
SOLUTIONS TO HOMEWORK

BOWEN LIU

0. To readers

It’s a solution to homework of (2022Fall)Abstract algebra, and the text-
book is ‘‘abstract algebra” written by Musheng Yao. We will omit proofs
which are already shown in the textbook or quite trivial.
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1. Homework 1

1.1. Solutions to 2.1.
1 Omit.
2 Here we prove by induction: It’s clear for n = 1; If we have already proven

for n < k, then for n = k, we have
(ab)k = (ab)k−1(ab)

= ak−1bk−1ab

= ak−1abk−1b

= akbk

If we want to find a, b ∈ G such that (ab)2 6= a2b2, it suffices to find a, b
such that ab 6= ba, since you can cancel a, b from two sides of (ab)2 6= a2b2.
It’s easy to find such elements in a non-abelian group, and note that a
quite simply non-abelian group is GL2(R), that is group consists of 2× 2
real matrices which are invertible. For example:

a =

(
1 1
0 1

)
b =

(
1 0
1 1

)
3 Omit.
4 Omit.
5 Note that

ab = (ab)−1

= b−1a−1

= ba

6 Omit
8 If for all a 6= e, we have a−1 6= a, then the order of G must be odd, a

contradiction.

1.2. Solutions to 2.2.
1 Let H,K be two subgroups of G such that one don’t contain another,

take x ∈ H − K, y ∈ K − H, then xy 6∈ H ∪ K. Indeed, if xy ∈ H,
then y = x−1xy ∈ H, a contradiction, the same contradiction holds for
xy ∈ K.

Remark 1.2.1. In fact, you can use this exercise to give a neat proof of
Hua’s semi-homomorphism theorem1 when we learn ring theory.

2 Omit.
3 The following proof is wrong, since G may not be a finite group.

[G : K] =
|G|
|K|

=
|G|
|H|

|H|
|K|

= [G : H][H : K]

1A semi-homomorphism of ring must be a homomorphism or anti-homomorphism.
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4 There is already a concrete proof in textbook, here we give a more
abstract method: It’s easy to check H is a subgroup if and only if
H2 = H,H−1 = H,H 6= ∅. Then If HK is a subgroup, then HK =
(HK)−1 = K−1H−1 = KH; Conversely,
(a) (HK)(HK) = H(KH)K = H2K2 = HK
(b) (HK)−1 = K−1H−1 = KH = HK;
(c) Of course HK 6= ∅
This shows HK is a subgroup.

5 Omit.

Remark 1.2.2. For arbitrary subgroups H,K of G(Note that we don’t
assume they’re finite), consider the following group action

H ×G/K → G/K

(h, gK) 7→ hgK

Then the orbit of K ∈ G/K is exactly HK/K, and stabilizer of K is
H ∩K, which implies

|HK|
|K|

=
|H|

|H ∩K|
6 Note that

[G : H ∩K] = [G : H][H : H ∩K] ≤ [G : H][G : K]

Bonus 1.2.1. Show that [G : H ∩ K] = [G : H][G : K] if and only if
G = HK.

7 Note that order of every element of H divides |H|, and similar for K,
thus any element x ∈ H ∩ K must have order dividing (|H|, |K|) = 1,
which implies x = e.

8 Omit.
12 Omit.

1.3. Solutions to 2.3.
1. It suffices to show NH = HN . Note that H is a normal subgroup, thus

we have NHN−1 = H, which implies HN = HN .
2. Note that for every g ∈ G, gHg−1 is a subgroup with order m, but there

is only one subgroup with order m, this shows gHg−1 = H for any g ∈ G,
that is H is a normal subgroup.
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2. Homework 2

2.1. Solutions to 2.3.
4 It’s clear xyx−1y−1 ∈ N ∩H.

Bonus 2.1.1. In a groupG, we always use [x, y] to denote xyx−1y−1, x, y ∈
G, which is somtimes called a commutator. You can think that [x, y] mea-
sures the failure of x and y to commute with each other. The subgroup
generated by [x, y] is called the derived subgroup, which is denoted by
[G,G]. Prove:
(a) [G,G] is a normal subgroup of G;
(b) G/[G,G] is the largest abelian quotient group.

5 Omit.
6 Omit.

Bonus 2.1.2. Try to use this exercise to show a group with order 4 must
be abelian. Hint: It suffices to show G has non trivial center.

Remark 2.1.1. Later you can use class equation to show any group with
order p2 must have a non trivial center, so proof in here can also show a
group with order p2 must be abelian.

7 Consider the image of x in G/N .
8 From (4), we can see for any x, y ∈ G and n ∈ N , we have

nxyx−1y−1 = xyx−1y−1n

which implies n commute with any element taking form xy. Take y = e,
then we obtain n ∈ C(G).

9 There are too many ways to define dihedral group, we use the following
one:

Definition 2.1.1 (dihedral group). Dihedral group Dn, n > 2 is defined
as follows

Dn = {r, s | rn = e, s2 = e, srs−1 = r−1}

In this way, you can see the following things:
(a) You can thinkDn characterizes the symmetries of a regular n-polygon:

r means rotation by 2π
n angles and s means reflection with respect to

some axis. More explicitly, you can write them as matrices as

r =

(
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

)
, s =

(
1 0
0 −1

)
(b) We need n > 2 in the definition, since there is no 2-gon;
(c) It’s easy to see it’s non abelian, since srs−1r−1 = rn−2 6= e;
In order to do some concrete computation, we need a more explicit ex-
pression.

Bonus 2.1.3. Show that every element of Dn is uniquely expressible as
sirj where 0 ≤ i ≤ 1 and 0 ≤ j ≤ n− 1.
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If you have solved the bonus, you will find my definition is exactly the
ugly one in textbook. In computation of Dn, we always divide into two
cases. For example, if we want to see an element x whether lie in center
of Dn or not, it suffices to use arbitrary element to conjugate x.
(a) x = ras. Then use rbs to conjugate it, we have

(rbs)ras(sr−b) = rbsrar−b = r2b−as

In general this element depending on b, so an element taking form
ras won’t lie in center.

(b) x = ra. Then use rbs to conjugate it, we have
(rbs)ra(sr−b) = r−a

and it’s clear ra commutes with rb.
So the only possible element in center of Dn takes the form ra such that
ra = r−a = rn−a. We can only find such non trivial element in case that
n is even, and only one, that is r n

2 . In conclusion,

C(Dn) =

{
{1}, n is odd
Z2, n is even

Bonus 2.1.4. Find all finite subgroups of O(2), that is group of 2 × 2
orthogonal groups.

11 Omit.
12 In fact, you can see the hallmark of the proof in textbook is that you can

always solve equation w = zn in C∗.

Definition 2.1.2 (divisible group). A group G is divisible if for every
x ∈ G and positive integer n there is y ∈ G such that yn = x.

