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0. NOTATIONS

. U, V,W usually denotes open subsets in R", where n > 2. We write

VeUifV cV cUandV is compact, and say V is compactly

contained in U.

. Function spaces

(a) C(U) = {u € C(U) | u is uniformly continous on bounded subsets of U};

(b) C*(U) = {u € C¥(U) | D®u is uniformly continous on bounded subsets of U for all |a| <
k};

(0) C™(T) = M7y CH(D).

. u(x) = u(xy,...,oy,) is a smooth function defined on U, its partial differ-

ential é% is denoted by u,,.

. Hessian of v is defined as a matrix D*u(x) = (ug;a; )ix;

. Laplacian of u is defined as Au(x) = divDu =Y ;" | Ug,q,

. A vector of the form o = (ay,...,a,), where each component «; is a

non-negative integer, is called a multiindex of order

lal =a1+ -+ ayp
. Given a multiindex «, define
olely

D = ——————
° « (e
ox{"...0xn"
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Part 1. Sobolev space

1. SOBOLEV SPACE

1

1.1. Definitions and basic properties. Let u,v € L; .

tiindex. If
/uDad)dx:(—l)'a/ vod
U U

for all test functions ¢ € C°(U), then we say v is the a-th weak partial
derivatives of u, and denoted by D% = v.

(U) and o a mul-

Remark 1.1.1. Note that v has a a-th weak partial derivative don’t implies
lower order weak partial derivatives. For example:

Lemma 1.1.1. Let v € L} (U). If a weak a-th partial derivative of u

loc
exists, then it’s uniquely defined up to a set of measure zero.

Proof. Assume v,v € L}, (U) such that

/Uu ¢pdr = (—1) /(quﬁdx (-1) /Uvqbdx
for all ¢ € C°(U), then

/ (v—"0)pdz =0
U
for all ¢ € C°(U). Thus from v =7 a.e. O
Definition 1.1.1 (Sobolev space).
WEP(U) := {u € LP(U) | V]a| < k, D®u exists and D% € LP(U)}

Remark 1.1.2. Here we identify functions in WP (U) up to a set of measure
Zero.

Notation 1.1.1. If p = 2, we always write H*(U) = W*2(U) for k > 0.
The letter H is used for H*(U) is a Hilbert space as we will see. Note that
HO(U) = L*(U).

Lemma 1.1.2. Assume u,v € WkP(U),|a| < k, then

1. D € Wk=lebp(U7) and DB(D*u) = D**Py for all multiindex a, § with
laf + 8] < k.

2. Foreach \, u € R, Au+vv € WHP and DY(\u+pv) = ADu+uD, |a| <

k.

If V is an open subset of U, then u|y € WFP(V).

4. It € € C(U), then €u € WHP(U) and

D(gu) =Y (g) DPeDaPy

BLa

b



PARTIAL DIFFERENTIAL EQUATION 5

Proof. Let’s check (4) in the case of || =1 as follows: for any ¢ € C*(U),
we have

/ cuD / uD?(£6) — u(D*€)pdx
U U
= — / (ED%u) + uD*E)pdx
U

which implies
D% (éu) = ED“u + uD“E

Definition 1.1.2 (norms). For u € W*P(U), its norm is defined to be
1
) e 1Dl )7, 1< p< oo
[ullwrew) = .
2 laj<k DUl Loy, p =00

Remark 1.1.3. There is another equivalent norm defined as follows: For
u € WhP(U),

lallyiny = 3 1Dl i)

| <k
It’s clear
1
lullwro@) = (Y I1IDulpy)? < D I1Dull oy = lulliyn e
lal<k la|<k
Conversely,

lulliyen@y < X lullwro@y = Clo R)lullwrrw)
o] <k

where C'(n, k) is a constant depending on n, k.
Definition 1.1.3. Let {u,,},u € WFP(U), we say
L. Upy — u in WEP(U), if

Jim lu = lyrp @y =0

2. Up — u in I/V/Zf(U), if Uy, — u in WFP(V) for every V € U.

Remark 1.1.4. Tt’s clear that u,, — u in W*P(U) if and only if wu,, — u in
LP(U) and for any |o| < k we have D%u,,, = D%u in LP(U).

Definition 1.1.4. We denote by Wéf’p(U) the closure of C2°(U) in WF»(U).

Theorem 1.1.1. For each £ € N and 1 < p < oo, the Sobolev space
WHkP(U) is a Banach space.

Proof. Tt suffices to check WP (U) is complete. Assume {u,,} is a Cauchy
sequence in W*P(U), then for each |a| < k, {D%u,,} is a Cauchy sequence
in LP(U), thus there exists u, € LP(U) such that D*u,, — us in LP(U)
since LP(U) is complete. In particular, we have uy,, — u.
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So it suffices to check u € W*P(U) with D®u = u,, for any |a| < k, since
we already have desired convergence in LP(U). Indeed, for any test function
¢ € CP(U), we have

/uDo‘¢dx— lim /umDa¢dx
U m—00

= lim (—1)|a/ D%y, ¢d
U

m— 00

= (—1)l /Uuagbda:

This completes the proof. O
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1.2. Approximation.

1.2.1. Interior approzimation by smooth functions. Fix U, = {z € U |
dist(z,0U) > €}.

Theorem 1.2.1 (local approximation by smooth functions). Assume u €
WHP(U) for some 1 < p < 0o, and set

ut(z) = ¢e xu(x), x€Us
then v — u in I/VIIZCP(U) as € — 0.

Proof. We have already senn in appendix C.5, u¢ — w in L (U). In order
to show v — w in Wk’p(U), it suffices to show D%u® — D% in LY (U) for

loc loc
any |a| < k. The following observation is crucial: For any |a| < k, then

D% = ¢ x D%, in U,
Indeed, for z € U,

D%u® = D¢ /U de(x — y)u(y)dy
~ [ D26 - putn)dy
U
= (—1)l /UDg“czSe(w — y)u(y)dy

= (12 [ 6o =) Djutu)dy
= (D)’

From this observation we have D*u® — D% in L} (U). This completes the
proof. O

In fact, we can find smooth functions which approximate in W*?(U) and
not just in T/Vl’f)f(U)

Theorem 1.2.2 (global approximation). Assume U is bounded and suppose
u € WFP(U) for some 1 < p < co. Then there exists functions u,, €
C>(U) N WkP(U) such that wu,, — u in WkP(U).

Proof. Let U; = {z € U | |z| < i,dist(z,0U) > 1/i}, then U = |J;2, Us.
Write V; = U3 — Ui+1 and choose an open subset Vj @ U such that
U = ;2 Vi- Note that {V;} is a locally finite cover, thus we can choose a
smooth partition of unity {&;} subordinate to it. Then for any u € W*»(U),
we have &u € WHP(U) and supp(&u) C V;.

Fix § > 0, choose &; > 0 sufficiently small such that u’ := 7., * (§u)
satisfies

lu' = &ullwrpwy < g1, ©2>0
suppu' C W; :=Uj4 —U;, i2>1
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Write v := > o0 u’, it’s a well defined smooth function, since {W;} is locally

finite. For each V € U, there is N € N such that v = Y. (wl,u = SN &u,
therefore

N
o = wllweony = 1D = &u)lwery
1=0
N .
Z v = Gullwes @)

1
<5y 571
i=0

<46

@

1.2.2. Global approzimation up to the boundary.

Theorem 1.2.3 (global approximation up to the boundary). Let U be
bounded and OU is C'. Assume u € W*P(U) for some 1 < p < co. Then
there exists functions u,, € C°°(U) such that u,, — u in WkP(U).
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2. EXTENSION THEOREM AND TRACE THEOREM

2.1. Extension theorem.

Theorem 2.1.1 (extension theorem). Suppose 1 < p < co. Assume U is
bounded and 9U is C*. Select a bounded open set V such that U € V, then
ther exists a bounded linear operator

E: WkP(U) = WhP(R™)

such that for each u € WP (U), we have

1. EFu = u almost everywhere in U;

2. supp Fu C V;

3. [|1EBullyrr@ny < C(p, U, V)|[ullyr.p ), where C(p,U, V') is a constant de-
pending only on p, U and V.

2.2. Trace theorem.

Theorem 2.2.1. Assume U is bounded and 9U is C!. Then there exists a
bounded linear operator

T:WhP(U) — LP(0U)

such that

1. Tu = ul|gy if u € WHP(U)N C(U);
2. [ Tullrovy < C,U)|ullwrr(w) for each u € WP(U) with constant
C(p,U) depending only on p and U.

Proof. Step one: Let’s deal with flat boundary for v € C!. Assume u €

C1(U) and suppose = € OU and 9U is flat near z, lying in the plane {z, =
0}. Choose an open ball B = (z,7) such that

Bt :=Bn{z,>0}cU
B~ :=Bn{z, <0} CR"—U

Let B = B(z,r/2),I' =0U N B. Select € € C2°(B) such that

1;

@ A
[ o
VA
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Let 2/ = (z1,...,2p-1) € {z, = 0}, then

/|u]pdm’§/ &|ulPda’
I Tn,=0
— [ [ ey, o
rn,=0J0

—— [ (eluP)sdo

= — /B+ |u|PEs, +p]u|pf1 sgn(u)ug, dx

<nllimia) [ luPda + plEllm(aP) s, ldo

|uf? |z, [P

301/ (uf? + |DulPdz
Bt

where C] is a constant depending only on p and U, since bump function &
depends on U.

Step two: If x € OU but OU is not flat near x, we straighten out the
boundary near x to obtain the setting in step one, applying above estimate
and changing variables, we obtain

/ lulPdS < CQ/ |ulP + |DulPdx
T U

where T' is some open subset of QU containing x, and C9 is a constant
depending only on p and U.

