then f ∈ N, thus f lies in every prime ideal, so
V (f) = X, so Xf = ∅ and vice versa.

For (3). If f is a unit, then there is no prime ideal containing f , that is
Xf = X. Conversely, we need to show if there is no prime ideal containing
f , then f is unit. Indeed, if f is not unit, then it is contained in some
maximal ideal, a contradiction.

For (4). By definition we haveXf = Xg ⇐⇒ V (f) = V (g) ⇐⇒ V ((f)) =
V ((g)). This is equivalent to say a prime ideal containing (f) if and only if
it contains (g), so we have r((f)) = r((g)), since r((f)) is the intersection of
all prime ideal containing (f).

For (5). It suffices to show every open covering taking the form {Xfi}
has a finite subcovering, since Xf forms a basis of Zariski topology. We can
translate X =

⋃
i∈I Xfi as (fi)i∈I = (1). Indeed,

(fi)i∈I = (1) ⇐⇒
⋂
i∈I

V (fi) = V ((fi)i∈I) = ∅ ⇐⇒
⋃
i∈I

Xfi = X

So if {fi}i∈I generates (1), then there is a finite expression such that
n∑

i=1

aifi = 1, ai ∈ A

So we can cover X just using Xf1 , . . . , Xfn .
For (6). The proof is same as (5), just replacing (1) by (f).
For (7). Just by definition of quasi-compact. □

Exercise 1.8.18. For psychological reasons it is sometimes convenient to
denote a prime ideal of A by a letter such as x or y when thinking of it as a
point of X = SpecA. When thinking of x as a prime ideal of A, we denote
it by px (logically, of course, it is the same thing). Show that
(1) the set {x} is closed in SpecA⇔ px is maximal.
(2) {x} = V (px)

(3) y ∈ {x} ⇔ px ⊆ py.

2Here X is called quasi-compact if every open covering of X has a finite subcovering.
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(4) X is a T0-space3.
Proof. For (1). If {x} is a closed set, then {x} = V (a) for some ideal a. So
there is only one prime ideal px containing a, so we must have a = px and
px is maximal. Conversely, if px is maximal, then {x} = V (px), a closed set.

For (2). By definition the closure of {x} is the intersection of all closed
set containing {x}. That’s

⋂
i∈I V (ai), where the index runs over all ideals

ai such that ai ⊆ px. In particular there exists some i such that ai = px. So
{x} =

⋂
i∈I

V (ai) = V (
⋃
i∈I

ai) = V (px)

as desired.
For (3). By definition and (2) we have

y ∈ {x} = V (px) ⇐⇒ px ⊆ py

For (4). If every neighborhood of x contains y and vice versa, then x ∈ {y}
and y ∈ {x}. So by (3) we obtain px = py, a contradiction to the fact
x 6= y. □
Exercise 1.8.19. A topological space X is said to be irreducible if X 6= ∅
and if every pair of non-empty open sets in X intersect, or equivalently if
every non-empty open set is dense in X. Show that SpecA is irreducible if
and only if the nilradical of A is a prime ideal.
Proof. It suffices to check Xf ∩ Xg = ∅ if and only if Xf or Xg is empty.
For (1) of Exercise 1.8.17 we know that Xf ∩Xg = Xfg, and (2) of Exercise
1.8.17 implies Xfg = 0 if and only if fg is nilpotent. Thus it suffices to show
fg ∈ N if and only if f or g is in N, and that’s equivalent to N is prime. □
Remark 1.8.2. According to Remark 1.8.1, one can see SpecA is irreducible
if and only if A has only one minimal prime ideal. In fact, the following
Exercise shows there is an one to one correspondence between irreducible
components and minimal prime ideals, so it’s a geometrical explanations of
minimal prime ideal.
Exercise 1.8.20. Let X be a topological space.
(1) If Y is an irreducible subspace of X, then the closure P of Y in X is

irreducible.
(2) Every irreducible subspace of X is contained in a maximal irreducible

subspace.
(3) The maximal irreducible subspaces of X are closed and cover X. They

are called the irreducible components of X. What are the irreducible
components of a Hausdorff space?

(4) If A is a ring and X = SpecA, then the irreducible components of X
are the closed sets V (p), where p is a minimal prime ideal of A

3A topological space X is called T0-space, if for every distinct points x, y ∈ X, either
there is a neighborhood of x which does not contain y, or else there is a neighborhood of
y which does not contain x.
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Proof. For (1). Let U, V be two open subsets in P , by definition of closure,
U ∩Y and V ∩Y must be nonempty, so U ∩Y and V ∩Y are two nonempty
subsets in Y , then U ∩ V ∩ Y 6= ∅, since Y is irreducible. So U ∩ Y 6= ∅,
which implies P is also irreducible.

For (2). Use Zorn lemma: Order the set of all irreducible subspace by
inclusion. Then it suffices to show any chain {Yi} of irreducible subspace
has an upper bound. It suffices to check Z =

⋃
i Yi is also an irreducible

subspace. Choose U, V are open in Z, and U ∩Yi 6= ∅, V ∩Yj 6= ∅. Without
lose of generality we may assume Yi ⊆ Yj , thus V ∩Yj , U ∩Yj are not empty,
thus U ∩ V ∩ Yj 6= ∅, since Yj is irreducible. This completes the proof of
(2).

For (3). Single points. If a subspace containing more than two distinct
points, then by definition of Hausdorff, there exists two neighborhoods sep-
arating these two points, thus it’s not irreducible.

For (4). In fact we can derive from the proof of Exercise 1.8.19 that every
closed set V (a) is irreducible if and only if r(a) is a prime ideal. But note
that V (a) = V (r(a)), so for any irreducible closed set Y we may write it
as V (p) for some prime ideal p. It’s maximal if and only if p is minimal,
since V is an operation reversing inclusion relation, i.e. p′ ⊆ p if and only if
V (p) ⊆ V (p′). □

Exercise 1.8.21 (morphism of spectrum). Let φ : A→ B be a ring homo-
morphism. Let X = SpecA and Y = SpecB. Then φ induces a mapping
φ∗ : Y → X. Show that
(1) If f ∈ A then φ∗−1(Xf ) = Yϕ(f), and hence that φ∗ is continuous.
(2) If a is an ideal of A, then φ∗−1(V (a)) = V (ae).
(3) If b is an ideal of B, then φ∗(V (b)) = V (bc).
(4) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed

subset V (ker(φ)) of X.
(5) If φ is injective, then φ∗(Y ) is dense in X. More precisely, φ∗(Y ) is

dense in X ⇔ ker(φ) ⊆ N.
(6) Let ψ : B → C be another ring homomorphism. Then (ψ◦φ)∗ = φ∗ ◦ψ∗.
(7) Let A be an integral domain with just one non-zero prime ideal p, and let

K be the field of fractions of A. Let B = (A/p)×K. Define φ : A→ B
by φ(x) = (x̄, x), where x̄ is the image of x in A/p. Show that φ∗ is
bijective but not a homeomorphism.

Proof. For (1). Directly check by definition: Note that q ∈ Yϕ(f) = (V (φ(f)))c

is equivalent to q doesn’t contain (φ(f)), in other words: φ(f) 6∈ q. So

q ∈ Yϕ(f) ⇔ φ(f) 6∈ q ⇔ f 6∈ φ∗(q) ⇔ φ∗(q) ∈ Xf ⇔ q ∈ φ∗−1(Xf )

Thus φ∗−1(Xf ) = Yϕ(f).
For (2). First we claim that for two ideals a ∈ A, b ∈ B, we have

a ⊆ bc ⇐⇒ ae ⊆ b
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Indeed, if a ⊆ bc, then ae ⊆ bce ⊆ b. Conversely, if ae ⊆ b, then a ⊆ aec ⊆ bc.
So

q ∈ φ∗−1(V (a)) ⇔ φ∗(q) ∈ V (a) ⇔ a ⊆ qc ⇔ ae ⊆ q ⇔ q ∈ V (ae)

For (3). Let’s give a general description for closed sets: For Y ⊆ X, then

Y =
⋂

{V (a) | Y ⊆ V (a)} =
⋂

{V (a) | a ⊆
⋂
y∈Y

py} = V (
⋃

{a : a ⊆
⋂
y∈Y

py}) = V (
⋂
y∈Y

py)

So if we take Y = φ∗(V (b)), then⋂
y∈ϕ∗(V (b))

py =
⋂

{qc : q ∈ V (b)} = (
⋂

q∈V (b)

q)c = r(b)c = r(bc)

But V (r(bc)) = V (bc).
For (4). If φ is surjective, and use a to denote kerφ. We can identify B

as A/a using φ̃ : A/a → B, the restriction of φ to A/a. Then we have the
following commutative diagram

SpecB V (a) ⊂ X

Spec(A/a)

ϕ̃∗

ϕ∗

p∗

where p∗ is defined by mapping p/a to p. p∗ : Spec(A/a) → V (a) is bijective,
since there is a one to one correspondence between V (a) and Spec(A/a).
So it suffices to check p∗ is a closed and continuous: Take a closed set in
Spec(A/a), denote by V (b/a), then

p∗(V (b/a)) = p∗({p/a : b ⊆ p, p is prime})
= {p : b ⊆ p, p is prime}
= V (b)

And
p∗−1(V (b)) = V (b/a)

for the same reason. So p∗ : Spec(A/a) → V (a) is a homeomorphism, thus
φ∗ is.

For (5). φ∗(Y ) is dense if and only if φ∗(Y ) = X. Note that Y = V ((0)),
thus by (3) we have

X = φ∗(Y ) = φ∗(V ((0))) = V ((0)c) = V (kerφ)

But every prime ideal contains kerφ if and only if kerφ ∈ N.
For (6). It’s clear.
For (7). There are only two prime ideals of A: zero ideal and p. For B,

prime ideals are A/p × {0} and {0} ×K, B is not a domain since we have
(1, 0)(0, 1) = (0, 0). And it’s clear{

φ∗({0} ×K) = p

φ∗(A/p× {0}) = (0)
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Thus φ∗ is bijective. But their topology is different: closed sets in SpecA
are two sets such that one contains another, but closed sets in SpecB are
two disjoint sets. □
Exercise 1.8.22. Let A =

∏n
i=1Ai be the direct product of rings Ai. Show

that SpecA is the disjoint union of open (and closed) subspaces Xi, where
Xi is canonically homeomorphic with SpecAi. Conversely, let A be any ring.
Show that the following statements are equivalent:
(1) X = SpecA is disconnected.
(2) A ∼= A1 ×A2 where neither of the rings A1, A2 is the zero ring.
(3) A contains an idempotent 6= 0, 1.
In particular, the spectrum of a local ring is always connected.
Proof. For first part: For each i consider the projection pi :

∏
Ai → Ai.

It’s a surjective, then by (4) of Exercise 1.8.21, we obtain a homeomorphism
Xi = V (ker pi) ∼= Spec(Ai). We claim {Xi} covers A and Xi∩Xj for distinct
i, j. Note that we can write Xi explicitly as V (

∏
i ̸=j Aj). Then⋃

V (
∏
i ̸=j

Aj) = V (
⋂∏

i ̸=j

Aj) = V ((0)) = X

And
Xi ∩Xj = V (

∏
i ̸=j

Aj +
∏
i ̸=j

Ai) = V ((1)) = ∅

As desired.
For the half part: (1) to (3). If X = SpecA is disconnected, then there

exists an subset U which is both open and closed, so is its complement.
Assume U = V (a), U c = V (b). U∩U c = ∅ implies V (a)∩V (b) = V (a+b) =
∅, thus a + b = (1), so there exists x ∈ a, y ∈ b such that x + y = 1.
U ∪ U c = X implies V (a) ∪ V (b) = V (ab) = X, thus ab ⊆ N, that is xy is
nilpotent. So consider x2 − x = xy, we obtain a nontrivial idempotent in
A/N. Now let’s prove the following lemma to conclude:
Lemma 1.8.1. Let A be a ring, then every idempotent of A/N lifts to some
idempotent of A.
Proof. Assume x ∈ A such that x2 − x is nilpotent, so there exists n such
that 0 = (x2 − x)n = xn(x − 1)n. Since xn and (x − 1)n are coprime, the
Chinese Remainder theorem gives us A ∼= A/xn×A/(x−1)n. The preimage
of (0, 1) is an idempotent e ∈ A such that x− e is nilpotent, so that e is the
desired lift. □

For (3) to (2): Suppose e is a nontrivial idempotent, then 1− e is also a
nontrivial idempotent, so (e) and (1−e) are two proper ideals. Furthermore
they are coprime since 1− e+ e = 1 and (1− e)∩ e = (0) since e(1− e) = 0.
Then consider A→ A/(e)×A/(1− e), an isomorphism of rings.

For (2) to (1): It’s clear. In particular, the spectrum of a local ring is
always connected, since Exercise 1.8.12 implies there is no nontrivial idem-
potent. □
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Exercise 1.8.23. Let A be a Boolean ring, and let X = SpecA.
(1) For each f ∈ A, the set Xf is both open and closed in X.
(2) Let f1, . . . , fn ∈ A. Show that Xf1 ∪ . . . ∪Xfn = Xf for some f ∈ A.
(3) The sets Xf are the only subsets of X which are both open and closed.
(4) X is a compact Hausdorff space.

Proof. For (1). Clearly Xf is open, it’s closed since V (f) = X1−f . Indeed,
since (f)+ (1− f) = (1) and (f)∩ (1− f) = (0), then a prime ideal contains
(f) if and only if it doesn’t contain (1− f). So Xf is both closed and open.

For (2). Note that⋃
i

Xfi =
⋃
i

(V (fi)
c) = (

⋂
V (fi))

c = (V (
∑

(fi)))
c

But we know that every finitely generated ideal of a Boolean ring is principal,
so

∑
(fi) = (f) for some f ∈ A.

For (3). Let Y ⊆ X be both open and closed. Since Y is open, it is a
union of basic open sets Xf . Since Y is closed and X is quasi-compact, Y
is quasi-compact. Hence Y is a finite union of basic open sets. now use (2)
above.

For (4). It suffices to show X is Hausdorff. Take x, y ∈ X. We claim that
there exists a Xf such that x ∈ Xf and y ∈ X1−f . If not, then for all Xf

we have x, y ∈ Xf , then y ∈ {x} and x ∈ {y}. By (3) of Exercise 1.8.18 we
have x = y, a contradiction. □
Exercise 1.8.24. Let A be a ring. The subspace of SpecA consisting of
the maximal ideals of A, with the induced topology, is called the maximal
spectrum of A and is denoted by mSpec(A).

Let X be a compact Hausdorff space and let C(X) denote the ring of all
real-valued continuous functions on X. For each x ∈ X, let mx be the set
of all f ∈ C(X) such that f(x) = 0. The ideal mx is maximal, because it
is the kernel of the (surjective) homomorphism C(X) → R which takes f
to f(x). If X̃ denotes mSpec(C(X)), we have therefore defined a mapping
µ : X → X̃, namely x 7→ mx. We shall show that µ is a homeomorphism of
X onto X̃.
(1) Let m be any maximal ideal of C(X) and let V = V (m) be the set of

common zeros of the functions in m: that is,
V = {x ∈ X : f(x) = 0 for all f ∈ m}

Suppose that V is empty. Then for each x ∈ X there exists fx ∈ m such
that fx(x) 6= 0. Since fx is continuous, there is an open neighborhood
Ux of x in X on which fx does not vanish. By compactness a finite
number of the neighborhoods, say U ′

x1
, . . . , U ′

xn
cover X. Let

f = f2x1
+ · · ·+ f2xn

Then f does not vanish at any point of X, hence is a unit in C(X). But
this contracts f ∈ m, hence V is not empty.
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Let x be a point of V . Then m ⊆ mx hence m = mx because m is
maximal. Hence µ is surjective.

(2) By Urysohn’s lemma (this is the only non-trivial fact required in the
argument) the continuous functions separate the points of X. Hence
x 6= y implies mx 6= my, and therefore µ is injective.

(3) Let f ∈ C(X). let
Uf = {x ∈ X : f(x) 6= 0}

Ũf = {m ∈ X̃ : f 6∈ m}

Show that µ(Uf ) = Ũf . The open sets Uf (resp. Ũf ) form a basis of the
topology of X (resp. X̃) and therefore µ is a homeomorphism. Thus X
cun be reconstructed from the ring of functions C(X).

Proof. (1) is trivial. For (2). Urysohn’s lemma says that a topological space
is normal if and only if any two disjoint closed subsets can be separated by a
continuous function. And basic point topology tells us a compact Hausdorff
space is normal.

For (3). For each f ∈ C(X), we have

f ∈ Uf ⇔ f(x) 6= 0 ⇔ f 6∈ mx ⇔ mx ∈ Ũf

So µ(Uf ) = Ũf . Now let’s prove Uf will form a basis of the topology of X:
For x ∈ X, choose a open neighborhood V of x, and consider two disjoint
closed sets {x} and V c, by Urysohn’s lemma there exists f ∈ C(X) such
that f(x) = 1 and f(V c) = 0, thus x ∈ Uf , that is Uf forms a basis of X.
Ũf forms a basis of X̃, since its the restriction of Spec(C(X))f , which is a
basis of Spec(C(X)).

□

Exercise 1.8.25 (affine algebraic varieties). Let k be an algebraically closed
field and let

fα (t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The
set X of all points x = (x1, . . . , xn) ∈ kn which satisfy these equations is an
affine algebraic variety.

Consider the set of all polynomials g ∈ k [t1, . . . , tn] with the property
that g(x) = 0 for all x ∈ X. This set is an ideal I(X) in the polynomial
ring, and is called the ideal of the variety X. The quotient ring

P (X) = k [t1, . . . , tn] /I(X)

is the ring of polynomial functions on X, because two polynomials g, h define
the same polynomial function on X if and only if g − h vanishes at every
point of X, that is, if and only if g − h ∈ I(X).

Let ξi be the image of ti in P (X). The ξi(1 ≤ i ≤ n) are the coordinate
functions on X: If x ∈ X, then ξi(x) is the ith coordinate of x. P (X)
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is generated as a k-algebra by the coordinate functions, and is called the
coordinate ring (or affine algebra) of X.

For each x ∈ X, let mx be the ideal of all f ∈ P (X) such that f(x) = 0,
and it is a maximal ideal of P (X). Hence, if X̃ = mSpec(P (X)), we have
defined a mapping µ : X → X̃, namely x 7→ mx.

It is easy to show that µ is injective: If x 6= y we must have xi 6= yi for
for some i(1 ≤ i ≤ n), and hence ξi − xi is in mx but not in my, so that
mx 6= my. What is less obvious (but still true) is that µ is surjective. This
is one form of Hilbert’s Nullstellensatz.

Proof. Now let’s prove this weak weak form of Nullstellensatz: Here in order
to avoid a too long proof, we use a weak version of Nullstellensatz, which
will be mentioned in Corollary 7.10 of [AM69].

Corollary 1.8.1. Let k be a field, A a finitely generated k-algebra. Let m
be a maximal ideal of A. Then the field A/m is a finite algebraic extension
of k. In particular, if k is algebraically closed, then A/m ∼= k.

Firstly, let’s clarify what does mx look like: For x ∈ X, write it as x =
(x1, . . . , xn) where xi ∈ k. Since mx is the kernel of the following morphism

P (X) → k

f 7→ f(x)

It’s clear to see mx = (ξ1 − x1, . . . , ξn − xn) in this point of view, where ξi
is the coordinates of P (X). So we need to show for any maximal ideal m in
P (X), it takes this form.

By Corollary 1.8.1 we have ϕ : P (X) → P (X)/m ∼= k, then use xi to
denote the image of ξi in P (x)/m, then clearly (ξ1 − x1, . . . , ξn − xn) ⊆
kerϕ = m, by the maximality of (ξ1 − x1, . . . , ξn − xn) to conclude m = mx,
where x = (x1, . . . , xn). □

Exercise 1.8.26 (regular mapping). Let f1, . . . , fm be elements of k [t1, . . . , tn].
They determine a polynomial mapping φ : kn → km : if x ∈ kn, the coordi-
nates of φ(x) are f1(x), . . . , fm(x).

Let X,Y be affine algebraic varieties in kn, km respectively, A mapping
φ : X → Y is said to be regular if φ is the restriction to X of a polynomial
mapping from kn to km.

If η is a polynomial function on Y , then η ◦ φ is a polynomial function
on X. Hence φ induces a k-algebra homomorphism P (Y ) → P (X), namely
η 7→ η ◦ φ. Show that in this way we obtain a one-to-one correspondence
between the regular mappings X → Y and the k-algebra homomorphisms
P (Y ) → P (X).

Proof. For a regular mapping φ : X → Y , we use φ# to denote the k-algebra
homomorphism induced by φ.

For injectivity: If φ# = ψ# : P (Y ) → P (X) are two k-algebra homomor-
phisms, then we need to check φ and ψ are the same regular functions. It
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suffices to check for each coordinate. Use {yi}mi=1 to denote the coordinate
functions on Y . Thus

φi := yi ◦ φ = φ#(yi) = ψ#(yi) = yi ◦ ψ =: ψi

So we have φi = ψi for each i on X, thus φ = ψ on X.
For surjectivity: For a k-algebra homomorphism f : P (Y ) → P (X), we

need to find a regular mapping φ such that φ# = f . We need to construct
coordinate by coordinate. Consider f(yi) ∈ P (X), it gives an element φi in
k[t1, . . . , tn], since P (X) = k[t1, . . . , tn]/I(X). Claim that regular mapping
induced by φ1, . . . , φm is what we desired. Indeed, it suffices to check on
each {yi}, since P (Y ) is generated by these elements.

φ#(yi) = yi ◦ φ = φi = f(yi)

This completes the proof. □
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2. Modules

2.1. Modules and homomorphisms.

Definition 2.1.1 (A-module). Let A be a ring. An A-module is an abelian
group M on which A acts linearly.

Remark 2.1.1. Equivalently, M is an abelian group with a ring homomor-
phism A → EndM , where EndM is the ring of endomorphisms of the
abelian groups.

Remark 2.1.2. If you’ re familiar with representation theory, a representation
of a group G is a group homomorphism ρ : G→ GL(V ), where V is a finite
dimensional vector space over a field k. Consider the group-ring induced
from G:

k[G] := {
∑

aigi | ai ∈ k, gi ∈ G}
It’s a ring, and we can make V into a k[G]-module using ρ̃ : k[G] → GL(V ),
where ρ̃ is obtained from ρ by extending linearly. Conversely, for a k[G]-
module we can obtain a representation of G. So as you can guess, it’s a
quite important method to study representation theory using modules.