Bonus 2.1.5. Show:
(a) A quotient of a divisible group is divisible;
(b) Any finite divisible group is trivial;
(c) Show any finite index proper subgroup of (Q,+) is trivial.

2.2. Solutions to 2.4.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 It’s clear to see N has index 2 thus it’s normal.

Bonus 2.2.1. You know that a normal subgroup must be a union of
many conjugacy classes. So try to write down all conjugacy classes of
Dn, and write N as a union of conjugacy classes.

Remark 2.2.1. You may wonder why I ask you to do such a boring thing,
here is two things I want to explain:
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1. A group without any non trivial normal subgroup is called simple
group. Of course there is a smart way to show A5 is a simple group,
but you can show A5 is simple by counting its conjugacy classes and
see there is no non trivial subgroup can be a union of these conjugacy
classes(Lagrange theorem may help). There is an easy way to count
conjugacy classes of A5, so it’s a quick way.

Bonus 2.2.2. Show A5 is simple by counting its conjugacy classes.

2. Later maybe I will show you a little group reprensentation theory using
dihedral groups. A fact is that the number of irreducible representa-
tions equals to the number of conjugacy classes.

7 Omit.

Remark 2.2.2. If you know a little about Lie group and Lie algebra,
you will know this exercise can be used to show the Lie algebra of a
abelian Lie group is also abelian. The hallmark of the proof is to note
that inversion map ι(g) = g−1 is a group homomorphism and check Lie
algebra homomorphism induced by ι is − id.

Bonus 2.2.3. Show Lie algebra of an abelian Lie group is still abelian.

8 Note that there is a one to one correspondence between normal subgroup
of G/H and normal subgroup of G containing H.

9 Omit.
12 Textbook show that φ is surjective, here I try to show φ is injective: If

xm = e, thus order of x divides m, but we also have order of x divides
the order of group, that is n, thus order of x divides (m,n) = 1, which
implies x = e.

13 Omit.
14 Omit.

2.3. Solutions to 2.5.
1 Omit.
2 It suffices to check any subgroup generated by two elements is cyclic, that

is generated by one element: If H = 〈a, b〉, you can always find r ∈ Q
such that a = ra′, b = rb′, thus H = 〈a, b〉 ⊆ 〈r〉, thus H is cyclic, since
it’s a subgroup of cyclic subgroup.

Bonus 2.3.1. Use this exercise to show (Q,+) is not isomorphic to (Q×
Q,+). Hint: Find a finitely generated subgroup of Q × Q which is not
cyclic.

3 If G is a cyclic group 〈a〉 of order pn, where p is prime, it’s clear all
subgroups of G is a totally ordered set, since any subgroup of G takes
form 〈ak〉, where k divides pn. Conversely, list all proper subgroups of G
as follows

{e} ≤ H1 ≤ · · · ≤ Hm ≤ G
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If |Hm| = pk with k < n, take g ∈ G−Hm, then we must have 〈g〉 = G,
since 〈g〉 6= Hm, which implies G is cyclic.

Remark 2.3.1. It’s a quite interesting phenomenon, that is property of
the whole group is characterized by subgroups, and this exercise is not
the only case, for example, here is a generalization:

Bonus 2.3.2. For every finite group G of order n, the following state-
ments are equivalent:
(a) G is cyclic.
(b) For every divisor d of n, G has at most one subgroup of order d.

Later we will see other examples, when we learn more properties about
group.

4 If φ : G → H is a group homomorphism, then I claim o(φ(x)) divides
o(x). Indeed, o(x) = m implies eH = φ(eG) = φ(xm) = φ(x)m. So if φ is
a group isomorphism, we have o(x) divides o(φ(x)) and o(φ(x)) divides
o(x), thus φ preserves order of elements. It’s clear group homomorphism
won’t preserve, just take trivial homomorphism φ : G→ {e}, all elements
are mapped to an element of order 1.
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3. Homework 3

3.1. Solutions to 2.5.
5 Omit.
6 Given a surjective group homomorphism φ : H → G between cyclic

groups, where generator ofH is denoted by h. To see φ is an isomorphism,
it suffices to check kerφ is trivial: Note that kerφ is a subgroup of H, then
it’s generated by hm for some m ∈ N. If m 6= 0, then G ∼= H/ kerφ = Zm,
a contradiction. So kerφ is trivial.

7 Omit.
8 Omit.
9 Given a group homomorphism φ : H → G, where H is finite and G is

infinite. By exercise 4 of 2.5, we have order φ(x) divides order of x, which
implies φ(x) = eG, otherwise order of φ(x) will be infinite.

3.2. Solutions to 2.6.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.
8 It suffices to show that every element σ ∈ Sp with order p has form
(1, i1, . . . , ip−1), where i1, . . . , ip−1 is a permutation of 2, 3, . . . , p, thus
there are exactly (p− 1)! elements with order p.

It’s clear to see, if cycle type of σ is (m1, . . . ,mk), then the order of σ
is lcm(m1, . . . ,mk). So if order of σ is prime p, then its cycle type must
be (p), since only divisors of p is 1, p. Thus σ = (1, i1, . . . , ii−1).

Bonus 3.2.1. Use this exercise to show the number of Sylow p subgroups
of Sp is (p− 2)!.

9 Omit.
10 Since cases n = 1, 2 are trivial, let’s assume n ≥ 3. Note that An is

generated by 3-cycles if n ≥ 3, and each 3-cycle (abc) is a commutator,
since

(abc) = (ab)(ac)(ab)(ac)

Thus An ⊆ [Sn, Sn]. Conversely, since Sn/An = Z2 is abelian, then by
Bonus 2.1.1 we have [Sn, Sn] ⊆ An. Thus we have An = [Sn, Sn].

11 Let H be a subgroup of A4 with order 6, then choose a 3-cycle x not in
H, and consists the cosets H,xH, x2H in A4/H. Since A4/H is a group
of order 2, two of the cosets must be equal. But H and xH are distinct,
so x2H must be equal to one of them.
(a) If x2H = H, then x2 = x−1 ∈ H, so x ∈ H, a contradiction;
(b) If x2H = xH, then x ∈ H, a contradiction.
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So H doesn’t exist.
12 Omit.
13 Let H be a normal subgroup of Sn, then H ∩An is a normal subgroup of

An, thus
(a) H ∩An = An;
(b) H ∩An = {e}.
For the first case, we must have H = Sn, since there is no subgroup
between An ⊂ Sn. For the second case, note that An = [Sn, Sn], thus by
exercise 8 of 2.3 we have H ⊂ Z(Sn) = {e}.

14 Consider isomorphism
r 7→ σ

s 7→ τ

3.3. Solutions to 2.7.
2 Consider G acts on the G/H, and denote group homomorphism corre-

sponding to this action by φ : G → Sn. Then consider normal subgroup
K = kerφ, we have [G : K] | n!. In particular, if |G| ∤ n!, then |K| 6= 1,
which implies K is nontrivial (It’s trivial K 6= G).

