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1. To readers

1.1. About this lecture. It’s a lecture note I typed for talks I gave in a
seminar about [RB82] during 2022Fall. The goal of this lecture is to intro-
duce applications of spectral sequence, and the most exciting applications
are Serre’s celebrated theorems about homotopy groups.

This lecture is divided into three parts:
1. In the first part: We establish the foundations of spectral sequence in a

quick way, and use “zig-zag” to describe the differential maps dr.
2. In the second part: We firstly introduce the spectral sequence we’re

most concerned about, that is Leray spectral sequence. Holding this
spectral sequence, we can compute (de Rham) cohomology groups of a
(smooth) manifold, if it can be embedded into a fiber bundle and the
cohomology of the other two ones are well known.

The advantage of cohomology is that it admits a product structure,
so we desire to compute cohomology ring structure of a given manifold
using Leray spectral sequence. However, in this case, we need to be careful
when we’re computing cohomology ring structure of total space of a fiber
bundle, since there is so-called “multiplicative extension problem”, and
the most typical example is S2 → CP3 → S4.

In order to consider torsion information of (co)homology groups, we
give a quick review about singular (co)homology in different coefficients,
establish the spectral sequence for them and then we prove the de Rham
theorem using spectral sequence.

Holding these tools, we give several interesting computations, such as
cohomology ring structures of some Lie groups, and path space of spheres.

3. In the third part: Firstly we give a quick review of basic homotopy
theory, such as homotopy exact sequence, Hurewicz theorem and Bott
periodic theorem, and use these tools to compute the homotopy groups
of Stiefel manifold under a given dimension.

The final goal of this part is to compute homotopy groups of sphere
and prove Serre’s theorems about finitely generated and torsion property
of homotopy groups of sphere. The original ideals of Serre to compute
homotopy groups of sphere are listed as follows:
(a) Let πq denote πq(X), where X is a topological space. If we want

to compute πq, just consider homology of K(πq, n), since Hurewicz
theorem implies the n-th homology of K(πq, n) is exactly πq.

(b) If we can fit K(πq, n) into a fiberation, maybe we can use Leray
spectral sequence to compute its homology. Luckily, Postnikov ap-
proximation will give desired fiberation.

1.2. Acknowledgement. Thanks my tutor and friend Chenglong Yu, I
can’t keep going without his supervision and encouragement. Thanks to
everyone who discuss with me, especially for Qiliang Luo, Shihao Wang,
Yuxuan Li and Haohang Zhang. I learnt quite a lot from them.
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Part 1. Spectral Sequences
2. Exact couples

A simple way to construct spectral sequence is through exact couples.

Definition 2.1 (exact couple). An exact couple is an exact sequence of
abelian groups of the form

A A

B

i

jk

where i, j and k are group homomorphisms.

From an exact couple, we can define a homomorphism d : B → B by
d = j ◦ k, then d2 = 0, so the homology group H(B) = ker d/ imd is
well-defined.

Furthermore, from this exact couple, we can define a new exact couple,
called derived couple,

A′ A′

B′

i′

j′k′

by making the following definitions.
1. A′ = i(A) and B′ = H(B);
2. i′ is induced from i, that is i′(ia) = i(ia);
3. For a′ = ia for some a ∈ A, then j′a′ = [ja]. To show j′ is well defined,

we need to check the following things
a. ja is a cycle. Indeed, d(ja) = jkja = 0;
b. The homology class [ja] is independent of the choice of a. Indeed, if

a′ = ia for some other a ∈ A. Then a − a = kb for some b ∈ B, since
a− a ∈ ker i = im k. Thus

ja− ja = jkb = db

that is [ja] = [ja].
4. k′ is induced from k. Let [b] ∈ H(B), then db = jkb = 0 implies kb ∈

ker j = im i, so there exists a ∈ A such that kb = ia. Define

k′[b] := kb ∈ i(A) = A′

Note that we also need to check k′ is well-defined: take another b′ ∈ [b],
that is b′ − b = db′′ for some b′′ ∈ B. Then

kb′ = kb+ kdb′′ = kb+ kjkb′′ = kb

As we have already defined these homomorphisms i′, j′ and k′, it suffices
to check above diagram is an exact sequence. Let’s check step by step:
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1. im j′ = ker k′: Take j′a′ ∈ im j′, then k′j′a′ = k′j′(ia) = k′[jia] = kjia =
0; Conversely , if [b] ∈ B′ such that k′[b] = kb = 0, that is b ∈ ker k = im j.
So there exists a ∈ A such that b = ja, so [b] = [ja] = j′a′, where a′ = ia.

2. im k′ = ker i′: Take k′[b] = kb ∈ im k′, then i′kb = ikb = 0; Conversely
, if ia ∈ A′ such that i′ia = iia = 0, so there exists b ∈ B such that
ia = kb. Furthermore, such b must be a cycle, since jkb = jia = 0. So
ia = kb = k′[b].

3. im i′ = ker j′: Take iia ∈ im i′, then j′(iia) = [jia] = 0; Conversely , if
ia ∈ A′ such that j′ia = [ja] = [0], that is there exists b ∈ B such that
db = jkb = ja, that is a − kb ∈ ker j = im i. So there exists a′ ∈ A
such that a − kb = ia′. So a − ia′ ∈ im k = ker i, that is ia = iia′. This
completes the proof.
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3. The Spectral Sequence of a Filtered Complex

In this section we fix a differential graded complex K =
⊕

k∈ZC
k with a

differential operator D : Ck → Ck+1.

Definition 3.1 (filtration). A sequence of subcomplexes
K = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .

is called a filtration on K.

Notation 3.1. We usually extend the filtration to negative indices by defin-
ing Kp = K for p < 0.

Definition 3.2 (filtered complex). A complex K with a filteration {Kp}p∈Z≥0

is called a filtered complex and the associated graded complex is defined as

GK =

∞⊕
p=0

Kp/Kp+1

Consider
A =

⊕
p∈Z

Kp

A is again a differential complex with operator D. Define i : A → A to be
the inclusion Kp+1 ↪→ Kp and define B to be the quotient, then we obtain
a short sequence

0→ A
i−→ A

j−→ B → 0

and it induces a long exact sequence

· · · → Hk(A)
i1−→ Hk(A)

j1−→ Hk(B)
k1−→ Hk+1(A)→ . . .

In other words, we can write it as an exact couple as follows
A1 A1

B1

i

j1k1

where A1 = H(A), B1 = H(B) and i = i1. We suppress the subcript of i1 to
avoid cumbersome notation later. This exact couple gives rise to a sequence
of exact couples:

Ar Ar

Br

i

jrkr

Example 3.1. Let’s see a simple example: Consider the filtered complex
terminates after K3, that is

· · · = K−1 = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ 0
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Then by definition, A1 is the direct sum of all terms in the following sequence

. . .
∼=←− H(K)

∼=←− H(K)
i←− H(K1)

i←− H(K2)
i←− H(K3)← 0

And by definition of A2, it equals iA1, so it’s the direct sum of all terms in
the following sequence

. . .
∼=←− H(K)

∼=←− H(K) ⊃ iH(K1)
i←− iH(K2)

i←− iH(K3)← 0

Note that iH(K1) ⊂ H(K), and i : H(K) → H(K) is identity map, thus
iiH(K1) = iH(K1). So A3 is the direct sum of all terms in the following
sequence

. . .
∼=←− H(K)

∼=←− H(K) ⊃ iH(K1) ⊃ iiH(K2)
i←− iiH(K3)← 0

Similarly we have A4 is the sum of

. . .
∼=←− H(K)

∼=←− H(K) ⊃ iH(K1) ⊃ iiH(K2) ⊃ iiiH(K3) ⊃ 0

Since all terms appearing in A4 is in H(K), then i is identity on A4. So A’s
are stationary after A4 and we define

A4 = A5 = · · · = A∞

Furthermore, since ker{i : A4 → A5} = im k4, thus k4 = 0. Therefore after
the fourth stage all the differential of the exact couple are zero, since d = jk.
So B’s are also stationary, that is

B4 = B5 = · · · = B∞

In the exact couple

A∞ A∞

B∞

i∞

jrk∞=0

A∞ is the direct sum of groups

. . .
∼=←− H(K)

∼=←− H(K) ⊃ iH(K1) ⊃ iiH(K2) ⊃ iiiH(K3) ⊃ 0

So if we let above sequence be a filteration of H(K), then B∞ is the associ-
ated graded complex of the filtered complex H(K).

Now let’s come back to general case. The sequence of subcomplexes
· · · = K = K ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .

induces a sequence in cohomology

. . .
∼=←− H(K)

∼=←− H(K)
i←− H(K1)

i←− H(K2)
i←− H(K3)← . . .

Note that i are of course no longer inclusions. Let Fp be the image of H(Kp)
in H(K). For example, F3 = iiiH(K3). There exists a sequence of inclusions

H(K) = F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊃ . . .
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making H(K) into a filtered complex. This filtration is called the induced
filteration on H(K).

Definition 3.3 (length of filtration). A filtration Kp on the filtered complex
K is said to have length l if Kl 6= 0 and Kp = 0 for p > l.

So as we can see from simple example we have computed, if the filtration of
K has finite length, then Ar and Br are stationary and the stationary value
B∞ is the associated graded complex

⊕
Fp/Fp+1 of the filtered complex

H(K).
It’s customary to write Er for Br, and there is a differential dr on Er such

that Hdr(Er) = Er+1, and that’s definition of a spectral sequence.

Definition 3.4 (spectral sequence). A sequence of differential complex
{Er, dr} in which each Er is the homology of its predecessor Er is called
a spectral sequence.

Definition 3.5 (convegence of spectral sequence). A spectral sequence
{Er, dr} is said to converge to some filtered group H, if E∞ is equal to
the associated graded group of H.

Let’s summarize what we have done: For a differential complex K and
a filteration {Kp} of K, if the filtration is finite length, then the spectral
sequence we obtained from this filtration will converge to H(K).

However, it’s quit strong requirement for a filteration to be finite length.
Suppose filtered complex K =

⊕
nK

n, then a filteration {Kp} on K induces
a filteration on Kn for each n, that is Kn

p := Kp ∩Kn. And we can prove
the same result, only asking {Kn

p } to be finite length for each n.

Theorem 3.1. Let K =
⊕

nK
n be a graded filtered complex with filtration

{Kp} and let H∗
D(K) be the cohomology of K with filtration given by {Kp}.

Suppose for each n we have {Kn
p } is finite length. Then the short exact

sequence of complex

0→
⊕

Kp+1 →
⊕

Kp →
⊕

Kp/Kp+1 → 0

induces a spectral sequence which converges to H∗
D(K).

Proof. The ideal here is that since it’s a convegence between two graded
groups, so it suffices to treat the convegence question one dimension at a
time, then it’s reduced to the ungraded situation.

Fix a number n and consider n-th grade and let `(n) be the length of
{Kn

p }p∈Z, we have the following sequence

. . .
∼=←− Hn(K)

i←− Hn(K1)
i←− Hn(K2)

i←− . . .
i←− Hn(Kl(n))

i←− 0
i←− . . .