Definition 2.1.2 (morphism of modules). Let M,N be A-modules. A
mapping f : M → N is an A-module homomorphism if it’s a group homo-
morphism which commutes with the action of A.

Notation 2.1.1. We use Hom(M,N) to denote the set of all A-module
homomorphisms between M and N .

Remark 2.1.3. There is a natural A-module structure on Hom(M,N), given
by

(f + g)(x) := f(x) + g(x)

(af)(x) := af(x)

Definition 2.1.3 (submodule). A submodule M ′ of M is a subgroup of M
which is closed under the action of A.

Definition 2.1.4 (quotient module). For a submodule M ′ of M , the abelian
group M/M ′ inherits an A-module structure from M , and it’s called a quo-
tient module.

2.2. Operations on submodules. Most operations on ideals considered
in Chapter 1 have their counterparts for modules. Let M be an A-module
and let (Mi)i∈I be a family of submodules of M . Their sum

∑
Mi is the set

of all finite sum
∑
xi, where xi ∈Mi for all i ∈ I. The intersection

⋂
Mi is

again a submodules of M .
Although we can not define the product of two submodules, we can define

the product aM , where a is an ideal and M an A-module.
If N,P are submodules of M , we define (N : P ) to be the set of a ∈ A such

that aP ⊆ N , it’s an ideal of A. In particular, (0 : M) is called annihilator
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of M , and denoted by Ann(M). If a ⊆ Ann(M), we may regard M as an
A/a-module.

An A-module is faithful if Ann(M) = 0.

Exercise 2.2.1. For annihilator, we have
(1) Ann(M +N) = Ann(M) ∩Ann(N)
(2) (N : P ) = Ann((N + P )/N)

Proof. Trivial. □

For an element x ∈M , the set of all multiplies ax, a ∈ A is a submodule
of M , denoted by Ax or (x). If M =

∑
iAxi, then xi are said to be a set of

generators of M . An A-module M is said to be finitely generated if it has a
finite set of generators.

Proposition 2.2.1. M is a finitely generated A-module if and only if M is
isomorphic to a quotient of An for some n > 0.

Proposition 2.2.2. Let M be a finitely generated A-module, let a be an
ideal of A, and let φ be an A-module endomorphism of M such that φ(M) ⊂
aM . Then φ satisfies an equation of the form

φn + a1φ
n−1 + · · ·+ an = 0

where ai ∈ a.

Corollary 2.2.1. Let M be a finitely generated A-module and let a be an
ideal of A such that aM = M . Then there exists x ≡ 1 (mod a) such that
xM = 0

Proposition 2.2.3 (Nakayama’s lemma). Let M be a finitely generated
A-module and a an ideal of A contained in the Jacobson radical R of A.
Then aM =M implies M = 0.

Proof. By Corollary 2.2.1 there exists x such that xM = 0 and x ≡ 1
(mod a). From 1− x ∈ a ⊆ R, we know that there for any y ∈ A such that
1− y(1− x) is unit. Take y = 1 we obtain x is a unit. Thus M = x−1xM =
0. □

Corollary 2.2.2. Let M be a finitely generated A-module, N a submodule
of M , a ⊆ R. Then M = aM +N implies M = N .

Let (A,m) be a local ring, and k = A/m its residue field. Let M be a
finitely generated A-module. Note that A/mM is annihilated by m, hence
a A/m-module, that’s a finite dimensional k-vector space.

Proposition 2.2.4. Let xi be elements in M whose images in M/mM form
a basis of this vector space. Then xi generate M .



26 BOWEN LIU

2.3. Tensor product.
Definition 2.3.1 (Tensor product). Let M,N be A-modules, then the ten-
sor product of M and N is a A-module T together with a A-bilinear map
g : M × N → T such that for any A-module P and any A-bilinear map
f : M×N → T , there exists a unique A-module homomorphism f̃ such that
the following diagram commutes:

M ×N P

T

f

g f̃

Notation 2.3.1. We always use M ⊗N to denote the tensor product of M
and N , and it’s generated as A-modules by x⊗ y.
Remark 2.3.1. Note that x ⊗ y is inherently ambiguous unless we specify
the tensor product to which it belongs. Let M ′, N ′ be submodules of M,N
respectively, and let x ∈ M ′, y ∈ N ′. Then it can happen that x ⊗ y as an
element of M ⊗N is zero whilst x⊗ y as an element of M ′ ⊗N ′ is not zero.
For example, take A = Z,M = Z, N = Z /2Z and let M ′ be the submodules
2Z of M and N ′ = N . Consider 2 ⊗ x. As an element in M ⊗N it’s zero,
since

2⊗ x = 1⊗ 2x = 1⊗ 0 = 0

But as an element of M ′ ⊗N ′ it’s not zero. Indeed, consider the following
map

B : 2Z×Z /2Z → Z /2Z
(2m,n+ 2Z) 7→ mn+ 2Z

Let’s check B is well-defined and bilinear:
(1) It’s well-defined, since take n′ = n+2k, then (2m,n′+2Z) 7→ mn′+2Z =

mn+ 2km+ 2Z = mn+ 2Z.
(2) It’s clearly B is bilinear.
Then it induces a linear map

β : (2Z)⊗ Z /2Z → Z /2Z
2m⊗ (n+ 2Z) 7→ mn+ 2Z

But β(2⊗ x) = x 6= 0 ∈ Z /2Z, thus 2⊗ x 6= 0 ∈ 2Z⊗Z /2Z.
Corollary 2.3.1. Let xi ∈M,yi ∈ N be such that

∑
xi⊗ yi = 0 ∈M ⊗N .

Then there exists finitely generated submodules M0 of M and N0 of N such
that

∑
xi ⊗ yi = 0 in M0 ⊗N0.

Exercise 2.3.1. Let A,B be rings, let M be an A-module, P a B-module
and N an (A,B)-bimodule (that is, N is simultaneously an A-module and a
B-module and the two structures are compatible in the sense that a(xb) =
(ax)b for all a ∈ A, b ∈ B, x ∈ N ). Then M ⊗AN is naturally a B-module,
N ⊗B P an A-module, and we have

(M ⊗A N)⊗B P ∼=M ⊗A (N ⊗B P )
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Proof. We need to use universal property of tensor product to construct
morphism from (M ⊗A N)⊗B P →M ⊗A (N ⊗B P ) and its inverse.

Firstly, for each x ∈ A, consider the following map
fx : N × P → (M ⊗A N)⊗B P

(y, z) 7→ (x⊗ y)⊗ z

It’s a B-bilinear mapping. Indeed, for b ∈ B, we have
fx(yb, z) = (x⊗ yb)⊗ z = (x⊗ y)b⊗ z = ((x⊗ y)⊗ z))b = fx(y, z)b

fx(y, zb) = (x⊗ y)⊗ zb = ((x⊗ y)⊗ z))b = fx(y, z)b

So each fx induces a B-linear map f̃x : N ⊗B P → (M ⊗A N) ⊗B P , by
taking y⊗ z to (x⊗ y)⊗ z. Allowing x to vary we obtain a bi-additive map
g : A× (N ⊗B P ) → (M ⊗A N)⊗B P . It’s A-bilinear. Indeed, for a ∈ A

g(ax, y ⊗ z) = (ax⊗ y)⊗ z = a(x⊗ y)⊗ z = a((x⊗ y)⊗ z) = ag(x, y ⊗ z)

g(x, a(y ⊗ z)) = (x⊗ ay)⊗ z = a(x⊗ y)⊗ z = a((x⊗ y)⊗ z) = ag(x, y ⊗ z)

Thus g induces a (A,B)-linear map g̃ : (M ⊗AN)⊗B P →M ⊗A (N ⊗B P ),
by taking x⊗ (y⊗z) to (x⊗y)⊗z. A symmetric argument gives the inverse
map. □

2.4. Restriction and Extension of scalars. Let f : A → B be a homo-
morphism of rings and let N be a B-module. Then N has an A-module
structure defined as follows: If a ∈ A and x ∈ N , we define ax to be f(a)x
using B-module structure on N . This A-module is said to be obtain from
N be restriction of scalars. In particular, f defines in this way an A-module
structure on B.

Now let M be an A-module. Since B can be regarded as an A-module,
we can obtain an A-module MB = B ⊗A M . The B-module MB is said to
be obtained from M by extension of scalars.

Remark 2.4.1. Now let’s back to what we have mentioned in Remark 2.1.2.
For a group G and its subgroup H. There is a natural inclusion

i : k[H] → k[G]

of group-rings generated by G and H. So using restriction of scalars, we
obtain a k[H]-module from a k[G]-module. That is we can obtain a repre-
sentation of H from that of G just by restriction. This is called restriction
representation.

Conversely, from a k[H]-module, we can obtain a k[G]-module by tensor-
ing k[G]. That is we can obtain a representation of G from that of H. This
is called induced representation.

2.5. Exactness property of tensor product. For a A-module N , if the
functor − ⊗ N is an exact functor on the category of A-modules. Then N
is called a flat A-module.
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Proposition 2.5.1. For anA-moduleN , the following statements are equiv-
alent.
(1) N is flat.
(2) If f : M ′ →M is injective and M,M ′ are finitely generated, then f ⊗1 :

M ′ ⊗N →M ⊗N is injective.

Exercise 2.5.1. If f : A → B is a ring homomorphism and M is a flat
A-module, then MB = B ⊗A M is a flat B-module.

Proof. For any exact sequence 0 → A1 → A2 of B-module, it suffices to
check

0 → A1 ⊗B (B ⊗A M) → A2 ⊗B (B ⊗A M)

is exact. Using canonical isomorphism we have above sequence is equivalent
to the following one

0 → (A1 ⊗B B)⊗A M → (A2 ⊗B B)⊗A M

It’s exact, since A1 ⊗B B = A1, A2 ⊗B B = A2 and M is flat. □
2.6. Algebras.
Definition 2.6.1 (algebra). The ring B, equipped with a A-module struc-
ture, is said to be an A-algebra. In other words, an A-algebra is a ring B
together with a ring homomorphism f : A→ B.

Remark 2.6.1. In particular, if A is a field k, then f is injective and therefore
k can be canonically identified with its image in B. Thus a k-algebra is
effectively a ring containing k as a subring.

Example 2.6.1. The group-ring k[G] we mentioned before is a k-algebra
in fact, and sometimes is called group-algebra.

Definition 2.6.2 (finite algebra). A ring homomorphism f : A → B is
finite, and B is a finite A-algebra, if B is finite generated as A-module.

Definition 2.6.3 (finite generated algebra). A ring homomorphism f : A→
B is finite type, and B is a finitely generated A-algebra, if there exists an
A-algebra homomorphism from a polynomial ring A[x1, . . . , xn] onto B.

Remark 2.6.2. Finite A-algebra is a quite strong requirement: For example,
the polynomial k[x] is a finite generated k-algebra, but not a finite k-algebra.

2.7. Tensor product of Algebras. Let B,C be two A-algebras, f : A →
B, g : A→ C the corresponding homomorphisms. Since B,C are A-modules
we may form their tensor product D = B ⊗A C, which is an A-module.
To make it into an A-algebra, it suffices to define a multiplication on D.
Consider the following map B × C ×B × C → D, as

(b, c, b′, c′) 7→ bb′ ⊗ cc′

It induces an A-module homomorphism
B ⊗ C ⊗B ⊗ C → D
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that’s D⊗D → D. It corresponds to an A-bilinear mapping µ : D×D → D
such that

µ(b⊗ c, b′ ⊗ c′) = bb′ ⊗ cc′

Thus we give a multiplication on D, making it into a commutative ring.

2.8. Part of solutions of Chapter 2.

Exercise 2.8.1. Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m,n are coprime.

Proof. Now we’re going to prove the following isomorphism
Z /mZ⊗Z /nZ ∼= Z / gcd(m,n)Z

Consider the following mapping
Z /mZ×Z /nZ → Z / gcd(m,n)Z

(x+mZ, y + nZ) 7→ xy + gcd(m,n)Z

It’s well-defined and bilinear, and thus it induces a linear map f : Z /mZ⊗Z /nZ →
Z / gcd(m,n)Z such that

f(x+mZ⊗y + nZ) = xy + gcd(m,n)Z
Consider the following map

g : Z / gcd(m,n)Z → Z /mZ⊗Z /nZ
z + gcd(m,n)Z 7→ (z +mZ)⊗ (1 + nZ)

It’s well-defined. Indeed, if we let z′ = z+k gcd(m,n), then Bezout theorem
implies that there exists a, b ∈ Z such that am+ bn = gcd(m,n). Thus
(z′ +mZ)⊗ (1 + nZ) = (z +mZ)⊗ (1 + nZ) + (k(am+ bn) +mZ)⊗ (1 + nZ)

= (z +mZ)⊗ (1 + nZ) + (n(kb+mZ))⊗ (1 + nZ)
= (z +mZ)⊗ (1 + nZ) + (kb+mZ)⊗ (n+ nZ)
= (z +mZ)⊗ (1 + nZ)

It’s clear f ◦ g = 1, g ◦ f = 1, so we have desired isomorphism. □
Exercise 2.8.2. Let A be a ring, a an ideal, M an A-module. Show that
(A/a)⊗A M is isomorphic to M/aM .

Proof. Tensor the exact sequence 0 → a → A → A/a → 0 with M , and
tensor is a right exact functor we obtain the following exact sequence

a⊗A M
i−→ A⊗A M → (A/a)⊗A M → 0

Then
(A/a)⊗A M ∼= A⊗A M/ im i

But note that there exists an isomorphism A⊗AM →M , given by a⊗m 7→
am. Thus it’s clear to see im i is aM under this isomorphism. □
Exercise 2.8.3. Let A be a local ring, M and N finitely generated A-
modules. Prove that if M ⊗N = 0, then M = 0 or N = 0.
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Proof. Let m be the maximal ideal, k = A/m the residue field. Let Mk =
k ⊗A M ∼= M/mM by Exercise 2.8.2. By Nakayama’s lemma, Mk = 0 ⇒
M = 0. Note that by definition we have

(M ⊗A N)k = k ⊗A (M ⊗A N)

= (k ⊗A M)⊗A N

= ((k ⊗A M)⊗k k)⊗A N

= (k ⊗A M)⊗k (k ⊗A N)

=Mk ⊗k Nk

Thus M ⊗A N = 0 ⇒ (M ⊗A N)k = 0 ⇒ Mk ⊗k Nk = 0 ⇒ Mk = 0 or
Nk = 0, since Mk, Nk are vector spaces over a field. □

Exercise 2.8.4. Let Mi, i ∈ I be any family of A-modules and M be their
direct sum. Prove that M is flat ⇔ each Mi is flat.

Proof. It suffices to show tensor commutes with direct sum, that is for any
A-module B, we have

B ⊗
⊕

Mi =
⊕

(B ⊗Mi)

And it’s clear from Proposition 2.14 of [AM69]. □

Exercise 2.8.5. Let A[x] be the ring of polynomials in one indeterminate
over a ring A. Prove that A[x] is a flat A-algebra.

Proof. Note that A[x] =
⊕

iMi, where Mi = Axi. Clearly Mi
∼= A as A-

modules, and A is flat as an A-module. Thus by Exercise 2.8.4 we obtain
A[x] is flat. □

Exercise 2.8.6. For any A-module, let M [x] denote the set of all polyno-
mials in x with coefficients in M , that is to say expressions of the form

m0 +m1x+ · · ·+mrx
r mi ∈M

Defining the product of an element of A[x] and an element of M [x] in the
obvious way, show that M [x] is an A[x]-module. Show that M [x] ∼= A[x]⊗A

M .

Proof. Firstly, let’s define the A[x]-module structure on M [x]: For
∑
aix

i ∈
A[x],

∑
mjx

j ∈M [x], define A[x] action as

(
∑

aix
i)(

∑
mjx

j) =
∑

ckx
k, ck =

∑
i+j=k

aimj

It’s a routine to check it do gives an A[x]-module structure, we omit here.
Consider the following map

φ : M [x] → A[x]⊗A M∑
mix

i 7→
∑

xi ⊗mi
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It’s an A[x]-module homomorphism. Indeed, for
∑
aix

i ∈ A[x], we have

φ(
∑

aix
i
∑

mjx
j) = φ(

∑
i+j=k

aimjx
i+j)

=
∑
k

∑
i+j=k

xi+j ⊗ aimj

=
∑
i,j

xixj ⊗ aimj

=
∑
j

((
∑
i

aix
i)xj ⊗mj)

= (
∑
i

aixi)(
∑
j

xj ⊗mj)

= (
∑
i

aixi)φ(
∑
j

mjx
j)

As desired. Conversely, consider ψ̃ : A[x]×M →M [x] defined by ψ̃(
∑
aix

i,m) =∑
aimx

i. It induces a linear map ψ : A[x] ⊗A M → M [x] by sending
(
∑
aix

i)⊗m to
∑
aimx

i. Clearly ψ and φ are inverse. □

Remark 2.8.1. From this Exercise, hope you can get a feeling of a use of
tensor product: a kind of changing domain of coefficients.

Exercise 2.8.7. Let p be a prime ideal in A. Show that p[x] is a prime
ideal in A[x]. If m is a maximal ideal in A, is m[x] a maximal ideal in A[x]?

Proof. It suffices to check A[x]/p[x] is a domain. Note that A[x]/p[x] ∼=
(A/p)[x]. By Exercise 1.8.2, f is a zero-divisor in (A/p)[x] if and only if
there exists a ∈ A/p such that af = 0, but it’s impossible since A/p is
a domain. However, m[x] may not be a maximal ideal. For example, let
A = Q and m = (0), then clearly (0) is not maximal in Q[x]. □

Exercise 2.8.8.
(1) If M and N are flat A-modules, then so is M ⊗A N .
(2) If B is a flat A-algebra and N is a flat B-module, then N is flat as an

A-module.

Proof. For (1). It suffices to check for any exact sequence 0 → A1 → A2, we
have

0 → A1 ⊗ (M ⊗N) → A2 ⊗ (M ⊗N)

is exact. Note that Ai ⊗ (M ⊗N) ∼= (Ai ⊗M)⊗N , then it’s equivalent to
check the following sequence is exact

0 → (A1 ⊗M)⊗N → (A2 ⊗M)⊗N

It’s clear to see this by tensoring M and N step by step and use the fact
M,N are flat.
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For (2). It suffices to check for any exact sequence 0 → A1 → A2 of
A-modules, we have

0 → A1 ⊗A N → A2 ⊗A N

is exact. Note that
Ai ⊗A N ∼= Ai ⊗A (B ⊗B N) ∼= (Ai ⊗A B)⊗B N

Use the same method of (1) to conclude. □

Exercise 2.8.9. Let 0 → M ′ f−→ M
g−→ M ′′ → 0 be an exact sequence of

A-modules. If M ′ and M ′′ are finitely generated, then so is M .

Proof. There exist sets of generators {xi}i∈I of M ′ and {yj}j∈J of M ′′.
Consider the preimage of {yj}j∈J in M , denoted by {yj}j∈J . It’s clear
{f(xi)}i∈I together with {yj}j∈J generates M by the exactness of sequence.

□
Exercise 2.8.10. Let A be a ring, a an ideal contained in the Jacobson
radical of A. let M be an A-module and N a finitely generated A-module,
and let u : M → N be a homomorphism. If the induced homomorphism
M/aM → N/aN is surjective, then u is surjective.

Proof. Consider the following composition

M →M/aM
u−→ N/aN

It’s surjective, since it’s a composition of two surjective mappings, which
implies u(M) + aN = N . Note that N is finitely generated and a ⊆ R.
Then Nakayama’s lemma implies µ(M) = N . □
Exercise 2.8.11. Let A be a ring 6= 0. Show that Am ∼= An ⇒ m = n.
Furthermore,
(1) If φ : Am → An is surjective, then m ⩾ n.
(2) If φ : Am → An is injective, is it always the case that m ⩽ n ?

Proof. Let m be a maximal ideal of A and let φ : Am → An be an isomor-
phism. Then 1⊗φ : (A/m)⊗Am → (A/m)⊗An is an isomorphism between
vector spaces of dimensions m and n over the field k = A/m. Indeed, there
is a surjective map Am → An and surjective map An → Am, so there is a
surjective map (A/m) ⊗ Am → (A/m) ⊗ An and verse vice. Hence m = n.
So it’s natural to see (1) is also true.

This method fails for the case φ is injective, since tensor is just a right
exact functor, but this statement is still true. □
Exercise 2.8.12. Let M be a finitely generated A-module and φ : M → An

a surjective homomorphism. Show that kerφ is finitely generated.

Proof. Consider the following exact sequence

0 → kerφ→M
ϕ−→ An → 0
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Since An is a free A-module, so this exact sequence splits, which is equivalent
to kerφ is a direct summand of M . Then kerφ is finitely generated, since
M is. □
Exercise 2.8.13. Let f : A→ B be a ring homomorphism, and let N be a
B-module. Regarding N as an A-module by restriction of scalars, form the
B-module NB = B⊗AN . Show that the homomorphism g : N → NB which
maps y to 1⊗ y is injective and that g(N) is a direct summand of NB.

Proof. Consider the following mapping
p : NB → N

b⊗ y 7→ by

Directly check p ◦ g as follows: Take y ∈ N , then
p ◦ g(y) = p(1⊗ y) = y

So we have p ◦ g is identity on N , which implies g is injective. Furthermore,
this implies the following sequence splits

0 → N
g−→ NB → NB/ im g → 0

which is equivalent to g(N) is a direct summand of NB. □
Exercise 2.8.14 (direct limits). A partially ordered set I is said to be a
directed set if for each pair i, j in I there exists k ∈ I such that i ⩽ k and
j ⩽ k.

Let A be a ring, let I be a directed set and let (Mi)i∈I be a family
of A-modules indexed by I. For each pair i, j in I such that i ⩽ j, let
µij : Mi → Mj be an A-homomorphism, and suppose that the following
axioms are satisfied:
(1) µii is the identity mapping of Mi for all i ∈ I.
(2) µik = µjk ◦ µij whenever i ≤ j ≤ k.
Then the modules Mi and homomorphisms µij are said to form a direct
system M = (Mi, µij) over the directed set I.

We shall construct an A-module M called the direct limit of the direct
system M. Let C be the direct sum of the Mi, and identify each module
Mi with its canonical image in C. Let D be the submodule of C generated
by all elements of the form xi − µij (xi) where i ⩽ j and xi ∈ Mi. Let
M = C/D, let µ : C →M be the projection and let µi be the restriction of
µ to Mi.

The module M , or more correctly the pair consisting of M and the family
of homomorphisms µi : Mi → M , is called the direct limit of the direct
system M, and is written lim−→Mi. From the construction it is clear that
µi = µj ◦ µij whenever i ⩽ j.