5 It’s clear |G| ∤ p!, by exercise 2 there exists a nontrivial normal subgroup
K ⊆ H such that [G : K] | p!, which implies [G : K] = p. But

p = [G : K] = [G : H][H : K] = p[H : K]

so we have K = H.
7 By the same proof of exercise 2, it’s clear to see there exists a normal

subgroup N contained in H such that [G : N ] | n! <∞, thus
[H : N ] ≤ [G : N ] <∞

8 Omit.
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4. Homework 4

4.1. Solutions to 2.7.
1 Omit.
3 (6) of Example 8 in textbook implies∑

x∈ConjG

1

|Gx|
= 1

where ConjG is the set of conjugacy classes of G and Gx is the orbit of
the action. So here we consider the conjugate action of G on itself and
Gx is exactly the stabilizer of x. This gives the desired equation.

4 (a) Recall that you can write any normal subgroup N as a union of
conjugacy classes, and for p-group, the number of elements in any
conjugacy classes is exactly powers of p (since they’re stabilizers of
conjugate action). Since N contains at least one conjugacy classes
with one element (the class of identity), and |N | is also power of p,
so it must contain other classes with just one element which must be
classes of centeral elements of G.

(b) If H is a proper subgroup of G, consider right action of H on cosets
G/H. It’s clear |G/H| is power of p, and there is at least one orbit
with one element (the orbit consists of H), so there must be other
orbits with one element, for example Hg, that is Hgh = Hg for
arbitrary h ∈ H, which implies g−1Hg = H, thus g ∈ N(H)\H,
which implies H ⊊ N(H).

Remark 4.1.1. The ideals of proof for (a) and (b) are same.

(c) Note that H is a proper subgroup of G, by (b) we have H ⊊ N(H),
which implies N(H) = G, thus H is normal.

Remark 4.1.2. Of course you can use exercise 5 of 2.7, since you’ve
proven it.

6 If [G : H] = n <∞ and |H| = k, there are at most n distinct conjugates
of H. Since the identity element is in all of the conjugacy classes, the
union of conjugates of H has at most

n(k − 1) + 1 = nk − n+ 1

elements. If n = 1, that is H is normal, it’s clear the union of conjugates
of H can’t be the whole group since H is proper subgroup. So we must
have

|
∪
g∈G

gHg−1| ≤ nk − (n− 1) < nk = |G|

This completes the proof.

Bonus 4.1.1. Show that:
1. Only assume H is finite index, prove above exercise again;
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2. Give an example to show if H is infinite index, then the conjugates
of H may equal to the whole group. Hint: Recall what does Jordan
normal form tell you?

9 Omit.
10 If n ≥ 3, then for arbitrary i, j, you can pick k 6= i, j and then (ik)(ij) ∈

An translate i to j.

Definition 4.1.1 (2-transitive). A group G acts 2-transitive on a set S
if it acts transitively on the set

{(x, y) ∈ S × S | x 6= y}

Remark 4.1.3. Similarly you can define what is k-transitive for k ∈ Z≥0.

Bonus 4.1.2. Show that:
1. Sn is n-transitive;
2. An is n− 2-transitive, n ≥ 3.

11 Omit.
12 Omit.
13 I think it’s the same as exercise 6.
14 Omit.
15 Given a subgroup H with index 3, then by exercise 2 of 2.7 we know that

there exists a normal subgroup K contained in H such that [G : K] | 3! =
1× 2× 3. Thus [G : K] may equal 3 or 6. It suffices to check [G : K] 6= 6.
If [G : K] = 6, then G/K ∼= S3 and there exists a subgroup H/K with
order 2 of G/K since S3 do, which implies

[G : H] = [G/K : H/K] = 2

a contradiction.

4.2. Solutions to 2.8.
1 Note that |S4| = 24 = 23× 3, so there are 3-sylow subgroups and 2-sylow

subgroups of S4:
(a) The number of 3-sylow subgroups may be 1 or 4. Note that elements

in S4 with order 3 must have form (123), and there are 8 of them. As
each of these is contained in at least one 3-sylow subgroup, so there
won’t be only one 3-sylow subgroups.

(b) The number of 2-sylow subgroups may be 1 or 3. Note that elements
in S4 with order 4 must have form (1234) and there are 6 of them,
elements in S4 with order 2 have form (12) or (12)(34) and there are
both 6 of them. As each of these is contained in at least one 2-sylow
subgroup, so there won’t be only one 2-sylow subgroups.

Remark 4.2.1. This counting method is quite useful in showing a subgroup
is not normal or not.
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Bonus 4.2.1. Consider SL(2,F3), that is special linear group of 2 × 2
over F3, it’s also a group with order 24. Show that there is only one
2-sylow subgroup. Hint: Firstly you need to show there are four 3-sylow
subgroups, and assume there are three 2-sylow subgroups, you will get
toooo many elements.

Bonus 4.2.2. For a group G with order pqr, where p < q < r are distinct
prime numbers, show r-sylow subgroup must be normal.

Proof. (Sketch). Firstly show there is at least a normal subgroup by
counting method, if r-sylow subgroup is normal, then we’re done. So we
may assume p-sylow subgroup P is normal, then consider G/P , a group
of order qr, which contains a normal r-sylow subgroup, then G contains a
normal subgroup H of order pr by correspondence. The r-sylow subgroup
of G must be r-sylow subgroup of H, which implies the r-sylow subgroup
of G is unique. □
Bonus 4.2.3. For a group with order p1p2 . . . pr where p1 < p2 < · · · < pr
are distinct prime numbers, show there is only one pr-sylow subgroup.
Hint: Prove by induction.

2 Omit.
3 Omit.
4 By example 4 in textbook you can see there are only two groups with

order 6, one is Z6 and the other one is S3.
5 It suffices to check there is an element with order p1p2 . . . pt. For each
1 ≤ i ≤ t, there exists at least a pi-sylow subgroup, which must be a
cyclic subgroup generated by ai. Since G is abelian then for arbitrary
i 6= j we have aiaj = ajai. Then by exercise 10 of 2.2 we have a1a2 . . . at
is an element with desired order.

Remark 4.2.2. If you know the structure of finite abelian group, it’s a
trivial result.

6 Omit.
7 Omit.
8 Firstly, it’s clear to see 11-sylow subgroup P11 is normal, since 231 =
11 × 7 × 3. In order to show 11-sylow subgroup P11 is contained in
center, let’s consider conjugate action of G on P11, which induces a group
homomorphism

φ : G→ Aut(P11) = Z10

Thus we obtain an isomorphism
G/ kerφ ∼= H

where H is a subgroup of Z10. However, subgroups of Z10 must have
order 10, 5, 2, 1, and there is no subgroup of G with index 10, 5, 2, which
implies |G/ kerφ| = 1, that is P11 is contained in center of G.