Step three: Since OU is compact, one can choose finitely many z; € OU
and open subset I'; C QU such that OU = Uzj\il I'; and

lullery) < Csllullwe @)
where Cj3 is a constant depending only on p and U. Consequently if we set
Tu := u|gy, then
| Tull e ovy < Csllullwre )

Step four: Assume u € W'P(U), then there exists a sequence {up,} C

C>®(U) converging to u in WHP(U). Since
[T um — Twl|Lrovy < Csllum — wllwre @

which implies that {T'u,,} is a Cauchy sequence in LP(0U) and so we define

Tu:= lim Tu,,
m—00

This limit is independent of the choice of {u,}. B
Step five: Now suppose u € C(U) N WLP(U), note that u,, € C=(U)
converges uniformly to u on U, thus Tu = ulgy. O
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Theorem 2.2.2. Assume U is bounded and OU is C'. Suppose u €
WLP(U), then u € W, P(U) if and only if Tu = 0 on dU.

Remark 2.2.1. This theorem characterizes the difference between W1 (U)
and W, 2(U).
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3. SOBOLEV INEQUALITIES

Our goal in this section is to find embeddings of various Sobolev spaces
into others. The crucial analytic tools here will be so-called “Sobolev type
inequalities”, which we will prove for smooth functions. These will then
establish the estimates for arbitrary functions in various Sobolev spaces,
since we already know smooth functions are dense.

To be explicit, if a function v € WHP(U), does u automatically belong to
certain other spaces? The answer is yes, but in which spaces depends upon
whether

L (U),
)

1<p<
WP(U) c { L*°U), p=n
Co(U), n<p<
where p* and v are defined later.
3.1. Case 1 <p<n.

Definition 3.1.1 (Sobolev conjugate). For 1 < p < n, we define its Sobolev
conjugate as
* np
p =
n—p
Theorem 3.1.1 (Gagliardo-Nirenberg-Sobolev inequality). Assume 1 <
p <n. Then

[ull Lo (mny < C(n,p) || Dul| Lo (ren)
for all u € C}(R"), where C(n, p) is a constant depending only on n and p.

Proof. Firstly we assume p = 1, then p* = n/(n — 1). Since u is compactly
supported, then for each ¢ = 1,...,n and x € R"™ we have

Tl
= / 8xiu(x1,--.,$i71,yi,xi+17...7$n)dyi
—00
So we have
()] < / Oayt(@1, -, i1, i Tis1, - )|y
R

Therefore
n
|u(z) [V (=) §H / |0, (1, Ty Yy Tig 1, - - )| dyg) /D)

Fix x9,..., 2, and 1ntegrate above inequality with respect to x1, we obtain

/|u]"/(n1)dx1 S/H(/ |00, u(Z1, - - Ti 1, Ui Tis1s - - - ) |dyg) Y "V dary
R R /R

Note that if we already fix xo,...,x,, the following term is independent of
X,

(/1‘{ ‘axlu(yl, T2y e, xn)|dy1)1/(n_1)
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Thus we have

[t/ Dae < [T naton, i iz, ldys) /Doy
R R; /R

—( / By uldys) D / I1¢ / 100, uldyi)/ Ve
R R JR

Then by Holder inequality we have

/H(/ ‘8xiu|dyi)1/(n_1)dxlS(H//|aw¢“’d$1dyi)1/(n_1)
Rij—p /R o JRJR

All in all, we have

/\u|”/<"1>dx1 g(/ |8x1u|dy1)1/(n1)(H// 10, uldy )/
R R o JRJR

Now fix x3,...,z, and integrate with respect to xs, we obtain

//]u\”/("_l)da:ldm
R JR

<([ [ foruldiede 0 [ ([ (ouits)™ s [T [ 10suldyer) 7 dz,
R JR R JR s JRJR

part I

1
<( / / Bayuldyada) 1 / / 10, ]y darg) 7
RJR RJR

We can take part I outside of integration since it’s independent of x2 and
for the second inequality we also use Holder inequality.
Repeat this process with respect to zs, ..., z,, we will obtain

n n o o0 1
/ |un1dx§H(/ / |Duldzy ...dy;...dx,) T
R™ i—1 Y —00 —0o0

—( / |Dulda) 7
]Rn

This shows desired estimate for p = 1.
Now consider 1 < p < n, we apply above estimate to v := |u|”, where
v > 1 is to be selected. Then

</ | 2 de) "5 < / \Dlul’|dx
mn Rn

— / | Duldc
Rn

p—1

<7</ | O~ 4 5 </ |DulPdz)?
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We choose v so that ;2% = (v — 1);2, in which case we have

o np *
p
n—1 n-—p

This completes the proof. U

Theorem 3.1.2 (estimates for WP 1 < p < n). Let U be a bounded, open
subset of R™, and suppose OU is C'. Assume 1 < p < n and u € WP(U),
then for each 1 < ¢ < p*, we have u € LI(U) with estimate

lullLaery < C(n,p,q, U)l[ullwre @y
where C'(n,p,q,U) is a constant depending only on n,p,q and U.

Proof. Let’s firstly consider the case ¢ = p*. Since OU is C!, then by
extension theorem we have Eu =u € W1P(R") such that

u=uinU
supp u is compact

@]l wre @y < C1(p, U)llullwiew

Because @ has compact support, then there exists functions u,, € C°(R")
such that

Uy — T in WHP(R™)
Now by Gagliardo-Nirenberg-Sobolev inequality we have
[ttm = w| po* gny < C2(n, p)|| Dm — Dui| 1oy
for all m,l > 1. Thus
Uy — T in L (R)
as well. Taking limit in Gagliardo-Nirenberg-Sobolev inequality ||wp, || 7 »* ®r) <
Ca(n,p) HDUmHLp(Rn) we have

1@l o+ ey < C2(n, p)||DU| Lo (rn)
Thus
[ull o= 0y < 1ll o= (mny < Coln, p) | DU| Loy < C1(p, U)Co(n, p)|[Dul| o)

Now for 1 < g < p*, one has interpolating inequality as follows

Jullfsy = [ Iz
U
< ([ 1d0) ([ (ui" o)
U U

-4
= Ul
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which implies |[u|zq@r) < C3(p, ¢, U)l|ul| 1o+ (1) Thus

[ull oy < C3(p: q U)|ull o= (1)

< Cs(p, ¢, U)Ca2(n, p)|| D[ ppgn)
< Cs(p, 4, U)Ca(n, p)C|lully i wny
< C3(p,q,U)Ca(n, p)CCL(p, U) || Dullwrs )
This completes the proof. [l

Remark 3.1.1. Here we need U is bounded with C'! boundary to use exten-
sion theorem.

Theorem 3.1.3 (estimates for VVDl’p7 1 < p < n). Let U be a bounded, open
subset of R”. Assume 1 <p <nandu € Wol’p(U), then for each 1 < ¢ < p*,
we have the following estimates

ull ey < C(n,p,q, U) || Dul| Loy

where C' is a constant dependlng only on n,p,q and U.

Proof. Since u € WO1 P(U), there exist functions u,, € C>°(U) converging to
u in WHP(U). We extend each function u,, to be zero on R™\U and mimick
above proof to obtain

[ull o* () < Cr(n, p)|| Dull o)
As U is bounded, by interpolating inequality one has
[ull Loy < Colq, U)llul| o 17y
This completes the proof. [l
Remark 3.1.2. Since p < p*, so in particular, for all 1 < p < n, we have
[ull ey < C(n,p, U)|1Dull o)
This estimate is sometimes called Poincaré inequality.

3.2. Case p = n. Owing to our estimate for 1 < p < n, you know that if
u € WHP(U), then u € LP (U) where p* = %‘ Since p* — oo as p — n,
you might expect u € L*°(U), if u € WLH(U). However, this is false when
n > 1. For example, if U = B(0, 1), the function u = loglog(1+ ﬁ) belongs
to W1m(U) but not to L= (U).

3.3. Case n < p < oo. In this case, we will show if u € WP(U), then u is
in fact Holder continous, after possibly being redefined on a set of measure
ZEero.

Theorem 3.3.1 (Morrey’s inequality). Assume n < p < oo, then there
exists a constant C', depending only on p and n such that

[ullcor @) < Cllullwirr)

for all u € C*(R), where v = 1 — n/p.
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Proof. We claim that there exists a constant C7, depending only on n such

that
[Du(y)]
u(y) —u dy<C/ 7dy
][B(x,r)’ ( ) ( ‘ (z,7) |y_1.|n !

for any ball B(x,r) C R™.
Fix w € 0B(0,1), then if 0 < s < r, we have

lu(z + sw) — u(z)| = |/ L@ + tw)dt]
|t
.y / Dl + tw)wdi]
0

< / | Du(z 4 tw)|dt
0
Hence
/ lu(z + sw) — ula)[dS(w)
aB(0,1)

Now choose any x,y € R™ and write r := |z — y|, W := B(z,r) N B(y, r).
Then we have

—ulz z M u\xr) —ulz z
f, 1@ —uiae < FIER £ jate) —u(z)a

! dz (—1)/p
= 05(/B(z,r) |Du‘ dz)p( B(z,r) |x - Z|(n71)p/(p71))
1

n—(n—1p/(p—1)

— CGT(p_n)/pHDUHLP(Rn)

< Cs( r"_(”_l)p/(p_l))(p_l)/pHDuHLp(Rn

)

Similarly you have

F 1uw) — )itz < Cor 7| Dul
W

() - u(y)] < ][W jua) — u(z)[dz + fW fu(y) — u(z)|dz

< Cor®™™/?|| Dul| 1o (eny

Thus

Therefore

u(z) = u(y)]
(o) = SUP T T

< Cr||Dul| o gy
O

Definition 3.3.1. u* is called a version of a given function u, if u = u* a.e.
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Theorem 3.3.2 (estimates for WP n < p < o). Let U be a bounded,

open subset of R™, and suppose U is C’li. Assume n < p < oo and u €

WYP(U). Then u has a version u* € C%(U) for y =1 — o with estimate
lw* o) < Cllullwiom)

The constant C' depends only on p,n and U.

Proof. Since OU is C!, then by extension theorem we have Eu = u €
WLP(R™) such that

uw=uinU
supp u is compact
HHHWLP(R’I) < C||U”W1,p(U)

Now assume n < p < 00, since u has compact support, then there exists
functions u,, € C°(R™) such that

Uy — T in WHP(R™)
Now by Morrey’s inequality we have
[wm — will com@ny < Ctllum — witwipmn

for all m,l > 1, where v = 1 — n/p. Thus there exists u* € C%7(R") such
that

Uy — u* in COY(R™)
Since u,, — u in WHP(R™), we have u* = u a.e. in U. Taking limit in
Morrey’s inequality we have
[u*[|comr@mny < Crllal|y1em@ny
Thus
[l oy < N1l comgny < Crllallwregny < Cllullwe@w)
This completes the proof for n < p < co. For case p = oo, it’s easy to check

directly. O

Remark 3.3.1. The proof here is almost the same as the proof in estimate
for1 <p<n.