Proof. Let’s check µi = µj ◦ µij on Mi: Note that for xi ∈ Mi, we have
µi(xi) = xi + D ∈ M = C/D, since µi is just the restriction of natural
projection on Mi.
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Take xi ∈Mi, then µij(xi) ∈Mj , and note that µij(xi) +D ∈M = C/D
is equivalent to xi +D, since xi − µij(xi) ∈ D. So we have

µi(xi) = xi +D = µij(xi) +D = µj ◦ µij(xi)

As desired. □

Exercise 2.8.15. In the situation of Exercise 2.8.14, show that every el-
ement of M can be written in the form µi (xi) for some i ∈ I and some
xi ∈ Mi. Show also that if µi(xi) = 0 then there exists j ≥ i such that
µij(xi) = 0 in Mj .

Proof. For the first part: Take an arbitrary element x ∈ M = C/D, then
write it as

x =
n∑

j=1

µj(xj), xj ∈Mj

It suffices to check the case for n = 2: There exists k ∈ I such that k ≥
1, k ≥ 2 since I is a directed set. Then

µ1(x1) + µ2(x2) = µk ◦ µ1k(x1) + µk ◦ µ2k(x2)

since µi = µk ◦ µik for i ≤ k in M . Then this element can be written as
µk(µ1k(x1) + µ2k(x2)) as desired.

For the half part, by definition we have µi(xi) = 0 ∈ M if and only if
µi(xi) ∈ D, that is in C we have

xi =
n∑

k=1

(xik − µikjk(xik))

For this equation, we can make the following assumptions:
(1) xik 6= 0 for each k.
(2) ik 6= jk for each k.
(3) ik 6= ik′ for k 6= k′, otherwise we can add them together.
(4) i is the minimal element in {ik}nk=1. Indeed, let il to be the minimal

element in {ik}nk=1. Note xi ∈Mi, thus terms appearing in Mj , i 6= j in∑n
k=1(xik −µikjk(xik)) must be zero, but xil is the only term appearing

in Mil , since il is minimal. Thus we must have xil = xi, that’s i = il.
(5) Furthermore, we can assume all ik = i. Indeed. Consider the minimal

element of the set {ik}\{i}, and denote it by il. Note that il coordinate
vanishes, so either xil = 0 or xil = µiil(xi), since i ≤ il is the only one
less than il. In later case, we may write the following
xil − µiljl(xil) = µiil(xi)− µijl(xi) = (xi − µijl(xi))− (xi − µiil(xi))

Repeat finite many times to conclude.
Now we have

xi =
n∑

k=1

±(xi − µijk(xi))
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Since each jk appear only once and jk components must vanish, then we
must have µijk(xi) = 0 for each k in the sum. In particular we have the
signature of this equation is 1, in other words, the number of “+” minus the
number of “−” is 1. Now take j to be any jk, then

µij(xi) = µijk(xi) = 0

This completes the proof. □

Exercise 2.8.16 (universal property). Show that the direct limit is char-
acterized (up to isomorphism) by the following property. Let N be an
A-module and for each i ∈ I let αi : Mi → N be an A-module homomor-
phism such that αi = αj ◦ µij whenever i ⩽ j. Then there exists a unique
homomorphism α : M → N such that αi = α ◦ µi for all i ∈ I.

Proof. Existence: Note that by universal property of direct sum, there exists
a morphism φ :

⊕
iMi → N , such that αi = φ ◦ τi, where τi : Mi →

⊕
iMi

is canonical inclusion. Furthermore, take any element xi−µij(xi) ∈ D, then

φ(xi − µij(xi)) = αi(xi)− αj ◦ µij(xi) = 0

Thus D ⊆ kerφ, that is we obtain a morphism α : M → N induced by φ,
and it’s clear αi = α ◦ µi. What we have done can be shown as follows:

Mi

⊕
iMi N

M

αi

µi
ϕ

α

Uniqueness: If β :M → N is another morphism such that αi = β ◦µi for all
i ∈ I. From Exercise 2.8.15 we know each element can be written as µi(xi)
for xi ∈Mi. So it suffices to check α(µi(xi)) = β(µi(xi)). Indeed,

α(µi(xi)) = αi(xi) = β(µi(xi))

□

Exercise 2.8.17. Let (Mi)i∈I be a family of submodules of an A-module,
such that for each pair of indices i, j in I there exists k ∈ I such that
Mi +Mj ⊆ Mk. Define i ⩽ j to mean Mi ⊆ Mj and let µij : Mi → Mj be
the embedding of Mi in Mj . Show that

lim−→Mi =
∑

Mi =
⋃
Mi.

In particular, any A-module is the direct limit of its finitely generated sub-
modules.
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Proof. From Exercise 2.8.15, we know that every element of direct limit can
be written as µi(xi) for some xi ∈Mi. Then we can write it as

xi +

n∑
k=1

(xik − µikjk(xik)) ∈
⊕
i∈I

Mi

Note that for each k, we have xik + µikjk(xik) ∈Mik +Mjk ⊆Mlk for some
lk. After finite times steps, we can show that

xi +
n∑

k=1

(xik − µikjk(xik)) ∈MN

for some sufficiently large N ∈ I. Thus lim−→Mi =
⋃
Mi. In particular, let

{Mi} be the family of finitely generated submodules of a A-module M , then

lim−→Mi =
⋃
i

Mi =M

since
⋃

x∈M Ax already covers M . □
Exercise 2.8.18. Let M = (Mi, µij) ,N = (Ni, vij) be direct systems of
A-modules over the same directed set. Let M,N be the direct limits and
µi :Mi →M,νi : Ni → N the associated homomorphisms.

A homomorphism φ : M → N is by definition a family of A-module ho-
momorphisms φi : Mi → Ni such that φj ◦ µij = vij ◦ φi whenever i ⩽ j.
Show that φ defines a unique homomorphism φ = lim−→φi :M → N such that
φ ◦ µi = vi ◦ φi for all i ∈ I.

Proof. Consider the following commutative diagram

Mi

Mj Ni M

Nj N

µij
ϕi

ϕj νij

νi ϕ

νj

Note that νi ◦ φi = νj ◦ φj ◦ µij . Thus there is a unique homomorphism φ
by Exercise 2.8.16, the universal property of direct limit. □
Exercise 2.8.19. A sequence of direct systems and homomorphisms

M → N → P

is exact if the corresponding sequence of modules and module homomor-
phisms is exact for each i ∈ I. Show that the sequence M f−→ N

g−→ P of
direct limits is then exact4.

4In other words, direct limit of a direct system of modules over a directed set is an
exact functor.
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Proof. To be explicit, let (Mi, µij), (Ni, νij), (Pi, ωij) be direct systems over
the same directed set I. A sequence of direct systems is exact

M
f−→ N

g−→ P

if and only if for any i ∈ I we have

Mi
fi−→ Ni

gi−→ Pi

is exact.
Firstly, f ◦ g is clearly zero, since take any element x ∈ M it must be

written as µi(xi) for xi ∈ Mi by Exercise 2.8.15. It suffices to check g ◦ f ◦
µi(xi) = 0. Indeed,

g ◦ f ◦ µi(xi) = g ◦ νi ◦ fi(xi) = ωi ◦ gi ◦ fi(xi) = 0

That’s im f ⊆ ker g. Conversely, take x ∈ ker g ⊂ N , by Exercise 2.8.15
we write it as νi(xi) for some xi ∈ Ni. But g ◦ νi(xi) = ωi ◦ gi(xi) = 0
implies there exists j ≥ i such that ωij(gi(xi)) = gj(νij(xi)) = 0, that is
νij(xi) = fj(yj) for some yj ∈Mj . Consider µj(yj), we have

f ◦ µj(yj) = νj ◦ fj(yj) = νj ◦ νij(xi) = νi(xi) = x

That’s x ∈ im f . This completes the proof. □

Exercise 2.8.20 (tensor products commute with direct limits). Keeping
the same notation as before, let N be any A-module. Then (Mi⊗N,µij⊗1)
is a direct system. let P = lim−→(Mi ⊗N) be its direct limit.

For each i ∈ I we have a homomorphism µi⊗1: Mi⊗N →M ⊗N , hence
by Exercise 2.8.16 a homomorphism ψ : P → M ⊗ N . Show that ψ is an
isomorphism, so that

lim−→(Mi ⊗N) ∼= (lim−→Mi)⊗N

Proof. For each i ∈ I, consider two direct system (Mi × N,µij × 1), (Mi ⊗
N,µij ⊗ 1). Claim µi × 1: Mi ×N →M ×N is the direct limit of the first
direct system. Indeed, if αi : Mi×N → L is the direct limit of direct system
(Mi × N,µij × 1), then there exists a mapping α : L → M × N such that
µi × 1 = α ◦ αi. Note that we already have α is surjective, and µi × 1 is
injective implies α is injective, thus µi×1: Mi×N →M ×N is direct limit.
We use νi : Mi ⊗N → P to denote the second direct limit.

A homomorphism between direct system gi : Mi × N → Mi ⊗ N , that’s
the canonical bilinear mapping. Passing to the limit we obtain a mapping
g : M × N → P . Clearly g is A-bilinear, since each gi is a A-bilinear one.
Hence define a homomorphism φ : M ⊗N → P . Let’s that φ ◦ ψ and ψ ◦ φ
are identity mappings directly.



38 BOWEN LIU

Take m⊗ n ∈M ⊗N , and write m = µi(mi),mi ∈Mi, then
ψ ◦ φ(µi(mi)⊗ n) = ψ ◦ g(µi(mi), n)

= ψ ◦ νi ◦ gi(mi, n)

= ψ ◦ νi(mi ⊗ n)

= µi ⊗ 1(mi ⊗ n)

= µi(mi)⊗ n

Take x ∈ P , and write x = νi(mi ⊗ n) for some mi ⊗ n ∈Mi ⊗N , then
φ ◦ ψ(νi(mi ⊗ n)) = φ ◦ µi ⊗ 1(mi ⊗ n)

= φ(µi(mi)⊗ 1)

= g(µi(mi), n)

= νi ◦ gi(mi, n)

= νi(mi ⊗ n)

This completes the check. □
Exercise 2.8.21. Let (Ai)i∈I be a family of rings indexed by a directed set
I, and for each pair i ⩽ j in I let αij : Ai → Aj be a ring homomorphism,
satisfying conditions (1) and (2) of Exercise 2.8.14. Regarding each Ai as
a Z-module we can then form the direct limit A = lim−→Ai. Show that A
inherits a ring structure from the Ai so that the mappings αi : Ai → A are
ring homomorphisms. The ring A is the direct limit of the system (Ai, αij).

If A = 0 prove that Ai = 0 for some i ∈ I.

Proof. From Exercise 2.8.15, we know that if αi(ai) = 0 then there exists
j ≥ i such that αij(ai) = 0 ∈ Aj . But here A = 0, thus for any ai ∈ Ai

we have αi(ai) = 0. In particular we take ai = ei, the identity element
in Ai, then there exists j ≥ i such that αij(ei) = 0, but αij is a ring
homomorphism, thus ei = 0. This completes the proof. □
Exercise 2.8.22. Let (Ai, αij) be a direct system of rings and let Ri be the
nilradical of Ai. Show that lim−→Ri is the nilradical of lim−→Ai. If each Ai is
an integral domain, then lim−→Ai is an integral domain.

Proof. It’s clear that lim−→Ri ⊆ R(lim−→Ai). Conversely, take x ∈ lim−→Ai and
write it as αi(ai) for some ai ∈ Ai. Then x is in nilradical of lim−→Ai if and
only if it’s nilpotent, that is

(αi(ai))
n = αi(a

n
i ) = 0

But this implies there exists j ≥ i such that αij(a
n
i ) = 0, that is αij(ai)

n = 0,
so we have αij(ai) ∈ Rj . Thus αi(ai) = αj(αij(ai)) ∈ lim−→Ri. □

Exercise 2.8.23. Let (Bλ)λ∈Λ be a family of A-algebras. For each finite
subset J of Λ let BJ denote the tensor product (over A) of the Bλ for
λ ∈ J . If J ′ is another finite subset of Λ and J ⊆ J ′, there is a canonical
A-algebra homomorphism BJ → BJ ′ . Let B denote the direct limit of
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the rings BJ as J runs through all finite subsets of Λ. The ring B has a
natural A-algebra structure for which the homomorphisms iJ : BJ → B are
A-algebra homomorphisms. The A-algebra B is the tensor product of the
family (Bλ)λ∈Λ.

Proof. Let’s give an A-algebra structure on B, it suffices to give an A-action
on B, since there is already a ring on B. Take any element x ∈ B and write
it as iJ((⊗bλ)λ∈J) for some index set J . For a ∈ A, let a act on it as follows

aiJ((⊗bλ)λ∈J) = iJ(a(⊗bλ)λ∈J)

a can act on (⊗bλ)λ∈J since BJ is an A-algebra. Now it suffices to check this
is well-defined, since it’s clear iJ : BJ → B is an A-algebra homomorphism
by our definition. Take another representation iJ ′((⊗b′λ)λ∈J ′), assume J ⊆
J ′, then we must have

x = iJ ′((⊗b′λ)λ∈J ′) = iJ ′ ◦ iJJ ′((⊗bλ)λ∈J) = iJ((⊗bλ)λ∈J)

Then
ax = iJ(a(⊗bλ)λ∈J)

= iJ ′ ◦ iJJ ′(a(⊗bλ)λ∈J)
= iJ ′(a(⊗b′)λ∈J ′)

□

Exercise 2.8.24 (flatness and Tor functor). If M is an A-module, the
following statements are equivalent.
(1) M is flat.
(2) TorAn (M,N) = 0 for all n > 0 and all A-modules N .
(3) TorA1 (M,N) = 0 for all A-modules N .

Proof. For (1) to (2). Take a free resolution of N as follows

· · · → F2 → F1 → F0 → N → 0

and tensor it with M to obtain

· · · →M ⊗ F2 →M ⊗ F1 →M ⊗ F0 →M ⊗N → 0

Since M is flat, the resulting sequence is exact and therefore its homology
groups, which are the TorAn (M,N), are zero for n > 0.

(2) to (3) is clear. For (3) to (1). Let 0 → N ′ → N → N ′′ → 0 be an exact
sequence. Then this short exact sequence induces a long exact sequence

· · · → TorA1
(
M,N ′′) →M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0

Since TorA1 (M,N ′′) = 0 it follows that M is flat. □

Exercise 2.8.25. Let 0 → N ′ → N → N ′′ → 0 be an exact sequence, with
N ′′ flat. Then N ′ is flat ⇔ N is flat.
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Proof. Take an arbitrary A-module M and consider the long exact sequence
induced by this short exact sequence

· · · → TorA1 (N
′,M) → TorA1 (N,M) → TorA1 (N

′′,M) → . . .

From Exercise 2.8.24 we have N ′ or N is flat if and only if TorA1 (N ′,M) or
TorA1 (N,M) is zero. It’s clear since TorA1 (N

′′,M) = 0. □

Exercise 2.8.26. Let N be an A-module. Then N is flat if and only if
TorA1 (A/a, N) = 0 for all finitely generated ideal a in A.

Proof. By Proposition 2.5.1, we have N is flat if and only if for any exact
sequence 0 →M ′ →M where M,M ′ are finitely generated, we have

0 →M ′ ⊗N →M ⊗N

is exact. But we always have the following exact sequence
TorA1 (M/M ′, N) →M ′ ⊗N →M ⊗N

It’s clear M/M ′ is finitely generated. Thus N is flat if TorA1 (M,N) = 0 for
all finitely generated A-modules M .

If M is finitely generated, let x1, . . . , xn be a set of generators of M ,
and let Mi be the submodule generated by x1, . . . , xi. By considering the
successive quotients Mi/Mi−1 and the following exact sequence

0 →Mi−1 →Mi →Mi/Mi−1 → 0

If Tor1(M,N) = 0 for all cyclic A-modules M5. So by Exercise 2.8.25 we
have M2 is flat, since M1 and M2/M1 are cyclic. By induction on i we
can show Mn = M is also flat, that’s TorA1 (M,N) = 0. We can show
TorA1 (M,N) = 0 for all finitely generated A-modules M by this method.
Thus N is flat if Tor1(M,N) = 0 for all cyclic A-modules.

Note that for any cyclic A-module M , there is a natural exact sequence
A→M → 0, defined by a 7→ ax. Thus M ∼= A/a for some ideal a. That is,
N is flat if TorA1 (A/a, N) = 0 for all ideals a, and that’s equivalent to

0 → a⊗N → A⊗N

is exact. Again by Proposition 2.5.1 this will hold if
0 → a⊗N → A⊗N

is exact for all finitely generated ideal a, and that’s equivalent to TorA1 (A/a, N) =
0 for all finitely generated ideal a. □

Exercise 2.8.27. A ring A is absolutely flat if every A-module is flat. Prove
that the following statements are equivalent.
(1) A is absolutely flat.
(2) Every principal ideal is idempotent.
(3) Every finitely generated ideal is a direct summand of A.

5M is a cyclic A-module if M = Ax for some x ∈ M .
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Proof. For (1) to (2). Let x ∈ A, then A/(x) is a flat A-module, hence in
the diagram

(x)⊗A (x)⊗A/(x)

A A/(x)

β

α

the mapping α is injective. Hence im(β) = 0, since from the commutativity
of the diagram we have α ◦ β = 0. But β = 1 ⊗ π, where π : A → A/(x)
is surjective, thus β is also surjective. Thus (x)⊗ A/(x) = 0. Consider the
following exact sequence

0 → (x) → A→ A/(x) → 0

and tensor it with (x) we have the following exact sequence
0 → (x)⊗ (x) → A⊗ (x) → 0

But A⊗ (x) = (x) and (x)⊗ (x) ∼= (x2). Hence (x) =
(
x2

)
.

For (2) to (3). Since every principal ideal is idempotent, for x ∈ A,
consider principal ideal (x) one has (x) = (x2), then x = ax2 for some a ∈ A,
hence e = ax is idempotent and we have (e) = (x). In other words, any
principal ideal is generated by an idempotent element. More generally, for
any finitely generated ideal a = (x1, . . . , xn), it’s generated by (e1, . . . , en),
where ei is an idempotent. As we can see from the proof of (3) of Exercise
1.8.11, an ideal generated by finite idempotent is principal. In particular,
we can assume it’s generated by an idempotent element e. Thus a = (e),
it’s clear a summand of A since A = (e)⊕ (1− e).

For (3) to (1). Take an arbitrary A-module N , from Exercise 2.8.26 it
suffices to check TorA1 (A/a, N) = 0 for all finitely generated ideal a in A.
Consider the following exact sequence

0 → a → A→ A/a → 0

Since a is a summand of A, then this exact sequence splits. Moreover a
split exact sequence is also exact after tensoring something, which implies
TorA1 (A/a, N) = 0. □
Exercise 2.8.28. We have following statements for absolutely flat rings:
(1) A Boolean ring is absolutely flat.
(2) Let A be a ring in which every element x satisfies xn = x for some n > 1

(depending x), then A is absolutely flat.
(3) Every homomorphism image of an absolutely flat ring is absolutely flat.
(4) If a local ring is absolutely flat, then it is a field.
(5) If A is absolutely flat, every non-unit in A is a zero-divisor.

Proof. For (1) and (2). Consider x ∈ A and the principal ideal (x) generated
by it. Then x(xn−1 − 1) = 0 implies A = (x) ⊕ (xn−1 − 1). From Exercise
2.8.27 we have A is absolutely flat.
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For (3). Consider the surjective mappings f : A → B such that A is
absolutely flat. Take x ∈ B, and consider one of its preimage y, i.e. f(y) = x.
Since A is absolutely flat, then there exists a ∈ A such that y = ay2, that is
x = ax2. So (x) = (x2) implies B is absolutely flat.

For (4). Let (A,m) be a local ring such that it’s absolutely flat. To show
A is a field, it suffices to show m = 0 Take x 6= 0 ∈ m, then (x) = (x2)
implies there exists a ∈ A such that x = ax2, that is x(1 − ax) = 0. But
x ∈ m = R, that 1− ax is a unit, thus x = 0.

For (5). If A is absolutely flat and take x ∈ A to be a non-unit. Since
(x) = (x2) we have x = ax2 such that ax 6= 1, that is x(1− ax) = 0, x is a
zero-divisor. □
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3. Localization

3.1. Basic definitions. The procedure by which one construct rational
number Q from Z extends easily to any integral domain A and we obtain its
field of fractions. The construction consists in taking all ordered pairs (a, s)
where a, s ∈ A and s 6= 0, and setting up an equivalence relations between
such pairs:

(a, s) ∼ (b, t) ⇐⇒ at− bs = 0

In fact, fraction is a method to make all elements in A \ {0} to be unit,
that is you can find a inverse of it, and it’s the most economic way to do
this. More generally, we can do the same thing for any multiplicative closed
subset.

Definition 3.1.1 (multiplicative closed subset). Let A be a ring. A multi-
plicative closed subset of A is a subset S of A such that
(1) 1 ∈ S.
(2) xy ∈ S for any x, y ∈ S.

Definition 3.1.2 (localization). Let f : A → B be a ring homomorphism,
and S ⊂ A a multiplicative closed subset. B is called the localization of A
with respect to S, if
(1) f(x) is unit for all x ∈ S.
(2) If g : A → C is a ring homomorphism such that g(x) is a unit for all

x ∈ S, then there exists a unique homomorphism h : B → C such that
g = h ◦ f .

Remark 3.1.1. The universal property explains what does “the most eco-
nomic” mean: If there is another homomorphism such that all elements in
S is unit, then this homomorphism must factor through this localization.

Now let’s give an explicit construction of localization, which is quite sim-
ilar to what we have done in fraction. Define a relation ∼ on A × S as
follows

(a, s) ∼ (b, t) ⇐⇒ (at− bs)u = 0, for some u ∈ S

It’s an equivalence relation. Indeed, it’s clear reflexive and symmetric. To
see it’s transitive. Suppose (a, s) ∼ (b, t), (b, t) ∼ (c, u), then there exists
v, w ∈ S such that

(at− bs)v = 0

(bu− ct)w = 0

Now let’s eliminate b from these two equations as follows: multiply uw on
sides of first equation and sv on sides of second equation, we obtain

atvuw = ctwsv =⇒ (au− cs)tvw = 0

Note that t, v, w ∈ S and S is multiplicative closed, thus (a, s) ∼ (c, u). Use
a/s to denote the equivalence class of (a, s), and let S−1A denote the set of
equivalence classes.
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Now let’s give a ring structure as follows
(a/s) + (b/t) = (at+ bs)/st

(a/s)(b/t) = ab/st

Remark 3.1.2. It’s a routine to verify that these definitions are independent
of the choices of representatives (a, s) and (b, t), and S−1A is a commutative
ring with identity. Here we omit it, since it’s tooooo boring and meaningless.