9 Omit.
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10 If you have already solved Bonus 4.2.2, then it’s clear 5-sylow subgroup
P5 is normal, thus P5P3 is a subgroup of G, where P3 is 3-sylow sub-
group. Furthermore, P5P3 is a normal subgroup of G since its index is 2.
However, it’s clear that 3-sylow subgroup of P5P3 is normal, thus 3-sylow
subgroup of G is also normal since P5P3 is normal in G.

11 Note that 72 = 23×32, so the number of 3-sylow subgroup of G, denoted
by n3, may be 1 or 4.
(a) If n3 = 1, there is nothing to prove, since 3-sylow subgroup is normal;
(b) If n3 = 4, let’s consider G acts on the set of 3-sylow subgroups by

conjugate action, which induces a group homomorphism
ψ : G→ S4

Note that |G/ kerφ| divides |S4| = 23 × 3, so we must have 3 divides
kerφ, which implies ker f 6= {e}. Furthermore, kerφ 6= G, otherwise
there will only be one 3-sylow subgroup, a contradiction. Thus in
this case kerφ is a non-trivial normal subgroup of G.

12 I think there is one more condition required: G is not abelian.
14 Omit.

4.3. Solutions to 2.9. I think maybe most of you have encountered quite
similar exercises when you’re learning (inner) product of vector space, since
vector space is an abelian group together with a field action on it in fact.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
6 Omit.
8 It suffices to check for any i, we have Ni ∩N1 . . . Ni−1Ni+1 . . . Nn = {e}.

Indeed,
|G| = |NiN1N2 . . . Ni−1Ni+1 . . . Nn|

=
|Ni||N1 . . . Ni−1Ni+1 . . . Nn|
|Ni ∩N1 . . . Ni−1Ni+1 . . . Nn|

=
|G|

|Ni ∩N1 . . . Ni−1Ni+1 . . . Nn|
9 Omit.

10 Firstly we need to show G is abelian: for any a, b ∈ G, we have
ab = a−1b−1 = (ba)−1 = ba

since any element of G has order two. Then take arbitrary a1 ∈ G and
let N1 = 〈a1〉, if N1 ⊊ G, then choose a2 ∈ G − N1 and let N2 = 〈a2〉.
Repeat this process to construct Ni untill N1N2 . . . Ni−1 = G. It’s clear
such N1, . . . , Nn for some n satisfies the condition of exercise 9, this shows
G is product of some Z2.

11 Omit.
14 Omit.
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5. Homework 5

5.1. Solutions to 2.10.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.

8&9

Proposition 5.1.1. For any n ∈ Z>1, we have
AutZn = (Zn)

×

where (Zn)
× is the multiplicative group of Zn.

Proof. Let x be a generator of Zn, then any automorphism φ of Zn is
determined by φ(x). Furthermore φ(x) = xk must generate the whole
group Zn, which implies gcd(k, n) = 1, that is xk ∈ (Zn)

×, that is
AutZn ⊆ (Zn)

×; Conversely, given an element in (Zn)
×, it’s easy to

construct an automorphism.
Thus we obtain a one to one correspondence between AutZn and

(Zn)
×. Furthermore, it’s an group isomorphism. □

Corollary 5.1.1. For prime p, we have
AutZp = Zp−1

Proof. It’s clear
(Zp)

× = Zp−1

□
Corollary 5.1.2. For groups with 2-power order, we have
1. AutZ4 = Z2;
2. AutZ8 = Z2 × Z2;
3. AutZ2n = Z2 × Z2n−2 , n ≥ 4.

Proof. It’s clear AutZ4 = Z2, since there are only two elements in (Z4)
×,

which can be seen from ϕ(4) = 2, where ϕ is Euler function. Similarly
you can see there are four elements in AutZ8 since ϕ(8) = 4. To see it’s
not cyclic, we need to write (Z8)

× down explicitly as follows
{1, 3, 5, 7}

It’s clear all elements except identity has order 2, which implies AutZ8

is Klein four group Z2 × Z2.
For n ≥ 4, it’s left as an exercise for readers. □

Lemma 5.1.1. If G,H are two groups with relatively prime order p, q
respectively, then any group homomorphism φ : G→ H is trivial.
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Proof. For arbitrary x ∈ G with o(x) = n, we assume o(φ(x)) = m, then
n | p and m | q. Furthermore we have m | n, thus m | p, which implies
m | gcd(p, q) = 1, that is φ is trivial. □
Proposition 5.1.2. If G,H are two groups with relatively prime order,
then Aut(G×H) = AutG×AutH.

Proof. It’s clear AutG×AutH ⊆ Aut(G×H): Given φ1 ∈ AutG,φ2 ∈
AutH, we can define an automorphism φ on G×H by

(g, h) 7→ (φ1(g), φ2(h))

Note that inclusion in this direction puts no requirement on order of G,H.
Conversely, since order of G,H are relatively prime, then Lemma 5.1.1

implies G × {eH} and {eG} × H are characteristic subgroup of G × H,
that is subgroup which is invariant under automorphisms. Then restrict
φ on these two subgroups to obtain φ1 ∈ AutG,φ2 ∈ AutH. □
Example 5.1.1. For Z12, we can write it as Z3 × Z4, where 3 and 8 are
relatively prime, thus

Aut(Z12) = AutZ3 ×AutZ4

= Z2 × Z2

Example 5.1.2. For Z24, we can write it as Z3 × Z8, where 3 and 8 are
relatively prime, thus

Aut(Z24) = AutZ3 ×AutZ8

= Z2 × Z2 × Z2

10 Given an abelian group G and if x, y ∈ G are torsion element, then
1. Identity e is torsion, since o(e) = 1;
2. xy is torsion, since we must have o(xy) divides lcd((o(x), o(y)), which

implies xy is finite;
3. x−1 is torsion, since o(x−1) = o(x).
We use T to denote subgroup consists of torsion element, then we claim
G/T is torsion-free. Indeed, if x+T is torsion in G/T , that is the smallest
m such that xm ∈ T is finite, which implies there exists a finite n such
that (xm)n = e, so x is torsion in G, that is x ∈ T .



16 BOWEN LIU

6. Homework 6

6.1. Solutions to 2.11.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 It’s clear that Sn is nilpotent when n > 2, since in this case center of Sn is

trivial. To see S3, S4 are solvable, it suffices to show A3, A4 are solvable:
(a) A3 is clearly solvable, since A3

∼= Z3;
Remark 6.1.1. There is another way to show S3 is solvable: Just note
that S3 ∼= D3, and we will show Dn is solvable in exercise 6.

(b) Note that there exists a Klein four group K4 in A4 and it’s normal.
To see this, it suffices to write down all conjugacy classes of A4 and
check K4 can be written as a union of conjugacy classes.