3.4. General Sobolev inequalities.
Theorem 3.4.1 (general Sobolev inequalities). Let U be a bounded open

subset of R™ with C' boundary. Assume u € W*P, then

1. If kp < n, then uw € LY(U), where 1/¢ = 1/p — k/n. Furthermore, we
have estimate

[ull ey < Cllullwrr @y
where C' depends on k,p,n and U.
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2. If kp > n, then u € C’k_[%_lm(ﬁ), where

[% +1- %], if 2 is not an integer

{any positive number < 1, if % is an integer

Furthermore, we have estimate

[ull o-120-15 (U) < Cllullyrsw)
where C depends on k,p,n,vy and U.

3.5. Compact embedding. Let X,Y be Banach spaces, f: X — Y is an
injective bounded linear operator.

Definition 3.5.1 (compact operator). f is a compact operator, if each
bounded sequence in X is precompact in Y, that is any bounded sequence
{um} C X has a subsequnce whose image under f converges in Y to some
limit v.

Definition 3.5.2 (compact embedding). X is compactly embedded in Y
via f, if f is a compact operator. If inclusion ¢ : X — Y is a bounded
compact operator, we write X € Y.

Theorem 3.5.1 (Rellich-Kondrachov compactness theorem). Assume U is
a bounded open subset of R” and 9U is C'. Suppose 1 < p < n. Then

WlP(U) e LI(U)
for each 1 < ¢ < p*.

Proof. Fix 1 < ¢ < p* and note that since U is bounded, then Gagliardo-
Nirenberg-Sobolev inequality implies

W (U) c L (U) € LYU),  |lullpaw) < Cllullwiow,)

So it remains to show that any bounded sequence {u,,} C W1P(U), there
exists a subsequnce which converges in L4(U).

By extension theorem we may assume U = R™ and {u,, } all have support
in some bounded open set V C R", and

(3.1) sup |um [lwievy < M < o0
m

Furthermore, we may assume {uZ, } all have support in V' as well.
Step one: A crucial observation is the following convergence is uniformly
in m:

us, = Um, in LI(V)
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To prove this, we first assume that wu,, is smooth, then

S, — tm(z) = /B o T 23) )y

Ld
= 10 [ ot <ty

1
— e / n(y) / Duum( — ety)ydtdy
B(0,1) 0
thus

1
(/\u;@ﬂ—wwxxﬂdeEi/g/ myx/ | Dty (z — ety)|dtdydz
v v JB(0,1) 0
1
:5/ U(y)/ /|Dum(x—6ty)|dxdtdy
B(0,1)
<5/ //|Dum 2)|dzdtdy
—6/ | Dy, (2)|dz

By approximation this estimate holds if u,, € W'P(V). Hence
[z — umll L1 vy < ellDumllprvy < €C1l|Duml| Lo vy

where the latter inequality holding since V' is bounded. Furthermore, || Dy, || s (v
is bounded uniformly in m by (3.1). Thus we have uS, — u,, in L' (V) uni-
formly in m.

But since 1 < ¢ < p*, we see using the interpolation inequality that

0
ot = el zaqw) < i = el iy 1 = 122

By Gagliardo-Nirenberg-Sobolev inequality we have

3

—0 -0
s = mll 2 < 2l < 2C Ny

V) V)

Together with (3.1) we can see

€

|lus, — tm| IL;G < 20, M

V)

thus bounded uniformly in m. So
4, — w paqvy < eC1CoM*?
which completes the proof of our claim.

Remark 3.5.1. Note that |lug, — wml| vy — 0 as € = 0 may not be uni-
formly in m, that’s why we can just prove compact embedding for ¢ < p*.
For ¢ = p*, there is an example such that W1P(U) C L9 (U) is not compact.
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Step two: we claim that: For each fixed € > 0, the sequence {u5,} is
uniformly bounded and equicontinous. Indeed, if x € R™, then

s, (2)] < /B =Dy

IN

(17e || oo (&) 1w | L1 (v
C

< — <o

671

for arbitrary m. Similarly

Dz, (2)] < /B 1Ptz =iy

< [Dnel| oo @ny 1 um || vy

Sgnﬁ<00

for arbitrary m.
Step three: Now fix 0 > 0, we claim there exists a subsequnce {u,,} C
{um} such that
Hm sup ||t — tmy || ey < 0
J,k—00
Indeed, we first use assertion in step one to select € > 0 sufficiently small
such that
R 4]
[ Um”LlI(V) < 5
for arbitrary m. However, we have already shown that {u$, } satisfies the
condition for Arzela-Ascoli compactness criterion in step two, thus we can
obtain a subsequnce {u;, } C {uf,} which converges uniformly on V. In
particular, we have

s [, = o) = 0

Thus we have
im sup [[wm; = tm,|[Leqvy SHmsup [Jum; — ug, [|Lav) + limsup [ug, . — ug,, [lLav)
7, k—00 J,k—o0 J,k—00

+ lirg sup [[uz,, — tmy || za(v)
J,K—00

<)

Step four: Now use assertion in step three with § =1, %, % and use a stan-

dard diagonal argument to extract a subsequnce {u,, } C {un,} satisfying

lim sup ||wm, — wm, ||pagyy = 0
l,k—o0

This completes the proof. [l

Remark 3.5.2. Now let’s consider p > n under asumption of this theorem.



PARTIAL DIFFERENTIAL EQUATION 21

1. For p = n, one has Wh™(U) € L4(U) for any 1 < ¢ < oco. Indeed, if
f € Whn(U), then f € WYP(U) for all p < n. Thus for each such p,
apply the result for p < n we have

whn(U) e LY(U)

for any 1 < ¢ < np/(n — p), since bounded composed with compact is
compact. However, np/(n — p) can be arbitrary large by taking p — n,
thus we obtain the desired result.

2. For n < p < oo, one has

wtP(U) c wh™(U) e LY(U)
for1 <g< oo

In particular, we can see
wWhr(U) e LP(U)
for 1 <p < .



22 BOWEN LIU

4. ADDITIONAL TOPICS
4.1. Poincaré inequality.
Notation 4.1.1. (u)y = f;; udy is used to denote the average of u over U.

Lemma 4.1.1. Suppose U is connected and u € WP (U) satisfies
Du=0 ae inU

Then wu is constant a.e. in U.

Proof. Consider U, = {z € U | dist(xz,0U) > e¢}. For x € U, consider
ut = ng Ne(x — y)u(y)dy, then u® is smooth and

Du, = / ne(z — y) Du(y)dy

Ue
Since Du = 0 a.e., we have that Du. = 0 for all x € U. and hence u® is
constant in Ue. Since |[u® — ullpp@y — 0 as ¢ — 0, we have that u is
constant a.e. in U. U

Theorem 4.1.1 (Poincaré inequality). Let U be a bounded, connected open
subset of R” with C! boundary. Assume 1 < p < co. Then there exists a
constant C', depending on n,p and U, such that

v = (Wullrwy < ClDull ey
for each u € WHP(U).
Proof. We argue by contradiction. Were the stated estimate false, then
for each positive integer k& € Nxq, there exists a function u, € W*P(U)
satisfying

|ur — (ur)ull ey > Kl Dull e
We renormalize by defining

L ug — (ug)u
Vg 1=
luk — (ue)ull ey

Then we have
(v)v =0, logll ey = 1
and by choice of v we have
1

[ Dl ey < z

In particular, {vy} are bounded in W'P(U). In view of proof of Rellich-
Kondrachov theorem, there exists a subsequnce {vy; } of {vy} and a function
v € LP(U) such that
vk, — v in LP(U)
Thus we have
(o =0, [[vllLew) =1
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On the other hand, |[Dvg|lzr@y < + implies for rach i = 1,2,...,n and
¢ € CX(U), we have

/ V@y, = lim / Uk, @z, dr = — lim Vk; 2, 0dx =0
U J=eoJu U

Jj—00

Consequently v € WHP(U) with Dv = 0 a.e. Thus by above lemma we have
v is constant since U is connected. However, this is a contradiction: since v is
constant and (v)y = 0 implies v = 0, which contradicts to [[v|[zpy = 1. O

4.2. Difference quotients. Assume u : U — R is a locally summable
function and V € U.

Definition 4.2.1. The i-th difference quotient of size h is
Dlu(z) = u(x + eZ-Z) —u(z)
for z € V and h € R,0 < |h| < dist(V,9U).

Notation 4.2.1. D"y := (D}, ..., D).

Lemma 4.2.1 (integration by parts). For i =1,...,n and ¢ € C*(V), we
have

| wploya = = [ (D7 huoas

v
Proof. Note that for small enough h we have
/ u(x)p(x + he;)dr = / u(z — he;)p(x)dx
Vv V+he;

and since ¢ has compact support in V', so the latter integral effectively only
extends over a subset of V', so we have

] e PR 0 — 2 ut@ote +hedda - | ulwyota)an
1
= h(/v u(x — he;)p(x)dx — /‘/U(iﬂ)¢($)d$)

[ ulz) —u(x — he;) e
- - [ AR

This completes the proof. ([

Theorem 4.2.1. Suppose 1 < p < oo and u € WHP(U). Then for each
VeU,
D"l vy < CllDull o)

for constant C and all 0 < || < 3 dist(V, 0U).