There is a natural homomorphism f : A → S−1A, defined by a 7→ a/1.
Then let’s show S−1A satisfies (1) and (2) in Definition 3.1.2.
(1) For any s ∈ S, we have f(s) = s/1 with inverse 1/s, since (s/1)(1/s) =

s/s ∼ 1/1.
(2) For any g : A → C such that g(x) is unit for all x ∈ S, we define

h(a/s) = g(a)g(s)−1.
(a) It’s well-defined. Indeed, if a/s = b/t, then there exists u ∈ S such

that (at−bs)u = 0, then g((at−bs)u) = g(at−bs)g(u) = 0, but g(u)
is a unit, thus g(a)g(t) = g(b)g(s), that is g(a)g(s)−1 = g(b)g−1(t).

(b) It’s unique, since h ◦ f = g, then h(a/1) = h ◦ f(a) = g(a) for
all a ∈ A. hence if s ∈ S we have h(1/s) = h(s/1)−1 = g(s)−1,
therefore h(a/s) = h(a/1)h(1/s) = g(a)g(s)−1, which implies h is
uniquely determined by g.

Remark 3.1.3. It’s natural to ask f : A → S−1A, is it injective? Since it’s
clear we have Z ↪→ Q. Unfortunately, this fails in general, since

ker f = {a ∈ A | sa = 0 for some s ∈ S}
So if there exists a zero-divisor in S, f fails to be injective.

3.2. Localization and local ring. A local ring (A,m) is a ring with only
one maximal ideal m, so it’s natural to ask the relation between local ring
and localization. In order to answer this question, we need to study what
will happen to ideals after localization.

Recall extension of an ideal: Given an ideal a of a ring A, and a homomor-
phism f : A→ B, the extension of a is Aa, that is the set of all summations∑
yif(xi) where xi ∈ a and yi ∈ B. In particular, we use S−1a to denote

the extended ideal obtained from a by localization with respect to S, that
is, for any y ∈ S−1a, y is of form

∑
ai/si, where ai ∈ a, si ∈ S.

Theorem 3.2.1. Let A be a ring and S−1A is its localization with respect
to some multiplicative closed subset S, then
(1) Every ideal in S−1A is an extended ideal.
(2) If a is an ideal in A, then aec =

⋃
s∈S(a : s). Hence ae = (1) if and only

if a meets S.
(3) An ideal a of A is a contracted ideal if and only if no element of S is a

zero-divisor in A/a.
(4) The prime ideals of S−1A are in one to one correspondence (p ↔ S−1p)

with prime ideals of A which don’t meet S.
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Proof. For (1). Let b be an ideal in S−1A, and let x/s ∈ b. Then one has
x/1 ∈ b�and thus x ∈ bc. As a consequence one has x/s ∈ bce, that is,
b ⊆ bce. Thus we have b = bce, since bce ⊆ b automatically holds.

For (2). x ∈ aec if and only if x = f−1(a/s) for some a ∈ a, s ∈ S, and
that’s equivalent to x/1 = a/s. By definition we have this is equivalent
to (xs − a)t = 0 for some t ∈ S, and that’s equivalent to xst ∈ a, i.e.
x ∈

⋃
s∈S(a : s). It’s clear to see if a meets S then ae = (1). Conversely, if

ae = (1), then
aec = (1) =

⋃
s∈S

(a : s)

which implies there exists s ∈ S such that s · 1 = s ∈ a, that is a meets S.
For (3). a is a contracted ideal if and only if aec = a. Indeed, if a = bc,

then
aec = bcec = bc = a

But (2) gives us a description for aec, so this is equivalent to sx ∈ a for some
s ∈ S implies x ∈ a, and that’s equivalent to there is no s ∈ S such that it’s
a zero-divisor in A/a.

For (4). If q is a prime ideal in S−1A, then p = qc is a prime ideal in A.
Furthermore p ∩ S = ∅, since q doesn’t contain unit of S−1A. Conversely,
if p is a prime ideal in A such that p ∩ S = ∅. Then

a

s

b

t
∈ S−1p =⇒ there exists r ∈ S such that rab ∈ p

But r 6∈ p, so either a or b in p, implies either a/t or b/s is in S−1p. Thus
S−1p is prime. □

Now let’s see an important example in algebraic geometry and explain
the relation between localization and local ring.

Example 3.2.1. Let p be a prime ideal of A. Then S = A − p is multi-
plicative closed. We write Ap for S−1A in this case.

For ring Ap, we claim it’s a local ring, with maximal ideal S−1p = pAp,
and denote it by pAp. Indeed, take any arbitrary element a/s ∈ Ap − pAp,
then we have a, s ∈ A − p, so it must be invertible, since its inverse is
s/a ∈ Ap. So any element not in pAp is a unit, and by (1) of Proposition
1.4.3, then pAp is the only maximal ideal of Ap. So localization with respect
to the complement of a prime ideal, we will obtain a local ring.

From (4) of Theorem 3.2.1, we can have a better understanding of ideals
in this local ring Ap: Any prime ideal q ∈ Ap has a one to one correspondence
to prime ideals in A which do not intersect with A − p, or in other words,
prime ideals which is contained in p.

Remark 3.2.1. In algebraic geometry, we regard a prime ideal as a point. You
can imagine localization at this prime ideal p geometrically is to consider the
local property of this point, that is only to consider prime ideals contained
in p.
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Another important example is localization at an element.
Example 3.2.2. Let f ∈ A be an element which is not nilpotent. Consider
multiplicative closed subset S = {1, f, f2, . . . }. In this case we always write
S−1A as Af . Again from (4) of Theorem 3.2.1, we know prime ideals in Af

has a one to one correspondence to prime ideals in A which do not contain
f , and that’s exactly Xf we met in the exercises of Chapter 1. You can
show that SpecAf is homeomorphic to Xf . In fact, SpecAf is isomorphic
to (Xf ,OSpecA|Xf

) as schemes.
In the last of this section we give a statement for when a prime ideal is

a contraction of a prime ideal. As we already know, for an ideal a, it’s a
contraction ideal if and only if aec = a. For a prime ideal, it can be stronger:
Proposition 3.2.1. Let A → B be a ring homomorphism and let p be a
prime ideal of A. Then p is the contraction of a prime ideal if and only if
pec = p.
Proof. If p is a contradiction of a prime ideal q, that is p = qc, it’s clear
pec = p. Conversely, if pec = p, let S be the image of A − p in B. Then pe

does not meet S, therefore its extension in S−1B is a proper ideal hence is
contained in a maximal ideal m of S−1B. If q is the contraction of m in B,
then pe ⊆ q and q ∩ S = ∅, which implies qc = p. □
3.3. Localization of a module. The construction of S−1A can be carried
through with an A-module M in place of the ring A. Define a relation ∼ on
M × S as follows

(m, s) ∼ (m′, s′) ⇐⇒ (sm′ − s′m)t = 0, for some t ∈ S

As before it’s also an equivalence relation. We use m/s to denote the equiv-
alence class of (m, s) and use S−1M to denote the set of equivalence classes.

There is a natural way to make S−1M into a S−1A-module: take a/s ∈
S−1A, it acts on S−1M as follows: Take m/s′ ∈ S−1M , then

a/s · (m/s′) := a ·m/ss′

Let u : M → N be an A-module homomorphism, then it give rise to a S−1A-
module homomorphism S−1u : S−1M → S−1N , namely S−1u map m/s to
u(m)/s. It’s a routine to check it’s well-defined.
Proposition 3.3.1. The operation S−1 is exact.

Proof. For an exact sequenceM ′ f−→M
g−→M ′′, we need to show S−1M ′ S

−1f−→
S−1M

S−1g−→ S−1M ′′ is also exact. It’s clear S−1g ◦ S−1f = 0, since S−1g ◦
S−1f = S−1(g ◦ f) = S−1(0) = 0. Conversely, for m/s ∈ kerS−1g, then
g(m)/s = 0 ∈ S−1M ′′, so there exists t ∈ S such that tg(m) = 0 in M ′′,
that is tm ∈ ker g = im f . So there exists m′ ∈ M ′ such that f(m′) = tm.
So we have

m

s
=
tm

st
=
f(m′)

st
= S−1f(

m′

st
)
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This completes the proof. □
Corollary 3.3.1. Formation of localization commutes with formation of
finite sums, finite intersections and quotients. To be explicit, if N,P are
submodules of an A-module M , then
(1) S−1(N + P ) = S−1(N) + S−1(P )
(2) S−1(N ∩ P ) = S−1(N) ∩ S−1(P )
(3) the S−1A-module S−1(M/N) and S−1(M)/S−1(N) are isomorphic.

Proof. For (1) it’s clear. For (2). If y/s = z/t where y ∈ N, z ∈ P, s, t ∈ S,
then there exists u ∈ S such that u(ty − sz) = 0, hence w = uty = usz ∈
N ∩ P and therefore y/s = w/stu ∈ S−1(N ∩ P ). Thus S−1N ∩ S−1P ⊆
S−1(N ∩ P ), and the reverse inclusion is obvious.

For (3). Apply S−1 to the exact sequence 0 → N → M → M/N → 0 to
conclude. □
Proposition 3.3.2. Let M be an A-module. Then S−1A-modules S−1M
and S−1A⊗A M are isomorphic.

Proof. Consider the S−1A-bilinear mapping
S−1A×M → S−1M

(a/s,m) 7→ am/s

then it induces an S−1A-module homomorphism f : S−1A⊗A M → S−1M .
It’s clear f is surjective. Let

∑
i(ai/si)⊗mi be any element of S−1A⊗M .

If s =
∏

i si ∈ S, ti =
∏

i ̸=j sj , then∑
i

ai
si

⊗mi =
∑
i

aiti
s

⊗mi =
∑
i

1

s
⊗ aitim =

1

s
⊗
∑
i

aitimi

So every element of S−1A⊗M is of form (1/s)⊗m. Suppose f((1/s)⊗m) =
0. Then m/s = 0, hence tm = 0 for some t ∈ S. Therefore,

1

s
⊗m =

t

st
⊗m =

1

st
⊗ tm =

1

st
⊗ 0 = 0

□
Corollary 3.3.2. S−1A is a flat A-module.

Proof. For any exact sequence of A-module 0 →M ′ →M , we need to show
0 → S−1A⊗A M

′ → S−1A⊗A M

is exact. But this is isomorphic to
0 → S−1M ′ → S−1M

use the fact operation S−1 is exact to conclude. □
Proposition 3.3.3. If M,N are A-modules, there is a unique isomorphism
of S−1A-modules f : S−1M ⊗S−1A S

−1N → S−1(M ⊗A N) such that
f((m/s)⊗ (n/t)) = (m⊗ n)/st
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In particular, if p is any prime ideal, then
Mp ⊗Ap Np

∼= (M ⊗A N)p

Proof. Note that
S−1M ⊗S−1A S

−1N ∼= (S−1A⊗A M)⊗S−1A (S−1A⊗A N)

= (M ⊗A S
−1A)⊗S−1A (S−1A⊗A N)

=M ⊗A (S−1A⊗S−1A (S−1A⊗A N))

=M ⊗A (S−1A⊗A N)

= S−1A⊗A (M ⊗A N)

= S−1(M ⊗A N)

□

3.4. Local properties. A property P of a ring A or of an A-module M is
said to be a local property if the following is true: A or M has P if and only
if Ap or Mp has P for each prime ideal p of A.

Proposition 3.4.1. Let M be an A-module. Then the following statements
are equivalent.
(1) M = 0.
(2) Mp = 0 for all prime ideals p of A.
(3) Mm = 0 for all maximal ideals m of A.

Proof. It’s clear (1) to (2) to (3). For (3) to (1). If M 6= 0, take x ∈M as a
non-zero element of M , and let a = Ann(x). a is an ideal which is contained
in a maximal ideal m. Consider x/1 ∈ Mm. Since Mm = 0 thus x/1 = 0,
that is x is killed by some element of A \m, but this is impossible. □

Proposition 3.4.2. Let φ : M → N be an A-module homomorphism. Then
the following statements are equivalent.
(1) φ is injective.
(2) φp : Mp → Np is injective for each prime ideal p.
(3) φm : Mm → Nm is injective for each maximal ideal m.

Proof. (1) to (2) is clear, since localization is an exact functor. (2) to (3) is
also clear.

For (3) to (1). Let M ′ = kerφ, then 0 → M ′ → M → N is exact, hence
0 → M ′

m → Mm → Nm is exact and M ′
m
∼= kerφm = 0 since φm is injective.

Thus M ′ = 0 by Proposition 3.4.1. □

Proposition 3.4.3. For any A-module M , the following statements are
equivalent:
(1) M is a flat A-module.
(2) Mp is a flat Ap-module for each prime ideal p.
(3) Mm is a flat Am-module for each maximal ideal m.
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Proof. For (1) to (2). Note that Mp
∼= Ap ⊗A M and M is a flat A-module,

thus Mp is a flat Ap-module.
(2) to (3) is clear. For (3) to (1). For any exact sequence of A-module

0 → N → P , we need to show 0 → N ⊗M → P ⊗M is exact. It suffices to
show

0 → (N ⊗M)m → (P ⊗M)m
is exact for all maximal ideal m. Note that localization commutes with
tensor product, that is above sequence is isomorphic to

0 → Nm ⊗Am Mm → Pm ⊗Am Mm

It’s exact since Mm is a flat Am-module. □
3.5. Operations which commute with localization. Here we give a
summary for operations which commute with localization:
(1) Finite sum.
(2) Product.
(3) Intersection.
(4) Quotient.
(5) Radical.
(6) Tensor.
(7) Annihilator.

3.6. Part of solutions of Chapter 3.
Exercise 3.6.1. Let S be a multiplicative closed subset of a ring A, and
let M be a finitely generated A-module. Prove that S−1M = 0 if and only
if there exists s ∈ S such that sM = 0.
Proof. If S−1M = 0, then x/1 = 0 for all x ∈ M . Let {x1, . . . , xn} denote
the set of generators of M . So for each xi we have a si such that sixi = 0,
then s =

∏n
i=1 si is such that sM = 0. Converse is clear. □

Exercise 3.6.2. Let a be an ideal of a ring A, and let S = 1+a. Show that
S−1a is contained in the Jacobson radical of S−1A.
Proof. It suffices to show for every maximal ideal m of S−1A, we have S−1a ⊆
m. Note that every ideal of S−1A is an extended ideal, thus there exists an
ideal b of A such that S−1b = m. Furthermore, b ∩ (1 + a) = ∅, which
implies (a+ b)∩ (1+ a) = 0. Thus S−1a+S−1b 6= (1) and it contains S−1b.
By maximality of S−1b we have S−1a ⊆ m. This completes the proof. □
Remark 3.6.1. Now let’s show we can derive Corollary 2.2.1 from Nakayama’s
lemma: If M is a finitely generated A-module and a is an ideal of A such
that aM =M . Let S = 1 + a and note that

S−1M = S−1(aM) = (S−1a)(S−1M)

Since S−1a is contained in Jacobson radical, so Nakayama’s lemma implies
S−1M = 0. By Exercise 3.5.1, there exists x = 1+a ∈ S such that xM = 0.
In this case, x = 1 + a ≡ 1 (mod a) as desired.
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Exercise 3.6.3. Let A be a ring, let S and T be two multiplicative closed
subsets of A, and let U be the image of T in S−1A. Show that the rings
(ST )−1A and U−1

(
S−1A

)
are isomorphic.

Proof. It suffices to show U−1(S−1A) is also the localization of A with re-
spect to ST , and use the fact localization is unique. Take g : A → B such
that g(st) is a unit for all s ∈ S, t ∈ T . Consider the following commutative
diagram

A S−1A U−1(S−1A)

B

g

fS fU

h1

h2

h1 is induced by the fact g(s) is unit for all s ∈ S. Furthermore, h1(t) is
unit in B for all t ∈ U , since t = fS(t) for some t ∈ T and h1 ◦ fS = g, so
it induces h2. Note that h2 ◦ fU ◦ fS = g, which implies that U−1(S−1A) is
the localization of A with respect to ST . □

Exercise 3.6.4. Let f : A → B be a homomorphism of rings and let S be
a multiplicative closed subset of A. Let T = f(S). Show that S−1B and
T−1B are isomorphic as S−1A-modules.

Proof. It’s clearly S−1B is a S−1A-module, and the S−1A-module structure
on T−1B is given by a/s · b := f(a) · b/f(s). Consider the following S−1A-
module morphism:

φ : S−1B → T−1B

b/s 7→ b/f(s)

It’s well-defined, since for b/s = b′/s′, there exists u ∈ S such that (bs′ −
b′s)u = 0, thus f((bs′ − b′s)u) = (bf(s′)− b′f(s))f(u) = 0, that is b/f(s) =
b′/f(s′) in T−1B.

It’s clearly surjective. For injectivity: If φ(b/s) = 0, then there exists
f(s′) ∈ T such that f(s′)b = 0. But if we want to show b/s = 0, we need
to find s′ ∈ S such that s′ · b = 0, and that’s exactly f(s′)b = 0. So φ is an
isomorphism. □

Exercise 3.6.5. Let A be a ring. Suppose that, for each prime ideal p, the
local ring Ap has no nilpotent element 6= 0. Show that A has no nilpotent
element 6= 0. If each Ap is an integral domain, is A necessarily an integral
domain?

Proof. That’s to show nilpotence is a local property: It suffices to show
nilradical N of A is zero, note that (N)p is the nilradical of Ap. If for all
prime ideal p we have Ap contains no nilpotent element, thus (N)p = 0 for
all prime ideals p, which implies N = 0.
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However, integral is not a local property. Consider Z6, it’s clearly not a
domain. The prime ideals of it are

p = Z3

q = Z2

Now let’s see its localization at p: Since it’s a local ring, it suffices to consider
it’s maximal ideal, that’s the extension of p

p(Z6)p = {r/s | r ∈ p, s 6∈ p}

= {0
1
,
2

1
,
4

1
,
0

3
,
2

3
,
4

3
,
0

5
,
2

5
,
4

5
}

However, r1/s1 = r2/s2 if and only if there is u 6∈ p such that u(r1s2−r2s1) =
0. Thus 2/1 = 0/1 since 3(2×1−0) = 0. In fact, after simple computations
we can see p(Z6)p = 0. That’s it’s a field, definitely a domain. □

Exercise 3.6.6. Let A be a ring 6= 0 and let Σ be the set of all multiplicative
closed subsets S of A such that 0 6∈ S. Show that Σ has maximal elements,
and that S ∈ Σ is maximal if and only if A− S is a minimal prime ideal of
A.

Proof. By Zorn’s lemma it’s easy to see it has a maximal element. Now
let’s see S is maximal if and only if A − S is a minimal prime ideal: Note
that for a general multiplicative closed subset, the complement of it may not
be a prime ideal. However, for a maximal multiplicative closed subset, the
complement of it must be a prime ideal: For a multiplicative closed subset
S, and p = A− S.
(1) To see a + b ∈ p for any a, b ∈ p: It suffices to show a + b ∈ S implies

either a ∈ S or b ∈ S. If a + b ∈ S, consider the multiplicative sets
A = S(an)n≥0 and B = S(bn)n≥0. If 0 ∈ A ∩ B, then there exists
s1, s2 ∈ S and n,m ≥ 0 such that

s1a
n = s2b

m = 0

Then we have
0 = s1s2(a+ b)n+m ∈ S

A contradiction. Therefore, Without lose of generality we may assume
0 6∈ S(an)n≥0. By maximality of S, this implies S(an)n≥0 = S and so
that a ∈ S.

(2) To see ra ∈ p for any r ∈ A, a ∈ p: Its contrapositive is ra ∈ S for some
r ∈ A implies a ∈ S. Similarly if 0 ∈ S(an)n≥0 then there exists s1 ∈ S
and n ≥ 0 such that s1an = 0. Then

0 = s1r
nan ∈ S

A contradiction. Therefore again by maximality of S we have a ∈ S.
(3) p is prime is clear.
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Thus for a maximal multiplicative closed subset S, p = A − S must be a
prime ideal, and it must be minimal, otherwise for p′ ⊆ p, A−p′ will contain
S.

On the other hand: assume p = A− S is a minimal prime ideal, and it’s
not maximal. Then S must be contained in some maximal multiplicative
closed subset S′, note that S′ = A − p′ for some minimal prime ideal, but
S ⊆ S′ implies p′ ⊆ p, a contradiction to the minimality of p. □

Exercise 3.6.7. A multiplicative closed subset S of a ring A is said to be
saturated if xy ∈ S if and only if x ∈ S and y ∈ S. Prove that
(1) S is saturated if and only if A− S is a union of prime ideals.
(2) If S is any multiplicative closed subset of A, there is a unique smallest

saturated multiplicative closed subset S containing S, and that S is the
complement in A of the union of the prime ideals which do not meet S.
(S is called the saturation of S.)

(3) If S = 1 + a, where a is an ideal of A, find S.

Proof. For (1). If p is a union of prime ideals, then it’s clear S is saturated.
Conversely, if S is saturated, then if x 6∈ S, then rx 6∈ S for all r ∈ A, which
implies (x) ∩ S = ∅. So S−1(x) 6= (1), and it is contained in some prime
ideal q. Then

(x) ⊆ (S−1(x))c ⊆ qc

Furthermore, qc ∩S = ∅, thus (x) is contained in a prime qc ⊆ A−S. That
is every element of A− S lies in some prime ideal, thus A− S is a union of
prime ideals.

For (2). If p is the union of all prime ideals which do not meet S, then
S = A − p is a saturated multiplicative closed subset containing S. If S is
not minimal, then the minimal one S′ must be contained in S, then consider
p′ = A−S

′, clear p ⊆ p′. Furthermore, p′ is the union of prime ideals which
do not meet S, thus p do not contain all, a contradiction.

For (3). If S = 1 + a. □

Exercise 3.6.8. Let S, T be multiplicative closed subsets of A, such that
S ⊆ T . Let φ : S−1A → T−1A be the homomorphism which maps each
a/x ∈ S−1A to a/x considered as an element of T−1A. Show that the
following statements are equivalent:
(1) φ is bijective.
(2) For each t ∈ T, t/1 is a unit in S−1A.
(3) For each t ∈ T there exists x ∈ A such that xt ∈ S.
(4) T is contained in the saturation of S.
(5) Every prime ideal which meets T also meets S.