Use Fn
p to denote the image of Hn(Kp) in Hn(K). If r ≥ `(n) + 1, then for

all p
irHn(Kp) = Fn

p
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so we have
i : irHn(Kp+1)→ irHn(Kp)

is an inclusion, since both of them are in Hn(K). By definition we have

An
r =

⊕
p

irHn(Kp)

and ir sends irHn(Kp+1) to irHn(Kp). It follows that
ir : A

n
r → An

r

is an inclusion thus kr : Bn−1
r → An

r is the zero map. So we have An
k = An

r

and Bn−1
k = Bn−1

r for all k ≥ r, that is An
∞ = An

r =
⊕

Fn
p and Bn

∞ = Bn
r =⊕

p F
n
p /F

n
p+1. Thus

B∞ =
⊕
n

Bn
∞ =

⊕
n,p

Fn
p /F

n
p+1 =

⊕
p

Fp/Fp+1

that is associated graded complex of H∗
D(K), as desired. □
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4. The Spectral Sequence of a Double Complex

4.1. Basic setting. Now for a double complex K =
⊕

p,q≥0K
p,q with dif-

ferential d and δ, we can make it into a complex, called total complex with
differential D by

K =
∞⊕
k=0

Ck

where Ck =
⊕

p+q=k K
p,q and D = δ+(−1)pd = δ+D′′. There is a natural

filtration on K as follows

Kp =
⊕

i≥p,q≥0

Ki,q

The direct sum A =
⊕

p≥0Kp is also a double complex, and we can also
make it into a single complex A =

⊕
k≥0A

k by summing the bidegrees.
Note that

Ak =
⊕
p

Ak ∩Kp

and inclusion i : Ak → Ak is given by

i : Ak ∩Kp+1 → Ak ∩Kp

This gives an inclusion i : A → A and the quotient is denoted by B, where
B is also a double complex, we can also make it into a single complex
B =

⊕
k≥0B

k by summing the bidegrees. We can write this short exact
sequence as follows

0→
⊕
k,p

Ak ∩Kp →
⊕
k,p

Ak ∩Kp →
⊕
k,p

Bk ∩ (Kp/Kp+1)→ 0

where the differential of these complexes are listed as follows:
1. A inherits the differential operator D = δ + (−1)pd from K;
2. B =

⊕
Kp/Kp+1 also inherits the differential operator D, but D on B is

just (−1)pd, since any element in Kp is mapped into Kp+1 by δ. Therefore

E1 = HD(B) = Hd(K)

Remark 4.1. From above section, we obtain a spectral sequence which con-
verges HD(K), since our filtration is finite on each degree n. However, we
want to show a more refinement theorem, since in this case our complex
comes from a double complex, which has a more subtle structure. In order
to do this, we need to compute the explicit formula of dr.

Notation 4.1. We will denote the class of b in Er, if it’s well-defined, by
[b]r.

4.2. Explicit formula of dr.
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4.2.1. Case of d1. Note that

Bk =
⊕
p

Bk ∩ (Kp/Kp+1)

So if we want to compute k1 : H
k(B)→ Hk+1(A), it suffices to compute

k1 : H
k(B) ∩ (Kp/Kp+1)→ Hk+1(A) ∩Kp+1

for each p.

Remark 4.2 (characterization of elements in E1). Any element [b]1 ∈
Hk(B) ∩ (Kp/Kp+1) is b + Kp+1 ∈ Bk ∩ (Kp/Kp+1) such that b ∈ Kp,k−p

and db = 0. So you can regard Ep,q
1 as Hp,q

d (K).

Now we fix p and consider

0 Ak+1 ∩Kp+1 Ak+1 ∩Kp Bk+1 ∩Kp/Kp+1 0

0 Ak ∩Kp+1 Ak ∩Kp Bk ∩Kp/Kp+1 0

D D d

In order to get k1[b]1, where [b]1 ∈ Ep,k−p
1 , we need to chase diagram as

follows
1. Choose b ∈ Ak ∩Kp to represent [b]1

1;
2. Db = δb+ (−1)pdb = δb ∈ Ak+1 ∩Kp, since db = 0;
3. Take inverse of δb ∈ Ak+1 ∩Kp under i, we obtain δb ∈ Ak+1 ∩Kp+1.
Thus k1[b]1 = [δb]1 ∈ Hk+1(A) ∩Kp+1. By definition of d1 we can see

d1 : H
k(B) ∩ (Kp/Kp+1)→ Hk+1(B) ∩ (Kp+1/Kp+2)

[b]1 7→ [δb]1

By characterization of elements in E1, we can regard d1[b]1 as δb ∈ Kp+1,k−p

with d(δb) = 0, and [δb]1 = 0 ∈ E1 is equivalent to say there exists c ∈
Kp+1,k−p−1 such that δb = −D′′c.

Remark 4.3 (characterization of elements in E2). For an element of
[b]2 ∈ E2, it can be represented by an element b ∈ K with a zig-zag of
length 2

1It’s clear the choice isn’t unique, any element taking form b+ c, where c ∈ Ak ∩Kp+1

also can represent b+Kp+1.
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0

b δb

c

d

δ

D′′

In other words, E2 = HδHd(K).

For [b]2 ∈ Ep,q
2 , by definition of derived couple, we have

d2[b]2 = j2k2[b]2 = j2[k1[b]1]2

In order to compute j2[k1[b]1]2, we need to find a ∈ K such that k1[b]1 =
i[a]1, then j2[k1[b]1]2 = [j1a]2. Since k1[b]1 ∈ Ak+1 ∩ Kp+1, we have a ∈
Ak+1 ∩Kp+2.

To find such a we use not b but b+ c in Ak ∩Kp to represent [b]1, that’s
possible since b and b + c have the same image under the projection Kp →
Kp/Kp+1, since c ∈ Ak ∩Kp+1. Then

k1[b]1 = D(b+ c) = δb+Dc = δb+ δc+D′′c = i(δc) ∈ Ak+1 ∩Kp+1

where δc ∈ Ak+1 ∩Kp+2. So

d2[b]2 = [δc]2

Thus differential d2 is given by the delta of the tail of the zig-zag which
extends b. By characterization of E2, you can regard it as an element in
HδHd(K). Now let’s check well-defineness:
1. δc ∈ HδHd(K): δ(δc) = 0 is clear; dδc = δdc = (−1)pδδb = 0, since

(−1)pdc = δb.
2. d2[b]2 is independent of the choice of c: Any two possible c and c′ differs

something lies in ker d. Assume c′ = c+x where x ∈ ker d, then it suffices
to show [δx]2 = 0, and that’s tautological.

Remark 4.4 (characterization of elements in E3). For an element of
[b]3 ∈ E3, it can be represented by an element b ∈ K with a zig-zag of
length 3

0

b δb

c1 δc1

c2

d

δ

D′′

δ

D′′
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Notation 4.2. We say that an element b in K lives to Er if it represents a
cohomology class in Er, or equivalently, b is a cocycle in E1, E2, . . . , Er−1.
And we already see there is a zig-zag description for d1 and d2.

Remark 4.5 (characterization of elements in Er). Generally, an element
b ∈ K lives to Er if it can be extended to a zig-zag of length r

0

b δb

c1

cr−2 δcr−2

cr−1

d

δ

D′′

...

δ

D′′

The differential dr on Er is given by δ of the tail of zig-zag:
dr[b]r = [δcr−1]r

Thus the bidegrees (p, q) of the double complex persist in the spectral se-
quence

Er =
⊕
p,q

Ep,q
r

and dr shifts the bidegrees by (r,−r + 1).
dr : E

p,q
r → Ep+r,q−r+1

r

The filtration on H(K)

H(K) = F0 ⊃ F1 ⊃ F2 ⊃ . . .

induces a filteration on each component Hn(K) as follows
Hn(K) = (F0H

n) ⊃ (F1︸ ︷︷ ︸
E0,n

∞

Hn) ⊃ (F2︸ ︷︷ ︸
E1,n−1

∞

Hn) ⊃ · · · ⊃ (FnH
n) ⊃ 0︸ ︷︷ ︸
En,0

∞

where FiH
n := Fi ∩ Hn(K). In a summary, we have proven the following

refinement:

Theorem 4.1. Given a double complex K =
⊕

Kp,q there is a spectral
sequence {Er, dr} converging to the total cohomology HD(K) such that Er

has a bigrading with
d: Ep,q

r → Ep+r,q−r+1
r

and
Ep,q

1 = Hp,q
d (K)

Ep,q
2 = Hp,q

δ Hd(K)
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Furthermore, the associated graded complex of the total cohomology is given
by

GHn
D(K) =

⊕
p+q=n

Ep,q
∞ (K)

Remark 4.6. There is another filtration, that is Kq =
⊕

j≥q,p≥0K
p,j . This

gives a second spectral sequence {E′
r, d

′
r} converging to the total cohomology

HD(K), but with
E′

1 = Hδ(K)

E′
2 = HdHδ(K)

and
d′r : E

′p,q
r → E

′p−r+1,q+r
r

Example 4.1 (Revisit generalized Mayer-Vietoris principle). Given a smooth
manifold M and an open covering U of it, consider double complex C∗(U,Ω∗),
then there is only one column in E′

1-page, therefore the E′
2-page degenrates,

which implies generalized Mayer-Vietoris principle. Furthermore, if we take
good cover, the E2-page also degenrates, which implies

H∗
dR(M) ∼= H∗(U,R)

4.3. Additive extension problem. Since the dimension is the only invari-
ant of a vector space, the associated graded vector space GV of a filtered
vector space V is isomorphic to V itself. In particular, if a double complex
K is a vector space, then

Hn
D(K) ∼= GHn

D(K) ∼=
⊕

p+q=n

Ep,q
∞

However, the same thing fails in the realm of abelian groups. For example,
consider filtered groups Z2⊕Z2 and Z4, which are filtered by

Z2 ⊂ Z2⊕Z2

and
Z2 ⊂ Z4

respectively. Thus they have isomorphic associated graded groups, but
Z2⊕Z2 is not isomorphic to Z4. In other words, in a short exact sequence
of abelian groups

0→ A→ B → C → 0

A and C do not determine B uniquely. The ambiguity is called the (additive)
extension problem.

Proposition 4.1. In a short exact sequence of abelian groups

0→ A
f−→ B

g−→ C → 0

if C is free, then there exists a homomorphism s : C → B such that g ◦ s is
identity on C.
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Proof. Since C is free, then it suffices to define a suitable s on the generators
{ci} of C and it automatically extends to C linearly. Take ci and choose
any preimage of ci, denoted by bi, then s is defined by ci 7→ bi. Clearly s ◦ g
is identity on C, but note that such s is not unique. □
Corollary 4.1. Under the hypothesis of above proposition,
1. The map (f, s) : A⊕ C → B is an isomorphism;
2. For any abelian group G the induced sequence

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)→ 0

is exact;
3. For any abelian group G the sequence

0→ A⊗G→ B ⊗G→ C ⊗G→ 0

is exact.

Proof. For (1). Since (f, s) is a group homomorphism, it suffices to check
it’s both injective and surjective. It’s easy to see (f, s) is injective, since f
and s are injective; For b ∈ B, if b ∈ im f , that is b = f(a) for some a ∈ A,
then (a, 0) is mapped to b. If b 6∈ im f = ker g, then consider g(b) ∈ C.
Although sg(b) may not equal to b, we have sg(b) − b ∈ ker g = im f , so
there exists a ∈ A such that f(a) + sg(b) = b, this completes the proof of
surjectivity.

For (2). Since it’s known to all Hom(−, G) is a left exact functor, then it
suffices to show Hom(B,G)→ Hom(A,G) is surjective. Take any k : A→ G,
then consider the composition of following maps

B
(f,s)−1

−→ A⊕ C
p1−→ A

k→ G

it’s a map in Hom(B,G) such that it extends k.
For (3). Since it’s known to all − ⊗ G is a right exact functor, then it

suffices to show A ⊗G → B ⊗G is injective, and the proof is quite similar
as above. □
Remark 4.7. Accoring to facts in homological algebra, there are the following
exact sequences
1.

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)→ Ext(C,G)→ . . .

2.
0→ A⊗G→ B ⊗G→ C ⊗G→ Tor(A,G)→ . . .