6 For a dihedral group Dn = {r, s | rn = e, s2 = e, srs−1 = r−1}. It’s clear
cyclic subgroup generated by r is solvable and normal in Dn. Further-
more, the quotient Dn/〈r〉 ∼= Z2 is also solvable. Thus Dn is solvable.

7 Omit.
8 Just consider G = S3 and K = A3.
9 Omit.

10 Let G be a group of order p2q where p, q are distinct primes. To see G is
solvable, it suffices to show either p-sylow subgroup or q-sylow subgroup
is normal, since we already know a group with order p2 or q is abelian.
(a) If p > q, then p-sylow subgroup must be normal;
(b) If p < q and the number of q-sylow subgroups is p2, then the number

of elements with order q is p2(q − 1). The remaining elements form
only one p-sylow subgroup, which implies p-sylow subgroup is normal.

Remark 6.1.2. In fact, there is the following theorem:
Theorem 6.1.1 (Burnside theorem). If G is a finite group of order paqb
where p and q are distinct primes, and a and b are non-negative integers,
then G is solvable.

6.2. Solutions to 3.1.
1 Omit.
2 Suppose R is a finite domain, then for any 0 6= a ∈ R, there exists n ∈ Z≥0

such that an = e, since R is finite. If n = 1, it’s trivial; and if n ≥ 2, then
an−1 is the inverse of a, which implies R is divisible.
Remark 6.2.1. In fact, there is the following theorem:
Theorem 6.2.1 (Wedderburn’s little theorem). Every finite domain is
a field.

3 If there exists an idempotent a 6= 0, 1,
a(1− a) = 0
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contradicts to the fact that the ring is a domain, since a 6= 0, 1− a 6= 0.

Remark 6.2.2. In communicative algebra we’re most interested in com-
municative ring with identity element, and they’re closely related to ge-
ometry, which is called algebraic geometry. Here I want to show you
some geometry explainations about idempotents. In the following of this
remark, we always assume A is a communicative ring R with identity
element e.

Definition 6.2.1 (spectrum of ring). The set of all prime ideals in A is
called the (prime) spectrum of A, denoted by SpecA.

Bonus 6.2.1 (Zariski topology). Given a subset E of A, V (E) denotes
all prime ideals of A which contain E. Prove that
1. If a is the ideal generated by E, then V (E) = V (a).
2. V ((0)) = X,V ((1)) = ∅.
3. if (Ei)i∈I is any family of subsets of A, then

V (
∪
i∈I

Ei) =
∩
i∈I

V (Ei)

4. V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideals a, b of A.
These results show that the sets V (E) satisfy the axioms for closed sets in
a topological space. The resulting topology is called the Zariski topology
of SpecA.

Bonus 6.2.2. Show that the following statements are equivalent:
(a) X = Spec(A) is disconnected.
(b) A ∼= A1 ×A2 where neither of the rings A1, A2 is the zero ring.
(c) A contains an idempotent 6= 0, 1.
So as you can see, the geometry explaination of non-trivial idempotents
is that they reprensent connected component of SpecA with respect to
Zariski topology.

4 Omit.
8 Assume Zn is generated by a, that is a ∈ Zn is an element of order n,

then am is a unit if and only if (m,n) = 1, so there are φ(n) units in Zn,
where φ is Euler function.

9 Omit.

Bonus 6.2.3. Let R be a ring, prove that:
(a) Any ideal of Mn(R) takes the form Mn(I), where I is an ideal of R.
(b) If R is a field, then Mn(R) is a simple ring, that is a ring without

non-trivial ideal.

10 Omit.

Remark 6.2.3. As Wedderburn’s little theorem say, every finite domain is
a field, in particular, every finite divisible ring is a field. So if you want
to find a divisible ring which is not a field, you need to find them among
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infinite rings. An important example is exactly Hamilton quaternions H.
In fact, there is the following theorem:

Theorem 6.2.2 (Frobenius theorem). All finite-dimensional2 divisible
rings containing a proper subring isomorphic to the real numbers are
listed as follows:
1. Complex number C;
2. Hamilton quaternions H.

11 Omit.

2Here I mean the dimension as a R-vector space.
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7. Homework 7

7.1. Solutions to 3.2.
1 Omit.
2 It’s clear that r(I) is an additive subgroup of R, and for all r ∈ R, x ∈
r(I), we have

rxu = r0 = 0, ∀u ∈ I

which implies rs ∈ r(I).

Remark 7.1.1. Standard notation of r(I) is ann(I), which is called anni-
hilator of ideal3 I.

3 It’s clear that (R : I) is an additive subgroup of R, since I is. and for all
r ∈ R, x ∈ (R : I), we have

r′(rx) ∈ U, ∀r′ ∈ R

which implies rx ∈ (R : I).

Bonus 7.1.1. Show that4

(R : I) = ann(R/I)

Remark 7.1.2. In general we can define

(a : b) := {x ∈ R | xb ∈ a}

where a, b are two ideals of R.

Bonus 7.1.2. Show that
1. a ⊆ (a : b)
2. (a : b)b ⊆ a
3. ((a : b) : c) = (a : bc) = ((a : c) : b)
4. (

∩
i ai : b) =

∩
i(ai : b)

5. (a :
∑

i bi) =
∩

i(a : bi)
where ai, bi are ideals of R.

4 Omit.
5 Omit.
7 Omit.
8 Omit.
9 Omit.

11 Omit.
12 Omit.
13 Omit.

3I’m quite confused why textbook uses U to denote an ideal, standard notations for
ideals are I, J or a, b.

4Almost trivial.
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Remark 7.1.3. Local ring is a quite important object in communicative
algebra or algebraic geometry. As what it’s called, you can imagine a
local ring reprensents a local piece of some geometric objects. Note that
we said non-trivial idempotents reflect some disconnectness, and you can
imagine a local piece of some geometric objects must be connected, and
that’s a view to understand the following one:

Bonus 7.1.3. A local ring contains no idempotents 6= 0, 1.

Later maybe I will show you an operation called localization, it’s a
technique to construct local rings. In SpecA we know that every point
is a prime ideal, and localize A with respect to prime ideal p is to focus
on local properties of SpecA at point p.

16 Omit.

Remark 7.1.4. Firstly note that for a communicative ring A with identity,
we have

Bonus 7.1.4. The nilradical of A is the intersection of all the prime
ideals of A.

Thus every prime ideal of A contains our nilradical N, which implies
as sets we have

SpecA/N = V (N) = V ((0)) = SpecA

In fact you can prove

Bonus 7.1.5. SpecA is homeomorphic to SpecA/N with respect to
Zariski topology.

So you may wonder what’s the role of nilradical of A, in fact we have:

Bonus 7.1.6. A topological space X is said to be irreducible if X 6= ∅
and if every pair of non-empty open sets in X intersect, or equivalently if
every non-empty open set is dense in X. Show that Spec(A) is irreducible
if and only if the nilradical of A is a prime ideal.