Proof. For (1) to (2). Since φ is surjective, then there exists a/s ∈ S−1A
such that φ(a/s) = 1/t in T−1A. Consider φ(a/s · t/1) = 1/1 ∈ T−1A, by
injectivity of φ we have a/s is the inverse of t/1.
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For (2) to (3). If t/1 is a unit in S−1A, use a/s to denote its inverse.
Then at/s = 1/1 in S−1A implies there exists u ∈ S such that u(at−s) = 0.
Let x = au, we have xt ∈ S.

For (3) to (1). For injectivity: if a/s = 0 in T−1A, then there exists
t ∈ T such that at = 0. But there exists x ∈ A such that xt ∈ S, thus
axt = 0 implies a/s = 0 in S−1A. For surjectivity, for a/t ∈ T−1A, since
there exists x ∈ A such that xt ∈ S. Note that a/t = ax/xt ∈ T−1A, thus
φ(ax/xt) = a/t as desired.

For (3) to (4). For t ∈ T there exists x ∈ A such that xt ∈ S ⊂ S, then
t ∈ S since S is saturated.

For (4) to (5). If there exists a prime ideal which meets T but not meets
S, then T can not be contained in S, since S is the complement of the union
of all prime ideals which do not meet S.

For (5) to (3). If there exists a t ∈ T such that there is no x ∈ A
satisfying xt ∈ S, then (t) ∩ S = ∅. Then consider S−1(t) ∈ S−1A, it must
be contained in some prime ideal p. Then (t) ⊆ pc, that is (t) is contained
in a prime ideal which does not meet S, a contradiction. □

Exercise 3.6.9. The set S0 of all non-zero-divisors in A is a saturated
multiplicative closed subset of A. Hence the set D of zero-divisors in A is a
union of prime ideals. Show that every minimal prime ideal of A is contained
in D.

The ring S−1
0 A is called the total ring of fractions of A. Prove that

(1) S0 is the largest multiplicative closed subset of A for which the homo-
morphism A→ S−1

0 A is injective.
(2) Every element in S−1

0 A is either a zero-divisor or a unit.
(3) Every ring in which every non-unit is a zero-divisor is equal to its total

ring of fractions (i.e., A→ S−1
0 A is bijective).

Proof. For any minimal prime ideal p, S = A−p is a maximal multiplicative
closed subset. If we want to show every minimal prime ideal of A is contained
in D, it suffices to show S0 is contained in every maximal multiplicative
closed subset. Indeed, if S0 6⊆ S for some maximal multiplicative closed
subset S which does not contain 0, then SS0 must contain 0, since it strictly
contains S. But this implies there exist s0 ∈ S0, s ∈ S such that s0s = 0, a
contradiction to the definition of S0.

For (1). It’s clear f : A → S−1
0 A is injective, since by Remark 3.1.5 we

know the kernel of f is zero divisor of A. Furthermore, S−1
0 A is maximal.

Indeed, assume S0 ⊂ S for some S, then there exists a zero-divisor a of A
in S, then f : A→ S−1A maps u into zero, not injective.

For (2). Note that if a/s = 0 ∈ S−1
0 A is a zero-divisor, then there exists

u ∈ S0 such that au = 0, but u is a non-zero-divisor, then a = 0. So
a/s = 0 ∈ S−1

0 A if and only if a = 0, thus a/s ∈ S−1
0 A is a zero-divisor if

and only if a is. So if a/s is not a zero-divisor, thus a is not a zero-divisor,
that is a ∈ S0, thus a/s is a unit.
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For (3). Note that if in ring A every non-unit is a zero-divisor, then S0,
the set of all non-zero-divisors is exactly the set of all units. Thus A→ S−1

0 A
clearly a bijective, since localization is the most economic operation to make
all elements in S0 to be unit. □
Exercise 3.6.10. Let A be a ring.
(1) If A is absolutely flat and S is any multiplicative closed subset of A,

then S−1A is absolutely flat.
(2) A is absolutely flat ⇔ Am is a field for each maximal ideal m.

Proof. For (1). Note that a ring A is absolutely flat if and only if every
principal ideal is idempotent. For x/s ∈ S−1A, then x ∈ A implies there
exists a ∈ A such that x = ax2, since A is absolutely flat. Thus

x

s
=
ax2

s
=
as

1
(
x

s
)2

thus S−1A is absolutely flat.
For (2). If A is absolutely flat, then by (1) we know Am is absolutely flat

for all maximal ideal m, thus by (4) of Exercise 2.8.28, Am is a field since
it’s a local ring. Conversely, we need to show every A-module M , it’s flat:
That is to show for any exact sequence 0 → B′ → B of A-modules, we have
the following exact sequence

0 → B′ ⊗A M → B ⊗A M

Since exactness is a local property, it suffices to show for any maximal ideal
m we have the following exact sequence

0 → B′
m ⊗Am Mm → Bm ⊗Am Mm

But this is clearly exact, since tensor product of vector space is always
exact. □
Exercise 3.6.11. Let A be a ring. Prove that the following statements are
equivalent.
(1) A/N is absolutely flat.
(2) Every prime ideal of A is maximal.
(3) SpecA is a T1-space.
(4) SpecA is Hausdorff.
If these conditions are satisfied, show that SpecA is compact and totally
disconnected.

Proof. For (1) to (4). Note that SpecA = Spec(A/N), thus it suffices to
show Spec(A/N) is Hausdorff. In general, for an absolutely flat ring A′,
SpecA′ is Hausdorff. Indeed, for any f ∈ A′, we have f(1 − af) = 0
for some a ∈ A′, which implies Xf

∐
X1−af = SpecA′. For any distinct

points px, py ∈ SpecA′, there must exist some Xf such that Xf , X1−af must
separate px and py, otherwise px ∈ {py} and py ∈ {px}, which implies
px = py, a contradiction.
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For (4) to (3) is clear.
For (3) to (2). By (1) of Exercise 1.8.19, we have the subset consisting of

a Single point {px} is closed if and only if px is maximal.
For (2) to (1). If every prime ideal of A is maximal, A′ = A/N is a

ring without nilpotent element such that every prime ideal is maximal. Fix
x ∈ A′ and consider S = {xn(1 + ax) | n ≥ 0, a ∈ A′}. If 0 6∈ S, S−1A is
not a zero ring thus we can find some prime ideal of it. Then there exists
a prime ideal p such that p ∩ S = ∅. But either x or 1− ax in p since p is
maximal, a contradiction. Thus 0 ∈ S, so there exists n ≥ 0, a ∈ A′ such
that

xn(1− ax) = 0

which implies x(1 − ax) is nilpotent, thus it’s zero. So we have (x) = (x2),
that is A′ is absolutely flat. □
Exercise 3.6.12. Let A be an integral domain and M an A-module. An
element x ∈ M is a torsion element of M if Ann (x) 6= 0, that is if x is
killed by some non-zero element of A. Show that the torsion elements of M
form a submodule of M . This submodule is called the torsion submodule
of M and is denoted by T (M). If T (M) = 0, the module M is said to be
torsion-free. Show that
(1) If M is any A-module, then M/T (M) is torsion-free.
(2) If f : M → N is a module homomorphism, then f(T (M)) ⊆ T (N).
(3) If 0 → M ′ f−→ M

g−→ M ′′ is an exact sequence, then the sequence
0 → T (M ′)

f−→ T (M)
g−→ T (M ′′) is exact.

(4) If M is any A-module, then T (M) is the kernel of the mapping x 7→ 1⊗x
of M into K ⊗A M , where K is the field of fractions of A.

Proof. It’s clear that all torsion elements form a submodule module of M .
For (1). We need to show T (M/T (M)) = 0: If x + T (M) ∈ M/T (M) is
a torsion element, so there exists a1 ∈ A such that a1x ∈ T (M), so there
exists a2 such that a2a1x = 0, that is x ∈ T (M).

For (2). Take x ∈ T (M), then there exists a ∈ A such that ax = 0, it’s
clear to see f(a)f(x) = 0, so f(x) ∈ T (N), which implies f(T (M)) ⊆ T (N).

For (3). It’s clear f : T (M ′) → T (M) is still injective, since for x ∈ T (M ′)
we can regard it as an element in M ′ and f(x) = 0 implies x = 0. By the
same method, we can see im f ⊆ ker g. Now it suffices to show ker g ⊆ im f .
Take x ∈ T (M) such that g(x) = 0, then there exists y ∈ M ′ such that
f(y) = x, then it suffices to show y ∈ T (M ′). Indeed, note that there exists
a ∈ A such that ax = 0, so f(ay) = 0, then ay = 0 since f is injective.

For (4). It’s clear T (M) lies in the kernel of this mapping. Conversely,
note that K ⊗A M ∼= (A \ {0})−1M , this isomorphism is defined by a/s ⊗
m 7→ am/s. So the kernel of M → K ⊗A M is the same as the kernel of
M → K⊗AM → (A \ {0})−1M . The latter mapping is given by m 7→ m/1.
So m/1 = 0 implies there exists a ∈ A \ {0} such that am = 0, that is
m ∈ T (M). □
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Exercise 3.6.13. Let S be a multiplicative closed subset of an integral
domain A. In the notation of Exercise 3.5.12, show that T (S−1M) =
S−1(T (M)). Deduce that the following statements are equivalent.
(1) M is torsion-free.
(2) Mp is torsion-free for all prime ideal p.
(3) Mm is torsion-free for all maximal ideals m.

Proof. For x ∈ T (M), there exists a ∈ A such that ax = 0, so x/s ∈
T (S−1M since a/1 ·x/s = 0, that is S−1(T (M)) ⊆ T (S−1M). Conversely, if
x/s ∈ T (S−1M), there exists a/s′ such that a/s′ ·x/s = 0, that is there exists
u ∈ S such that uax = 0, that is x ∈ T (M). Thus T (S−1M) = S−1(T (M)).

For (1) to (2). It’s clear since T (Mp) = T (M)p = 0. For (2) to (3).
Trivial.

For (3) to (1). It suffices to show T (M)m for all maximal ideal m, and
that’s clear. □

Exercise 3.6.14. Let M be an A-module and a an ideal of A. Suppose
that Mm = 0 for all maximal ideals m ⊇ a. Prove that M = aM .

Proof. It suffices to show A/a-module M/aM = 0. But

(M/a)m ∼=Mm/(aM)m = 0

This completes the proof. □

Exercise 3.6.15. Let A be a ring, and let F be the A-module An. Show
that every set of n generators of F is a basis of F . Deduce that every set of
generators of F has at least n elements.

Proof. Let x1, . . . , xn be a set of generators and e1, . . . , en the canonical
basis of F . Define φ : F → F by φ(ei) = xi. Then φ is surjective and we
have to prove that it is an isomorphism. Since injectivity is a local property
we may assume that A is a local ring. Let N be the kernel of φ and let
k = A/m be the residue field of A. Since field is always flat, the exact
sequence 0 → N → F

ϕ−→ F → 0 gives an exact sequence

0 → k ⊗N → k ⊗ F
1⊗ϕ−→ k ⊗ F → 0

Now k⊗F = kn is an n-dimensional vector space over k. 1⊗φ is surjective,
hence bijective, hence k ⊗ N = N/mN = 0. Also N is finitely generated,
by Chapter 2, Exercise 2.8.12, hence N = 0 by Nakayama’s lemma, since
N = mN and for a local ring m = R. Hence φ is an isomorphism.

Assume {x1, . . . , xk}, k < n is a set of generators of F , then add {ek+1, . . . , en}
into them we still obtain a set of generators, with n elements. Then we know
that {

φ(ei) = xi, 1 ≤ i ≤ k

φ(ei) = ei, k < i ≤ n
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is an isomorphism. Claim {x1, . . . , xk} can not generate ek+1. Indeed, if∑k
i=1 aixi = ek+1, then

φ(
k∑

i=1

aiei) =
k∑

i=1

aixi = ek+1 = φ(ek+1)

But φ is injective, thus
∑k

i=1 aiei = ek+1, a contradiction. □

Exercise 3.6.16. Let B be a flat A-algebra. Then the following conditions
are equivalent:
(1) aec = a for all ideals a of A.
(2) SpecB → SpecA is surjective.
(3) For every maximal ideal m of A we have me 6= (1).
(4) If M is any non-zero A-module, then MB 6= 0.
(5) For every A-moduleM , the mapping x 7→ 1⊗x ofM intoMB is injective.
In this case, B is called faithfully flat over A.

Proof. For (1) to (2). It’s clear since for any ideal a of A, we have a is the
contraction of ae, thus SpecB → SpecA is surjective.

For (2) to (3). If there exists a maximal ideal m of A such that me = (1),
consider bc = m since surjectivity. Then

(1) = bce ⊆ b

a contradiction.
For (3) to (4). Let x ∈ M be a non-zero element, and consider M ′ =

Ax. Note that we have an inclusion M ′ ↪→ M and B is flat over A, then
M ′ ⊗A B → M ⊗A B is also injective, that is M ′

B ↪→ MB. So it suffices
to show M ′

B 6= 0. If we write M ′ ∼= A/a for some ideal a, then M ′
B

∼=
A/a⊗A B ∼= B/aB = B/ae. Since a is contained in some maximal ideal m,
thus ac ⊆ mc 6= (1), which implies M ′

B 6= 0.
For (4) to (5). Let M ′ be the kernel of M →MB. Since B is flat over A,

then following sequence is exact

0 →M ′
B →MB → (MB)B

But Exercise 2.8.13 implies MB → (MB)B is injective, thus M ′
B = 0, so we

have M ′ = 0, as desired.
For (5) to (1). Consider M = A/a, then we the following mapping is

injective A/a → B/ae, which implies aec = a. □

Exercise 3.6.17. Let A f→ B
g→ C be ring homomorphisms. If g ◦ f is flat

and g is faithfully flat, then f is flat.

Proof. It suffices to check for any exact sequence of A-modules 0 → M ′ →
M , we have the following sequence is exact

0 →M ′
B →MB
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Note that we have (M ′
B)C =M ′

C and (MB)C =MC . Indeed, (M ⊗A B)⊗B

C =M ⊗A (B ⊗B C) = M ⊗A C. So we have the two columns of following
commutative diagram is exact since C is faithfully flat over C:

0 0

0 M ′
B MB

0 M ′
C MC

Furthermore the second row is also exact since C is flat over A, it’s easy to
check the first row is exact using commutativity of diagram. □

Exercise 3.6.18. Let f : A→ B be a flat homomorphism of rings, let q be
a prime ideal of B and let p = qc. Then f∗ : SpecBq → SpecAp is surjective.

Proof. Note that flat is a local property thus Bp is flat over Ap. If we use S
to denote A− p and T to denote B − q, we have

Bq = T−1B = U−1(f(S))−1B = U−1Bp

where U is the image of T in f(S)−1B. Thus Bq is flat over Bp since it’s a
localization of Bp. So we have Bq is flat over Ap. Now it suffices to show it’s
faithfully flat. Consider the extension of only maximal ideal pAp, it must lie
in the only maximal ideal of Bp and thus 6= (1). By (3) of Exercise 3.5.16
we know Bq is faithfully flat over Ap. □

Exercise 3.6.19. Let A be a ring, M an A-module. The support of M is
defined to be the set supp(M) of prime ideals p of A such that Mp 6= 0.
Prove the following results:
(1) M 6= 0 if and only if supp(M) 6= ∅.
(2) V (a) = supp(A/a).
(3) If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then supp(M) =

Supp (M ′) ∪ supp(M ′′).
(4) If M =

∑
Mi, then supp(M) =

⋃
supp (Mi).

(5) If M is finitely generated, then supp(M) = V (Ann(M)) (and is therefore
a closed subset of SpecA).

(6) If M,N are finitely generated, then supp (M ⊗A N) = supp(M)∩ Supp
(N).

(7) If M is finitely generated and a is an ideal of A, then supp(M/aM) =
V (a+Ann(M)).

(8) If f : A → B is a ring homomorphism and M is a finitely generated A
module, then supp (B ⊗A M) = f∗−1(supp(M)).

Proof. For (1). It’s clear since M = 0 if and only if Mp = 0 for all prime
ideals p.
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For (2). For any prime ideal p ∈ V (a), we have
(A/a)p = Ap/aAp = Ap/a

e

Note that ae ⊆ pe ⊂ (1), thus A/ae 6= 0, that is V (a) ⊆ supp(A/a). Con-
versely, if a prime ideal p of A such that Ap/a

e 6= 0, so ae is contained in
some (also the unique one) prime ideal ae ⊆ pe. So a ⊆ aec ⊆ pec = p.

For (3). Since localization is an exact functor, thus for a prime ideal p,
we have the following exact sequence

0 →M ′
p →Mp →M ′′

p → 0

It’s clear to see desired result from this exact sequence.
For (4). Note that localization commutes with summation, that is for any

prime ideal p,
Mp = (

∑
Mi)p =

∑
(Mi)p

Thus Mp 6= 0 if and only if there exists some i such that (Mi)p.
For (5). Note that for a prime ideal p, we have Mp = 0 if and only if there

exists s ∈ A− p such that sM = 0, i.e. Ann(M) ∩A− p 6= ∅. So Mp 6= 0 if
and only if Ann(M) ∩A− p = ∅, which is equivalent to Ann(M) ⊆ p.

For (6). Note that for any prime ideal p
(M ⊗A N)p =Mp ⊗Ap Np

Thus (M ⊗A N)p 6= 0 if and only if both Mp and Np are not zero.
For (7). Note that

Ann(M/aM) = a+Ann(M)

and use (5).
For (8). □

Exercise 3.6.20. Let f : A → B be a ring homomorphism, f∗ : SpecB →
SpecA the associated mapping. Show that
(1) Every prime ideal of A is a contracted ideal ⇔ f∗ is surjective.
(2) Every prime ideal of B is an extended ideal ⇒ f∗ is injective.
Is the converse of (2) true?

Proof. For (1). It’s just (1) and (2) of Exercise 3.5.16.
For (2). For every prime ideal q of B, write it as q = pe. Then if qc = 0,

then
p ⊆ pec = qc = 0

then q is the extension of zero divisor, thus a zero divisor. The converse of
(2) may fail. For example: For a field k and consider k[ε] := k[x]/(x2), there
is a natural inclusion k → k[ε]. Claim that k[ε] is a local ring with only one
prime (also maximal) ideal (x). Indeed, for a + bx ∈ k[ε], if a = 0, it’s not
a unit clearly. if a 6= 0, thus

(a+ bx)(a−1 − a−2bx) = 1
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which implies a+bx is a unit. Thus any element not in (x) is a unit thus (x)
is a maximal ideal and k[ε] is a local ring. Furthermore, since (0) is the only
ideal contained in (x) and it’s not prime. So k[ε] is a local ring with only
one prime ideal. So Spec(k[ε]) → Spec k is injective. In fact, it’s bijective.
But (x) is not an extended ideal, since there are only two ideals of k, that
is (1) and (0). Neither of them extend to (x). □

Exercise 3.6.21. This Exercise illustrate the fiber of a morphism between
affine schemes.

(1) Let A be a ring, S a multiplicative closed subset of A, and φ : A→ S−1A
the canonical homomorphism. Show that φ∗ : Spec

(
S−1A

)
→ SpecA is

a homeomorphism of Spec
(
S−1A

)
onto its image in X = SpecA. Let

this image be denoted by S−1X. In particular, if f ∈ A, the image of
Spec (Af ) in X is the basic open set Xf .

(2) Let f : A → B be a ring homomorphism. Let X = SpecA and Y =
SpecB, and let f∗ : Y → X be the mapping associated with f . Identify-
ing Spec

(
S−1A

)
with its canonical image S−1X inX, and Spec(S−1B) :=

Spec(f(S)−1B) with its canonical image S−1Y in Y , show that S−1f∗ :
Spec

(
S−1B

)
→ Spec

(
S−1A

)
is the restriction of f∗ to S−1Y , and that

S−1Y = f∗−1
(
S−1X

)
(3) Let a be an ideal of A and let b = ae be its extension in B. Let

f : A/a → B/b be the homomorphism induced by f . If Spec (A/a) is
identified with its canonical image V (a) in X, and Spec(B/b) with its
image V (b) in Y , show that f∗ is the restriction of f∗ to V (b).

(4) Let p be a prime ideal of A. Take S = A − p in (2) and then reduce
modS−1p as in (3). Deduce that the subspace f∗−1(p) of Y is naturally
homeomorphic to Spec(Bp/pBp) = Spec(k(p) ⊗A B), where k(p) is the
residue field of the local ring Ap. Spec (k(p)⊗A B) is called the fiber of
f∗ over p.

Proof. For (1). Note that every prime ideal of S−1A is an extended ideal,
thus by (2) of Exercise 3.5.20, we have φ∗ : Spec(S−1A) → SpecA is injec-
tive, thus it’s a bijective and continuous map from Spec(S−1A) to its image.
To see it’s closed, just note that

φ∗(V (ae)) = V (a) ∩ imφ∗

Indeed, take a prime ideal q of S−1A such that it contains ae, we have
qc ⊇ aec ⊇ a, thus φ∗(V (ae)) ⊆ V (a)∩ imφ∗. Conversely, take some element
of V (a)∩ imφ∗, that is qc ⊇ a where q is a prime ideal of S−1A. Recall that
qc ⊇ a is equivalent to q ⊇ ae, so qc ∈ φ∗(V (ae)). In particular, SpecAf

consists of prime ideals of A which do not contain f , and that’s exactly Xf .
For (2). We have the following commutative diagram



COMMUTATIVE ALGEBRA 61

A B

S−1A S−1B

f

ϕA ϕB

S−1f

Then by applying Spec we obtain the following commutative diagram

SpecA SpecB

Spec(S−1A) Spec(S−1B)

f∗

ϕ∗
A ϕ∗

B

S−1f∗

The commutativity of the diagram implies that S−1f∗ is the restriction of
f∗ on the image of φ∗B, that is S−1Y . Furthermore, f(S) ∩ q 6= ∅ if and
only if S ∩ f∗(q) = ∅. So

q ∈ S−1Y ⇐⇒ f∗(q) ∈ S−1X ⇐⇒ q ∈ f∗−1(S−1X)

That is S−1Y = f∗−1(S−1X). The proof of (3) is the same as (2).
For (4). It’s clear from the following diagram:

SpecA SpecB

Spec(Ap) Spec(Bp)

Spec(k(p)) Spec(Bp/pBp)

f∗

□

Exercise 3.6.22. Let A be a ring and p a prime ideal of A. Then the
canonical image of Spec(Ap) in SpecA is equal to the intersection of all the
open neighborhoods of p in SpecA.

Proof. The canonical image of Spec(Ap) in SpecA is the set of all prime
ideals q which are contained in p.