If G is an abelian group, then Ext(-, G) = Tor(-, G) = 0, which yields desired
results.
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Part 2. Applications to cohomology theory
5. Leray spectral sequence

Now let’s focus on a special spectral sequence we’re concerned about, that
is Leray spectral sequence.

5.1. Basic setting. Let π : E → M be a fiber bundle with fiber F over a
manifold M . Given a good cover U of M , π−1U is a cover on E and we can
form the double complex

K = C∗(π−1U,Ω∗)

with E1-page and E2-page as follows

Ep,q
1 = Hp,q

d (K) =
∏

α0<···<αp

Hq(π−1Uα0...αp) = Cp(U,Hq)

Ep,q
2 = Hp

δ (U,H
q)

where Hq is a locally constant presheaf U 7→ Hq(π−1U) on M . Furthermore,
if M is simply-connected, then there is no monodromy, which implies Hq is
a constant sheaf R⊕ · · · ⊕ R︸ ︷︷ ︸

dimHq(F )

, thus

Ep,q
2 = Hp(M)⊗Hq(F )

By theorem 4.1 we have the spectral sequence of K converges to H∗
D(K),

which is equal to H∗(E) by generalized Mayer-Vietoris principle, since π−1U
is a cover of E.

Example 5.1 (orientability and the Euler class of sphere bundle). Let
π : E →M be a Sn-bundle over a manifold M and let U be a good cover of
M . Then the E2-page of Leray spectral sequence is

Ep,q
2 = Hp(U,Hq(Sn))

However, since only n-th and 0-th cohomology of Sn don’t vanish, so there
are only two non-zero rows in E2-page, thus d2 = · · · = dn−1 = 0, that is

En = E2 = HδHd(K) = H∗(U,H∗(Sn))

Let σ ∈ E0,n
1 be the local angular forms on the sphere bundle E, it’s clear

that d1σ = 0 if and only if E is orientable. So if E is orientable, σ lives to
E2, and it lives to En.

Up to a sign dnσ ∈ Hn+1(U,H0(Sn)) ∼= Hn+1(M), so whether σ lives to
En+1 = · · · = E∞ = H∗(E) or not depends on dnσ = 0 ∈ Hn+1(M) or not,
that is there is a global angular form on E if and only if the Euler class e(E)
of E vanishes.

Example 5.2 (orientability of simply-connected manifold). Let M be a
simply-connected manifold of dimension n and S(TM ) is the Sn−1-sphere
bundle of its tangent bundle. H1(M) = 0 since M is simply-connected, thus
let σ ∈ E0,n−1

1 be the local angular forms on S(TM ), we must have d1σ = 0,
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since E1,n−1
2 = H1(M)⊗Hn−1(Sn−1), thus S(TM ) is orientable, that is TM

is orientable, which implies M is orientable.

Example 5.3 (The cohomology group of CP2). Consider Hopf fiberation
of CP2, that is

S1 S5

CP2

Since CP2 is simply-connected, thus

Ep,q
2 = Hp(CP2)⊗Hq(S1)

that is E2-page looks like

0 1 2 3 4 5 6

0

1

R

R

A

A

B

B

C

C

D

D

0 0

Since d3 moves down two steps, then d3 = 0, similarly for d4 = · · · = 0. So
the spectral sequence degenerates at the E3-page, but E3 = E∞ = H∗(S5),
that is E3 page should look like

0 1 2 3 4

0

1

R

R

which implies

0→ A, R→ B, A→ C, B → D, C → 0

are isomorphisms. Thus

Hq(CP2) =

{
R q = 0, 2, 4

0 otherwise

Remark 5.1. By same argument one can compute cohomology group of CPn.

5.2. Product structure and multiplicative extension problem. If a
double complex K has a product structure ∪, relative to which its differential
D is an antiderivation, the same is true of all the groups Er and their
operator dr, since Er is the homology of Er−1 and dr is induced from D.
With product structures, we have
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Theorem 5.1. Let K be a double complex with a product structure relative
to which D is an antiderivation. There exists a spectral sequence

{Er, d: E
p,q
r → Ep+r,q−r+1

r }

converging to HD(K) with the following properties:
1. The E2-page is HδHd(K);
2. Each Er, being the homology of Er−1, inherits a product structure from

Er−1. Relative to this product, dr is an antiderivation.

Example 5.4 (The ring structure of E2-page of Leray spectral sequence).
If we consider Leray spectral sequence to fiber bundle (E,M,F ), and equip
the double complex C∗(π−1U,Ω∗) with the following product structure

∪ : Cp(π−1U,Ωq)⊗ Cr(π−1U,Ωs)→ Cp+r(π−1U,Ωq+s)

ω ⊗ η 7→ ω ∪ η

where

ω ∪ η(π−1Uα0...αp+r) := (−1)qrω(π−1Uα0...αp) ∧ η(π−1Uαp...αp+r)

Remark 5.2. Here we need sign (−1)qr to make the differential operator D
into an antiderivation with respect to this product, that is2

D(ω ∪ η) = Dω ∪ η + (−1)degωω ∪Dη

If M is simply-connected, then E2-page of Leray spectral sequence is
isomorphic to Hp(M) ⊗ Hq(F ). If we equip Hp(M) ⊗ Hq(F ) with the
following product structure

(a⊗ b)(c⊗ d) := (−1)deg b deg c(ac⊗ bd)

Then Hp
δ (U,H

q) is isomorphic3 to Hp(M)⊗Hq(F ) as rings.

Example 5.5 (cohomology ring of CP2). Consider E2-page

0 1 2 3 4

0

1

1⊗ 1

1⊗ a

x⊗ 1

x⊗ a

x2 ⊗ 1

x2 ⊗ a

where two d2 are isomorphisms. Let a be a generator of H1(S1), then

d2(1⊗ a) = 1⊗ x

2You can directly check this fact by yourself, or refer to Hatcher for a proof.
3In fact, it’s almost clear from the definition: You can regard an element in Hp

δ (U,H
q)

as two parts, one eats an intersection of (p+1)-fold, and the other outputs a q-form, that’s
how you get this isomorphism.
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is a generator of E2,0
2 = H2(CP2) ⊗ H0(S1), where x is a generator of

H2(CP2). Then x⊗ a is a generator of

E2,1
2 = H2(CP2)⊗H1(S1)

Thus a generator of E4,0
2 = H4(CP2) is given by

d2(x⊗ a) = d2(x⊗ 1) · (1⊗ a) + (−1)2(x⊗ 1) · d2(1⊗ a)

= (1⊗ x2)

which implies x2 is a generator of H4(CP2). So the ring structure of CP2 is

H∗(CP2) = R[x]/(x3)

where |x| = 2.

Remark 5.3. The same argument shows H∗(CPn) = R[x]/(xn+1), where
|x| = 2.

In above example, we compute the cohomology ring of CP2 using fiber
bundle S1 → S5 → CP2, in which CP2 is the base space. However, when we
want to use spectral sequence to compute cohomology ring of total space of
some fiber bundle, we need to be careful, since there is so-called “multiplica-
tive extension problem”. To be explicit, there are two product structure on
E∞-page:
1. The one inherited from double complex K;
2. The one induced by fiberation as follows: For elements a, b belonging to

Ep,q
∞ = F pHp+q/F p+1Hp+q and Ep′,q′

∞ = F p′Hp′+q′/F p′+1Hp′+q′ respec-
tively, we set

a ∪ b := a ∪ b

in Ep+p′,q+q′
∞ . Here a ∪ b makes sense since there is a product structure

on H∗(E).
We desire these two product structure are same, since the first one is com-
putable, and the second one is the product structure we want. However,
some thing bad may happen, such as the following example:

Example 5.6. Consider the fiber bundle S2 → CP3 → S4, the E2-page of
Leray spectral sequence is

0 1 2 3 4

0

1

2

R

R

R

R
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By dimension reasons it’s clear that this spectral sequence E2 degenrates,
that is E2 = · · · = E∞. If we use x to denote the generator of H2(S2)
and use y to denote the generator of H4(S4), it’s clear the cohomology ring
structure of E∞-page is R[x, y]/(x2, y2), where |x| = 2, |y| = 4, which is not
isomorphic to the cohomology ring structure of CP3.

Remark 5.4. One can also refer to Example 1.17 in Page29 of [Hat04] for
another example.

So the key point is that when does the product structure of E∞ recover
the one on H∗(E). The next theorem gives some special condition under
which the product structure of E∞ recovers the one on H∗(E).

Theorem 5.2. In Leray spectral sequence, if the product structure of total
complex of E∞ is free, then it recovers the product structure of cohomology
of total space.

Proof. See Example in Page25 of [McC00]. □

5.3. Gysin sequence. In special cases the spectral sequence simplifies to
a long exact sequence. One special case is the cohomology of sphere bundle
and the resulting sequence is called Gysin sequence.

Let π : E →M be an oriented sphere bundle with fiber Sk. By assumption
of orientability, there is no monodromy of locally constant sheaf Hk, thus
the E2-page of Leray spectral sequence is Hp(M) ⊗Hq(Sk). Note that for
arbitrary integer n ≥ k, nothing in En−k,k

2 can be killed, thus there is an
exact sequence

0→ En−k,k
∞ → En−k,k

2

and it can be extended to the following exact sequence

0→ En−k,k
∞ → En−k,k

2

dk+1−→ En+1,0
2 → En+1,0

∞ → 0

since dk+1 is the only possible non-trivial map. On the other hand, the
filtration on Hn(E) becomes

Hn(E) ⊃ En,0
∞︸ ︷︷ ︸

En−k,k
∞

⊃ 0

which gives another exact sequence

0→ En,0
∞ → Hn(E)→ En−k,k

∞ → 0

Fit these two exact sequence together one has

· · · → Hn(E)→ Hn−k(M)→ Hn+1(M)→ Hn+1(E)→ . . .

To be explicit, you can find the map Hn−k(M)→ Hn+1(M) is to wedge the
Euler class of E.
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5.4. Other coefficients. Since the de Rham cohomology is a cohomology
theory with real coefficients, it’s also necessary to overlook the torsion phe-
nomena. In this section we give a quick review of singular (co)homology, and
show that the preceding results on spectral sequences carry over to integer
coefficients.

5.4.1. Review of singular (co)homology. From now on, we usually use X to
denote a topological space.

Definition 5.1 (singular q-simplex). A singular q-simplex in X is a conti-
nous map s : ∆q → X, where ∆q is standard q-simplex.

Definition 5.2 (singular q-chain with Z coefficients). A singular q-chain
in X is a finite linear combination with integer coefficients of singular q-
simplices.

Notation 5.1. All singular q-chains form an abelian group, denoted by
Sq(X;Z).

Definition 5.3 (boundary map). The boundary map ∂ is defined as follows
∂q : Sn(X;Z)→ Sq−1(X;Z)

σ 7→
∑
i

(−1)iσ|[v0, . . . , v̂i, . . . , vq]

where we identify [v0, . . . , v̂i, . . . , vq] with ∆q−1.

Definition 5.4 (singular homology group Z coefficients). The q-th singular
homology group Hq(X;Z) is defined as

Hq(X;Z) := ker ∂q/ im ∂q+1

Lemma 5.1 (Poincaré lemma). Hq(Rn;Z) = 0 for all q > 0.

Definition 5.5 (singular q-cochain with Z coefficients). The group of sin-
gular q-cochains is defined as

Sq(X;Z) := Hom(Sq(X;Z),Z)

with coboundary map dq defined by

(dqω)(c) = ω(∂q+1c)

where ω ∈ Sq(X), c ∈ Sq(X).