Theorem 4.2.2. Assume 1 < p < oo and u € LP(V), there exists a constant
C such that

D"l oy < C
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for all 0 < || < 3 dist(V,0U). Then
ue Whe(V)

with || Dul[ vy < C.
Proof. Estimates for || D"u| L»(v) implies

Sup 1D; " ul| 1o vy < 00
for all 0 < |h| < & dist(V,8U). Thus there exists a function v; € LP(V) and
a subsequnce hy — 0 such that
D; e uharpoonupv;

7

in LP(V'), since LP(V') is reflexive when 1 < p < co. So we have

/V UPy; = /U UPy, dx

= lim [ uD!*¢dzx
hx—0 Jur

= — lim D; h’“uqbdm
hx—0 Jy

= —/Vvigﬁda:
= —/Uviqﬁdx

This implies Du € LP(V), we deduce u € WHP(V) as u € LP(V). O
4.3. Other spaces of functions.
4.3.1. The space H™'.
Definition 4.3.1. The dual space of H}(U) is denoted by H~1(U).
Remark 4.3.1. We have the following inclusions

Hy(U) c L*(U) c HY(U)

Notation 4.3.1. We use (-,-) to denote the pairing between H~*(U) and
H (U).

Definition 4.3.2. For f € H-Y(U), the norm of f is defined as
£l =10y = sup{(f,u) | w € Hy(U), lull gy < 1}

Theorem 4.3.1. Here are some characterizations of H 1.
1. Assume f € H-1(U), then there exists f0,..., f* € L?(U) such that

() = [ 1o+ oo
=1
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for v € H}(U). Furthermore, one has

. = P12y &
Iy = k(| 3017’
Ui=o
2. (u,0) 2y = (u,v) for all u € H(U),v € L*(U) Cc H-Y(U).
4.3.2. Spaces involving time. Let X be a real Banach space, with norm || ||.

Definition 4.3.3. The space LP([0,7]; X) consists of all strongly measur-
able functions u : [0,7] — X such that

T 1
lall e o 210 = ( /0 lu()|Pdt)r < oo
for 1 < p < oo and
HuHLOO([O,T];X) ‘= eSsSUPg<i<T [u()]| < oo

Definition 4.3.4. The spaceee C([0,7]; X) consists of continous functions
u: [0,7] — X such that

Jalloqomx i= max [u(®)] < oc

Definition 4.3.5. Let u € LY([0,T]; X), v € LY([0,T]; X) is called the
weak derivative of u, written u’ = v, if

T
| oo / (1)

for all scalar test functions ¢ € C2°([0,T1])
Definition 4.3.6. The Sobolev space WP ([0,T]; X) consists of all func-
tions u € LP([0,T]; X) such that u’ € LP([0,T]; X ). Furthermore,

U @l + I @[Pdns, — 1<p <o

lallwe(go,ry;x) == /
essupo<e<r ([[u(®)]| + [[0'(B)]]), ¢ =00

Theorem 4.3.2. Suppose u € L?([0,T]; H}(U)) withu’ € L2([0,T]; H~Y(U)),
then
ue C([0,T]; L*(U))



26 BOWEN LIU

Part 2. Second-order elliptic equations
5. INTRODUCTIONS

In this part, we always assume U is an open, bounded subset of R".

5.1. What is elliptic equation? Let L denote a second-order partial dif-
ferential operator having either the form

n
(5.1) Lu=— Z( T) Uy, ml—i—Zbl T) g, + c(z)u
ij=1
or else

n
(5.2) Lu:—z uc,;;,;J—l—Z:bZ T)Ug; + c(x)u
i,j=1
for given coefficients functions a/,b?, ¢ defined on U.

Definition 5.1.1. L is called

1. in divergence form, if L is given in (5.1);
2. in non-divergence form, if L is given in (5.2).

Remark 5.1.1. If the highest-order coefficients a* are C! functions, then an
operator given in divergence form can be rewritten into non-divergence form,
and vice versa. The operator in different forms has its own advantages:

1. The divergence form is most natural for energy method, based on inte-

gration by parts;
2. The non-divergence form is most appropriate for maximum priciples.

Furthermore, in this part we always assume our differential operator L
has the following algebraic property.

Definition 5.1.2 (uniformly ellipticity). A partial differential operator L
is uniformly elliptic if

1. a¥ is symmetric;

2. There exists a constant # > 0 such that

> al(2)&g > 0l¢
ij=1
for a.e. x € U and all £ € R".

Remark 5.1.2. In other words, uniformly ellipticity means (a(z));; is a
symmetric matrix, and (a*(x));; is positive definite, with smallest eigenvalue
greater than or equal 0 for a.e. x € U.

lAs always, the heart of each computation is the invocation of ellipticity: the point is
to derive analytic estimates from the structural, algebraic assumption of ellipticity.
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5.2. How to solve it? Firstly let’s consider Dirichlet problem in divergence
form, that is a PDE given by

Lu=f inU
5.3
(5:3) {u:() on OU

where
n

Lu:—Z( T) Uy, )z +sz T Uz, + c(x)u
ij=1
In Sobolev spaces, it’s much easier to ﬁnd ‘solutions” of (5.3) in some
weak sense. The solution of this kind is sometimes called weak solution
or generalized solution. To explain its motivation, assume we already have
a smooth solution of (5.3), then multiply this equation by a smooth test
function v € C2°(U) and integrate by parts, we have

/Z a”ui vxz—l—Zbuxv-i-cuvdx—/fvd:p

1,5=1
By approximation we can show the same identity holds with the smooth
function v replaced by any v € HZ(U), and the resulting identity makes
sense if only u € H}(U).
If we associated the Dirichlet problem (5.3) the bilinear form

Blu,v] := / Z a’ uz] vmz—l—Zbluxv—i—cuvdx

4,j=1

for all u,v € H}(U). Then the above argument motivate us to define weak
solution as follows.

Definition 5.2.1 (weak solution). For f € H=Y(U), u € H}(U) is a weak
solution of Dirichlet problem (5.3) if

B[U,U] = <f,'l}>
for all v € H}(U), where (-,-) denotes the pairing of HJ(U) with its dual
space.

We follows the following three steps to back to classical solutions:

1. Existence and uniqueness of a weak solution is established by Lax-Milgram
theorem:;

2. The weak solution is proved to be smooth under appropriate assumptions.
This is a regularity result;

3. A classical solution is recovered by showing that any smooth weak solu-
tion is a classical solution.
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6. THE EXISTENCE AND UNIQUENESS OF WEAK SOLUTION

6.1. Lax-Milgram theorem. Let H be a real Hilbert space with norm
|| - || and inner product (-,-), and (-,-) denotes the pairing of H with its dual
space.

Definition 6.1.1 (bounded). A bilinear functional B : H x H — R is called
bounded, if

| Blu, v]| < afful||v]

for all u,v € H, where « is a finite constant.

Definition 6.1.2 (coercive). A bilinear functional B : H x H — R is called
coercive, if

| Blu,u]| > Bl|ul|?
for all u € H, where 3 is a constant > 0.

Theorem 6.1.1 (Lax-Milgram theorem). Assume B : H x H — R is a
bounded and coercive bilinear functional and f : H — R is a bounded linear
functional on H, then there exists a unique v € H such that

Blu,v] = (f,v)
for all v € H.

6.2. Energy estimates: A baby version. In this section, we try to verify
the hypothesis of the Lax-Milgram theorem for

Blu,v] := / Z a”ux Uz, —I-szuzv-i-cuvdx

4,j=1
for all u,v € H&(U ) under assumptions:
1. a¥,b',c € L>®(U);
2. feL*U).
Theorem 6.2.1. Under the assumptions in this section, there exist con-
stants C'(n, L), i(n, L) > 0 depending only on n and operator L such that
L |Blu,v]| < C(n, L)||lull g vl g oy
2. B[“?“] = QHDUHL2(U ,LL(?”L,L)HUH%Q(U)
for all u,v € HE(U).

Proof. For (1). It’s easy to see

Bluoll < 3 a9 | e / Dl Doldz + 3 [ 1= /U |Dul[oldz + [le] =) /U fullvldz

ij=1 i=1
< C(n, D)llull gy oy 1ol 2 (o)
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For (2). The uniformly ellipticity implies

0/ |Du]2dx§/ Z auy, Uy, dx
U

1,5=1

= Blu,u] — / Zbiu%u + cu’da

< Blu,u +Z 15| o U)/ |Dulu|dz + |¢]| oo (s /UUde

=1

Now from Cauchy’s inequality one has

1
/ ]DuHu\d:):Sz-:/ |Du2dx+/ ulda
U U 4e Ju

where ¢ is a constant > 0. Choose ¢ sufficiently small such that

5Z||b 2@ < 5

Thus
5 [ IDuPds < Blu.ul + (lellp~w) + ) [ ol
that is
Blu,u] = HDuHLz(U fi(n, L)[|ull 2,
since € depends only on n and L. O

Remark 6.2.1. By using Poincaré inequality, one can deduce the following
estimates

BllullZs oy < Bluyu] +yllulZz
for appropriate constants 8 > O and v > 0.

Corollary 6.2.1. There exists z > 0 such that for all u > T, there exists a
unique weak solution u € Hg (U) of the boundary-value problem

Lu+pu=f inU
u=0 on OU

where f € H-1(U).