For any open basis Xf such that p ∈ Xf , then f 6∈ p, so f 6∈ q for those
q ⊆ p, which implies Spec(Af ) ⊆ Xf for all Xf such that p ∈ Xf . Thus
Spec(Ap) lies in the intersection of all open neighborhoods of p. Conversely, if
q lies in the intersection of all open neighborhoods of p, then p ∈ {q} = V (q),
thus q ⊆ p. □

Exercise 3.6.23 (structure sheaf of affine schemes). Let A be a ring, X =
SpecA and U be a basic open set in X.
(1) If U = Xf , show that the ring A(U) = Af depends only on U and not

on f .
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(2) Let U ′ = Xg be another basic open set such that U ′ ⊆ U . Show that
there is an equation of the form gn = uf for some integer n > 0 and some
u ∈ A, and use this to define a homomorphism ρ : A(U) → A(U ′) by
mapping a/fm to aum/gmn, which is called restriction homomorphisms.
Show that ρ depends only on U and U ′.

(3) If U = U ′, then ρ is the identity map.
(4) If U ⊇ U ′ ⊇ U ′′ are basic open sets in X, show that the diagram

A(U) A(U ′′)

A(U ′)

is commutative.
(5) Let x = p be a point of X. Show that

lim−→
x∈U

A(U) ∼= Ap

The assignment of the ring A(U) to each basic open set U of X, and the
restriction homomorphisms ρ, satisfying the conditions (3) and (4) above,
constitutes a presheaf of rings on the basis of open sets (Xf )f∈A. (5) says
that the stalk of this presheaf at x ∈ X is the corresponding local ring Ap.
Proof. For (1). If U = Xf = Xg, it suffices to show Af = Ag. Note that
Xf = Xg if and only if r(f) = r(g), so there exists a, b ∈ A and m,n ≥ 0
such that

f = agn, g = bfm

So f/1 is a unit in Ag, since
f

1

1

agn
= 1 ∈ Ag

Thus for any k ≥ 0, we have fk is a unit in Ag, so by universal property
of Af , there exists a homeomorphism φ : Af → Ag. Similarly there exists
ψ : Ag → Af . Note that localization is unique with respect to a unique
morphism, thus ψ ◦ φ is identity so is φ ◦ φ. So Af

∼= Ag, if Xf = Xg.
For (2). If Xg ⊆ Xf , thus V (r(f)) ⊆ V (r(g)), which implies f ∈ r(g). So

there exists n > 0 and u ∈ A such that gn = uf .
For (3). Take f = g and n = 1, u = 1, it’s clear ρ is identity.
For (4). If U = Xf , U

′ = Xg, U
′′ = Xh, and gn = uf, hk = vg, thus

hkn = vngn = vnuf . So
a

fm
7→ aum

gmn
7→ aumvmn

hkmn

This shows the diagram commutes.
For (5). For p ∈ Xf , that is f 6∈ p, so {fk}k≥0 ⊆ A − p, thus there is a

natural inclusion φu : A(U) = Af → Ap. So by universal property of direct
limit we have there is a mapping φ : lim−→A(U) → Ap, and it’s injective since
µU is injective for any U . To see φ is surjective: For any a/f ∈ Ap, we have
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p ∈ Xf = U , thus consider µU (a/f) ∈ lim−→A(U), it’s clear φ◦µU (a/f) = a/f
since φ ◦ µU = φU , and φU is natural inclusion. □

Exercise 3.6.24. Show that the presheaf of Exercise 3.5.23 has the following
property. Let (Ui)i∈I be a covering of X by basic open sets. For each i ∈ I
let si ∈ A (Ui) be such that, for each pair of indices i, j, the images of si
and sj in A (Ui ∩ Uj) are equal. Then there exists a unique s ∈ A(= A(X))
whose image in A (Ui) is si, for all i ∈ I. (This essentially implies that the
presheaf is a sheaf.)

Proof. Existence: Suppose there are Ui = Xfi that cover X, then there is a
finite linear combination

1 =

m∑
i=1

cifi

So (f1, . . . , fm) = (1). Note that Xf = Xfn for any n > 0, thus we have
the similar equation with fni replacing fi, with ci depending on n. Suppose
we have si ∈ Afi such that for each i, j the image of si, sj in Afifj coincide.
Represent si as ai/fni

i . For finite s1, . . . , sm, we may assume all ni are equal
to n. Then for each pair i, j we have

si|Afifj
− sj |Afifj

=
aif

n
i

(fifj)n
−

ajf
n
j

(fifj)n
= 0

In other words, there exists some power of fifj , denoted by (fifj)
l such that

aif
l
if

l+n
j = ajf

l
jf

n+l
i

Since si = aif
l
i/f

l+n
i in Afi and sj = ajf

l
j/f

l+n
j in Afj , this shows by

replacing aif li with ai and l + n with n, that for each of the finite number
of pairs 1 ≤ i, j ≤ m, we can choose the form si = ai/f

n
i with big enough n

such that fnj ai = fni aj . Then choose ci such that 1 =
∑
cif

n
i and consider

s =
m∑
i=1

ciai

Claim s/1 = ai/f
n
i in Afi . Indeed, note that

fni s =
m∑
j=1

cjf
n
i aj =

m∑
j=1

cjf
n
j ai = (

m∑
j=1

cjf
n
j )ai = ai

This shows existence.
Uniqueness. It suffices to show for if {Xfi}mi=1 covers X and s ∈ A such

that s/1 = 0 ∈ Afi for all i = 1, . . . ,m, then s = 0. Note that s/1 = 0 ∈ Afi
implies there exists ni such that fni

i s = 0, Without lose of generality we
may assume all ni are equal to n since there are only finitely many. Thus
fni s = 0 for all i = 1, . . . ,m. But there exists ci such that

∑m
i=1 cif

n
i = 1,
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which implies

s =

n∑
i=1

cif
n
i s = 0

□
Exercise 3.6.25. Let f : A → B, g : A → C be ring homomorphisms and
let h : A→ B⊗A C be defined by h(x) = f(x)⊗ g(x). Let X,Y, Z, T be the
prime spectra of A,B,C, B⊗AC respectively. Then h∗(T ) = f∗(Y )∩g∗(Z)

Proof. Let p ∈ X, and k = k(p) be the residue field at p. By Exercise 3.5.21,
the fiber of h∗−1(p) is the spectrum of (B⊗AC)⊗Ak ∼= (B⊗Ak)⊗k (C⊗Ak).
Hence p ∈ h∗(T ) if and only if (B ⊗A k) ⊗k (C ⊗A k) 6= 0 if and only
(B ⊗A k) 6= 0 and (C ⊗A k) 6= 0 if and only if p ∈ f∗(Y ) ∩ g∗(Z). □
Exercise 3.6.26. Let (Bα, gαβ) be a direct system of rings and B the direct
limit. For each α, let fα : A → Bα be a ring homomorphism such that
gαβ ◦ fα = fβ whenever α ⩽ β (the Bα form a direct system of A-algebras).
The fα induce f : A→ B. Show that

f∗(SpecB) =
⋂
α

f∗α(Spec(Bα)),

Proof. Let p ∈ Spec(A). Then f∗−1(p) is the spectrum of
B ⊗A k(p) ∼= lim−→(Bα ⊗A k(p))

since tensor products commute with direct limits. By Exercise 2.8.21 of
Chapter 2 it follows that f∗−1(p) = ∅ if and only if Bα⊗A k(p) = 0 for some
α, i.e., if and only if f∗−1

α (p) = ∅. This completes the proof. □
Exercise 3.6.27. Constructible topology
(1) Let fα : A→ Bα be any family of A-algebras and let f : A→ B be their

tensor product over A. Then

f∗(SpecB) =
⋂
α

f∗α∗ (Spec (Bα)) .

(2) Let fα : A → Bα be any finite family of A-algebras and let B =∏
αBα. Define f : A → B by f(x) = (fα(x)). Then f∗(SpecB) =⋃
α f

∗
α (Spec (Bα)).

(3) Hence the subsets of X = SpecA of the form f∗(SpecB), where f : A→
B is a ring homomorphism, satisfy the axioms for closed sets in a topo-
logical space. The associated topology is the constructible topology on
X. It is finer than the Zariski topology.

(4) Let XC denote the set X endowed with the constructible topology. Show
that XC is quasi-compact.

Proof. For (1). Recall the definition of tensor product of any family of A-
algebras Bα indexed by I in Exercise 2.8.23. It’s a direct limit of direct
system {BJ , iJJ ′} where J is a finite subset of I, iJJ ′ is natural inclusion
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if J ⊆ J ′. Use this direct system together with Exercise 3.5.25, 3.5.26 to
conclude.

For (2). Let p ∈ SpecA and k(p) is the residue field of p. Then f∗−1(p)
is the spectrum of

B ⊗A k(p) ∼=
∏
α

Bα ⊗A k(p)

isomorphism here holds since tensor product commutes with direct limit,
and product is a special direct limit. Thus B ⊗A k(p) 6= 0 if and only if
there exists some α such that Bα ⊗A k(p).

For (3). It suffices to show every closed subset in sense of Zariski is
closed in sense of constructible, and it’s clear, since any Zariski closed subset
takes the form V (a) for some ideal a of A, and that’s homeomorphic to
f∗(Spec(A/a)), where f : A→ A/a is natural projection.

For (4). Let {Uα}α∈I be an open cover ofX, that’s equivalent to
⋂

α∈I Cα =
∅, where Cα = X−Uα. Since Cα are closed, we may write Cα = f∗α(SpecBα),
where fα : A → Bα is some ring homomorphism. Note that

⋂
Cα is equal

to the spectrum of tensor product of Bα, this spectrum is empty implies
this tensor product is a zero ring. So by property of direct limit there exists
some finite subset J ⊆ I such that BJ = 0. If we write fJ : A→ BJ , then⋂

α∈J
Cα =

⋂
α∈J

f∗α(SpecBα) = f∗J (SpecBJ) = 0

This implies X with constructible topology is quasi-compact equipped. □
Exercise 3.6.28. Continuation of Exercise 3.5.27.
(1) For each g ∈ A, the set Xg is both open and closed in the constructible

topology.
(2) Let C ′ denote the smallest topology on X for which the sets Xg are

both open and closed, and let XC′ denote the set X endowed with this
topology. Show that XC′ is Hausdorff.

(3) Deduce that the identity mapping XC → XC′ is a homeomorphism.
Hence a subset E of X is of the form f∗(SpecB) for some f : A→ B if
and only if it is closed in the topology C ′.

(4) The topological space XC is compact, Hausdorff and totally discon-
nected.

Proof. For (1). It’s clear Xf is a open set of constructible topology, since
it’s a Zariski open set, and constructible topology is finer. It’s also a closed
subset of constructible topology, since Xf = f ∗ (SpecAf ) where f : A→ Af

is canonical mapping.
For (2). Let p, q be two distinct points of X. Without lose of generality

we may assume p 6⊆ q, so there exists f ∈ p such that f 6∈ q, then q ∈ Xf

and p ∈ X −Xf . But Xf is both closed and open, this completes the proof.
For (3). It’s clear identity mapping is bijective and continuous, since there

are more open sets in XC . To see it’s closed, just a trick of point topology:
For closed subset Z of XC , it’s compact since XC is quasi-compact, then
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f(Z) is compact in XC′ . However, compact subset of a Hausdorff space is
closed, this completes the proof.

For (4). We already know XC is quasi-compact, and XC′ is Hausdorff
and totally disconnected is clear. □
Exercise 3.6.29. Let f : A → B be a ring homomorphism. Show that
f∗ : SpecB → SpecA is a continuous closed mapping for the constructible
topology.

Proof. It’s clear to see f∗ is closed: For any closed subset g∗(SpecBα) of
SpecB, where g : B → Bα is ring homomorphism, we have f∗(g∗(SpecBα)) =
(g◦f)∗(SpecBα), where g◦f : A→ Bα is a ring homomorphism, so it’s closed
in SpecA.

To see f∗ is continuous, since we know constructible topology is the small-
est topology such that Xg is both open and closed, thus Xg is a topology ba-
sis of SpecA. Furthermore, f∗−1(Xg) = Xf(g), which is open in SpecB. □
Exercise 3.6.30. Show that the Zariski topology and the constructible
topology on SpecA are the same if and only if A/N is absolutely flat.

Proof. From Exercise 3.5.11, we know that A/N is absolutely flat if and only
if SpecA is Hausdorff. So it suffices to show SpecA is Hausdorff if and only
if Zariski topology coincides with constructible topology.

One direction is clear since constructible topology is Hausdorff. Con-
versely, if Zariski topology is Hausdorff, consider the identity mapping
i : XC → X, here we use XC to denote X = SpecA equipped with con-
structible topology. It’s clear identity mapping is bijective and continuous,
since XC has more open sets. Furthermore, it’s closed since X is Hausdorff,
a trick we have mentioned before. □
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4. Primary decomposition

4.1. Basic definitions.

Definition 4.1.1 (primary ideal). An ideal q in a ring A is primary if and
only if xy ∈ q implies either x ∈ q or yn ∈ q for some n > 0.

Remark 4.1.1. It’s easy to see q is a primary ideal if and only if A/q 6= 0
and every zero divisor in A/q is nilpotent. Indeed, if xy ∈ q and x 6∈ q, so
y is a zero divisor in A/q and thus yn ∈ q since y is nilpotent in A/q, that
is q is primary prime. Conversely, for a zero divisor y of A/q, there exists
x 6= 0 ∈ A/q such that xy ∈ q. So we have yn ∈ q for some n > 0, which
implies y is nilpotent in A/q.

Proposition 4.1.1. Let q be a primary ideal in a ring A. Then r(q) is the
smallest prime ideal containing q.

Proof. It suffices to show p = r(q) is prime by definition. □
Remark 4.1.2. If p = r(q) for some primary ideal q, then q is said to be
p-primary.

The prototype of primary ideal is the prime-power in Z: Since Z is a
unique factorization domain, any integer can be decomposed as a product
of prime-powers. But this fails for general rings, and primary ideal is a
generalization of prime-power in Z in some sense.

However, prime-power and primary ideal are not related so closely in
general rings, which can be seen in the following examples.

Example 4.1.1. Let A = k[x, y] and q = (x, y2). Then A/q ∼= k[y]/(y2).
Every zero divisor must be a multiplies of y thus nilpotent, so q is primary,
and its radical is (x, y). Note that

p2 ⊂ q ⊆ p

so as we can see, a primary ideal may not be a prime-power.

Example 4.1.2. Let A = k[x, y, z]/(xy−z2) and let x, y, z denote the image
of x, y, z in A. Then p = (x, z) is a prime ideal since A/p = k[y], but p2 is
not primary. Indeed, consider xy = z2 ∈ p2, but x 6∈ p2 and y 6∈ r(p2) = p.
This implies a prime power may not be primary.

Proposition 4.1.2. If r(a) is maximal, then a is primary. In particular,
the powers of a maximal ideal m is m-primary.

Proof. Let r(a) = m. The image of m in A/a is the nilradical of A/a. Note
that m is still a maximal ideal (thus prime) in A/a and nilradical is the
intersection of all prime ideals, we know that A/a only has one prime ideal
m. Hence every element of A/a is either a unit or nilpotent, and so every
zero-divisor of A/a is nilpotent. □
Lemma 4.1.1. If qi, 1 ≤ i ≤ n are p-primary, then q =

⋂n
i=1 qi is p-primary.
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Lemma 4.1.2. Let q be a p-primary ideal, x an element of A. Then
(1) If x ∈ q then (q : x) = (1).
(2) If x 6∈ q then (q : x) is p-primary.
(3) If x 6∈ p, then (q : x) = q.
Definition 4.1.2 (primary decomposition). A primary decomposition of an
ideal a in A in an expression of a as a finite intersection of primary ideals:

a =

n⋂
i=1

qi

Remark 4.1.3. Here are some remarks:
(1) In general such primary decomposition may not exhibits. An ideal a is

decomposable if it has a primary decomposition.
(2) By Lemma 4.1.1, we may assume the r(qi) are all distinct. We can also

assume qi 6⊇
⋂

j ̸=i qj , since we can omit such superfluous terms. Such
primary decomposition is said to be minimal.

Theorem 4.1.1 (first uniqueness theorem). Let a be a decomposable ideal
and let a =

⋂n
i=1 qi be a minimal primary decomposition of a. Let pi = r(qi).

Then pi are precisely the prime ideals which occur in the set of ideals r(a : x),
and hence are independent of the particular decomposition of a.
Remark 4.1.4. Consider A/a as an A-module, then pi are precisely the prime
ideals which occur as radical of annihilators of elements of A/a.
Example 4.1.3. Let a = (x2, xy) in A = k[x, y]. Then a = p1 ∩ p22, where
p1 = (x) and p2 = (x, y). The ideal p22 is primary since p2 is maximal. So
prime ideals occurring in the decompositions are p1 and p2. Note that here
p1 ∩ p2, thus r(a) = p1 ∩ p2 = p2.
Remark 4.1.5. Note that primary decomposition may not be unique, which
can be seen from Example 4.1.1, we have

(x2, xy) = (x) ∩ (x, y)2 = (x) ∩ (x2, xy)

Definition 4.1.3 (minimal/isolated prime ideal). For an decomposable
ideal a with associated prime ideals {p1, . . . , pn}, minimal elements of as-
sociated primes are called minimal prime ideals or isolated prime ideals
belonging to a. The others are called embedded prime ideals.
Example 4.1.4. In the case of Example 4.1.3, p1 is isolated prime ideal
and p2 is embedded.
Remark 4.1.6. As you can see, V (p2) ⊆ V (p1), and that’s why p2 is called
embedded.
Proposition 4.1.3. Let a be a decomposable ideal. Then any prime ideal
p ⊇ a contains a minimal prime ideal belonging to a, and thus the minimal
prime ideals of a are precisely the minimal elements in the set all prime
ideals containing a.
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Proposition 4.1.4. Let a be a decomposable ideal, let a =
⋂n

i=1 qi be a
minimal primary decomposition, and let r(qi) = pi. Then

n⋃
i=1

pi = {x ∈ A | (a : x) 6= a}

Remark 4.1.7. In general, primary decomposition of zero ideal is quite im-
portant, since primary decomposition of any ideal a of A can be reduced to
the primary decomposition of zero ideal in A/a.

We have the following observations of primary decomposition of zero ideal:
(1) The set of zero divisor of A is the union of prime ideals belonging to 0.

It’s clear from above proposition.
(2) The set of nilpotent of A is the intersection of all minimal prime ideals

belonging to 0. This can be seen directly from the primary decomposi-
tion of zero ideal, since nilradical is radical of zero ideal.

Recall that we have already defined minimal prime ideal, which is closely
related to the irreducible components of the spectrum of a ring. In fact,
minimal prime ideal we defined before is exactly the minimal prime ideal
associated to zero ideal. Indeed, nilradical is the intersection of prime ideals,
thus it’s the intersection of minimal prime ideals. That maybe why we use
the same name.

In particular, if zero ideal do admits a primary decomposition, then there
are only finitely many minimal prime ideals, thus there are only finitely
many irreducible components of its spectrum, that’s Exercise 4.3.1.

4.2. Second uniqueness theorem.

Proposition 4.2.1. Let S be a multiplicative closed subset of A, and let q
be a p-primary ideal.
(1) If S ∩ p 6= ∅, then S−1q = S−1A.
(2) If S ∩ p = ∅, then S−1q is S−1p-primary and its contraction in A is q.

Proof. For (1). If s ∈ S ∩ p, then sn ∈ S ∩ q for some n > 0, hence S−1q
contains sn/1, which is a unit in S−1A, thus S−1q = S−1A.

For (2). If S ∩ p = ∅, then s ∈ S such that as ∈ q implies a ∈ q. So

qec =
⋃
s∈S

(q : s) ⊆ q

thus qec = q. We also know radical commutes with localization, thus r(qe) =
r(S−1q) = S−1r(q) = S−1p, and S−1q is primary since q is.

So primary ideals corresponds to primary ideals in the correspondence
between ideals in S−1A and contracted ideals in A. □
Notation 4.2.1. For any ideal a and any multiplicative closed subset S in
A, the contraction in A of the ideal S−1a is denoted by S(a).

Proposition 4.2.2. Let S be a multiplicative closed subset of A and let a be
a decomposable ideal. Let a =

⋂n
i=1 qi be a minimal primary decomposition
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of a. Let pi = r(qi) and suppose qi numbered so that S meets pm+1, . . . , pn
but not p1, . . . , pm. Then

S−1a =
m⋂
i=1

S−1qi, S(a) =
m⋂
i=1

qi

Definition 4.2.1 (isolated set). A set Σ of prime ideals belonging to a is
said to be isolated, if it satisfies the following condition: If p′ is a prime ideal
belonging to a and p′ ⊆ p for some p ∈ Σ, then p′ ∈ Σ.

Let Σ be an isolated set of prime ideals belonging to a, and let S =
A −

⋃
p∈Σ p. Then S is a multiplicative closed subset and for each prime

ideal p′ belonging to a we have
(1) p′ ∈ Σ implies p′ ∩ S = ∅.
(2) p′ 6∈ Σ implies p′ 6∈

⋃
p∈Σ p and this implies p′ ∩ S 6= ∅.

Then Proposition 4.2.2 implies
Theorem 4.2.1 (second uniqueness theorem). Let a be a decomposable
ideal, let a =

⋂n
i=1 qi be a minimal primary decomposition of a, and let

{pi1 , . . . , pim} be an isolated set of prime ideals of a. Then qi1 ∩ . . . qim is
independent of decomposition.
Corollary 4.2.1. The isolated primary components are uniquely deter-
mined by a.
4.3. Part of solutions of Chapter 4.
Exercise 4.3.1. If an ideal a has a primary decomposition, then Spec(A/a)
has only finitely many irreducible components.
Proof. See Remark 4.1.7. □
Exercise 4.3.2. If a = r(a), then a has no embedded prime ideals.
Proof. Consider any primary decomposition of a as a =

⋂n
i=1 qi, where qi is

pi-primary. Taking radical we have a =
⋂n

i=1 pi. Without lose of generality
we can assume pi 6⊆ pj for any i, j, since such term doesn’t make sense when
taking intersection. So a =

⋂n
i=1 pi gives a primary decomposition, and

clearly there is no embedded prime ideal. □
Exercise 4.3.3. If A is absolutely flat, every primary ideal is maximal.
Proof. For a primary ideal p, it suffices to show A/p is a field. For any
element x ∈ A, there exists a ∈ A such that x(1 − ax) = 0 since A is
absolutely flat. Note that 0 ∈ p, so if 1 − ax 6∈ p, there exists n > 0 such
that xn ∈ p since p is primary. But

x = ax2 = a2x3 = · · · = an−1xn ∈ p

which implies if x is not a unit in A/p, then it must be zero. □
Exercise 4.3.4. In the polynomial ring Z[t], the ideal m = (2, t) is maximal
and the ideal q = (4, t) is m-primary, but is not a power of m.
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Proof. It’ clear m2 ⊆ q ⊆ m, m is maximal and r(q) = m, it suffices to show
q is primary. Note that

Z[t] = Z /4Z
Clearly any zero-divisor is a multiplies of 2, so it’s nilpotent. □
Exercise 4.3.5. In the polynomial ring k[x, y, z] where k is a field and x, y, z
are independent indeterminate, let p1 = (x, y), p2 = (x, z),m = (x, y, z).p1
and p2 are prime, and m is maximal. Let a = p1p2. Show that a = p1∩p2∩m2

is a reduced primary decomposition of a. Which components are isolated
and which are embedded?