Definition 5.6 (singular cohomology group with Z coefficients). The q-th
singular cohomology group Hq(X;Z) is defined as

Hq(X;Z) := ker dq/ imdq−1

Remark 5.5. Replacing Z with any arbitrary abelian group G, you can define
singular (co)homology group with coefficients G.
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Proposition 5.1. Given an open covering of X, the following sequence is
exact

0← SU
q (X;G)←

⊕
α0

Sq(Uα0 ;G)←
⊕

α0<α1

Sq(Uα0α1 ;G)← . . .

where G is an arbitrary abelian group G and SU
q (X,G) is the group of U-

small singular q-chain. Furthermore, there is a chain homotopy between
Sq(X;G) and SU

q (X;G).

Corollary 5.1. Given an open covering of X, the following sequence is
exact

0→ Sq
U(X;G)→

⊕
α0

Sq(Uα0 ;G)→
⊕

α0<α1

Sq(Uα0α1 ;G)→ . . .

where G is an arbitrary abelian group G and SU
q (X,G) is the group of U-

small singular q-chain.

Theorem 5.3 (de Rham theorem). The singular cohomology with coeffi-
cients R is isomorphic to de Rham cohomology on smooth manifold.

Proof. Consider the double complex C∗(U, S∗(U;R)), we can show Čech co-
homology of constant sheaf R is isomorphic to singular cohomology with
coefficients R, and we also know Čech cohomology of constant sheaf R is
isomorphic to de Rham cohomology. □
Remark 5.6. In fact, for a topological space X with good cover is cofinal,
we can show Čech cohomology of constant sheaf G is isomorphic to singular
cohomology with coefficients G.

Notation 5.2. From now on, unless otherwise specified, we use H∗(X) to
denote the Z coefficients cohomology, and we use H∗(X; -) to specify. For
example, H∗(X;R) denotes the R coefficients singular cohomology, that’s
also de Rham cohomology.

Theorem 5.4 (Leray spectral sequence for singular cohomology with coef-
ficients in a communicative ring A). Let π : E → X be a fiber bundle with
fiber F over a topological space X and U an open covering of X. There is
a spectral sequence converging to H∗(E;A) with E2-term

Ep,q
2 = Hp(U,Hq(F ;A))

Each Er in the spectral sequence can be given a product structure relative
to which the differential dr is an antiderivation. If X is simply-connected
and has a good cover, then

Ep,q
2 = Hp(X,Hq(F ;A))

Furthermore, if H∗(F ;A) is a finitely generated free A-module, then
E2 = H∗(X;A)⊗H∗(F ;A)

as algebras over A.
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Remark 5.7. Of course there is Leray spectral sequence for singular homol-
ogy with coefficients, just reverse arrows in above case, here we omit the
statement of it.
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6. Cohomology of some Lie groups

A basic fact in differential geometry is that if G is a Lie group and H is
a closed subgroup of G, then there exists the following fiberation

H G

G/H

If we’re familiar with G/H and H, then above fiberation is a good way to
compute cohomology ring of G. In fact, we always use the view of group
action to give an explicit description of G/H.

6.1. Cohomology rings of U(n) and SU(n). Note that U(n) acts on
S2n−1 with stablizer U(n − 1), that is U(n)/U(n − 1) = S2n−1, thus we
have the following fiberation:

U(n− 1) U(n)

S2n−1

The same fiberation still holds if we replace U(n) by SU(n).
Proposition 6.1. The cohomology ring of U(n) is Λ[x1, . . . , x2n−1], where
|xi| = i, 1 ≤ i ≤ 2n− 1.
Proof. Note that U(1) = S1, thus cohomology ring of U(1) is Λ[x1], where
|x1| = 1. Apply Leray spectral sequence fiberation

U(n− 1) U(n)

S2n−1

we have E2-page has only two columns, that is p = 0 and p = 2n−1. Further-
more by induction we have cohomology ring of U(n− 1) is Λ[x1, . . . , x2n−3],
where |xi| = i, 1 ≤ i ≤ 2n − 3. Although there may toooo many non-zero
rows of E2-page, but it suffices to check d2 on those generators, that is the
ones on p = 0, q = 0, 1, 3, . . . , 2n− 3.

By dimension reasons, it’s clear this spectral sequence degenerates at E2-
page, which implies cohomology group structure of U(n) is clear. If we
choose a generator of E2n−1,0

2 , denoted by x2n−1, then we can write the
generator of E2n−1,i

2 through product E0,i
2 × E2n−1,0

2 → E2n−1,i
2 . This show

cohomology ring of U(n) is exactly Λ[x1, . . . , x2n−1]. □
Remark 6.1. Note that here we can compute the cohomology ring structure
of total space U(n), since Λ[x1, . . . , x2n−1] is free as algebras.
Proposition 6.2. The cohomology ring of SU(n) is Λ[x3, . . . , x2n−1], where
n ≥ 2, |xi| = i, 1 ≤ i ≤ 2n− 1.
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Proof. Note that SU(2) = S3, thus cohomology ring of SU(2) is Λ[x3], where
|x3| = 3. Apply Leray spectral sequence fiberation

SU(n− 1) SU(n)

S2n−1

The same argument shows the desired result. □
6.2. Cohomology group of SO(4). In this section we need to following
fact.

Proposition 6.2.1. For a compact orientable manifold M , the integral∫
M e(TM) is equal to the Euler number of it, that is

∑
(−1)qHq(M).

Example 6.1 (The cohomology ring of the unit tangent bundle of a sphere).
The unit tangent bundle S(TS2) to the S2 is a fiber bundle with fiber S1,
that is

S1 S(TSn−1)

S2

If we consider Z2 coefficients, then the E2-page of the Leray spectral se-
quence is Ep,q

2 = Hp(S2)⊗Hq(S1), that is

0 1 2

0

1

Z2

Z2

Z2

Z2

In order to compute E3, it suffices to compute above d2 : E
0,1
2 → E2,0

2 , and
we know it defines the Euler class of S(TS2). By Proposition 6.2.1, we have
Euler class of S(TS2) is twice the generator of H2(S2), then d2 is zero, which
implies this spectral sequence E2 degenrates. Thus the cohomology group

Hq(S(TS2)) =

{
Z2, q = 0, 1, 2, 3

0, otherwise

Remark 6.2. Here are two ways to think S(TS2):
1. A point in S(TS2) is specified by a unit vector in R3 and another unit

vector orthogonal to it, which can be completed to a unique orthnormal
basis with positive determinant. Therefore S(TS2) ∼= SO(3)

2. SO(3) is the group of all rotations about the origin in R3, and each
rotation is determined by its axis and an angle −π ≤ θ ≤ π. In this
way SO(3) is parametrized by the solid 3-ball D3 of raduis π in R3.
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Furthermore, antipodal points are glued together, since rotating through
the angle −π is the same as through π. Therefore S(TS2) ∼= SO(3).

Remark 6.3. Furthermore, since we can regard S(TS2) as RP3, it’s clear
above spectral sequence has multiplicative extension problem, since the ring
structure of E∞-page is ΛZ2 [x1, x2], where |x1| = 1, |x2| = 2(The reason is
the same as Example 5.6). However, the cohomology ring H∗(RP3,Z2) =
Z2[x]/(x

4), where |x| = 1.

Example 6.2 (The cohomology group of SO(4)). The SO(n) acts on Sn−1

transitively with stablizer SO(n − 1), therefore SO(n)/ SO(n − 1) = Sn−1.
Thus we can use Leray spectral sequence to fiber bundle SO(3)→ SO(4)→
S3. The E2-page is

0 1 2 3 4

0

1

2

3

Z

Z2

Z

Z

Z2

Z

It’s easy to see d2 = d3 = · · · = 0, which implies the cohomology group of
SO(4) is

Hq(SO(4)) =


Z q = 0, 6

Z2 q = 2, 5

Z⊕Z q = 3

0 otherwise

since there is no additive extension problem.

Example 6.3. Consider a manifold

W := SU(3)/ SO(3)

where SO(3) is embedded as a closed subgroup of SU(3). Now we’re going
to compute its Z2 coefficients cohomology ring. It’s clear that W is simply-
connected, thus by Poincaré duality one has

H1(W ) = H4(W ) = 0, H2(W ) = H3(W )

Note that there is a fiber bundle SO(3) → SU(3) → W . Since SO(3) is
diffeomorphic to RP3, with the cohomology ring Z2[x]/(x

4) and the coho-
mology ring of SU(3) is Λ[x3, x5], where |xi| = i, the E2-page looks like
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0 1 2 3 4 5

0

1

2

3

Z2

Z2

Z2

Z2

A

A

A

A

A

A

A

A

B

B

B

B

where A = H2(W ) = H3(W ), B = H5(W ). In E2-page, we have the follow-
ing observations:
1. d2 : E

0,1
2 → E2,0

2 is isomorphism. Indeed, if this d2 isn’t injective, then
the kernel of it will live into E∞-page, that is E0,1

∞ 6= 0, a contradiction to
H1(SU(3)) = 0. The same argument shows cokernel of it is also trivial.

2. d2 : E
3,1
2 → E5,0

2 is an isomorphism by the same argument as above.
Now let’s consider the cohomology ring structure of W .
1. Since d2 : E0,1

2 → E2,0
2 is an isomorphism, then we can use x2⊗1 to denote

d2(1⊗ a), then x2 is a generator of H2(W );
2. Let x3 be a generator of H3(W ), since d2 : E3,1

2 → E5,0
2 is an isomorphism,

and x3 ⊗ a is a generator of E3,1
2 , then

d2(x3 ⊗ a) = d2(x3 ⊗ 1) · (1⊗ a) + (−1)3(x3 ⊗ 1) · d2(1⊗ a)

= −(x3x2 ⊗ 1)

= (x2x3 ⊗ 1)

which implies x2x3 is a generator of H5(W ).
All in all, the cohomology ring of W is Λ[x2, x3].
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7. Path fiberation

Recall that for a fiber bundle (E,X,F ), where E,X,F are topological
spaces and X admits a good cover, then the E2-page of Leray’s spectral
sequence is

Ep,q
2 = Hp(U,Hq(F ))

where Hq(F ) is a locally constant sheaf. Now suppose π : E → X is just a
map, not necessarily locally trivial, we can still obtain a spectral sequence
with E2-page Hp(U,Hq(F )) which converges to HD(E) as long as π : E → X
has the property that Hq(π−1U) ∼= Hq(F ) for some fixed F and for all
contractible open subset U , which is called path fiberation property. An
important example is path fiberation.

7.1. Basic setting. Let X be a topological space with a base point ∗ and
[0, 1] the unit interval with base point 0. The path space of X is defined to
be the space P (X) consisting of all the paths in X with initial point ∗, that
is

P (X) := {maps µ : [0, 1]→ X | µ(0) = ∗}
The path space P (X) is equipped with compact open topology, that is a
topology basis consists of all base-point preserving maps µ : [0, 1]→ X such
that µ(K) ⊂ U for a fixed compact set K in [0, 1] and a fixed open set U in
X.

There is a natural projection π : P (X)→ X, defined by π(µ) = µ(1). Now
we claim π : P (X)→ X has path fiberation property. Indeed, for arbitrary
contractible open set U containing p, there is a natural inclusion

i : π−1(p)→ π−1(U)

Since U is contractible, then we can get a map
φ : π−1(U)→ π−1(p)

It’s clear i ◦ φ = id, and φ ◦ i is homotopic to id, which implies π−1(U)
has the same homotopy type as π−1(p). Furthermore, if p and q are in the
same path component of X, then a fixed path from p to q gives a homotopy
equivalence π−1(p) ∼= π−1(q). Thus all fibers have the homotopy type of
π−1(∗), which is loop space ΩX of X. To be explicit,

ΩX = {µ : [0, 1]→ X | µ(0) = µ(1) = ∗}
Thus π : P (X) → X has the path fiberation property, that is Hq(π−1U) ∼=
H∗(ΩX). Furthermore, path space PX is always contractible, since we
always can shrink every path to its initial point.