Remark 7.1.5. To prove above, you may need to show the complement of
V (f), f ∈ A, which is denoted by Xf , form a basis of Zariski topology,
and note that:
1. Xf ∩Xg = Xfg;
2. Xf = ∅ if and only if f is nilpotent.

7.2. Solutions to 3.3.
1 Omit.
2 Omit.
3 Since divisible ring R has no trivial ideal5, so kernel of any endomorphism

of R must be trivial, which implies it’s injective.
5So do I.
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Remark 7.2.1. In particular, any endomorphism of a field must be injec-
tive.

5 (a) Since any automorphism f maps 1 to 1, thus f(n) is determined for
all n ∈ Z, and any element of Q can be written as mn−1, which
implies f is identity;

(b) Firstly we need to show for any automorphism f of R, it’s strictly
increasing. Indeed, since for all a ∈ R+ we have f(a) = f2(

√
a) > 0,

which implies f(a) − f(b) > 0 if a > b. By the same argument you
can show f is also identity on Q, and for arbitrary irrational number
r, you always can find two rational numbers a, b such that a < r < b
such that a− b < ε for arbitrary small ε > 0. Then

a < f(r) < b

Take limit ε→ 0 to obtain f(r) = r.
6 Omit.
7 Omit.

12 Omit.

7.3. Solutions to 3.4.
1 Omit.

Remark 7.3.1. In fact, it’s localization with respect to S.

Bonus 7.3.1. If S = A\p, where p is a prime ideal of a communicative
ring A with identity, show AS is a local ring.

Remark 7.3.2. Standard notation for localization with respect to prime
ideal p is Ap.

2 It’s clear6, since the fractional field of a domain R is exactly making all
elements without 0 to be invertible.

3
4 Omit.
5 Omit.
6 Omit.
7 Omit.

Remark 7.3.3. In general, localization with respect to a multiplicative
closed set S is also unique, since localization has some universal property,
and any universal object is unique up to a unique isomorphism.

8 Omit.

6However, you need to check by definition.
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8. Homework 8

8.1. Solutions to 3.5.
1 Omit.
2 Omit.
3 Omit.
5 If a+ b

√
−1 = (m+ n

√
−1)(d+ e

√
−1), then taking norm we have

p = a2 + b2 = (m2 + n2)(d2 + e2)

without lose of generality we may assume m2+n2 = 1, that is m+n
√
−1

is a unit in Z[
√
−1], which implies a+ bi is irreducible.

6
8 Omit.
9 If p = ab, where a, b are proper divisor of p, without lose of generality we

may assume p | a, that is a = pd, thus
p = pdb

which implies db = 1, since R is a domain, a contradiction to b is not
unit.

10 Omit.

8.2. Solutions to 3.6.
1 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Let δ be a Euclidean valuation of a domain R, for all a, b ∈ R, b 6= 0, we

write it as a = bq + r with r 6= 0 and δ(r) < δ(b). To see φ = n + δ is a
Euclidean valuation, it suffices to see
(a) n+ δ(r) < n+ δ(b);
(b) n+ δ(a) ≤ n+ δ(ab).
and it’s trivial7. You can see nδ is also an Euclidean valuation by the
same way.

7 Omit.
8 Omit.
9 Let α = a1+a2

√
2 and β = b1+b2

√
2 be elements of Z[

√
2] with β 6= 0. We

wish to show that there exist γ and δ in Z[
√
2] such that α = γβ + δ and

N(δ) < N(β). To that end, note that in Q(
√
2) we have α

β = c1 + c2
√
2,

where
c1 =

a1b1 − 2a2b2
b21 − 2b22

, c2 =
a2b1 − a1b2
b21 − 2b22

Let q1 be an integer closest to c1 and q2 an integer closest to c2; then
|c1 − q1| ⩽ 1/2 and |c2 − q2| ⩽ 1/2. Now let γ = q1 + q2

√
2; certainly

γ ∈ Z[
√
2]. Next, let θ = (c1 − q1) + (c2 − q2)

√
2. We have θ = α

β − γ, so

7A quite boring problem.
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that θβ = α− γβ Letting δ = θβ, we have α = γβ + δ. It remains to be
shown that N(δ) < N(β). To that end, note that
N(θ) = |(c1 − q1)

2 − 2(c2 − q2)
2| ⩽ |(c1 − q1)

2|+ | − 2(c2 − q2)
2|

by the triangle inequality. Thus we have
N(θ) ⩽ (c1 − q1)

2 + 2(c2 − q2)
2 ⩽ (1/2)2 + 2(1/2)2 = 3/4.

In particular, N(δ) ⩽ 3
4N(β) as desired.

10 Omit.
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9. Homework 9

9.1. Solutions to 3.7.
1 Omit.
2 Omit.
3 Omit.
4 It suffices to find an irreducible polynomial in Z5[x] with degree 5.
5 Omit.
6 Omit.

Remark 9.1.1. From this exercise one can see if you have an irreducible
polynomial of degree d in Zp[x], you can construct a finite field of order
pn. So you may wonder the existence of a given order in Zp(It’s not
trivial, since you can’t find irreducible polynomial with degree ≥ 3 in
R[x].).

The answer is yes, and even you can write down the number of monic
irreducible polynomial of degree n in Zp[x] as follows

1

n

∑
d|n

µ(d)qn/d

where µ is Möbius function.

7 If fg = 1, then consider deg fg = deg f +deg g implies deg f +deg g = 0,
thus deg f = deg g = 0, since the degree of polynomials are non-negative,
that is f, g are non-zero constants.

8 Assume φ(x) = g(x), where deg g = k, then for arbitrary f(x) with
deg f = n, we have degφ(f(x)) = nk, which implies polynomials in
image of φ must have degree which is a multiply of k. However, φ is
surjective, thus k = 1.

9 Note that xp + a = (x+ a)p in Zp[x].
10 Consider the inclusion of U into fractional field of R.
11 Omit.
12 Omit.

9.2. Solutions to 3.8.
1 Omit.
2 Note that

Z[x]/(2, x2 + x+ 1) ∼= Z2[x]/(x
2 + x+ 1) ∼= Z4

3 Note that
Z[x]/(15, x− 7) ∼= Z15[x]/(x− 7) ∼= Z15

5 That’s exactly Zariski topology, we have encountered before.
6 Omit.
7 Consider h(x1, . . . , xn) = f(x1, . . . , xn)g(x1, . . . , xn). Since for each (a1, . . . , ar)

such that g(a1, . . . , an) 6= 0 we have f(a1, . . . , an) = 0, which implies
h = 0. Furthermore, since F [x1, . . . , xn] is a domain, we have f = 0.
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8 Omit.
9 Omit.

10 Let g =
∑∞

j=1 bjx
j be the inverse of f . Since fg = 1, then clearly we

have a0b0 = 1, thus a0 is a unit; Conversely, if a0 is a unit, then consider
the formal Taylor expansion of 1/f at x = 0 to conclude.