Proof. It’s clear to see p1, p2 and m2 are primary, and if a = p1 ∩ p2 ∩ m2,
then embedded prime ideal is m and isolated prime ideals are p1, p2. So it
suffices to check this identity. To see this, we need to write every generator
explicitly:

a = p1p2 = (x, y)(x, z) = (x2, xy, xz, yz)

m2 = (x, y, z)(x, y, z) = (x2, y2, z2, xy, xz, yz)

p1 ∩m2 = (x, y) ∩ (x2, y2, z2, xy, xz, yz) = (x2, y2, xy, xz, yz)

p2 ∩ p1 ∩m = (x, z) ∩ (x2, y2, xy, xz, yz) = (x2, xy, xz, yz)

This completes the proof. □
Exercise 4.3.6. Let X be an infinite compact Hausdorff space, C(X) the
ring of real-valued continuous functions onX. Is the zero ideal decomposable
in this ring?

Proof. The answer is no. If zero ideal is decomposable, then there exists only
finite minimal prime ideals. Since X is an infinite space, there are infinite
many maximal ideals mx in C(X). Clearly every maximal ideal contains
some minimal prime ideal. It suffices to show if x 6= y, then minimal prime
ideals contained in mx and my, denoted by px, py are not same.

Since X is compact Hausdorff, thus X is normal. So there exists an open
neighborhood U of x such that x ∈ U and y 6∈ U . By Urysohn’s lemma,
there exist f ∈ C(X) such that f(y) = 1, f(U) = 0 and g ∈ C(X) such that
g(X − U) = 0 and g(x) = 1. Thus fg = 0 ∈ p1 but g 6∈ p1 since g(x) 6= 0,
so f ∈ p1 since p1 is prime. But f 6∈ p2 since f(y) 6= 0. Thus px 6= p2. This
completes the proof. □
Exercise 4.3.7. Let A be a ring and let A[x] denote the ring of polynomials
in one indeterminate over A. For each ideal a of A, let a[x] denote the set
of all polynomials in A[x] with coefficients in a.
(1) a[x] is the extension of a to A[x].
(2) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].
(3) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x].
(4) If a =

⋂n
i=1 qi is a minimal primary decomposition in A, then a[x] =⋂n

i=1 qi[x] is a minimal primary decomposition in A[x].
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(5) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of
a[x].

Proof. We have already seen (1) and (2) before.
For (3). Let’s see r(q[x]) = p[x] firstly: Note that r(q[x]) is the nilradical

of A[x]/q[x] ∼= A/q[x]. By Exercise (2) of Exercise 1.8.2, we know that f is
nilpotent of A/q[x] if and only if all coefficients of f are nilpotent, which is
equivalent to f ∈ p[x]. To see q[x] is primary, consider A[x]/q[x] ∼= A/q[x],
still by Exercise 1.8.2, f is a zero-divisor in A/q[x] if and only if there
exists a 6= 0 ∈ A/q such that af = 0, since q is primary, this implies every
coefficients of f is nilpotent, which is equivalent to f is nilpotent. This
completes the proof.

For (4). It’s clear a[x] =
⋂n

i=1 qi[x] is still a primary decomposition, it
suffices to show its minimality.
(1) For i 6= j, we have r(qi[x]) = pi[x] 6= pj [x] = r(qj [x]).
(2) It’s clearly qi[x] 6⊇

⋂
j ̸=i qj [x] = (

⋂
j ̸=i qi)[x].

For (5). If p[x] is not a minimal prime ideal of a[x], thus there exists q
such that

a[x] ⊂ q ⊂ p[x]

Then consider its contraction a ⊂ qc ⊂ p, we obtain qc = p since p is a
minimal prime ideal of a. Then

p[x] = qce ⊆ q ⊂ p[x]

Thus we have q = p[x], which implies p[x] is minimal. □

Exercise 4.3.8. Let k be a field. Show that in the polynomial ring k[x1, . . . , xn]
the ideals pi = (x1, . . . , xi) where 1 ≤ i ≤ n are prime and all their powers
are primary.

Proof. It’s clear pi is prime, since we have
k[x1, . . . , xn]/pi = k[xi+1, . . . , xn]

is a domain. Now let’s show for any l > 0 we have pli is primary. Consider

k[x1, . . . , xn]/p
l
i
∼= (k[x1, . . . , xi]/p

l
i)[xi+1, . . . , xn]

It suffices to show every zero-divisor is a nilpotent one. Recall Exercise
1.8.3, we know that f ∈ (k[x1, . . . , xi]/p

l
i)[xi+1, . . . , xn] is a zero-divisor if

and only if there exists g 6= 0 ∈ k[x1, . . . , xi]/p
l
i such that gf = 0. Then

every coefficients of f is a zero divisor of k[x1, . . . , xi]/pli. But pi is maximal
in k[x1, . . . , xi] thus pli is primary in k[x1, . . . , xi], we conclude that every
coefficients of f is nilpotent thus f is. □

Exercise 4.3.9. In a ring A, let D(A) denote the set of prime ideals p which
satisfy the following condition: there exists a ∈ A such that p is minimal in
the set of prime ideals containing (0 : a). Show that x ∈ A is a zero divisor
⇔ x ∈ p for some p ∈ D(A).



COMMUTATIVE ALGEBRA 73

Let S be a multiplicative closed subset of A, and identify Spec
(
S−1A

)
with its image in SpecA. Show that

D
(
S−1A

)
= D(A) ∩ Spec

(
S−1A

)
.

If the zero ideal has a primary decomposition, show that D(A) is the set
of associated prime ideals of 0 .

Proof. (1) For the first part: If x is a zero-divisor, then there exists a ∈ A
such that ax = 0, thus x ∈ (0 : a) ⊆ p for some p ∈ D(A). Conversely, if
x ∈ p for some p ∈ D(A), that is p is the minimal prime ideal containing
(0 : a) for some a ∈ A. Thus p/(0 : a) is the minimal prime ideal in A/(0 : a).
Consider S = A/(0 : a) − p/(0 : a), it’s a maximal multiplicative closed
subset which doesn’t contain 0+ (0 : a) ∈ A/(0 : a), thus S(xn + (0 : a))n≥0

must contain 0, that is there exists b+ (0 : a) ∈ S such that
0 + (0 : a) = (b+ (0 : a))(xn + (0 : a)) = bxn + (0 : a)

which implies bxn ∈ (0 : a), that is abxn = 0, so x is a zero-divisor. It’s a
trick we have seen in Exercise 3.5.6.

(2) For Spec(S−1A)∩D(A) ⊆ D(S−1A): If we identify Spec(S−1A) with
its image in SpecA, that is for any prime ideal q, we consider its contraction
p = qc. So any element in D(A) ∩ Spec(S−1A) is prime ideal p of A taking
form p = qc and p ∈ D(A). Since p ∈ D(A), so there exists a ∈ A such that
p is minimal prime ideal containing (0 : a). Claim q is minimal prime ideal
containing (0 : a/1). Indeed,
(1) (0 : a/1) ⊆ q, since (0 : a) ⊆ p, then we have S−1(0 : a) ⊆ S−1p = q.

Note that (0 : a) is the annihilator of a and localization commutes with
annihilator, which implies S−1(0 : a) = S−1 ann(a) = ann(S−1a) =
ann(a/1) = (0 : a/1).

(2) q is minimal over (0 : a/1). If not, there is a q′ such that (0 : a/1) ⊆
q′ ⊆ q. By contracting we obtain

(0 : a) ⊆ (0 : a/1)c ⊆ (q′)c ⊆ qc = p

Thus we have (q′)c = p since p is minimal, that is q′ = q, since q = pce

and the same for q′.
(3) For D(S−1A) ⊆ Spec(S−1A) ∩ D(A). If q ∈ D(S−1A), that is there

exists a/s ∈ S−1A such that q is minimal over (0 : a/s), Without lose of
generality, we may assume s = 1 since (0 : a/s) = (0 : a/1). It suffices to
show qc ∈ D(A). Claim qc is minimal over (0 : a). Indeed,
(1) It’s clear (0 : a) ⊆ qc, since (0 : a) ⊆ (0 : a/1)c.
(2) If qc is not minimal over (0 : a), there exists p such that (0 : a) ⊆ p ⊆ qc.

By extension we have
(0 : a)e = (0 : a/1) ⊆ pe ⊆ q

then pe = q since q is minimal, thus p = qc.
(4) If zero ideal has a primary decomposition, write (0) =

⋂n
i=1 qi

with pi = qi. Note that first uniqueness theorem implies that pi are
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exactly prime ideals which occur in the set of r(0 : x), but if r(0 : x)
is prime, it’s clear minimal over (0 : x). So clear {p1, . . . , pn} ⊆ D(A).
Conversely, if p is the minimal prime ideal containing (0 : x) for some
x ∈ A, thus p = r(0 : x), so it must be some pi. So if zero ideal has a
primary decomposition, D(A) = {p1, . . . , pn}, a finite set.

□
Exercise 4.3.10. For any prime ideal p in a ring A, let Sp(0) denote the
kernel of the homomorphism A→ Ap. Prove that
(1) Sp(0) ⊆ p.
(2) r (Sp(0)) = p ⇔ p is a minimal prime ideal of A.
(3) If p ⊇ p′, then Sp(0) ⊆ Sp′(0).
(4)

⋂
p∈D(A) Sp(0) = 0, where D(A) is defined in Exercise 4.3.9.

Proof. For (1). Take x ∈ Sp(0), so x/1 = 0 ∈ Ap, which implies there exists
s ∈ A− p such that sx = 0 ∈ p, but p is a prime ideal, then x ∈ p.

For (2). If p is a minimal prime ideal of A, then S = A− p is a maximal
multiplicative closed subset which do not contain 0, thus for any x ∈ p,
0 ∈ S(xn)n>0, that is there exists n > 0 and s ∈ S such that sxn = 0,
in other words, xn ∈ Sp(0) or x ∈ r(Sp(0)). So we obtain p ⊆ r(Sp(0)).
It’s clear we have reverse inclusion from (1). Conversely, if r(Sp(0)) = p,
we need to show S = A − p is maximal multiplicative closed subset which
doesn’t contain 0. If not, then S ⊆ S′ for some multiplicative closed subset
S′ which doesn’t contain 0, then take x ∈ S′−S, it’s clear x ∈ p, thus there
exists n > 0 such that xn/1 is zero in Ap, a contradiction to the fact S′

doesn’t meet 0.
For (3). If p′ ⊆ p, we have A− p ⊆ A− p′. Thus if x/1 is zero in Ap, then

there exists s ∈ A− p such that sx = 0, so it’s clear to see x/1 is also zero
in Ap′ . Thus Sp(0) ⊆ Sp′(0).

For (4). If x 6= 0 ∈
⋂

p∈D(A) Sp(0), then (0 : x) 6= (1), so we must have
(0 : x) ⊆ p for some prime ideal p. But this implies sx 6= 0 for any s ∈ A−p,
that is x/1 6= 0 ∈ Ap, a contradiction to x ∈ Sp(0) □
Exercise 4.3.11. If p is a minimal prime ideal of A, show that Sp(0) is the
smallest p-primary ideal. Let a be the intersection of the ideals Sp(0) as p
runs through the minimal prime ideals of A. Show that a is contained in
the nilradical of A. Suppose that the zero ideal is decomposable. Prove that
a = 0 if and only if every prime ideal of 0 is isolated.
Proof. For the first part: From (2) of Exercise 4.3.10, we know that r(Sp(0)) =
p for a minimal prime ideal. Now let’s show it’s primary and smallest:
(1) It’s primary. If xy ∈ Sp(0) such that x 6∈ Sp(0), then there exists

s ∈ A − p such that sxy = 0, but x 6∈ Sp(0) implies ann(x) ⊆ p, so
sy ∈ p, but s 6∈ p, so y ∈ p, since p is prime.

(2) It’s smallest. For any x ∈ Sp(0) and p-primary ideal q, there exists
s ∈ A − p such that sx = 0 ∈ q. But s 6∈ p = r(q) implies x ∈ q. Thus
Sp(0) ⊆ q for any p-primary ideal q.
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For the second part: If a =
⋂

p is minimal Sp(0), then we can see that
r(a) = N by taking radical, thus a ⊆ r(a) ⊆ N.

For the third part: If zero ideal is decomposable, that is 0 =
⋂n

i=1 qi
such that r(qi) = pi, and all pi are exactly all minimal primes since there
is no embedded prime ideal. So a ⊆

⋂n
i=1 qi = 0, since Sp(0) is smallest

p-primary ideal. Conversely, if a = 0, then intersection in the second
part gives a primary decomposition of p, Without lose of generality we
may assume any two of them appearing in the intersection won’t contain
each other. In this decomposition we can see every prime ideal of 0 is
isolated from (3) of Exercise 4.3.10.

□
Exercise 4.3.12. Let A be a ring, S a multiplicative closed subset of A.
For any ideal a let S(a) denote the contraction of S−1a in A. The ideal S(a)
is called the saturation of a with respect to S. Prove that
(1) S(a) ∩ S(b) = S(a ∩ b)
(2) S(r(a)) = r(S(a))
(3) S(a) = (1) ⇔ a meets S
(4) S1 (S2(a)) = (S1S2) (a).
If a has a primary decomposition, prove that the set of ideals S(a) (where
S runs through all multiplicative closed subsets of A) is finite.

Proof. (1) and (2) are clear since we know contraction commutes with in-
tersection and radical. (3) is also clear, since a meets S if and only if
S−1a = (1) ∈ S−1A if and only if S(a) = (1).

For (4).
If a has a primary decomposition as a =

⋂n
i=1 qi such that pi = r(qi).

Then we have

S(a) =
n⋂

i=1

S(qi)

So it suffices to show for each p-primary ideal q, it only has finite possibilities.
In fact, only two possibilities: From Proposition 4.2 we have:
(1) If S ∩ p 6= ∅, then S(q) = (1).
(2) If S ∩ p = ∅, then S(q) = q

□
Exercise 4.3.13. Let A be a ring and p a prime ideal of A. The n-th
symbolic power of p is defined to be the ideal

p(n) = Sp(p
n)

where Sp = A− p. Show that
(1) p(n) is a p-primary ideal.
(2) if pn has a primary decomposition, then p(n) is its p-primary component.
(3) if p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary

component.
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(4) p(n) = pn ⇔ p(n) is p-primary.

Proof. For (1). It’s easy to see r(p(n)) = p, since

r(p(n)) = r(Sp(p
n)) = Sp(r(p

n)) = Sp = p

To see p(n) is primary: Take xy ∈ pn, that is xy/1 ∈ S−1pn, so there exists
s ∈ S such that sxy ∈ pn. If y ∈ A − p = S, so sy ∈ S, thus x/1 ∈ S−1pn,
which implies x ∈ p(n).

For (2). If pn has a minimal primary decomposition as pn =
⋂n

i=1 qi, then
we must have

S−1
p pn = S−1qi

for some qi. Indeed, since r(pn) = p, thus prime ideals associated to pn must
be {p, p1, . . . , pn−1} such that p ⊆ pi for each i. But By Proposition 4.2, we
know that if pi meets S = A− p, then S−1qi = (1), thus S−1

p pn = S−1qi, for
the only qi such that r(qi) = p. So clearly we have p(n) = Sp(p

n) = qi.
For (3).
For (4). Clearly if p(n) = pn, then pn is p-primary by (1). Conversely, if

pn is p-primary, and (2) implies p(n) is a p-primary component of pn, thus
p(n) = pn. □

Exercise 4.3.14. Let a be a decomposable ideal in a ring A and let p be a
maximal element of the set of ideals (a : x), where x ∈ A and x 6∈ a. Show
that p is a prime ideal belonging to a.

Proof. Note that first uniqueness theorem implies that prime ideals associ-
ated to a are exactly prime ideals in the set of r(a : x). So if (a : x) is a
prime ideal, then r(a : x) = (a : x) is prime, thus it’s an associated primes
ideal. So it suffices to show maximal element of the set of ideals (a : x) is
prime. Indeed, first note that since (a : x) is maximal, then (a : xy) = (a : x)
for any xy 6∈ a. So if yz ∈ (a : x) and y 6∈ (a : x), then z ∈ (a : xy) = (a : x),
which implies it’s prime. □

Exercise 4.3.15. Let a be a decomposable ideal in a ring A, let Σ be an
isolated set of prime ideals belonging to a, and let qΣ be the intersection
of the corresponding primary components. Let f be an element of A such
that, for each prime ideal p belonging to a, we have f ∈ p ⇔ p /∈ Σ, and let
Sf be the set of all powers of f . Show that qΣ = Sf (a) = (a : fn) for all
large n.

Proof. It’s a quite interesting Exercise, for a decomposable ideal, the prime
ideals associated to it may contain some embedded prime ideal. So how can
we get the intersection of isolated primary components? and that’s qΣ in
the Exercise. And good tool is localization, according to Proposition 4.2.

If a =
⋂n

i=1 qi with associated prime ideals pi. Without lose of generality,
we may assume pi, 1 ≤ i ≤ m are isolated prime ideals and pi,m+1 ≤ i ≤ n
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are embedded ones. Since Sf ∩ pi 6= ∅ by the choice of f , thus we have

S−1
f a =

m⋂
i=1

S−1
f qi

and thus

Sf (a) =

m⋂
i=1

qi = qΣ

□

Exercise 4.3.16. If A is a ring in which every ideal has a primary decom-
position, show that every ring of fractions S−1A has the same property.

Proof. Just note that every ideal of S−1A is an extended one. □

Exercise 4.3.17. Let A be a ring with the following property.
(L1) For every ideal a 6= (1) in A and every prime ideal p, there exists

x /∈ p such that Sp(a) = (a : x), where Sp = A− p.
Then every ideal in A is an intersection of (possibly infinitely many) primary
ideals.

Proof. Let a be an ideal 6= (1) in A, and let p1 be a minimal element of
the set of prime ideals containing a. Then q1 = Sp1(a) is p1-primary by
Exercise 4.3.11, and by assumption we have q1 = (a : x) for some x /∈ p1.
We claim that a = q1 ∩ (a + (x)). Indeed, a ⊆ q1 ∩ (a + (x)), since a ⊆ q1
and a ⊆ a + (x). Conversely, take any element a + bx ∈ a + (x), and if it
lies in q1 = (a : x), we will see bx2 ∈ a ⊆ q1. But x 6∈ p1 = r(q1) so we have
b ∈ q1 since q1 is primary, thus bx ∈ a, which implies a+ bx ∈ a, this shows
q1 ∩ (a+ (x)) ⊆ a.

Now consider the following set consisting of ideals
Σ = {b | b ∩ q1 = a, x 6∈ p1 = r(q1)}

where q1 = (a : x). It’s not empty since a + (x) ∈ Σ. So by Zorn lemma
there exists a maximal element, denoted by a1. Repeat the construction
starting with a1 and so on. At the n-th stage we have a1 = q1∩· · ·∩qn∩an,
where qi are primary ideals, an is maximal element in some sets. If at any
stage we have an = (1), the process stops, in this case we do have a primary
decomposition of a, otherwise we just can write a as an intersection (maybe
infinite) of primary ideals.

So as you can see, some kind of finiteness is crucial in the existence of
primary decomposition, and that’s exactly what next Exercise or chain con-
dition we will see later talk about. □

Exercise 4.3.18. Consider the following condition on a ring A:
(L2) Given an ideal a and a descending chain S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · ·

of multiplicative closed subsets of A, there exists an integer n such
that Sn(a) = Sn+1(a) = · · · .
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Prove that the following statements are equivalent.
(1) Every ideal in A has a primary decomposition.
(2) A satisfies (L1) and (L2).
Proof. For (1) to (2). If a has a minimal primary decomposition a =

⋂n
i=1 qi

with r(qi) = pi.
(L1) For any prime ideal p, we may assume pi ⊆ p for 1 ≤ i ≤ m and

pi 6⊆ p for m + 1 ≤ i ≤ n. So it’s clear to see Sp(a) =
⋂m

i=1 qi. For
any x ∈ A, note that

(a : x) = (
m⋂
i=1

(qi : x)) ∩ (
n⋂

i=m+1

(qi : x))

So it suffices to choose x such that x 6∈ pi, 1 ≤ i ≤ m and x ∈
qi,m + 1 ≤ i ≤ n. Such x do exists: For any m + 1 ≤ i ≤ n, we
have qi 6⊆ p, since pi 6⊆ p, thus there exists xi ∈ qi and xi 6∈ p. Let
x =

∏n
i=m+1 xi to conclude.

(L2) The set of ideals S(a) where S runs over all multiplicative closed
subsets of A is finite. So for any descending chain of S1 ⊇ S2 ⊇
· · · ⊇ . . . of multiplicative closed subsets of A, there exists a n such
that Sn(a) = Sn+1(a), otherwise a contradiction to finiteness.

For (2) to (1). With the notation of the proof of Exercise 4.3.17. Let
Sn = Sp1 ∩ · · · ∩ Spn then Sn meets an, hence Sn (an) = (1), and therefore
Sn(a) = q1 ∩ · · · ∩ qn. Now use (L2) to implies this construction must
terminate after a finite number of steps, that is

q1 ∩ · · · ∩ qn = q1 ∩ · · · ∩ qn ∩ qn+1

for some n > 0. Then
a = q1 ∩ · · · ∩ qn ∩ an

= q1 ∩ · · · ∩ qn ∩ qn+1 ∩ an

= q1 ∩ · · · ∩ qn ∩ qn+1

since an ⊆ qn+1 by construction. □
Exercise 4.3.19.
Proof. □
Exercise 4.3.20.
Proof. □
Exercise 4.3.21.
Proof. □
Exercise 4.3.22.
Proof. □
Exercise 4.3.23.
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Proof. □
Exercise 4.3.24.
Proof. □
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5. Integral dependence and Valuations

5.1. Integral dependence.

Definition 5.1.1 (integral). Let B be a ring and A a subring of B. An
element x ∈ B is said to be integral over A if x is a root of monic polynomial
with coefficients in A.