Proof. Take i as fi(n, L) in Theorem 6.2.1 and define the following bilinear
form

By [u,v] := Blu,v] + pu(u,v), wu,ve€ Hy(U)

which corresponds to the operator L, := Lu+ pu. Then B[, -] satisfies the
hypothesis of the Lax-Milgram theorem. O
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6.3. Energy estimates: A general version. In above section, we put
quite strong requirements on the coefficients of operator L. In fact, we can
consider the following assumptions:

1. U is an open bounded subset of R”, n > 3 with C! boundary2.
2.

n n
(6.1) S a9 ey + 16 Ly + lell ) < A
ij=1 i=1

Theorem 6.3.1. Under the assumptions in this section, there exist constant
C(n,A,U),1i(n,0,U) > 0 such that

| Blu, v]| < C(n, A, U)|ull g [0l g )
Bl ull > 21Dl — .0, U) e
for all u,v € H(U).
Proof. For (1). By generalized Holder inequality and Sobolev inequality
[ull L2x 0y < Crn, U)|ull g

where 2* = % Holding these tools, we have the following estimates
1.

n

. D @@, vada] < ol MDDz
2. n’]_ §
N DV vl | < 3 W)l Dl o oz
< Cs(n, A, U) [ Dul 2 ol o
3.

| apunda < lell g gl o ol o
< Ca(n, A, U)|ull zr @ lloll g2 oy

This completes the estimates for upper bound of | Blu, v]|.
For (2). Recall for f € LP(U),1 < p < oo, there exists fi, fo such that

f=/fi+ f2 and
I filler@y <& N f2llpee @y < K(e)

So there exists decomposition

sz{—i—b%, c=c1+c

2We need U is open bounded with C*! boundary to use Sobolev embedding, and n > 3
is just a technique condition.
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such that

n

Z;(HbliHLn(U) +lell g o) <e
J

D (billzeeuy + llellzoe o) < K (e)
j=1

S

By the same estimate in (1) it’s easy to see

n n
Bilu, u] ::/ E (aijuzj)umi + g biug,u+ cude
U

g=1 i=1
> 0| Dul32 gy — =Cn, U)llulyy o

And by Young’s inequality

n
Bsu,ul] := / Z bz, u + cou’dx
Ui=1

> —C(n)K(e)/U|DuHu\ +ude

0 C(n)K(e
> ~2DulRag, - conre)( EEE L.,
4 0
Choose ¢ such that eC(n,U) = g and set
_ 6 C(n)K(e
=k oS

then we have
0 _
Blu,u] = B1lu,u] + Ba[u,u] > §”DUH%Q(U) — allullZe

O

6.4. Fredholm alternative. Now we’re going to use Fredholm theory for
compact operator to glean more detailed information regarding the solv-
ablity of second-order elliptic PDE. The Fredholm alternative theorem in a
Hilbert space is stated as follows:

Theorem 6.4.1 (Fredholm alternative theorem). Let H be a Hilbert space,
K : H — H is a compact operator with adjoint operator K*, then

1. Precisely one of the following statements holds:
(a) For all f € H, w — Ku = f has unique solution in H;
(b) uw— Ku = 0 has non-zero solution in H.

2. dimker(I — K) = dimker(I — K*), where I is identity operator;

3. For all f € H, u— Ku = f has solution in H if and only if f € ker(/ —
K*)*.
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Now we are going to consider Dirichlet problem (5.3) by Fredholm alter-
native theorem. The process is divided into three parts.

Step one: The adjoint operator of L. Recall the adjoint operator of
L, denoted by L* is defined as

(Lu,v) = (u, L*v)
where u,v € H}(U). To be explicit, we have

(Lu,v) / Z a uxj Vg, + Zblur v + cuvdx

i,j=1

@ i i
Z a’ ’Um] Ug, — Zb Vg, U+ (¢ — Z by, )vudz
ij=1 i=1 i=1

where (1) holds from integration by parts. Thus adjoint operator L* can be
written explicitly as

n n
L*v = — Z avy, ) Zblvzl (c— Z bl v
ij=1 i=1

Step two: The equivalent expression of Lu = f. Let H = H *(U)
and Lj,u = Lu + pu, by Theorem 6.3.1 we can choose p > 1 such that for

all f € H, L,u = f has unique solution in H}(U), that is there exists
L,'H-—HyCH

So the following statements are equivalent:

1. Lu = f has unique solution in HE(U);

2. Lyu = f + pu has unique solution in H} (U);

3. u= L;l(f + pu) has unique solution in Hg (U);

4. uw— Ku = h has unique solution in H}(U), where

1
K=uL,', h=L,'"f=-Kf€H,
Ju!

Step three: K is a compact operator.

Step four: Conclusion. Apply Fredholm alternative to H = H*(U)
and K defined in step two.
1. Precisely one of the following statements holds:

(a) For all u € HY(U), u — Ku = h has unique solution in H, which
is equivalent to for all f € H=(U), Lu = f has unique solution in
HZ(U) by step two;

(b) u— Ku = 0 has non-zero solution in H, which is equivalent to Lu = 0
has non-zero solution in Hg(U).

2. dimker(I — K) = dimker(/ — K*), where [ is identity operator. By
definition we have
ker(I — K) = {u € H}(U) | Lu = 0}

ker(I — K*) = {u € H}(U) | L*u = 0}
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3. For all f € H, the following statements are equivalent:
(a) Lu = f has solution in H}(U);
(b) u— Ku = h, where h is defined as step two, has solution in H;
(¢) h € ker(I — K*)*, this holds from Fredholm alternative;
(d) (h,v) =0 for all v € ker(I — K*). Furthermore,
1 1. .1 1
(o) = (K o) = (LK) = () = [ fudo
where the last equality holds only if f € L?(U).

All in all, we have proven:

Theorem 6.4.2. Let U be an open bounded subset of R", n > 3 with C!
boundary, L is a uniformly elliptic operator with coefficients satisfying (6.1).
Then
1. Precisely one of the following statements holds:

(a) For all f € H-Y(U), Lu = f has unique weak solution in Hg(U);

(b) Lu = 0 has non-zero weak solution in H}(U).
2. dim({u € H}(U) | Lu = 0}) = dim({u € H}(U) | L*u = 0}) < oo;
3. For all f € L?>(U), Lu = f has unique weak solution in H}(U) if and only

if
/ fvde =0
U
for all v € {u € H}(U) | L*u = 0}.
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7. REGULARITY
In this section, we're going to deal with regularity of weak solutions of
Dirichlet problem (5.3).

7.1. Interior regularity.

Theorem 7.1.1 (Interior H>2-regularity). Assume

1. a¥ € CHU),b',c € L>®(U);
2. fe L*U).

Suppose u € H(U) is a weak solution of
Lu=f inU
Then u € H?

loc

(U) and for each V € U we have

[ull 2 vy < CL,U V)l 2wy + lull 2 wy)

where C'(L,U, V) is a constant depending only on U,V and coefficients of
L.

Remark 7.1.1. Note here we do not require u € H}(U), since we're doing
interior estimate, and we don’t require boundary-value.

Proof. Fix any open set V € U and choose an open set W such that V &
W € U. Then select a smooth function ¢ satisfying

E=1 onV
£E=0 on R*" — W
0<¢<t

Such £ is called a cutoff function. Its purpose in the subsequent calculations
will be to restrict all expression to the subset W, which is a positive distance
away from OU. This is necessary as we have no information concerning the
behavior of u near OU.

Now assume u is a weak solution, that is we have Blu,v] = (f,v) for all
v € H}(U). Consequently,

n
Z/ aijuzivmjdx: /fvdx
ig 'V N

denoted by B

denoted by A

where
~ n .
f= f—Zbluxi —cu
=1

Now let’s take v := —D,;h(§2D’,§u) to estimate A and B.
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1. Estimate of A: We have

A=-)" /U aug, [D; (€2 D))y, d
i,j=1

= [ Db Dfu). o
U

1,j7=1

n
-y / AN ( Dy, ) (E2Dfu)s, + (D yug, (€2 D).,
U

3,j=1

n
= Z /Uaij’hDZuxiDZuxj§2dm

3,j=1

denoted by A;

+> /U {a"" Dy, Dju2€s, + (Da ug, Diug €% + (DR a" Jug, Dpu2ét,, Yda
i,j=1

denoted by Asg

The uniformly elliptic condition implies
Ay > 9/ 2| D Dul?dx
U

2.
Thus we have
/ | DI Dul?dx < / £2|DiDu)?dx < C’/ 2+ u? + | Duf’dx
\% U U
for k = 1,2,...,n and all sufficiently small |h| # 0. Thus by Theorem we
deduce Du € H! (U) and thus u € H? (U) with estimate

lull 2vy < CUf 2@y + 1wl meny)

O
Theorem 7.1.2 (Higher interior regularity). For a non-negative integer m,
we assume
1. ¥, b, c e C™TY(U);
2. fe H™(U).

Suppose u € H'(U) is a weak solution of Lu = f in U, then u € H,"*(U)
and for each V' € U we have

[l zrms2 vy < C(my, LU V)| f L rm oy + lull z2wry)

where C'(m, L,U, V') is a constant depending only on m, U, V" and coefficients
of L.

Theorem 7.1.3 (Infinite differentiability in the interior). Assume
1. a¥ b, c e C®(U);
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2. feC>=).
Suppose u € H(U) is a weak solution of Lu = f in U, then u € C®(U).

Proof. Thanks to higher interior regularity, one has v € Hj for each pos-
itive integer m. Hence by general Sobolev inequalities, one has u € C*(U)
for all £ > [3] + 1. In particular, u is smooth. O

7.2. Boundary regularity.

Theorem 7.2.1 (Boundary H?-regularity). Assume
1. a¥ € CY(U),b',c € L>®(U);

2. feL*U);

3. 0U is C2.

Suppose u € Hg(U) is a weak solution of
Lu=f inU
u=0 ondU

Then u € H?(U) with estimate

lull g2y < C(L, U)W f 2y + lull2ry)
where C'(L,U) is a constant depending only on U and coefficients of L.

Theorem 7.2.2 (Higher boundary regularity). Assume
1. a¥, b, c e C"H(U);

2. fe H™(U);

3. 0U is O™+2,

Suppose u € Hg(U) is a weak solution of
Lu=f inU
u=0 ondU

Then u € H™2(U) with estimate
ull m+2ery < C(m, L U fllam@y + ullz2@y)

where C(m, L,U) is a constant depending only on m,U and coefficients of
L.

Theorem 7.2.3 (Infinite differentiability in the interior). Assume
1. a¥,b',c e C=(U);

2. feC>®U),

3. U is C*°.

Suppose u € Hi(U) is a weak solution of
Lu=f inU
u=0 ondU

then u € C*°(U).
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8. MAXIMUM PRICIPLES

In this section we consider the maximum priciple for second-order elliptic
partial differential equations in non-divergence form, that is

n n
Lu=— E a" Uge; + E b'uy, + cu
i=1

1,j=1

where coefficients are continous.
Maximum priciple methods based on the observation that if a C? function
u attains its maximum over an open set U at a point xy € U, then

Du(xg) =0
D?u(xg) <0

Deductions based on above facts are consequently called “pointwise” in lit-
erature, and thus utterly different from the integral-based energy estimate.

8.1. Weak maximum priciple.

Theorem 8.1.1 (weak maximum priciple). Assume v € C2(U)NC(U) and
c=0inU.

1. If Lu < 0in U, then

maxu = maxu
U U

2. If Lu > 0 in U, then

minu = minu
U o]

Remark 8.1.1. A function satisfies Lu < 0 is called a subsolution, and is
called supersolution if Lu > 0.