Proposition 7.1. Let π : E → X be a path fiberation. If X is simply-
connected and E is path-connected, then the fibers are path-connected.

Proof. Trivially the E0,0
2 term survives to E∞, hence

E0,0
2 = E0,0

∞ = H0(E) = Z
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since E is path-connected. On the other hand,

E0,0
2 = H0(X,H0(F )) = H0(F )

which implies F is path-connected. □

In fact there is a more general class of maps satisfying path fiberation
property, which is called fiberation. To be explicit, a map π : E → X is
called a fiberation if it satisfies the following property:

Theorem 7.1 (covering homotopy property). Given a map f : Y → E from
any topological space Y into E and a homotopy f t of f = π ◦ f , there is a
homotopy ft of f such that π ◦ ft = f t.

Y E

Y × I X

f

π

f t

ft

Proposition 7.2.
1. Any two fibers of a fiberation over an arcwise-connected space have the

same homotopy type;
2. For every contractible open set U , the inverse image π−1U has the ho-

motopy type of the fiber Fa, where a is any point in U .

Proof. Here we only explain some key ideas of proof of (1), which will be
used in later.
1. A path γ from a to b may be regarded as a homotopy of the point a;
2. Let g : Fa × I → X be given by (y, t) 7→ γ(t), then covering homotopy

property implies there exists a map g : Fa × I → E that covers g. Fur-
thermore, g1 := g|Fa×{1} is a map from Fa to Fb, since γ(1) = b. Thus a
path from a to b induces a map from Fa to the fiber Fb.

3. The key point is that homotopic paths from a to b in X induces homo-
topic maps from Fa to Fb.

4. If (3) holds, given a, b ∈ X and a path γ from a to b, let u : Fa → Fb

be a map induced by γ and v : Fa → Fb a map induced by γ−1. Since
γ−1 ◦ γ−1 is homotopic to the constant map to a, the composition v ◦ u
is homotopic to identity on Fa, which implies Fa and Fb have the same
homotopy type.

□

Remark 7.1. In fact, we can slightly change the proof to see if f t, gt : Y ×I →
X are two homotopic homotopies, then their lifts ft, gt : Y × I → E are also
homotopic.

7.2. The cohomology ring of ΩSn.
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7.2.1. The cohomology group structure. In this section, we compute the in-
teger cohomology groups of the loop space ΩSn, n ≥ 2.

Example 7.1 (The cohomology group of ΩS2). Since S2 is simply-connected,
thus the spectral sequence of the path fiberation

ΩS2 PS2

S2

has E2-page Hp(S2,Hq(ΩS2)) = Hp(S2) ⊗ Hq(ΩS2), thus only two non-
zero columns at p = 0, 2. By dimensional reason, d3 = d4 = · · · = 0, thus
E3 = E∞. Furthermore, since PS2 is contractible, we have all non-zero
d2 are isomorphisms. Thus d2 : E

0,1
2 → E2,0

2 is an isomorphism, that is
H1(ΩS2) = Z, but then

E2,1
2 = H2(S2)⊗H1(ΩS2) = Z

by the same reason E0,2
2 = Z. Step by step we find Hq(ΩS2) = Z in every

dimension q.

Example 7.2 (The cohomology group of ΩS3). Since S3 is simply-connected,
thus the spectral sequence of the path fiberation

ΩS3 PS3

S3

has E2-page Hp(S3,Hq(ΩS3)) = Hp(S3) ⊗ Hq(ΩS3), thus only two non-
zero columns at p = 0, 3. By dimensional reason, d2 = d4 = · · · = 0, thus
E3 = E∞. Furthermore, since PS3 is contractible, we have all non-zero
d3 are isomorphisms. Thus d3 : E

0,2
2 → E3,0

2 is an isomorphism, that is
H2(ΩS3) = Z, but then

E3,2
2 = H3(S3)⊗H2(ΩS3) = Z

by the same reason E0,4
2 = Z. Step by step we find Hq(ΩS2) = Z in every

even dimension q.

Example 7.3. In general

Hq(ΩSn) =

{
Z, q = n− 1, 2(n− 1), . . .

0, otherwise

7.2.2. The cohomology ring structure. In this section, we compute the co-
homology rings of the loop space ΩSn, n ≥ 2.

Example 7.4 (The cohomology ring of ΩS2). Let u be a generator of E2,0
2 =

H2(S2) and x a generator of H1(ΩS2) such that d2(1 ⊗ x) = u ⊗ 1, then
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u⊗ x is a generator of H2(S2)⊗H1(ΩS2). Direct computation shows

d2(1⊗ x2) = d2(1⊗ x) · (1⊗ x)− (1⊗ x) · d2(1⊗ x)

= (u⊗ 1) · (1⊗ x)− (1⊗ x) · (u⊗ 1)

= u⊗ x− u⊗ x

= 0

which implies x2 = 0, since d2 is an isomorphism. Let e be a generator of
H2(ΩS2) such that d2(1⊗ e) = u⊗ x and u⊗ e ∈ H2(S2)⊗H2(ΩS2), then

d2(1⊗ ex) = d2(1⊗ e) · (1⊗ x) + (1⊗ e) · d2(1⊗ x)

= (u⊗ x) · (1⊗ x) + (1⊗ e) · (u⊗ 1)

= u⊗ e

implies ex is a generator of H3(ΩS2), since d2 is an isomorphism. Similar
computations shows

d2(1⊗
e2

2
) =

1

2
d2(1⊗ e) · (1⊗ e) +

1

2
(1⊗ e) · d2(1⊗ e)

=
1

2
(u⊗ x) · (1⊗ e) +

1

2
(1⊗ e) · (u⊗ x)

= (u⊗ ex)

d2(1⊗
e2x

2
) =

1

2
d2(1⊗ e2) · (1⊗ x) +

1

2
(1⊗ e2) · d2(1⊗ x)

= (u⊗ ex) · (1⊗ x) +
1

2
(1⊗ e2)(u⊗ 1)

= (u⊗ e2

2
)

which implies e2

2 is a generator of H4(ΩS2) and e2x
2 is a generator of H2(ΩS2).

By induction we can show ek

k! is a generator of H2k(ΩS2) and ekx
k! is a gen-

erator of H2k+1(ΩS2).
The divided polynomial algebra Zγ(e) with generator e is the Z-algebra

with additive basis {1, e, e2/2!, e3/3!, . . . }, then

H∗(ΩS2) = Λ[x1]⊗ Zγ(e)

where |x1| = 1, |e| = 2.

Remark 7.2. By the same argument one can show for n is even

H∗(ΩSn) = Λ[xn−1]⊗ Zγ(e)

where |xn−1| = n− 1, |e| = 2(n− 1).

Example 7.5 (The cohomology ring of ΩS3). Let u be a generator of E3,0
2 =

H3(S3) and e a generator of H2(ΩS3) such that d2(1 ⊗ e) = u ⊗ 1, then
u⊗ e is a generator of H3(S3)⊗H2(ΩS3). The same computation as above
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case shows e2

2 is a generator of H2(ΩS3), and by induction one has ek

k! is a
H2k(ΩS3), which implies

H∗(ΩS3) = Zγ(e)

where |e| = 2.

Remark 7.3. By the same argument one can show for n is odd
H∗(ΩSn) = Zγ(e)

where |e| = n− 1.
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Part 3. Applications to homotopy theory
8. Review of homotopy theory

8.1. First properties. Let X be a topological space with base point ∗.
Definition 8.1 (q-th homotopy group). For q ≥ 1, the q-th homotopy group
πq(X) of X is defined to be the homotopy classes of maps from q-cube Iq

to X which send the faces İq of Iq to the base point of X.
Remark 8.1. Equivalently, πq(X), q ≥ 1 may be regarded as the homotopy
classes of base-point preserving maps from Sq to X.
Remark 8.2. π0(X) is defined to be the set of all path components of X,
and for a manifold the path components are the same as the connected
components. Although π0(X) is in general not a group, if G is a Lie group
then π0(G) is a group.
Proposition 8.1. Basic properties:
1. πq(X × Y ) = πq(X)× πq(Y );
2. πq(X) is abelian if q ≥ 1;
3. If X̃ is the universal covering of X, then πq(X) = πq(X̃) for q ≥ 2.
4. πq−1(ΩX) = πq(X) for q ≥ 2.
Proof. For (4). Elements of π2(X) are given by maps of I2 to X, which can
be viewed as a map from I to ΩX, therefore π2(X) = π1(ΩX). The general
case is similar. □
Example 8.1. The homotopy groups of S1 is

πq(S
1) =

{
Z, q = 1

0, q > 1

Theorem 8.1 (long exact sequence of homotopy). Let π : E → X be a base-
point preserving fiberation with fiber F , then there is an exact sequence of
homotopy groups as follows

· · · → πq(F )
i∗−→ πq(E)

π∗−→ πq(X)
∂−→ πq−1(F )→ · · · → π0(E)→ π0(X)→ 0

Remark 8.3. Here we only gives the descriptions of these homomorphisms,
readers may refer to other standard textbooks for exactness.

The maps i∗, π∗ are induced by the inclusion i : F → E and projection
π : E → X respectively, where we regard F as the fiber over the base-point
∗ of B. To describe ∂ we use the covering homotopy property of fiberation.
A map α : Iq → B representing an element of πq(X) can be regarded as a
homotopy of α|Iq−1 in X. Note that α|Iq−1 : (t1, . . . , tq−1, 0)→ ∗ ∈ X, then
we take constant map ∗ : Iq−1 → E from Iq−1 to the base-point of F as
the map that covers α|Iq−1 . By the covering homotopy property, there is a
homotopy α : Iq → E which covers α such that αIq−1 = ∗. Then ∂[α] is the
homotopy class of the map α : (t1, . . . , tq−1, 1)→ F . And the well-defineness
follows from Remark 7.1.
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8.2. Hurewicz theorem.

Theorem 8.2 (Hurewicz theorem). Let X be a path-connected space, then
H1(X) is the abelianization of π1(X).

Remark 8.4. So simply-connected space X must have H1(X) = 0; Converse
statement is not true, although it’s quite difficult to give a simple example.
For example, you can take an arbitrary perfect group4 G (For example,
G = A5), then the space K(G, 1), which will be defined later is what you
want. However, in general you don’t know what does it look like.

Theorem 8.3 (Hurewicz theorem). Let X be a simply-connected path-
connected CW complex. Then the first non-trivial homotopy group and
homology group occur in the same dimension and are equal.

Proof. Let n denote the first dimension such that πn(X) 6= 0, now let’s
prove by induction on n. Firstly consider the case n = 2. The E2-page of
homology spectral sequence of the path fiberation is

0 1 2

0

1

Z

H1(ΩX)

0 H2(X)

Thus π2(X) = π1(ΩX) = H1(ΩX) = H2(X).
Now let n be any positive integer ≥ 3, then in this case ΩX has the

following properties:
1. It’s a CW complex5;
2. It’s simply-connected, since π1(ΩX) = π2(X) = 0;
3. The dimension of the first non-trivial homotopy group of ΩX is n − 1,

since πq−1(ΩX) = πq(X), q ≥ 2.
Then we can apply induction hypothesis to ΩX, one has

Hq(ΩX) =

{
0, q < n− 1

πn−1(ΩX) = πn(X), q = n− 1

On the other hand, the E2-page still implies Hq−1(ΩX) = Hq(X) for
2 ≤ q ≤ n. Then

Hq(X) =

{
0, 1 ≤ q < n

Hn−1(ΩX) = πn(X), q = n

□
4A group G such that its abelianization is trivial is called perfect group.
5Not a trivial fact, it’s a theorem proved by Milnor: The loop space of a CW complex

is still a CW complex.
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Remark 8.5. Note that if we want to use Leray spectral sequence, X should
admit a good cover. Fortunately, every CW complex admits a good cover.