26 BOWEN LIU

10. Homework 10

10.1. Solutions to 3.9.
1 Just note that Z[x]/(x,m) ∼= Zm, and Zm is a field if and only if m is

prime.
2 Recall that in textbook we say P is a prime ideal if ab ∈ P , then a ∈ P

or b ∈ P .
(a) If P satisfies the condition in this exercise, then consider ideals (a), (b)

generated by a, b, then ab ∈ P implies (a)(b) ∈ P , then by condition
in this exercise one has (a) ∈ P or (b) ∈ P , that is a ∈ P or b ∈ P .

(b) If P satisfies the condition in the textbook and IJ ⊂ P , assuming
I ⊊ P , we can pick a ∈ I, a 6∈ P , then for all b ∈ J , we have ab ∈ P ,
which implies b ∈ J , that is J ⊂ P .

3 Omit.
Definition 10.1.1. A communicative ring with unit is called 1-dimension
(in the sense of Krull), if every prime ideal is maximal.

So this exercise gives an example of a ring with 1-dimension. In par-
ticular, if n = 2, we have
Bonus 10.1.1. Let R be a communicative ring with unit, and for every
x ∈ R, x2 = x, then R is called a Boolean ring, and the followings are
equivalent:
(a) 2x = 0 for all x ∈ R;
(b) every prime ideal p is maximal, and R/p is a field with two elements;
(c) every finitely generated ideal in R is principal.

4 Omit.
Bonus 10.1.2. Find all the maximal ideals of R, where R consists of
continous functions defined on open interval (0, 1).

5 Omit.
6 Omit.
7 In my notation, N denotes the nilradical of a ring and R denotes the

Jacobson radical of a ring. There is a useful property of R:
Bonus 10.1.3. x ∈ R if and only if 1− xy is a unit in R for all y ∈ R.

and we have the following properties of polynomial ring:
Bonus 10.1.4. Let R be a communicative ring with unit and let R[x]
be the ring of polynomials in an indeterminate x, with coefficients in R.
Let f = a0 + a1x+ · · ·+ anx

n ∈ R[x]. Prove that
1. f is a unit in R[x] ⇔ a0 is a unit in R and a1, . . . , an are nilpotent.
2. f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.
3. f is a zero-divisor ⇔ there exists a 6= 0 in R such that af = 0.
4. f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈
R[x], then fg is primitive ⇔ f and g are primitive.
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Now let’s solve this exercise: Since we already have N ⊆ R, it suffices
to show for any f ∈ R, it’s nilpotent. Note that by above bonus 10.1.3,
we have 1− fg is unit for any g ∈ R[x]. Choose g to be x, then by (1) of
bonus 10.1.4 we know that all coefficients of f is nilpotent in A, and by
(2) of bonus 10.1.4, f is nilpotent. This completes the proof.

8 Assume N ⊊ R, there exists a non-trivial idempotent e in R. Since
e(1− e) = 0, thus 1− e is not a unit, a contradiction.

9 Omit.
11 Omit.

Remark 10.1.1. Primary ideal is also an important topic in communica-
tive algebra, and has an interesting geometry explaination in algebraic
geometry. Readers are advised to read Atiyah for further readings.

12 Omit.

10.2. Solutions to 4.1.
1 Omit.
2 Omit.
3 Omit.
4 The key point is to note that [F (u) : F (u2)] ≤ 2.
5 Omit.
6 Omit.
7 Pick v ∈ K\F , then by definition of F (u) one can write v as

v =
f(u)

g(u)

where f, g ∈ F [x] with g 6= 0. Thus we have f(u) − vg(u) = 0. If
f(x)− vg(x) ≡ 0, which implies v ∈ F , since coefficients of f, g lie in F ,
this completes the proof.

8 Omit.
9 Assuming β is algebraic over F , that is [F (β) : F ] <∞, then by exercise

7 one has [F (α) : F (β)] <∞, then
[F (α) : F ] = [F (α) : F (β)][F (β) : F ] <∞

a contradiction.
10 It’s clear β is transcendent over F , otherwise

[F (α, β) : F ] = [F (α, β) : F (β)][F (β) : F ] <∞

a contradiction to α is transcendent over F . Furthermore, since α is
algebraic over F (β), then there exists a polynomial

xn + an−1(β)x
n−1 + · · ·+ a0(β)

such that α fits it, where ai(β) ∈ F (β), that is we can write

ai(β) =
fi(β)

gi(β)
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where fi, gi ∈ F and g 6= 0. If we multiply above polynomial by
∏n−1

i=0 gi(β),
then we obtain a polynomial f ∈ F [x, y] satisfying f(α, β) = 0, which
implies β is algebraic over F (α).
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11. Homework 11

11.1. Solutions to 4.2.
1 Omit.
2 It’s clear Q(

√
2 +

√
3) ⊆ Q(

√
2,
√
3). Note that

(a) [Q(
√
2,
√
3) : Q] = 4;

(b) [Q(
√
2 +

√
3) : Q] 6= 2;

(c) [Q(
√
2 +

√
3) : Q] | [Q(

√
2,
√
3) : Q]

These facts implies [Q(
√
2 +

√
3) : Q] = 4. In particular, Q(

√
2 +

√
3) =

Q(
√
2,
√
3).

Remark 11.1.1. In fact, any finite seperable extension is simple extension,
that is a field extension generated by one element. This is called primitive
element theorem. Although there is a standard, basic proof, later we will
use Galois theory to give a neat proof.

3 Omit.
4 For n = 1, if the minimal polynomial of u is

un + an−1u
n− + · · ·+ a1u+ a0

then since a0 is a unit, we have
u−1 = −a−1

0 (un−1 + · · ·+ a1)

This follows F (u) = F [u]. Then by induction one can show desired result.
5 Omit.
6 Omit.
7 It’s clear C is algebraic closure of R, since it’s algebraic over R, and it’s

algebraic closed. Furthermore,
(a) Algebraic closure must contain infinitely many elements, otherwise if

algebraic closure E is a finite field, with |E| = q, then xq − x+ 1 has
no roots in E.

(b) Just note that [C : R] = 2.
8 Omit.
9 Omit.

10 Omit.
11 E is algebraic over R, since it’s finite, thus by exercise 10 we can embed

it into C, which implies [E : R] ≤ 2. In particular, if R ⊊ E, then
[E : R] = 2.

11.2. Solutions to 4.4.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.
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11 In fact, we can prove a stronger result, that is [E : F ] | n!. Let’s prove
by induction on degree of f . It’s clear for deg f = 1. Now assume
deg f = n+ 1. Let’s consider the following cases:
(a) If f is reducible, let p be an irreducible factor of f with degree k, and

L the splitting field of p over F . Then E is the splitting field of f/p
over L. Note that degree of p and f/p are ≤ n, then by induction
hypothsis one has

[E : F ] = [E : L][L : F ] | k!× (n+ 1− k)! | (n+ 1)!