Proof. 1t suffices to prove (1), since if Lu > 0, then L(—u) < 0, then apply
(1) to conclude.
Let’s first suppose we have the strict inequality

Lu<0

in U and there exists a point x9 € U with u(zg) = maxiu. Now at this
point we have

Du(zg) =0
D?u(z0) <0

Since A = (a%(z0)) is symmetric and positive definite, there exists an or-
thogonal matrix O = (0;5) such that

OAOT = diag{d,,...,d,}
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where d, > 0 for all k =1,...,n. Write y = 29 + O(x — ), then = — xg =
OT(y — ), so

n
Ug; = E :uykoki
k=1

n
Ug;z; = E : Uy y, OkiOLj
k=1

Hence at point xg one has

n n n
y _ y
§ a Juxixj = E : E : a juykyl OkiOlj

ij=1 kl=14ij=1

I
NE

di Uy, y,
1

IA
o

)

since dj, > 0 and D?u(z) < 0. Thus we have

n n
Lu=— E a Uge; + E bug, >0
ig—=1 i—1

holds at point zg. A contradiction.
In general case, consider
uf (x) = u(z) + e
where A > 0 is to be selected. Then
Lu® = Lu + eL(e ™)

< e’ (=AZalt 4+ A0

< e (=A0||b|| oo (1) A)

<0
provided A is sufficiently large. According to previous case one has

max u® = max u®
T oU

Then let € — 0 to conclude. O

Theorem 8.1.2 (weak maximum priciple). Assume u € C2(U)NC(U) and
c>0inU.

1. If Lu <0 in U, then
maxu < max u’
T U

2. If Lu > 0 in U, then

minu > —maxu~
T U
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8.2. Strong maximum priciple. Now let’s strengthen the foregoing as-
sertions, that is a subsolution u can’t attain its maximum at an interior
point of a connected region at all, unless u is constant. This is called strong
maximum priciple, which depends on the following subtle lemma.

Lemma 8.2.1 (Hopf’s lemma). Assume u € C?(U)NCY(U) and Lu < 0 in
U. If there exists a point zg € QU such that

u(zo) > u(zx)
for all x € U, and there exists an open ball B C U with zy € 9B. Then

1. If ¢ =0, then

ou
5('%0) > O

where v is the outer unit normal to B at xg.
2. If ¢ > 0, the same conclusion holds if u(zg) > 0.

Theorem 8.2.1 (strong maximum priciple). Assume u € C*(U) N C(U)
and ¢ =0 in U, and we assume U is connected.

1. If Lu < 0 in U, and u attains its maximum over U at an interior point,
then u is constant in U;

2. If Lu > 0 in U, and u attains its minimum over U at an interior point,
then v is constant in U.

8.3. Harnack’s inequality. Harnack’s inequality states that the values of
a non-negative solution are comparable, at least in any subregion away from
the boundary.

Theorem 8.3.1. Assume u > 0 is a C? solution of Lu = 0 in U, and suppose
V @ U is connected. Then there exists a constant C(L, V') depending only
on L,V such that
supu < C(L,V)infu
4 \%
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Part 3. Linear evolution equations
9. SECOND-ORDER PARABOLIC EQUATIONS

Second-order parabolic equations are natural generalizations of the heat
equation. In this section we will study the existence and uniqueness of
appropriately defined weak solutions, their smoothness and other properties.

In this section we assume U to be open, bounded subset of R"™ and Ur =
U x (0,T] for some fixed time 7" > 0 with boundary I'r.

9.1. Definitions. We will first study the following initial /boundary-value
problem
us + Lu = f in Ur
(9.1) u=0on 09U x [0,T]
u=gonU x {t =0},

where f : Ur — R and g : U — R are given and u(z,t) : Ur — R is
the unknown. The letter L denotes for each time ¢ a second-order partial
differential operator, having either the divergence form

n

Lu=— Z (aij(fv, )y, )a; + Z bi(x, tug, + c(z,t)u

ij=1 i=1
or else the non-divergence form

n

n
Lu=— Z a” (@, t) g, + Z b (2, t)ug, + c(z,t)u
ij=1 i=1

for given coefficients a™,b’, c. Similarly, we also assume L satisfies the fol-
lowing property.

Definition 9.1.1 (uniformly parabolic). The partial differential operator
0, + L is uniformly parabolic if there exists a constant 6 > 0 such that

n

> (w1685 > 0l

ij=1
for all (x,t) € Ur,& € R™.
Example 9.1.1. If a¥ = 5ij,bi =c¢= f =0, in which case L = —A, then
us + Lu = 0 becomes the heat equation.

9.2. Motivation and definition of weak solutions. Mimicking the de-
velopments for elliptic equations, we assume L has the divergence form and
we also assume

a’, b’ ce L®(Ur) (i,j=1,...,n)
feL*Ur)
g€ L*(U)
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for convenience. Firstly let’s define the following time-dependent bilinear
form

Blu, v; t] / Z ) gV, + z:bZ Yz, v+ c(-, t)uvdz

,j=1

for u,v € HY(U) and 0 <t < T.
Remark 9.2.1 (motivation for definition of weak solution). Suppose u(z,t)
is a smooth solution of (9.1) and defining the associated mapping

u:[0,7] — HY(U), given by [u(t)](x) := u(z,t);

u' :[0,T] — HE(U), given by [0'(t)](z) := us(, t);
3. £:[0,T] — L?(U), given by [f(t)](x) := f(z,1).
Now fix any function v € HZ(U), multiply the equation u; + Lu = f by v
and integrate by parts, one obtain

(w',0) + Blu, v;] = (£ v)
To be explicit, for each 0 <t < T, one has

(ut, )—/9v+zgvzldx

=1

where ¢° = f — > bu,, —cu and ¢7 == Y aYu,,. According to
Theorem 4.3.1, for each 0 <t < T, one has u; € H~(U) with

n ' i
well -1y < (Z HQJH%%U))Q < C(H””H&(U) + 1 llz2@y) < o0
=0

This motivate us to find weak solution with u’ € L([0,7]; H~1(U)).
Definition 9.2.1. A function u € L%([0,7]; H}(U)) with v’ € L*([0,T]; H~*(U))
is called a weak solution of (9.1) if
1.
(', v) + Blu, v;1] = (£ v)

for each v € H}(U) and a.e. 0 <t < Tj

2.
u(0) =g

Remark 9.2.2. Thanks to Theorem 4.3.2; u(0) = g makes sense.

9.3. Unique existence of weak solution. We intend to build a weak
solution of the parabolic problem (9.1) by first constructing solutions of
certain finite dimensional approximations and then passing to limits. This
is called Galerkin’s method.

To be explicit, assume wy, k = 1,... are smooth and {wy}7°, is an or-
thogonal basis of H(U) and L?(U).
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Theorem 9.3.1. For each positive integer m, there exists a unique u,, of

the form
m
= Z dy, (H)wi
k=1
such that

1. d5(0) = (g,wr), k=1,...m
2. (u,, wg) + Blup, wi;t] = (fwg) for 0<t<Tand k=1,...,m
Proof. Note that

(W), wi) = (dr,)' ()

m
Blug, wi;t] = > eMdl, (t)
=1
where e* = Blw;, wy;t]. Then we can write (2) as

() + i eM(t)d, (t) = fH (1)
=1

where f¥(t) = (f(t), wy). It’s a linear system of ODE with initial conditions.
According to standard existence theory of ODE, this completes the proof.
O

We propose now to send m to infinity and to show a subsequnce of our
solutions u,, converges to a weak solution of (9.1). For this we need some
uniform estimate.

Theorem 9.3.2 (energy estimate). There exists a constant C(U, T, L) such
that

max || wn ()] L2 +mll 20,1511 () HIW | L2 0,771,510y < CWU T L) ([[£l] L2 jo.17: 22

0<t<T

Proof. Step one: Note that we have (u),,wy) + Bluy,, wy;t] = (f,wy) for
0 <t<Tand1l <k < m, multiply this equation by d¥ (¢) and take
sumation for k = 1,...,m, one has

(u;na ) + Blum, uy;t] = (f,u,)

holds for 0 < ¢ < T. By Remark 6.2.1, there exists constant 8 > 0,y > 0
such that

Bl 3 0y < Bl wani 8] + 7m0,
holds for 0 <t < T and m > 1. Furthermore, note that
L [(fun)| <3 HfHL2(U ;Hum”%%m;
2. (W, ) = §(5llumlZa )
Then

d
9.2) L (umlZa) + 28wl @) < Crllwml|Zz ) + CallfllZz )
holds for 0 < t < 7T and appropriate constants C; and Cl.

o) Hllgll 2

o))
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Step two: Now set
n(t) = [wn ()20
£(t) = 1)l 720)
Then (9.2) implies
' (t) < Cin(t) + C26(t)
holds for a.e. 0 <t < T. Thus by Gronwall’s inequality one has

t
) <0 +Ca [ €(s)as
0
where 0 < ¢ <T. Note that 7(0) = \|um(0)H%2(U) < ||g||%2(U), then

2 2 2
ax [[umllz2@y < Clllgllza)” + M1z o720

Step three: Integrate (9.2) from 0 to 7" and employ the inequality ob-
tained in Step two, one has

T
2
o B ooy = T gt
< CUgll 2wy + 18172073220

Step four: Fix any v € Hi(U) with [0l @y < 1, and write v = v1 +vg,
where vy € span{wy};*; and (vg,wy) = 0 for all 1 < k < m. Furthermore,
H”1HH(}(U) < vllgi ) < 1, since {wy}32, are orthogonal in H(U). O

Holding this estimate, we are going to pass to limits as m — oo to build
a weak solution of (9.1). Before that, we need the following lemma.

Lemma 9.3.1. Suppose

u, —u in L%([0,T); H}(U))
u, —v in L?([0,T); H-1(U))

Then v = u’.