Example 8.2. It follows from Hurewicz theorem that

πq(S
n) =

{
0, q < n

Z, q = n

8.3. Bott periodic theorem.

Example 8.3 (stable homotopy groups of U(n)). Consider the following
fiberation

U(n− 1) U(n)

S2n−1

Then homotopy exact sequence implies

· · · → πq+1(S
2n−1)→ πq(U(n− 1))→ πq(U(n))→ πq(S

2n−1)→ . . .

Then for q < 2n− 2, one has

πq(U(n− 1)) = πq(U(n))

these mutally isomorphic groups are called q-th stable homotopy groups
of the unitary group. They’re denoted briefly by πq(U).

Remark 8.6. However, how to compute these stable homotopy groups? Bott
has the following theorem:

Theorem 8.4 (Bott periodic theorem). For q ≥ 1,

πq−1(U) ∼= πq+1(U)

From this theorem, it suffices to compute π0(U) and π1(U), and it’s quite
clear:

π0(U) = π0(U(1)) = 0

π1(U) = π1(U(1)) = Z

Example 8.4 (stable homotopy groups of SU(n)). For the same reason we
have for q < 2n,

πq(SU(n− 1)) = πq(SU(n))

and we also have q-th stable homotopy groups of the special unitary group,
denoted by πq(SU). From the following fiberation

SU(n) U(n)

S1

det
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we can conclude

πq(U(n)) =

{
πq(SU(n)), q ≥ 2

π1(SU(n))⊕ Z, q = 1

for arbitrary n ≥ 1. In particular, we have the isomorphisms between stable
homotopy groups.
Example 8.5 (stable homotopy groups of O(n)). Consider the following
fiberation

O(n− 1) O(n)

Sn−1

Then homotopy exact sequence implies
· · · → πq+1(S

n−1)→ πq(O(n− 1))→ πq(O(n))→ πq(S
n−1)→ . . .

Then for q < n− 2, one has
πq(O(n− 1)) = πq(O(n))

and we can define q-th stable homotopy groups of special orthogonal groups,
defined by πq(O). Similarly we also have the following theorem:
Theorem 8.5 (Bott periodic theorem). For q ≥ 0,

πq(O) ∼= πq+8(O)

8.4. Some homotopy groups of Stiefel manifold.
Definition 8.2 (real Stiefel manifold). The real Stiefel manifold Vk(Rn+k)
is the set of all orthonormal k-frames in Rn+k.
Example 8.6. SO(n) = Vn−1(Rn).
Example 8.7. Sn = V1(Rn+1).
Lemma 8.1. For 1 ≤ k ≤ n, Vk(Rn+k) is (n− 1)-connected, and

πn(V2(Rn+2)) =

{
Z, n is odd
Z /2Z, n is even

Proof. Apply homotopy exact sequence to the following fiberation

Vk−1(Rn+k−1) Vk(Rn+k)

Sn+k−1

Then if q < n+ k − 2, one has
πq(Vk(Rn+k)) = πq(Vk−1(Rn+k−1))

In particular if q < n, one has
πq(Vk(Rn+k)) = πq(Vk−1(Rn+k−1)) = · · · = πq(V1(Rn+1)) = πq(S

n) = 0
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8.5. Hopf invariant.

8.5.1. History. In general, it’s tough to compute πq(S
n) for n ≥ 2, q > n.

So the first non-trivial case is π3(S
2). Consider Hopf fiberation

S1 S3

CP1 = S2

Then the exact sequence of homotopy groups implies
· · · → πq(S

1)→ πq(S
3)→ πq(S

2)→ πq−1(S
1)→ . . .

Use the fact that πq(S
1) = 0, q > 1 one has

πq(S
3) = πq(S

2)

for q > 1. In particular one has π3(S
2) = Z. □

In history π3(S
2) was first computed by Hopf in 1931 using a linking

number argument which associates to each homotopy class of maps from S3

to S2 an integer now called the Hopf invariant. We first give an account
of the Hopf invariant in the dual language of differential forms and then in
terms of the linking number.

8.5.2. The differential forms definition.

Definition 8.3 (Hopf invariant). Let f : S2n−1 → Sn be a smooth map and
let α be a generator of Hn

dR(S
n), then Hopf invariant of f is defined as

H(f) =

∫
S2n−1

ω ∧ dω

where f∗α = dω.

Proposition 8.2. Properties of Hopf invariant:
1. The definition of Hopf invariant is independent of the choice of ω;
2. For odd n the Hopf invariant is 0;
3. Homotopic maps have the same Hopf invariant.

Proof. For (1). Let ω′ be another (n−1)-form on S2n−1 such that f∗α = dω′.
Then ∫

S2n−1

ω ∧ dω −
∫
S2n−1

ω′ ∧ dω′ =

∫
S2n−1

(ω − ω′) ∧ dω

= ±
∫
S2n−1

d((ω − ω′) ∧ ω)

= 0

For (2). If n is odd, then ω is even-dimensional, thus

ω ∧ dω =
1

2
d(ω ∧ ω)
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For (3). From (2) we may assume n is even. Let f : S2n−1 × I → Sn be
a homotopy between f0, f1 : S

2n−1 → Sn. We use i0 to denote the inclusion
i0 : S

2n−1 → S0 = S2n−1 × {0} ⊂ S2n−1 × I and similar for i1. Then
F ◦ i0 = f0

F ◦ i1 = f1

Let α be a generator of Hn
dR(S

n), then F ∗α = dω for some (n − 1)-form ω
on S2n−1 × I. Define i∗0ω = ω0 and i∗1ω = ω1, then

f∗
0α = (F ◦ i0)∗ = i∗0 ◦ F ∗α = ω0

f∗
1α = (F ◦ i1)∗ = i∗1 ◦ F ∗α = ω1

Then
H(f1)−H(f2) =

∫
S2n−1

ω1 ∧ dω1 −
∫
S2n−1

ω0 ∧ dω0

=

∫
S2n−1

i∗1(ω ∧ dω)−
∫
S2n−1

i∗0(ω ∧ dω)

=

∫
S1

−
∫
S0

ω ∧ dω

=

∫
S2n−1

d(ω ∧ dω)

=

∫
S2n−1×I

F ∗(α ∧ α)

= 0

□
Thus Hopf invariant gives the following map

H : π2n−1(S
n)→ R

Furthermore, it gives a group homomorphism. Indeed, for two smooth maps
f, g : S2n−1 → Sn, it suffices to show

(fg)∗(α) =

where α be a generator of Hn
dR(S

n) and dωf = f∗α, dωg = g∗α. Then

H(fg) =

∫
S2n−1

8.5.3. The intersection-theory definition.
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9. Applications to homotopy theory

9.1. Eilenberg-MacLane spaces.

Definition 9.1 (Eilenberg-MacLane space). Let G be a group, a path-
connected space X is called an Eilenberg-MacLane space K(G,n), if

πq(X) =

{
G, q = n

0, otherwise

Remark 9.1. For any group G and n ≥ 1, in the category of CW complexes
K(G,n) exists and is unique up to homotopy equivalence.

Example 9.1. S1 is K(Z, 1) according to Example 8.1.

Example 9.2. If F is a free group, then K(F, 1) is a connected graph.

Corollary 9.1. Any subgroup of a free group is still a free group.

Example 9.3. For a group G with generators a1, b1, . . . , ag, bg and a single
relations

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1

Then the Riemann surface with genus g is K(G, 1), according to the follow-
ing theorem.

Theorem 9.1 (uniformization theorem). Every simply-connected Riemann
surface is biholomorphic to
1. S2;
2. C;
3. the unit disk ∆ in C.
For compact Riemann surfaces,
1. those with universal cover ∆ are precisely the surfaces of genus greater

than 1;
2. those with universal cover C are the Riemann surfaces of genus 1, namely

the complex tori or elliptic curves;
3. those with universal cover S2 are those of genus zero, namely the Riemann

sphere itself.

Proposition 9.1. Basic properties:
1. ΩK(G,n) = K(G,n− 1);
2. K(G×H,n) = K(G,n)×K(H,n).

9.2. The telescoping construction. In this section we introduce a tech-
nique for constructing certain Eilenberg-MacLane space, which is called tele-
scoping construction.

Example 9.4 (The infinite real projective space). Note that we have the
following natural inclusions

{point} ↪→ . . .
i
↪→ RPn i

↪→ RPn+1 ↪→ . . .
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Then we define the infinite real projective space RP∞ as

RP∞ :=
⋃
n

RPn

Since Sn → RPn is a double cover, thus πq(RPn) = 0 for 1 < q < n and
π1(RPn) = Z2. We claim RP∞ is exactly K(Z2, 1).
1. For arbitrary q > 1, f ∈ πq(RP∞), that is a map f : Sq → RP∞. Since

Sq is compact, then there exists a sufficiently large N such that f(Sq) ⊂
RPN , and πq(RPN ) = 0 implies f is null-homotopic;

2. Similarly we can construct infinite sphere S∞, which is double cover of
RP∞, and by the same argument we have S∞ is contractible. Then
homotopy exact sequence of fiberation implies π1(RP∞) = Z2.

Example 9.5 (The infinite complex projective space). Note that we have
the following natural inclusions

{point} ↪→ · · · ↪→ CPn ↪→ CPn+1 ↪→ . . .

Then we define the infinite complex projective space CP∞ as

CP∞ :=
⋃
n

CPn

Similarly we have the following fiberation

S1 S∞

CP∞

By the same argument you can see CP∞ = K(Z, 2).

Proposition 9.2. The cohomology ring of CP∞ is Z[x], where |x| = 2.

Proof. Note that CP∞ is simply-connected, then the E2-page of Leray spec-
tral sequence is

0 1 2 3

0

1

Z

Z

0

0

A

A

B

B

and these d2 are isomorphisms, which implies the cohomology group of CP∞

is

Hq(CP∞) =

{
Z, q is even
0, otherwise

To see its ring structure, we rewrite E2-page as follows:
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0 1 2 3 4

0

1

1⊗ 1

1⊗ u

x⊗ 1

x⊗ u

x2 ⊗ 1

x2 ⊗ u

Take a generator u of H1(S1) and use x ⊗ 1 to denote d2(1 ⊗ u), then x is
a generator of H2(CP∞). Then

d2(x⊗ u) = d2(x⊗ 1) · (1⊗ u) + (−1)2(x⊗ 1) · d2(1⊗ u)

= (x2 ⊗ 1)

implies x2 is a generator of H4(CP∞). By induction you can see its coho-
mology ring is Z[x], where |x| = 2. □

Example 9.6 (The infinite lens spaces). Since S1 acts freely on S2m+1, so
does any subgroup of S1. Consider Zn-action on S2m+1 as follows

Zn×S2m+1 → S2m+1

(e
2πi
n , (z0, . . . , zm))→ (e

2πi
n z0, . . . , e

2πi
n zm)

The quotient space of S2m+1 by action of Zn is called lens space L(m,n).
Apply telescoping construction we can define infinite lens space L(∞, n),
and there is a fiberation

Zn S∞

L(∞, n)

By the same argument one can show L(∞, n) is K(Zn, 1).

Remark 9.2. In particular, L(∞, 2) is exactly RP∞.