(b) Suppose f is irreducible, then consider L = F [x]/(f) ∼= F (α), where
α is a root of f . It’s clear [L : F ] = n+ 1. Now consider polynomial
f/(x − α) over L, it’s clear that E is the splitting field of it. The
same argument yields the result.
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12. Homework 12

12.1. Solutions to 4.4.
8 Note that f(x) is irreducible over Z2[x], then Z2[x]/(f(x)) contains a root
u of f(x). Furthermore, note that if f(u) = 0, then f(u + 1) = 0, thus
Z2[x]/(f(x)) contains all roots of f(x), that is it’s splitting field of f .

9 The same argument shows Z3[x]/(f(x)) is splitting field of f .
10 It’s clear that we must have f is irreducible over Q and its splitting field

is exactly Q[x]/(f(x)), since [Q[x]/(f(x)) : Q] = 3. This is equivalent to
the discriminant

√
∆ of f in Q.

12.2. Solutions to 4.5.
2 Omit.
3 For arbitrary β ∈ F (α), we need to show β is a seperable element over F .

It suffices to show F (β) is seperable over F . Note that F ⊆ F (β) ⊆ F (α),
then the desired result follows from the following bonus.
Bonus 12.2.1. Let F ⊆ E ⊆ K be field extensions, if K/F is a seperable
extension, then K/E,E/F are seperable.

9 Omit.
10 If F is a perfect field, then it’s clear every finite extension E of F is

seperable, since any element of E fits a irreducible polynomial, and every
irreducible polynomial of F is seperable; Conversely, if F 6= F p, then
there exists u ∈ F\F p, then xp − u is irreducible, but not seperable over
F , a contradiction.

11 Omit.
12 Omit.

12.3. Solutions to 4.6.
1 Let Zp ⊂ F be prime subfield of F , then for arbitrary a ∈ Zp, one has

(α+ a)p − (α+ a)− c = αp + ap − α− a− c = αp − α− c = 0

which implies α + a is a root of xp − x − c = 0. Thus we obtain p roots
of it, and it contains at most p root since its degree is p, which implies
F (α) is the splitting field.
Remark 12.3.1. xp−x− c is called Artin-Schreier polynomial, now try to
prove:
Bonus 12.3.1. If xp−x−c has no roots in F , then xp−x−c is irreducible.

2 Omit.
3 Omit.
5 Since E is finite normal extension of F , then it’s the splitting field of

some f ∈ F [x]. Then
(a) If we regard f as a polynomial in K[x], its splitting field is also E;
(b) If η : K/F → E/F is an injective homomorphism, then E is also the

splitting of η(f).
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This shows η : K/F → η(K)/F can be extended to E/F → E/F .
6 Omit.
8 Just note that every finite field is the splitting field of some polynomial,

and finite extension of a finite field is also a finite field.
9 Omit.
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13. Homework 13

13.1. Solutions to 4.7.
1 There are many ways to show Q(

√
2+

√
3) = Q(

√
2,
√
3), and any element

in Q(
√
2,
√
3) can be written as a+ b

√
2+ c

√
3+d

√
6), so it’s clear to see

subfields of Q(
√
2,
√
3) are Q,Q(

√
2),Q(

√
3),Q(

√
6).

Remark 13.1.1. Note that Gal(
√
2,
√
3/Q) is Z2×Z2, and there are three

subgroups of index 2, so by Galois correspondence you can also find all
subfields of Q(

√
2,
√
3).

Bonus 13.1.1. Show
Q(

√
p1 + · · ·+√

pk) = Q(
√
p1, . . . ,

√
pk)

where pi, i = 1, . . . , k are primes.

2 All roots of x4+1 are { 4
√
−1, ξ4

4
√
−1, ξ24

4
√
−1, ξ34

4
√
−1}, where ξ4 is exactly

i. Note that
4
√
−1 = e

πi
4 =

(1 + i)
√
2

2
Then the splitting field of x4+1 are Q(

√
2, i), and it’s clear Galois group

is Z2 × Z2.
3 Omit.
4 Omit.
5 Note that in Z3 one has

x4 + 2 = (x2 + 1)(x+ 1)(x− 2)

which implies its Galois group is Z2.
6 We have already seen for Artin-Schreier polynomial, if α is its root, then

it’s splitting field is F (α), and Bonus 12.3.1 says it’s irreducible8. Then
the Galois group is Zp.

8I don’t think it’s trivial, though answer in textbook says that.
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14. Homework 14

14.1. Solutions to 4.8.
1 Oimt.

Remark 14.1.1. A field F is called a perfect field, if F = F p, where
p = charF . So this exercise says any finite field is perfect field.

Bonus 14.1.1. A field F is perfect if and only if any irreducible polyno-
mial in F [x] is seperable.

2 Omit.
4 Omit.

10 Omit.

14.2. Solutions to 4.9.
1 If F contains n-th primitive root ω, then xn−1 has no multiple root, since
1, ω, . . . , ωn−1 are different roots of it, thus nxn−1 6= 0, which implies if
charF 6= 0, then charF 6= n.

2 We divide into two parts:
(a) It’s clear E/K is Galois, with Galois group Gal(E/K), which is

abelian, since any subgroup of abelian group is still abelian. So E/K
is an abelian extension;

(b) Note that K/F is Galois if and only if Gal(E/K) is a normal sub-
group of Gal(E/F ), and it’s clear any subgroup of abelian group
is normal, thus K/F is Galois. Furthermore it’s Galois group is
Gal(E/F )/Gal(E/K), which implies K/F is abelian extension, since
any quotient group of abelian group is still abelian;

3 Just the same as above.
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15. Homework 15

15.1. Solutions to 4.9.
4 It suffices to show if z is a n-th primitive root of unity, then −z is a
2n-th primitive root of unit, since cyclotomic polynomial is the product
of these roots. Let z = cos 2kπ

n + i sin 2kπ
n is n-th primitive root of unity,

thus (k, n) = 1. Note that

−z = cos(
2kπ

n
+ π) + i sin(

2kπ

n
+ π)

= cos
2(2k + n)π

2n
+ i sin

2(2k + n)π

2n
So if we want to show −z is a 2n-th primitive root, it suffices to show
(2k + n, 2n) = 1.

5 Omit.
6 It’s isomorphic to AutZ12, and by previous result we have it’s Z2 × Z2.
7 I think it’s the same as Exercise 1 of 4.9.

15.2. Solutions to 4.10.
1 Omit.
2 Omit.
3 Note that Cayley’s theorem says any finite group is a subgroup of Sn for

some n ∈ Z>0, and for each n ∈ Z>0, there exists an irreducible poly-
nomial with Sn as its Galois group, then Galois correspondence theorem
completes the proof.

4 Omit.
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