Theorem 9.3.3 (existence of weak solution). There exists a weak solution
of (9.1)

Proof. Step one: According to energy estimate, we find the sequence {u,, }7°_,

is bounded in L2([0, T; H¢(U)) and {ul, }°°_, is bounded in L%([0, T]; H~1(U)).
Consequently there exists a subsequnce {u,, }?°, and a function u € L2([0, T); H}(U))
with u’ € L%([0,7]; H~1(U)) such that

u, —u in L2([0,T); H} (D))
u, —u in L2([0,T); H-Y(U))

m
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Step two: Fix an integer N and choose a function v € C1([0, T]; H} (U))
having the form

N
(9.3) v(t) =Y d¥(t)wy
k=1
where di(t) are given smooth functions. Choose m > N and multiply the
following equality
(u;na wk) + B[llm, W3 t] = (f’ wk)
by d*(t), sum k =1,..., N, and then integrate with respect to ¢ to get

T T
(9.4) /0 (u’m,v>+B[um,v;t]dt:/0 (f,v)dt

Take m = m; and pass to weak limits we have

T T
(9.5) /0 (', v) + Blu, v dt — /0 (£, v)dt

This equality holds for all v € L?([0,T]; Hi(U)), as functions of the form
(9.3) are dense in this space. Hence in particular

(9.6) (u’,v) + Blu,v;t] = (f,v)

for each v € H}(U) and a.e. 0 <t <T.
Step three: In order to prove u(0) = g, firstly note that from (9.5),
integration by parts implies

T T
(9.7) / — (v u) + Blu, v 4d / (£, v)dt + (u(0), v(0))
0 0
for each v € C1([0,T]; H}(U)) with v(T) = 0; Similarly from (9.4) integra-

tion by parts shows

T T
9.8) /0 (V) + Blttgn, v ]dt = /O (£, v)dt + (1 (0), v(0))

Set m = m; and pass to weak limits we have

T T
| =)+ Bluvitide = [ (€ v)dt + (0,v(0))
0 0
As v(0) is arbitrary, together (9.7) and (9.8) we can conclude u(0) =g¢. O

Theorem 9.3.4 (uniqueness of weak solution). A weak solution of (9.1) is
unique.

Proof. 1t suffices to check that the only weak solution of (9.1) withf=¢ =0
isu=0. g

9.4. Regularity. In this section we discuss the regularity of weak solution
u of (9.1). Our eventual goal is to prove that u is smooth, if the coefficients
of the PDE, the boundary of the domain, etc. are smooth.
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9.5. Maximum principles. In this section, we will establish maximum
priciples of second-order parabolic equation in non-divergence form

n n

Lu=— Z aijuxixj + Z biuxl. + cu
ij=1 i=1

where @/, b’, c are continous. The conclusions are quite similar to what we

have established in the setting of elliptic equations.

Notation 9.5.1.

C(Ur) = {u: Ur — R | u, Dyu, D2u,u; € C(Ur)}

Theorem 9.5.1 (weak maximum priciple). Assume u € CZ(Ur) N C(Ur)

and ¢ =0 in Up.

1. If uy + Lu < 0 in Up, then

max = maxu
UT I'r

2. If uy + Lu > 0 in Uy, then

min = minu
UT I'r

Theorem 9.5.2 (weak maximum priciple). Assume u € C¥(Ur) N C(Ur)
and ¢ > 0 in Urp.
1. If uy + Lu < 0 in Uy, then

max = maxu’
Ur Iy
2. If uy + Lu > 0 in Uy, then
min = —maxu~
Ur Ip

Theorem 9.5.3 (parabolic Harnack’s inequality). Assume u € C{(Ur) with
u > 0 solves u; + Lu = 0 in Up, and suppose V' € U is connected. Then for
each 0 < t; < ta < T, there exists a constant C(L,V,t1,t2) depending only
on L,V,t1 and t such that

supu(-,t1) < Cinf u(-,t2)
74 \%4

Theorem 9.5.4 (strong maximum priciple). Assume u € C2(Ur) N C(Ur)
and ¢ = 0 in Ur, and we assume suppose U is connected.

1. If ug + Lu < 0 in Uy, and v attains its maximum over Uz at a point
(zo,t0) € Ur, then u is constant on Uy,;

2. If uy + Lu > 0 in Uy, and u attains its minimum over Ug at a point
(x0,to) € Ur, then u is constant on Uy, .

Theorem 9.5.5 (strong maximum priciple). Assume u € CZ(Ur) N C(Ur)
and ¢ > 0 in Up, and we assume suppose U is connected.
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. If uy + Lu < 0 in Uy, and u attains a non-negative maximum over Uy at

a point (zg,tg) € Ur, then u is constant on Uy,;

. If uy + Lu > 0 in Up, and u attains a non-positive minimum over Uy at

a point (zg,tg) € Ur, then u is constant on Uy, .



PARTIAL DIFFERENTIAL EQUATION 47

Part 4. Appendix
APPENDIX A. LP SPACE
Let U be an open subset of R™.
A.1l. First properties.

Definition A.1.1. For a measurable function f: U — R", if f satisfies

/ |f|Pdzx < o0
U

then f is called p-th power integrable function, The set of all p-th power
integrable functions on U is denoted by LP(U).

Definition A.1.2 (locally integrable). For a measurable function f : U —
R™ if f satisfies

/ |flde < +o0
K

for all K € U, then f is called locally integrable. The set of all locally
integrable functions on U is denoted by L], (U).

Remark A.1.1. By the same way we can define L} (U). However it must be
contained in L}, (U). Indeed, take f € L} (U), then for arbitrary K € U

we have foe
/K fldz < ( /K fPda) /K da)’
< o0

where ¢ such that 1/p + 1/¢ = 1. In particular, since LP(U) C L} (U), we
have

S =

LP(U) C Ly (U)
for 1 <p < .

A.2. Convergence theorems.

Theorem A.2.1 (bounded convergence theorem). Suppose that {f,} is
a sequence of measure functions that are all bounded by constant M, are
supported on a set F of finite measure, and f,(z) — f(z) a.e. z asn — 0.
Then f is measurable, bounded, supported in E for a.e. z, and

lim /|fn—f|:0
n—oo
In particular,
lim In= /f
n—oo
Lemma A.2.1 (Fatou). Suppose {f,} is a sequence of measure functions
with f,, > 0. If lim,, o fn(z) = f(x) for a.e. x, then

)
/fﬁlggiogf/fn
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Theorem A.2.2 (monotone convergence theorem). Suppose {f,} is a in-
creasing sequence of non-negative measurable function with f,, — f a.e. x,

then
lim fn= / f
n—oo

Theorem A.2.3 (dominant convergence theorem). Suppose {f,} a se-
quence of measurable functions such that f,(x) — f(z) a.e. z. If |f,(z)]| <
g(z), where g is integrable, then

lim |f, — f|=0
n—oo

In particular,
i [ 4= [ f
n—oo

A.3. Fubini theorem.

Theorem A.3.1 (Fubini theorem). Suppose f(z,v) is integrable on R% x
R?%. Then for almost every y € R%:

1. The slice f¥ is integrable on R%;
2. The function defined by [pa, fY(z)dz is integrable on R%;

3. Furthermore,
Lo, fepdoay=[
Ri2 JR R xR%2

Theorem A.3.2 (Tonelli theorem). Suppose f(z,y) is a non-negative mea-
surable function on R% x R%. Then for almost every y € R%:

1. The slice f¥ is integrable on R%;
2. The function defined by [pa, fY(x)dz is integrable on R%;

3. Furthermore,
Lo, fepdody=[
Ri2 JR R xR%2

Remark A.3.1. In practice, Tonelli theorem is often used in conjunction with
Fubini’s theorem. Indeed, suppose we are given a measurable function f on
R? and asked to compute fRd f. To justify the use of iterated integration,
we first apply Tonelli theorem to |f|. Using it we can freely compute or
estimate the iterated integrals of |f|. If we can show it’s finite, thus f is
integrable so we can use Fubini’s theorem.
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APPENDIX B. HOLDER SPACE

Let U be a bounded, open subset of R".

B.1. Space C(U).
Definition B.1.1. Let 0 < v < 1. Then C%7(U) is the subset of C(U)

consisting of u such that

(z) = u(y)]

u
[u]CO,'Y(ﬁ) = Sup{‘ ’(L’ - y’,y 1T,y € va 7é y} <0

where [u] o0+ (@) is called Holder seminorm.
Definition B.1.2. For u € C%(U), its norm is defined as
lull gos @y = llull Lo @) + (Ul coq @
called ~-th Holder norm.
Proposition B.1.1. Suppose 0 < v < 1, then C%7(U) is a Banach space.

Proof. Let {u,} be a Cauchy sequence of C%7(U), then it’s also a Cauchy

sequence of C'(U). Hence by completeness of C'(U), there exists u € C(U)
such that v = lim,,_,o u,, in C(U), that is u, uniformly converges to u. Now
we’re going to show u € C%7(U) and u, converges to u in C%V(U).

Since Cauchy sequence is bounded, then there exists M > 0 such that

Hun||coﬁ(ﬁ) < M for all n € N. Hence for any z,y € U with 2 # y

[u@) —uly)]

lz—ylr noe |z —yld

which implies u € C%7(U).
In order to show desired convergence, fix ¢ > 0 and choose N such that
|um — unl|lco~@y < € if m,n > N. Then for any z,y € U with z # y

|(u(z) — un(x)) = (u(y) = un(y))| |(un () = un(2)) = (Um(y) — un(y))|

= lim
EET oo ool
< lim sup|um — tn]coq )
m—0o0
<e

provided n > N. Thus [t — ] 0y @) S € Since ¢ is chosen arbitrarily and

we already have uniform convenience, this shows u,, — u in C%(U). O
Proposition B.1.2. Let 0 < a < 8 < 1 and u € C%#(T), then
[u]coya(ﬁ) < [u]cw(ﬁ)

In particular, we have C%3(TU) c C%(U)
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Proof. For any x,y € U with & # y, just note that
u(a) = u(y)] < [ulgos@nle —yl°
< [Wlcos @ lr = y? e — y|*
< [ul o @) (diam U) 7~z — y|*

Proposition B.1.3. If U is convex, then C*(U) c C%1(U).

Proof. For u € C*(U), it suffices to show [U]Co,1(U) < o00. Note that for
arbitrary x,y € U, one has
) =8O _
z =yl
for some ¢ € U, since U is convex, we can use mean value theorem. Thus
we have

u(z) — u(y)]|
————= <||Dul| o7 < 0
|z — | )
Taking a supremum we obtain the desired result. ([

B.2. Space C*7(U).