In order to show the cohomology of L(m,n), the fiberation Zn → S2m+1 →
L(m,n) makes no sense, since L(m,n) is not simply-connected. Instead, note
that the free action of S1 on S2m+1 descends to an action on L(m,n):

(z0, . . . , zm) 7→ (λz0, . . . , λzm)

since S1 is an abelian Lie group. Furthermore, the quotient of this descend
action is still CPm, so there is a fiberation

S1 L(m,n)

CPm

and the E2-page of Leray spectral sequence to this fiberation is
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0 1 2 3 4

0

1

1⊗ 1

1⊗ u

x⊗ 1

x⊗ u

x2 ⊗ 1

x2 ⊗ u

Let u be a generator of H1(S1) and x a generator of H2(CPm), it suffices
to compute what does d2 : E

0,1
2 → E2,0

2 look like, since xn ⊗ a generates
E2n,1

2 . However, since π1(L(m,n)) = Zn, then Hurewicz theorem implies
H1(L(m,n)) = Zn, so universal coefficients theorem implies

H1(L(m,n)) = Hom(H1(L(m,n)),Z)⊕ Ext(H0(X),Z) = 0

H2(L(m,n)) = Hom(H2(L(m,n)),Z)⊕ Ext(H1(X),Z) = free part⊕ Zn

So we have d2 is multiplication by n, and cohomology group of L(m,n):

Hq(L(m,n)) =


Z, q = 0, 2m+ 1

Zn, q = 2, 4, . . . , 2m

0, otherwise

If we consider the following fiberation

S1 K(Zn, 1)

CP∞

Then the same computation shows the cohomology groups of K(Zn, 1) is

Hq(K(Zn, 1)) =


Z, q = 0

Zn, q is even, q 6= 0

0, otherwise

However, if we consider Q coefficients, then mutiply by n is an isomorphism
of Q, which implies

Hq(K(Zn, 1);Q) =

{
Q, k = 0

0, otherwise

Furthermore, we can use path fiberation of K(Zn, 1) to conclude

Hq(K(Zn,m);Q) =

{
Q, q = 0

0, otherwise

holds for all m ∈ Z>0. Therefore, by the structure of finitely generated
abelian groups, the rational cohomology of K(G,m) is trivial for a finitely
generated torsion abelian group.
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9.3. Some results about cohomology ring of K(Z, 3). Since πq(S3) = 0
for q < 3 and π3(S

3) = Z, it’s natural to ask whether S3 is K(Z, 3) or not.
Since we know ΩK(Z, 3) = K(Z, 2) = CP∞ and we have the following path
fiberation

K(Z, 2) PK(Z, 3)

K(Z, 3)

Then we can use Leray spectral sequence to compute cohomology ring of
K(Z, 3). By dimensional reason, it’s clear E2-page equals to E3-page, which
looks like

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

1⊗ 1

1⊗ a

1⊗ a2

1⊗ a3

1⊗ a4

s⊗ 1

s⊗ a

s⊗ a2

s⊗ a3

s2 ⊗ 1

s2 ⊗ a

s2 ⊗ a2

s3 ⊗ 1

where a is the generator of H2(CP∞). We have the following observations:
1. It’s clear d3 : E

0,2
3 → E3,0

3 is an isomorphism, and we use s⊗ 1 to denote
d3(1⊗ a), then s is a generator of H3(K(Z, 3)).

2. H4(K(Z, 3)) = 0, otherwise non-zero element in E4,0
3 will live to E∞-page,

since nothing can kill it; The same argument shows H5(K(Z, 3)) = 0.
3. Note that s ⊗ a is a generator of E3,2

3 , s ⊗ a2 is a generator of E3,4
3 and

s ⊗ a3 is a generator of E3,6
3 , then by antiderivation property of d3, we

can see
(a) d3 : E

0,4
3 → E3,2

3 is multiplication by 2;
(b) d3 : E

0,6
3 → E3,4

3 is multiplication by 3;
(c) d3 : E

0,8
3 → E3,6

3 is multiplication by 4.
4. d3 : E

3,2
3 → E6,0

3 can’t be zero map, otherwise E3,2
∞ = coker{d3 : E0,4

3 →
E3,2

3 } = Z2, a contradiction. Furthermore, it’s also a surjective, otherwise
E6,0

∞ = coker{d3 : E3,2
3 → E6,0

3 } 6= 0, also a contradiction. Combine these
two facts together one has E6,0

3 = Z2 is generated by s2 ⊗ 1, that is s2 is
a generator of H6(K(Z, 3)).

5. Since 2s2 = 0, then d3 : E
3,4
3 → E6,2

3 = 0. Thus E3,4
4 = Z3, and there

is no maps mapping into E3,4
4 . So the only possible element to kill it is
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elements in E8,0
5 , which implies H8(K(Z, 3)) = Z3, we use x to denote its

generator. This process is shown in the following E5-page.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

1⊗ 1

s⊗ a2

x⊗ 1

6. d3 : E
6,2
3 → E9,0

3 is an isomorphism, and the reason is the same as (4),
which implies s3 is a generator of H9(K(Z, 3)).

7. Since 2s2 = 0, d3 : E3,6
3 → E6,4

3 is a surjective, with kernel 2(s⊗ a3), which
implies E3,6

4 = Z2. Note that only the following two maps may kill this
non-zero element.
(a) d5 : E

3,6
5 → E8,2

5 ;
(b) d7 : E

3,6
7 → E10,0

7 .
Now let’s consider case (a), this will happen if and only if d3 : E8,2

3 → E11,0
3

is a zero map, that is E8,2
5 = Z3 6= 0. However, any group homomorphism

from Z2 to Z3 must be trivial. So case (a) won’t kill this Z2. Furthermore,
it can’t happen, otherwise E8,2

∞ 6= 0. So
I We must have d7 : E3,6

7 → E10,0
7 is an isomorphism, which implies H10(K(Z, 3)) =

Z2, and we use y to denote this generator;
II By the way we conclude d3 : E8,2

3 → E11,0
3 is an isomorphism, which implies

xs is a generator of H11(K(Z, 3)).
Now let’s forget some old information and concentrate on something un-
known to draw a new picture of E3-page as follows:

6 7 8 9 10 11 12 13

0

1

2

3

4 s2 ⊗ a2

s3 ⊗ a y ⊗ a

ys⊗ 1E12,0
3

7. Since 2s2 = 0, d3 : E
6,4
3 → E9,2

3 is zero map. So d3 : E
9,2
3 → E12,0

3 is an
injective, which implies there is a s4⊗1 ∈ E12,0

3 . However, d3 : E9,2
3 → E12,0

3

isn’t a surjective, since we also need d9 : E
3,8
9 → E12,0

9 to kill E3,8
9 = Z5,

which implies H12(K(Z, 3)) = Z2⊕Z5, one of the generators is s4, and the
other one we use z to denote it.
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8. Finally one can check d3 : E
10,2
3 → E13,0

3 is an isomorphism, which implies
H13(K(Z, 3)) is generated by ys.

In summary the first few cohomology groups of K(Z, 3) are
q 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Hq(K(Z, 3)) Z 0 0 Z 0 0 Z2 0 Z3 Z2 Z2 Z3 Z2⊕Z5 Z2

generators 1 s s2 x s3 y xs s4, z ys

There is a bad news, that is you can’t figure out what is H14(K(Z, 3)) using
above method, we do need additional information. However, the situation
can be vastly simplified by taking coefficients in Q rather than Z. In this
case we have

Proposition 9.3.

H∗(K(Z, n);Q) =

{
Q[x], n is even
ΛQ[x], n is odd

where |x| = n.

Proof. Let’s prove by induction on n via the following path fiberation

K(Z, n− 1) PK(Z, n)

K(Z, n)

1. For n = 2, we have already shown H∗(K(Z, 2);Q) = Q[x], where |x| = 2;
2. For n = 3, we just need to replace Z with Q in above computation, and

note that multiplication by i is an isomorphism of Q. Then one can argue
inductively that Ep,0

3 must be zero for p > 3, otherwise the first non-zero
one will live to E∞-page, since it can’t be killed by any differential.

Then induction process is a routine. □

Remark 9.3. More generally, this holds also when Q is replaced by any non-
zero subgroup of Q. See Proposition 1.20 in Page31 of [Hat04].

9.4. Basic tricks of the trade. In homotopy theory, every map f : A→ B
from a space A to a path-connected space B may be viewed as
1. An inclusion;
2. A fiberation.

9.4.1. Inclusion. Consider the mapping cylinder of f as follows:

Mf : = (A× I) ∪B/(a, 1) ∼ f(a)

It’s clear that Mf has the same homotopy type as B and A is included in
Mf .
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9.4.2. Fiberation. Without lose of generality we may assume f is an inclu-
sion. Define L to be the space of all paths in B with initial point in A.
By shrinking every path to its initial point, we get a homotopy equivalence
L ' A. On the other hand, by projecting every path to its endpoint, we get
the following fiberation

ΩA
∗ L ' A

B

whose fiber is ΩA
∗ , the space of all paths from a point ∗ in B to A. So up to

homotopy equivalence, f : A→ B is a fiberation.

9.5. Postnikov approximation. Let X be a CW complex with homotopy
groups πq(X) = πq. Although X has the same homotopy groups as the
product space

∏
K(πq, q), in general it will not have the same homotopy

type. However, up to homotopy every CW complex can be thought of as a
“twisted product” of Eilenberg-MacLane spaces in the following sense.

Proposition 9.4 (Postnikov approximation). Every CW complex can be
approximated by a twisted product of Eilenberg-MacLane spaces; More pre-
cisely, for each n, there is a sequence of fiberations Yq → Yq−1 with the
K(πq, q)’s as fibers and commuting maps X → Yq

K(π1, 1) = Y1 Y2 . . . Yn

X

K(π2,2)

such that the map X → Yq induces an isomorphism of homotopy groups in
dimensions ≤ q. Such a sequence of fiberations is called Postnikov tower of
X.

Remark 9.4. Firstly let’s explain a procedure for killing the homotopy groups
of X above a given dimension. For example, to construct K(π1, 1) we kill
off the homotopy groups of X in dimensions ≥ 2.

If α : S2 → X represents a non-trivial element in π2(X), we attach a 3-cell
to X via α as follows:

X ∪α e3 = X
∐

e3/x ∼ α(x), x ∈ S2

This procedure doesn’t change the fundamental group of the space, since
attaching a n-cell to X could kill an element of πn−1(X), but doesn’t affect
the homotopy of X in dimensions ≤ n − 2. So for each generator of π2(X)
we attach a 3-cell to X as above. In this way we create a new space X1 with
the same fundamental group as X but with no π2. Iterating this procedure
we can kill all higher homotopy groups. This gives Y1.
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Proof. To construct Yn we kill off all homotopy groups of X in dimensions
≥ n+ 1 by attaching cells. Then

πq(Yn) =

{
0, q ≥ n+ 1

πq, q = 1, 2, . . . , n

Having constructed Yn, the space Yn−1 is obtained from Yn by killing the
homotopy of Yn dimension n. Then we have the following inclusions

X ⊂ Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1

and we can regard it as fiberations. The fiber of Yq → Yq−1 follows from
homotopy exact sequence. □

9.6. Computation of π4(S
3). The computation pf π4 = π4(S

3) is based
on the fact that the homotopy group π4 appears as the first non-trivial
homology group of K(π4, 4). If we can fit this Eilenberg-MacLane space
into some fiberation, then its homology may be derived from Leray spectral
sequence. Such fiberation is obtained from Postnikov approximation.

Let Y4 be a space whose homotopy agrees with S3 up to and including
dimension 4 and vanishes in higher dimension. To get such space it suffices
to kill off all homotopy groups of S3 in dimensions ≥ 5 by attaching cells,
that is

Y4 = S3 ∪ e6 ∪ . . .