Definition 5.1.2 (integral mapping). A ring homomorphism f : A → B is
called integral, if B is integral over f(A).

Proposition 5.1.1. The following statements are equivalent.
(1) x ∈ B is integral over A.
(2) A[x] is a finitely generated A-module.
(3) A[x] is contained in a subring C of B such that C is a finitely generated

A-module.
(4) There exists a faithfully A[x]-module M which is finitely generated as

A-module.

Corollary 5.1.1. The set of elements of B which are integral over A is a
subring of B containing A.

Definition 5.1.3 (integral closure). Let C denote the set of all elements of
B which are integral over A.
(1) If C = A, then A is said to be integrally closed in B.
(2) If C = B, then B is said to be integral over A.

Definition 5.1.4 (integrally closed). A domain R is called integrally closed
domain, if it’s integral closed in its field of fractions.

Proposition 5.1.2. If A ⊆ B ⊆ C are rings and if B is integral over A,
and C is integral over B, then C is integral over A.

Proposition 5.1.3. Let A ⊆ B be rings, B integral over A.
(1) If b is an ideal of B and a = bc, then B/b is integral over A/a.
(2) If S is a multiplicative closed subset of A, then S−1B is integral over

S−1A.

5.2. Going-up.

Proposition 5.2.1. Let A ⊆ B be integral domains, B integral over A.
Then B is a field if and only if A is a field.

Corollary 5.2.1. Let A ⊆ B be rings, B integral over A. Let q be a prime
ideal of B and p is its contraction. Then q is maximal if and only if p is.

Corollary 5.2.2. Let A ⊆ B be rings, B integral over A. Let q, q′ be prime
ideals of B such that q ⊆ q′ but their contractions are same, then q = q′.

Theorem 5.2.1. Let A ⊆ B be rings, B integral over A, and let p be a
prime ideal of A. Then there exists a prime ideal q such that qc = p.
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Theorem 5.2.2 (going-up). Let A ⊆ B be rings, B integral over A. Let
p1 ⊆ · · · ⊆ pn be a chain of prime ideals of A and q1 ⊆ · · · ⊆ qm where
m < n a chain of prime ideals of B such that qci = pi for 1 ≤ i ≤ m. Then
the chain q1 ⊆ · · · ⊆ qm can be extended to a chain q1 ⊆ · · · ⊆ qn such that
qci = pi for 1 ≤ i ≤ n.

5.3. Integrally closed integral domains and Going-down.

Definition 5.3.1 (integrally closed). An integral domain is said to be in-
tegrally closed, if it’s integrally closed in its field of fractions.

Proposition 5.3.1. Let A be an integral domain. Then the following state-
ments are equivalent.
(1) A is integrally closed.
(2) Ap is integrally closed for each prime ideal p.
(3) Am is integrally closed for each maximal ideal m.

Proof. Let K be the field of fractions of A, C the integral closure of A in
K. Then A is integrally closed if and only if i : A → C is surjective. But
surjectivity is a local property. □
Definition 5.3.2 (integral over an ideal). Let A ⊆ B be rings and let a be
an ideal of A. An element of B is said to be integral over a if it satisfies an
equation of integral dependence over A in which all the coefficients lie in a.

Lemma 5.3.1. Let C be the integral closure of A in B and let ae denote
the extension of a in C. Then the integral closure of a in B is the radical of
ae.

Proof. If x ∈ B is integral over a, it’s clearly integral over A, thus x ∈ C.
Furthermore, there exists an equation

xn = −(a1x
n−1 + · · ·+ an)

with a1, . . . , an ∈ a. Thus xn ∈ ae, extension of a in C, which implies x ∈
r(ae). Conversely, if xn =

∑n
i=1 aixi for some n > 0, where ai ∈ a, xi ∈ C.

Note that M = A[x1, . . . , xn] is a finitely generated A-module, and clearly
xnM ⊆ M , thus by Proposition 2.2.2 we know xn is integral over a, so is
x. □
Proposition 5.3.2. Let A ⊆ B be integral domains, A integrally closed,
and let x ∈ B be integral over an ideal a of A. Then x is algebraic over
the field of fractions K of A, and if its minimal polynomial over K is tn +
a1t

n−1 + · · ·+ an, then a1, . . . , an ∈ r(a).

Proof. If x ∈ B is integral over a, an ideal of A, there exists an equation
with minimal degree
(5.1) xn + a1x

n−1 + · · ·+ an = 0

where ai ∈ a ⊆ A ⊆ K. So it’s clear x is algebraic over K, and (5.1) is
the minimal polynomial of x over K. Let L be a field extension of K which
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containing all conjugates x1, . . . , xn of x, that is roots of (5.1), thus all xi
is integral over a. By vieta’s formula, the coefficients ai are polynomials in
terms of xi, thus also integral over a, since xi’s are. In other words, ai’s are
in the integral closure of a in B.

But A is integrally closed, thus in Lemma 5.3.1 we have C = A and the
extension of a in C is a itself. Thus the integral closure of a in B is exactly
r(a). □

Theorem 5.3.1 (going-down). Let A ⊆ B be integral domains, A is in-
tegrally closed, B integral over A. Let p1 ⊇ · · · ⊇ pn be a chain of prime
ideals of A, and let q1 ⊇ · · · ⊇ qm with m < n be a chain of prime ideals of
B such that qci = pi for 1 ≤ i ≤ m. Then the chain q1 ⊇ · · · ⊇ qm can be
extended to a chain q1 ⊇ · · · ⊇ qn such that qci = pi for 1 ≤ i ≤ n.

Proof. It suffices to prove the case m = 1, n = 2. Consider the following
composition

A→ B → Bq1

If we can show p2 is the contraction of a prime ideal of Bq1 , then we complete
the proof, since prime ideals of Bq1 are just those contained in q1. Or
equivalently, Bq1p2 ∩A = p2.

Every x ∈ Bq1p2 is of the form y/s, where y ∈ Bp2 and s ∈ B − q1. By
Lemma 5.3.1, we know that the integral closure of p2 of B is radical of Bp2,
thus y is integral over p2. Hence by Proposition 5.3.2 its minimal equation
over K is of the form

(5.2) yr + u1y
r−1 + · · ·+ ur = 0

with u1, . . . , ur ∈ p2.
Now suppose that x ∈ Bq1p2 ∩ A. Then s = yx−1 with x−1 ∈ K. So

that the minimal equation for s over K is obtained by dividing (5.2) by xr,
therefore

(5.3) sr + v1s
r−1 + · · ·+ vr = 0

where vi = ui/x
i. Consequently

xivi = ui ∈ p2

But s ∈ B is integral over A, hence each vi is in A. Suppose x 6∈ p2.
Then we have vi ∈ p2 for each i since p2 is prime, hence (5.3) implies
sr ∈ Bp2 ⊆ Bp1 ⊆ q1, that is s ∈ q1, a contradiction. So x ∈ p2, that is
Bq1 ∩A ⊆ p2, reverse inclusion is clear. □

Proposition 5.3.3. Let A be an integrally closed domain, K its field of
fractions, L a finite separable algebraic extension of K, B the integral closure
of A in L. Then there exists a basis v1, . . . , vn of L over K such that
B ⊆

∑n
j=1Avj .
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5.4. Valuation rings.

Definition 5.4.1 (valuation ring). Let B be an integral domain, K its field
of fractions. B is a valuation ring of K if for each x 6= 0 ∈ K, either x ∈ B
or x−1 ∈ B.

Proposition 5.4.1. For a valuation ring B.
(1) B is a local ring.
(2) If B′ is a ring such that B ⊆ B′ ⊆ K, then B′ is a valuation ring of K.
(3) B is integrally closed.

Proof. For (1). Let m be the set of non-units of B, it suffices to check m is
an ideal. □

Let K be a field, Ω an algebraically closed field. Let Σ be the set of all
pairs (A, f), where A is a subring of K and f is a homomorphism of A into
Ω. Σ is partially ordered as follows:

(A, f) ≤ (A′, f ′) ⇐⇒ A ⊆ A′, f ′|A = f

Let (B, g) be a maximal element of Σ. In fact B is a valuation ring of K.
Let’s show step by step.

Lemma 5.4.1. B is a local ring with maximal ideal m = ker g.

Lemma 5.4.2. Let x be a non-zero element of K. Let B[x] be the subring
of K generated by x over B, and let m[x] be the extension of m in B[x].
Then either m[x] 6= B[x] or m[x−1] 6= B[x−1].

Theorem 5.4.1. Let (B, g) be a maximal element of Σ. Then B is a
valuation ring of the field K.

Proof. We need to show if x 6= 0 ∈ K, then either x ∈ B or x−1 ∈ B. By
Lemma 5.4.2, we may assume m[x] 6= B′ = B[x]. Then m[x] is contained
in a maximal ideal m′ of B′, and we have m′ ∩ B = m, since m′ ∩ B is a
proper ideal containing m. Hence embedding B → B′ induces an embedding
of k = B/m → k′ = B′/m′. Note that k′ = k[x] where x is the image of x in
k′ □

Corollary 5.4.1. Let A be a subring of a field K. Then the integral closure
A of A in K is the intersection of all the valuation rings of K which contain
A.

Proof. It’s clear A lies in the intersection of all valuation rings which contain
A, since valuation ring is integrally closed. Conversely, if x 6∈ A. Then
x 6∈ A′ = A[x−1]. Hence x−1 is a non-unit in A′ and is therefore contained
in a maximal ideal m′ of A′. □

Corollary 5.4.2. Let k be a field and B a finitely generated k-algebra. If
B is a field then it is a finite algebraic extension of k.
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5.5. Part of solutions of Chapter 5.
Exercise 5.5.1. Let f : A → B be an integral homomorphism of rings.
Show that f∗ : SpecB → SpecA is a closed mapping.

Proof. Firstly, consider A f−→ f(A)
i−→ B, where i is an inclusion. Accord-

ing to (4) of Exercise 1.8.21, one has Spec f(A) is homeomorphic to a closed
subset of SpecA, thus it suffices to show i∗ : SpecB → Spec f(A) is a closed
mapping, that is we may assume A ⊆ B, as a subring.

For an closed sets V (b) of SpecB, we claim
f∗(V (b)) = V (f−1(b))

thus it’s closed mapping. Indeed, note that V (b) = {q ⊇ b | q is prime},
then it’s clear f∗(q) = f−1(q) ⊇ f−1(b) and it’s prime, thus f∗(V (b)) ⊆
V (f−1(b)). Conversely, for any prime p containing f−1(b), by Theorem
5.2.2, that is going-up theorem, there exists q ⊇ b such that qc = p, this
implies reverse inclusion. □
Exercise 5.5.2. Let A be a subring of a ring B such that B is integral over
A, and let f : A → Ω be a homomorphism of A into an algebraically closed
field Ω. Show that f can be extended to a homomorphism of B into Ω.
Proof. Since Ω is a field, thus ker f is a prime ideal, denoted by p. By
Theorem 5.2.1, there exists a prime ideal q of B such that its contraction
is p since B is integral over A. Furthermore, Proposition 5.1.3 implies B/q
is integral over A/p. So if we extend f̃ : A/p → Ω to f̃ ′ : B/q → Ω, we can
also extend f : A→ Ω to f ′ : B → Ω, that is we reduce our case to A,B are
integral domains and f is injective.

Let S = A\{0}, then consider the localization S−1B, by (2) of Proposition
5.1.3 one has S−1B is also integral over FracA. By Proposition 5.2.1 one has
S−1B is a field, and it equals to FracB since it’s contained in FracB. That’s
FracB is integral over FracA, which implies FracB is an algebraic extension
of FracA. Thus we can firstly extend f : A→ Ω to f̃ : FracA→ Ω, namely
by a1/a2 7→ f(a1)/f(a2), and the following lemma completes the proof.
Lemma 5.5.1. Let f : k → Ω be a homomorphism of fields, where Ω is an
algebraically closed field. For any algebraic extension k′, there is a homo-
morphism f ′ : k′ → Ω which extends f .

□
Exercise 5.5.3. Let f : B → B′ be a homomorphism of A-algebras, and let
C be an A-algebra. If f is integral, prove that f ⊗ 1: B ⊗A C → B′ ⊗A C is
integral.
Proof. For any element

∑n
i=1 b

′
i ⊗ ci ∈ B′ ⊗A C, it suffices to check b′i ⊗ ci

is integral over f(B) ⊗A C for any i, since integral closure is a subring of
B′ ⊗A C. For b′ ∈ B′, there exists a polynomial

xn + a1x
n−1 + · · ·+ an = 0
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such that b′ is a root of it, where ai ∈ f(B). So for b′⊗c ∈ B′⊗AC, consider
the following polynomial

xn + (a1 ⊗ c)xn−1 + (a2 ⊗ c2)xn−2 + · · ·+ an ⊗ cn

Then
(b′ ⊗ c)n + (a1 ⊗ c)(b′ ⊗ c)n−1 + · · ·+ an ⊗ cn = (b′)n ⊗ cn + a1b

′ ⊗ cn + · · ·+ an ⊗ cn

= ((b′)n + a1(b
′)n−1 + · · ·+ an)⊗ cn

= 0⊗ cn

= 0

Thus b′ ⊗ c is integral over f(B) ⊗ C, since for each i, we have ai ⊗ c ∈
f(B)⊗ C. In particular, localization preserves integral, since S−1B can be
seen as S−1A⊗A B. □
Exercise 5.5.4. Let A be a subring of a ring B such that B is integral over
A. Let n be a maximal ideal of B and let m = n ∩ A be the corresponding
maximal ideal of A. Is Bn necessarily integral over Am?

Proof. No. Consider the case A = k[x2 − 1] and B = k[x], where k is
a field, and consider the maximal ideal n = (x − 1) of B. It’s clear m =
(x−1)∩k[x2−1] = (x2−1) since (x2−1) ⊆ (x−1) in B, and the localization
of A with respect to m is itself, since the complement of m is just k. But
1/(x + 1) ∈ Bn will not satisfy any monic polynomials with coefficients in
A, since 1/(x+ 1) never kills x2 − 1. □
Exercise 5.5.5. Let A ⊆ B be rings, B integral over A.
(1) If x ∈ A is a unit in B, then it is a unit in A.
(2) The Jacobson radical of A is the contraction of the Jacobson radical of

B.

Proof. For (1). For x ∈ A, if x is a unit in B, that is there exists y ∈ B
such that xy = 1. But B is integral over A, which implies there exists
a0, . . . , an−1 ∈ A such that

yn + an−1y
n−1 + · · ·+ a1y + a0 = 0

So multiply xn on each side we obtain
1 + an−1x+ · · ·+ a1x

n−1 + a0x
n = 0

so we have
−x(an−1 + · · ·+ a0x

n−1) = 1

that is x is a unit in A.
For (2). Note that if B is integral over A, then for every maximal ideal

m of B, we have m∩A is an maximal ideal of A. Furthermore, every prime
ideal of A is contracted, so in particular, every maximal ideal of A can be
written as m ∩A where m is a maximal ideal of B. So it’s clear to see

RB ∩A =
⋂

(m ∩A) = RA
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where intersection runs over all maximal ideals of B. □
Exercise 5.5.6. Let B1, . . . , Bn be integral A-algebras. Show that

∏n
i=1Bi

is an integral A-algebra.

Proof. Firstly, let ϕi : A → Bi be the homomorphism making Bi into A-
algebra, thus consider

∏n
i=1 ϕi : A→

∏n
i=1Bi, which makes

∏n
i=1Bi into an

A-algebra. Now it suffices to show B is an integral A-algebra. Choose an
element b = (b1, . . . , bn) ∈

∏n
i=1Bi, then for each bi we have a polynomial

with coefficients in fi(A), denoted by fi, then consider

f(x1, . . . , xn) := (
n∏

i=1

fi(x1), . . . ,
n∏

i=1

fi(xn))

it’s clear f(b) = 0, this completes the proof. □
Exercise 5.5.7. Let A be a subring of a ring B, such that the set B \A is
closed under multiplication. Show that A is integrally closed in B.

Proof. Let b ∈ B which is integral over A, then it satisfies a monic polyno-
mial, that is

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0

where ai ∈ A. Note that b(bn−1 + an−1b
n−2 + · · · + a1) ∈ A, thus if b 6∈ A,

then we have bn−1 + an−1b
n−2 + · · · + a1 ∈ A, since B \ A is multiplicative

closed. Repeat above process one has b + a1 ∈ A, which implies b ∈ A, a
contradiction. □
Exercise 5.5.8. Show the following statements:
(1) Let A be a subring of an integral domain B, and let C be the integral

closure of A in B. Let f, g be monic polynomials in B[x] such that
fg ∈ C[x]. Then f, g are in C[x].

(2) Prove the same result without assuming that B or A is an integral
domain.

Proof. For (1). Take a field containing B in which the polynomials f, g split
into linear factors: say f =

∏
(x− ξi), g =

∏
(x− ηj). Each ξi and each ηj is

a root of fg, and fg ∈ C[x], one has ξi and ηj is integral over C. By Vieta’s
formula one has coefficients of f and g are still integral over C, since C is a
ring. Furthermore, f, g ∈ C[x], since C is integrally closed in B. □
Exercise 5.5.9. Let A be a subring of a ring B and let C be the integral
closure of A in B. Prove that C[x] is the integral closure of A[x] in B[x].

Proof. If f ∈ B[x] is integral over A[x], then there exists some gi ∈ A[x]
such that

fm + g1f
m−1 + · · ·+ gm = 0

Consider integer r satisfies the following conditions
(1) r is larger than m and the degrees of g1, . . . , gm.
(2) If we set f1 = f − xr, then
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Note that in other words (2) is to say

fm1 + h1f
m−1
1 + · · ·+ hm = 0

where hm = (xr)m + g1(x
r)m−1 + · · · + gm ∈ A[x]. Now apply Exercise

5.5.8 to the polynomials f1 and fm−1
1 + h1f

m−2
1 + · · · + hm−1 to conclude

f1 ∈ C[x], so is f . □

Exercise 5.5.10. A ring homomorphism f : A → B is said to have the
going-up property (resp. the going-down property) if the conclusion of the
going-up theorem (resp. the going-down theorem) holds for B and its sub-
ring f(A).
(1) Consider the following statements:

(a) f∗ is a closed mapping.
(b) f has the going-up property.
(c) Let q be any prime ideal of B and let p = qc. Then f∗ : Spec(B/q) →

Spec(A/p) is surjective.
Show that (a) =⇒ (b) ⇐⇒ (c).

(2) Consider the following statements:
(a) f∗ is an open mapping.
(b) f has the going-down property.
(c) For any prime ideal q of B, if p = qc, then f∗ : SpecBq → SpecAp

is surjective.
Show that (a) =⇒ (b) ⇐⇒ (c).

Proof. For (1). □

Exercise 5.5.11. Let f : A→ B be a flat homomorphism of rings. Then f
has the going-down property.

Proof. □

Exercise 5.5.12. Let G be a finite group of automorphisms of a ring A,
and let AG denote the subring of G-invariants, that is of all x ∈ A such that
σ(x) = x for all σ ∈ G. Prove that A is integral over AG.

Proof. □

Exercise 5.5.13. Let S be a multiplicative closed subset of A such that
σ(S) ⊆ S for all σ ∈ G, and let SG = S ∩ AG. Show that the action of G
on A extends to an action on S−1A, and that (SG)−1AG ∼= (S−1A)G.

Proof. □

Exercise 5.5.14. In the setting of above Exercises, let p be a prime ideal of
AG, and let P be the set of prime ideals of A whose contraction is p. Show
that G acts transitively on P . In particular, P is finite.

Proof. □
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Exercise 5.5.15. Let A be an integrally closed domain, K its field of frac-
tions and L a finite Galois extension of K. Let G be the Galois group of L
of K and let B be the integral closure of A in L. Show that σ(B) = B for
all σ ∈ G, and A = BG.
Proof. □
Exercise 5.5.16.
Proof. □
Exercise 5.5.17.
Proof. □
Exercise 5.5.18.
Proof. □
Exercise 5.5.19.
Proof. □
Exercise 5.5.20.
Proof. □
Exercise 5.5.21.
Proof. □
Exercise 5.5.22.
Proof. □
Exercise 5.5.23.
Proof. □
Exercise 5.5.24.
Proof. □
Exercise 5.5.25.
Proof. □
Exercise 5.5.26.
Proof. □
Exercise 5.5.27.
Proof. □
Exercise 5.5.28.
Proof. □
Exercise 5.5.29.
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Proof. □
Exercise 5.5.30.
Proof. □
Exercise 5.5.31.
Proof. □
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6. Chain condition

Proposition 6.0.1. M is a Noetherian A-module if and only if every sub-
module of M is finitely generated.

Proof. If N is a submodule of M , and let Σ denote the set of all finitely
generated submodules of N , it’s clear Σ is not empty and therefore has a
maximal element, say N0. If N0 6= N , consider the submodule N0 + Ax
where x ∈ N, x 6∈ N0, which is a finitely generated submodule and strictly
contains N0, a contradiction.

Conversely, let M1 ⊆ M2 ⊆ . . . be an ascending chain of submodules of
M , then N =

⋃∞
n=1Mn is a submodule of M , hence is finitely generated,

which implies the chain is stationary. □
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7. Noetherian rings

Recall that a ring A is Noetherian if it satisfies the following three equiv-
alent conditions:
(1) Every non-empty set of ideals in A has a maximal element.
(2) Every ascending chain of ideals in A is stationary.
(3) Every ideal in A is finitely generated.

7.1. Hilbert’s Basis Theorem.
Theorem 7.1.1 (Hilbert’s Basis Theorem). If A is Noetherian, then the
polynomial ring A[x] is Noetherian.

Corollary 7.1.1. Let B be a finitely generated A-algebra. If A is Noether-
ian, then so is B.

Proof. Note thatB is a homomorphic image of a polynomial ringA[x1, . . . , xn],
which is Noetherian by Hilbert’s Basis Theorem. □
Proposition 7.1.1. Let A ⊆ B ⊆ C be rings. Suppose that A is Noetherian
and C is finitely generated as an A-algebra. If either
(1) C is finitely generated as a B-module.
(2) C is integral over B.
Then B is finitely generated as A-algebra.

Proposition 7.1.2. Let k be a field, E a finitely generated k-algebra. If E
is a field then it is a finite algebraic extension of k.

Proof. □
Corollary 7.1.2. Let k be a field, A a finitely generated k-algebra. Let m
be a maximal ideal of A. Then the field A/m is a finite algebraic extension
of k. In particular, if k is algebraically closed then A/m ∼= k.

Proof. Just take E = A/m. □
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