Definition B.2.1. Let 0 < v < 1. Then C*(U) is the subset of C*(TU)
consisting of u such that the following norm

lull gr @y == Z 1D%ull ¢y + Z [D%u] o @)
|| <k || <K

is finite.
Proposition B.2.1. Suppose 0 < v < 1, then C*7(U) is a Banach space.

Proposition B.2.2. We have the following inclusions:
1. For 0 <a < g <1, CR(U) c CH(U);
2. If U is convex, then C*+*H(U) c CF1(T).
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APPENDIX C. APPROXIMATION

C.1. Convolution in R". For two functions f,g on R", we can formally
define

(fxg)(z) == . flz —y)g(y)dy

which is called convolution of f and g. If such integral exists, there are some
basic properties:

L fxg=g*f;

2. (fxg)xh=fx(gxh);

3. supp(f * g) C supp(f) + supp(g).

Let’s see some cases in which f * g(x) is well defined for almost all z.

Theorem C.1.1. If f,g € L'(R"). Then for almost all z, the function
f(x —y)g(y) is integrate in y, and
|17 9@)de < 1l qan gl e

Proof. Note that f(x — y)g(y) is measurable on R?", and by Tonnelli theo-
rem:

L, e =newldady = [ ([ 176 = )lstlde)y

— ( / 1 () de)( / l9(y)ldy)
< 0

Then by Fubini theorem, f(x — y)g(y) is integrable in y for almost all x,
that is f * g(z) is defined for almost all x € R™. Furthermore,

[17 9@z = [1 [ £~ nowasias
< [ [ 156~ o)y

= 1 fllr @y lgll e mmy
O

Remark C.1.1. Convolution product turns the Banach space L!(R") into a
communicative Banach algebra.

Remark C.1.2. More common usages of convolution: Suppose K (z) € L*(R").
Then the linear mapping

f—=Kxf

is a bounded map on L!'(R") with operator norm < [ K[| L1 (mny- Such K is
called a convolution kernel.
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Theorem C.1.2. If K € L'(R") and f € LP(R") for some 1 < p < oo.
Then for almost all x, the function K(z — y)f(y) is p-th power integrate in
y, and

1K * fll oy < K Lr@ny | £ 1] e gn

Proof. For p = 0o, note that
[ 1K =97 @lay < 1l [ K
= || fll oo me) 1 K1 L1 (e

< 0
thus K * f(x) exists for almost all x, and
|/K o= Wyl < [ Kz = p)ldyl e

= 1Kl 1@yl fll oo )

which implies
K * fllpeomny < 1K1 ey 1f || oo (rmy
For 1 < p < o0, and choose ¢ such that 1/p+1/q = 1. By Tonelli theorem,

1K@ -y swlrasy = [ ([ 1K@ - pswldyrds
— [ ([ 1K@~ )i~ s w)ldyrds
<oy [ ([ 1K =00l da
1N oy [ @Iy [ 17— )l

— K oy 11
< 0

Then by Fubini theorem, |K(x —y) f(y)|P is integrable in y for almost all z,
that is f * g(z) € LP(R™) is defined for almost all € R™. Furthermore,

1K ¢ Ml < [ ([ 1K@ =) f@) g
< [([ 1K@~y K@~ Fw)ldyrds
<Ny [ [ 1K= 0)07 )y
12 o [ K@y [ 177G~ 9)lda

||K”Ll R7) HfHLp (R™)
= (1K ey | Fll o))
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O

Remark C.1.3. In fact, more general we have if K € LP(R"), f € L4(R") such
that 1/p+1/g > 1, then Kxf € L"(R"), where r satisfies 1/p+1/q = 1+1/r,
and

K fllprmny < MK oy 1 arn)
C.2. Approximation to the identity.
Definition C.2.1. If K € L'(R"), define

1 T
K. (z):= ;nK(g)
Remark C.2.1. Here are two remarks about K.:

1. By change of variables, we have

/KE(:v)dx _ gin K%)= /K(:r)dx

/|z>5 |Ke(x)|dr = /|z>6 K (z)|dz

so for any fixed § > 0, we have

2. If § > 0, then

lim |Kc(z)|dz =0

e—0 |z|>6

Theorem C.2.1 (approximation to the identity). If K € L!'(R") and
J K(z)dz =1. For f € LP(R™) and 1 < p < oo, then

lim [ Ke + f = fllLr@gn) = 0

Proof. Note that

1Ko = gy = [ [{Fee = ) p @)}y — f@)Pdo

- / | / (K(0)(f (& — y) — f(2))}dyPPdz
< / / K. ()| (z — ) — f()Pdyda

<Vl ey [ [ 1K@ ) = F(o)lPdady

Fix n > 0, we can find § > 0 such that
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when |y| < d. Thus we write

//\Kg(y)llf(a:—y)—f(x)\pdyda:—/|<6\Ke(y)|/\f(x—y)—f(a:)ypdxdy
+/y|>6|Ke(y)|/\f(x—y)—f(a:)]pd:cdy

<P 2fle [ K
ly|=46

Then we can find ¢’ such that for any 0 < & < & we have

20 ereny | Kely)dy < 3
ly|>6

Thus for any 0 < € < €/, we have
D
||KE * f - f”ip(Rn) < n||K€||Zl(Rn)
This completes the proof. ([l

C.3. Approximation of LP(R"). In this section, we take a special convo-
lution kernel, that is to take K (x) to be some smooth function with compact
support, then we can see some useful results in approximation of LP.

Definition C.3.1 (mollifier). Define ¢ € C°(R™) by
Cexp(gp=), lz|<1
d(x) = -
0, Jz[=1
where C' > 0 such that [p, ¢(z)dz = 1.

Definition C.3.2 (standard sequence of mollifier). For ¢ > 0, the standard
sequence of mollifiers on R” is defined by

6ol 1= —0(%)

Remark C.3.1. It’s clear [, n-(x)dx =1 and supp(n.) C B(0,¢).

Now take our convolution kernel K(x) = ¢(z) we defined above, for any
f € LP(R™) where 1 < p < 0o, we have

lim [¢e * f — fllLr@n)y =0
e—0
that is a sequence converging to f in LP(R™). Furthermore, we have

Proposition C.3.1. For f € LP(R") with 1 <p <oocande >0, ¢. * f €
C>(R™).

Thus we obtain the first approximation:
Corollary C.3.1. For any 1 < p < oo, C*(R") is dense in LP(R").

Furthermore, we can do it better:
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Corollary C.3.2. For any 1 < p < oo, C°(R") is dense in LP(R").

Proof. For any f € LP(R™), there exists a compact set K C R™ such that
given arbitrary § > 0, we have

/ fPde < O
ke 2

Thus consider fxx € LP(R™), with compact support. It’s clear ¢ * fxx
still has compact support, and there exists & such that for any 0 < ¢ < &’
we have

)
e * fxr — FxxllLemny < 3
Thus
pe * fxK — fHLp(Rn) < ||be * fxr — fXKHLP(Rn) + |l fxx — f”LP(IR")

<é
O
Remark C.3.2. Note that this theorem fails for p = oo, there exists f €

L*>°(R™) can not be approximated by any continous function(no matter it’s
compactly supported or not) in L®-norm. For example, let’s take n = 1

and consider
0, <0
€Tr) =
o 7
Then any continous function with || f — g[| e < % must have g(z) < f(z)+ 3
for all z < 0. By continuity, we have ¢(0) < %, contradicting ¢(0) >

1_ 2
f0)—3=3
Remark C.3.3. There is another way to show CZ°(R") is dense in LP(R"):
Firstly you need to use Lusin theorem to show continous functions with
compact support is dense in LP(R"™), then use convolution to mollifier these
continous functions. All in all, you do need convolution.

C.4. Approximation of L (R"). For any f € LI (R"), consider

loc

/ 6e(z — ) f(y)Pdy = / 16:(0) (= — y)|Pdy
Rn B(0,)

[ - e
B(0,1)

< / (o — e2)Pdz
B(0,1)

< 00

Thus f¢ := ¢ * f is well defined for almost all . It’s clear f* is also a smooth
function, so we desired some density for smooth functions in L] (R"), as
what we have done in LP(R™).

Theorem C.4.1. For any 1 < p < oo, C°°(R") is dense in L} (R").
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Proof. For f € Lj (R"),1 < p < oo, we claim f¢ € C*°(R™) converges to f

in Lf " (R™). Indeed, for arbitrary compact set V', choose another compact
set W such that V € W. Then for x € V, we have

()] < /B - 6(2)" " 3(2)5 | f(w — e2))de
= 2)dz 17% z Tz —ez)|P z%
- </B(0,1) 6(2)dz) </B(0’1) 6(2)|f(x — e2)|Pdz)

—( /B o SO =)}

Hence for 1 < p < oo and sufficiently small € > 0,

/V e (@)Pde = /V ( /B oy SO =)z

</ o | 1@ =z
< [ 1tray

that is || f*| Lr(v) < | fl|Le(wy for sufficiently small e.
Now fix 6 > 0, since f € LP(W), there exists g € C(W) such that

)
1f = gllrewy < 3

which implies

1)
1£= = " lleeery < 5

Consequently
15 = fllzevy < NS = g llevevy + 197 = gllrvy + 119 = fllzey
2%
<5+ 19 = glle(v)

Since g — g in LP(V'), we can find £’ such that for any 0 < & < &, we have

1)
l9° = gllr(vy < 3

This completes the proof. ([

Remark C.4.1. Unfortunately, C2°(R") is not dense in L? (R").

loc

C.5. Approximation in open subset of R"”. Now we assume U is an
open subset of R, we also want to use smooth function to approximation
function f € L} (U). In this case
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can’t be defined on the whole U, since x — €z may not in U for some = € U.
Consider

Us :={z €U |dist(z,0U) > ¢}
Then f¢ is well-defined on U, and it’s smooth. Then by same proof of
Theorem C.4.1, we can show f€ — f in L} (U), since for arbitrary V € U,
we can choose ¢ sufficiently small such that V C U..
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