Thus Postnikov approximation gives the following fiberation
K(π4, 4) Y4

Y3

But by definition Y3 is K(Z, 3), since it’s space with the same homotopy
groups with S3 up to and including dimension 3 and vanishes in higher
dimension. The E5-page of spectral sequence is

0 1 2 3 4 5

0

1

2

3

4

Z

π4

Z Z2
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By basic facts about attaching cells, we know H4(Y4) = H5(Y4) = 0, thus
the arrow shown must be an isomorphism, which implies π4(S

3) = Z2.

Corollary 9.2 (Serre). For n ≥ 3,
πn+1(S

n) = Z2

Proof. Follows from π4(S
3) = Z2 and suspension theorem. □
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10. Serre’s celebrated theorems

In this section we mainly refer to [Hil04] and [BM08].

10.1. The Whitehead tower. The Whitehead tower is a sequence of fiber-
ations, dual to Postnikov approximation in a certain sense, which generalizes
the universal covering of a space. To be explicit, the idea of Whitehead tower
is to kill at each stage all the homotopy groups below a given dimension.

Up to homotopy the universal covering of a space X may be constructed
as follows: If we use πq to denote πq(X), by attaching cells to X we can kill
all πq for q ≥ 2. Let Y = X ∪ e3 ∪ . . . be the space so obtained, then Y is
a K(π1, 1) containing X as a subspace. Consider the space ΩX

∗ of all paths
in Y from a base point ∗ to X, the endpoint map ΩX

∗ → X is a fiberation
with fiber ΩY = K(π1, 0). Then apply homotopy exact sequence to

K(π1, 0) ΩX
∗

X

one has

· · · → π1(K(π1, 0))→ π1(Ω
X
∗ )→ π1(X)→ π0(K(π1, 0))→ 0

which implies π1(Ω
X
∗ ) = 0, and

· · · → πq(K(π1, 0))→ πq(Ω
X
∗ )→ πq(X)→ πq−1(K(π1, 0))→ . . .

implies πq(Ω
X
∗ ) = πq(X) when q ≥ 2.

Now let’s repeat this process to obtain a sequence of fiberations
...

K(πn, n− 1) Xn

Xn−1

...

K(π1, 0) X1

X

such that
1. Xn is n-connected;
2. above dimension n the homotopy groups of Xn and X agree;
3. the fiber of Xn → Xn−1 is K(πn, n− 1).
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This is called Whitehead tower of X. To construct Xn from Xn−1, we first
kill all πq(Xn−1), q ≥ n+ 1 by attaching cells. This gives

K(πn, n) = Xn−1 ∪ en+2 ∪ . . .

Next let Xn = Ω
Xn−1
∗ be the space of all paths in K(πn, n) from a base point

∗ to Xn−1. The endpoint map gives the following fiberation
K(πn, n− 1) Xn

Xn−1

The homotopy exact sequence implies
· · · → πq(K(πn, n− 1))→ πq(Xn)→ πq(Xn−1)→ πq−1(K(πn, n− 1))→ . . .

then if q 6= n, n− 1, one has πq(Xn) = πq(Xn−1), and

0→ πn(Xn)→ πn(Xn−1)
∂→ πn−1(K(πn, n− 1))→ πn−1(Xn)→ 0

Now it suffices to show that ∂ : πn(Xn−1) → πn−1(K(πn, n − 1)) is an iso-
morphism. Note that inclusion

Xn−1 ⊂ K(πn, n) = Xn−1 ∪ en+2 ∪ . . .

gives an isomorphism
πn(Xn−1) ∼= πn(K(πn, n))

By Remark 8.3 implies ∂ is exactly how πn(K(πn, n)) was identified with
πn−1(ΩK(πn, n)).

10.2. Serre class.

Definition 10.1 (Serre class). The Serre class C is a non-empty family of
abelian groups such that the following Axioms hold:

I If 0→ A′ → A→ A′′ → 0 is a short exact sequence of abelian groups, then
A ∈ C if and only if A′, A′′ ∈ C;

II If A,B ∈ C, then A⊗B,Tor(A,B) ∈ C;
III If A ∈ C, then Hk(K(A, 1)) ∈ C for every k > 0.

Example 10.1. The family consist of just the zero group is a Serre class.

Example 10.2. The class of finitely generated abelian groups is a Serre
class.

Example 10.3. The class of finite abelian groups is a Serre class.

Example 10.4. The class of torsion abelian groups is a Serre class.

Example 10.5. The class of abelian P -groups, where P is a family of
primes.

We now give our first example of a deep Serre result. Here we only need
to use the first two Axioms.
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Theorem 10.1. Let π : E → X be a fiberation with fiber F , X is simply-
connected. Then if the homology groups of any two of E,X,F , in positive
dimensions, belong to C, so do the homology groups, in positive dimensions,
of the third.

Proof. Let’s prove case by case:
1. Suppose the homology groups, in positive dimensions, of X and F belong

to C, then by Axiom (I), (II) and universal coefficient theorem one has
Ep,q

2 ∈ C

where (p, q) 6= (0, 0). Then Axiom (I) and finite convegence implies that
Ep,q

∞ ∈ C

Now consider the following filtration of Hn(E)

Hn(E) = F0 ∩Hn(E) ⊃ · · · ⊃ Fn ∩Hn(E) ⊃ 0

It’s clear 0 ∈ C, and Fp ∩Hn(E)/Fp+1 ∩Hn(E) = Ep,n−p
∞ , by induction

one can show Hn(E) ∈ C.
2. Suppose the homology groups, in positive dimensions, of E and F belong

to C, and prove that those of X also belong to C. If not, let m be the
lowest dimension such that Hm(X) 6∈ C, then m ≥ 2, since X is simply-
connected. As before Ep,q

∞ ∈ C, (p, q) 6= (0, 0), p < m. Thus by Axiom (I),
one has

Ep,q
r ∈ C, (p, q) 6= (0, 0), p < m

where r ≥ 2. On the other hand, Em,0
2 = Hm(X) 6∈ C. Now consider

d2 : E
m,0
2 → Em−2,1

2

Then
(a) Em,0

3 = ker d2, since there is maps mapping into Em,0
2 .

(b) imd2 is a subgroup of Em−2,1
2 , which implies imd2 ∈ C by Axiom (I).

Again by Axiom (I), one has Em,0
3 6∈ C.

Now consider
d3 : E

m,0
3 → Em−3,2

3

The same argument shows Em,0
4 6∈ C. Repeat this process one has Em,0

∞ 6∈
C, a contradiction to Hm(E) ∈ C.

3. The proof for the remaining case is the same as above. Readers are
advised to refer to [Hil04] for a more detail proof.

□

We now exploit above Theorem 10.1 to prove a fundamental result about
simply-connected spaces.

Theorem 10.2. Let X be a simply-connected space and C a Serre class of
abelian groups. Then the homology groups Hk(X) ∈ C for k ≥ 1 if and only
if the homotopy groups πk(X) ∈ C for k ≥ 1.
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Firstly we prove a lemma which makes essential use of Axiom (III) of
Serre class.

Lemma 10.1. If A ∈ C, where C is a Serre class, then Hk(K(A,n)) ∈ C for
n, k ≥ 1.

Proof. By Axiom (III) one has Hk(K(A, 1)) ∈ C, and by Theorem 10.1 and
fiberation

K(A,n− 1) PK(A,n)

K(A,n)

one can conclude Hk(K(A,n)) ∈ C, n, k ≥ 1. □
Proof of Theorem 10.2. Here we only prove if homology groups Hk(X) ∈ C

for k ≥ 1, then homotopy groups πk(X) ∈ C for k ≥ 1. Consider the
Whitehead tower of X, and it begins from X2, since X is simply-connected,
that is

K(π2, 1) X2

X

Hurewicz theorem implies π2 = H2(X), thus homology groups of K(π2, 1)
in positive dimensions in C, then those of X2 are also in C by Theorem
10.1. However X2 is 2-connected, and π3(X2) = π3, then Hurewicz theorem
implies π3 ∈ C. Now consider

K(π3, 2) X3

X2

The same argument shows homology groups of X3 in positive dimensions in
C, and thus π4 ∈ C. By induction one can show all πk ∈ C, k ≥ 1. □
Corollary 10.1 (Serre). All homotopy groups of Sn are finitely generated.

10.3. Serre’s torsion theorem.

Theorem 10.3 (Serre). The homotopy groups of an odd sphere are tor-
sion except in dimension n; thoes of an even sphere are torsion except in
dimensions n and 2n− 1.

Proof. The essential facts to be used in the proof are the followings:
(a) In the Whitehead tower of any space X, πq+1(X) = πq+1(Xq) = Hq+1(Xq),

thus
πq+1(X)⊗Q = Hq+1(Xq;Q)
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(b) The rational cohomology ring of K(π, n) is trivial for a torsion finitely
generated abelian group π, and is free on one generator of dimension n
for π = Z.

Since Sn is (n − 1)-connected and πn(S
n) = Z, then Whitehead tower

begins with

K(Z, n− 1) Xn

Sn

For convenience we use πq to denote πq(S
n).

1. If n is odd, and we assume n ≥ 3. The rational cohomology of K(Z, n−1)
is a polynomial algebra on one generator of dimension n− 1 and the E2-
page of above fiberation is

2(n− 1) Q Q

n− 1 Q Q

Q Q

n

The bottom arrow is an isomorphism since Hn−1(Xn;Q) = 0, which im-
plies Hn−1(Xn;Q) = 0; the other arrows are all isomorphisms by the
product structure. From this we can see Xn has trivial rational cohomol-
ogy, hence trivial rational homology. By (a) one can conclude πn+1 is
torsion. Now consider

K(πn+1, n) Xn+1

Xn

Since both Xn and K(πn+1, n) have trivial rational cohomology, so does
Xn+1, thus Xn+1 has trivial rational homology, and by the same reason
one has πn+2 is torsion. By induction one has q ≥ n+ 1, πq is torsion.

2. If n is even, then rational cohomology of K(Z, n−1) is an exterior algebra
and the E2-page of homology spectral sequence is



54 BOWEN LIU

n− 1 Q Q

Q Q

n

The arrow shown is an isomorphism, since Xn is n-connected, so

Hk(Xn;Q) =

{
Q, k = 0, 2n− 1

0, otherwise
I Suppose n > 2, then n + 1 < 2n − 1. By (a), one has πn+1 =
Hn+1(Xn) is torsion since Hn+1(Xn;Q) = 0. Thus H∗(K(πn+1, n);Q)
is trivial, from the following fiberation

K(πn+1, n) Xn+1

Xn

one can conclude Xn+1 has the same rational homology as Xn, which
implies πn+2 is also torsion. This argument still holds, untill X2n−2

has the same rational homology as X2n−3(which relys on π2n−2 is tor-
sion). Thus H2n−1(X2n−2;Q) = H2n−1(Xn;Q) = Q, which implies
π2n−1 is not torsion6.

II Now suppose n ≥ 2, by (b) one has the rational cohomology ring
H∗(K(π2n−1, 2n − 2);Q) is a polynomial algebra on one generator,
so the E2-page of fiberation K(π2n−1, 2n− 2)→ X2n−1 → X2n−2 is

4n− 4 Q Q

2n− 2 Q Q

Q Q

2n− 1

Since H2n−1(X2n−1) = 0, then arrow shown must all be isomor-
phisms. It follows the rational cohomology of Xq are trivial except
0 dimension for all q ≥ 2n− 1. In particular, one has

πq+1 ⊗Q ∼= Hq+1(Xq;Q) = 0

which implies πq is torsion for q > 2n− 1.
□

6In fact, π2n−1 has one infinite cyclic generator and possibly some torsion generators.
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