SOLUTIONS TO HOMEWORK

BOWEN LIU

0. To READERS

It's a solution to homework of (2022Fall)Abstract algebra, and the textbook is "abstract algebra" written by Musheng Yao. We will omit proofs which are already shown in the textbook or quite trivial.

1. Homework 1

1.1. Solutions to 2.1.

1 Omit.
2 Here we prove by induction: It's clear for $n=1$; If we have already proven for $n<k$, then for $n=k$, we have

$$
\begin{aligned}
(a b)^{k} & =(a b)^{k-1}(a b) \\
& =a^{k-1} b^{k-1} a b \\
& =a^{k-1} a b^{k-1} b \\
& =a^{k} b^{k}
\end{aligned}
$$

If we want to find $a, b \in G$ such that $(a b)^{2} \neq a^{2} b^{2}$, it suffices to find a, b such that $a b \neq b a$, since you can cancel a, b from two sides of $(a b)^{2} \neq a^{2} b^{2}$. It's easy to find such elements in a non-abelian group, and note that a quite simply non-abelian group is $\mathrm{GL}_{2}(\mathbb{R})$, that is group consists of 2×2 real matrices which are invertible. For example:

$$
a=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad b=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

3 Omit.
4 Omit.
5 Note that

$$
\begin{aligned}
a b & =(a b)^{-1} \\
& =b^{-1} a^{-1} \\
& =b a
\end{aligned}
$$

6 Omit
8 If for all $a \neq e$, we have $a^{-1} \neq a$, then the order of G must be odd, a contradiction.

1.2. Solutions to $\mathbf{2 . 2}$.

1 Let H, K be two subgroups of G such that one don't contain another, take $x \in H-K, y \in K-H$, then $x y \notin H \cup K$. Indeed, if $x y \in H$, then $y=x^{-1} x y \in H$, a contradiction, the same contradiction holds for $x y \in K$.

Remark 1.2.1. In fact, you can use this exercise to give a neat proof of Hua's semi-homomorphism theorem ${ }^{1}$ when we learn ring theory.

2 Omit.
3 The following proof is wrong, since G may not be a finite group.

$$
[G: K]=\frac{|G|}{|K|}=\frac{|G|}{|H|} \frac{|H|}{|K|}=[G: H][H: K]
$$

[^0]4 There is already a concrete proof in textbook, here we give a more abstract method: It's easy to check H is a subgroup if and only if $H^{2}=H, H^{-1}=H, H \neq \varnothing$. Then If $H K$ is a subgroup, then $H K=$ $(H K)^{-1}=K^{-1} H^{-1}=K H$; Conversely,
(a) $(H K)(H K)=H(K H) K=H^{2} K^{2}=H K$
(b) $(H K)^{-1}=K^{-1} H^{-1}=K H=H K$;
(c) Of course $H K \neq \varnothing$

This shows $H K$ is a subgroup.
5 Omit.
Remark 1.2.2. For arbitrary subgroups H, K of G (Note that we don't assume they're finite), consider the following group action

$$
\begin{aligned}
H \times G / K & \rightarrow G / K \\
(h, g K) & \mapsto h g K
\end{aligned}
$$

Then the orbit of $K \in G / K$ is exactly $H K / K$, and stabilizer of K is $H \cap K$, which implies

$$
\frac{|H K|}{|K|}=\frac{|H|}{|H \cap K|}
$$

6 Note that

$$
[G: H \cap K]=[G: H][H: H \cap K] \leq[G: H][G: K]
$$

Bonus 1.2.1. Show that $[G: H \cap K]=[G: H][G: K]$ if and only if $G=H K$.

7 Note that order of every element of H divides $|H|$, and similar for K, thus any element $x \in H \cap K$ must have order dividing $(|H|,|K|)=1$, which implies $x=e$.
8 Omit.
12 Omit.

1.3. Solutions to $\mathbf{2 . 3}$.

1. It suffices to show $N H=H N$. Note that H is a normal subgroup, thus we have $N H N^{-1}=H$, which implies $H N=H N$.
2. Note that for every $g \in G, g H^{-1}$ is a subgroup with order m, but there is only one subgroup with order m, this shows $g H g^{-1}=H$ for any $g \in G$, that is H is a normal subgroup.

2. Homework 2

2.1. Solutions to $\mathbf{2 . 3}$.

4 It's clear $x y x^{-1} y^{-1} \in N \cap H$.
Bonus 2.1.1. In a group G, we always use $[x, y]$ to denote $x y x^{-1} y^{-1}, x, y \in$ G, which is somtimes called a commutator. You can think that $[x, y]$ measures the failure of x and y to commute with each other. The subgroup generated by $[x, y]$ is called the derived subgroup, which is denoted by $[G, G]$. Prove:
(a) $[G, G]$ is a normal subgroup of G;
(b) $G /[G, G]$ is the largest abelian quotient group.

5 Omit.
6 Omit.
Bonus 2.1.2. Try to use this exercise to show a group with order 4 must be abelian. Hint: It suffices to show G has non trivial center.

Remark 2.1.1. Later you can use class equation to show any group with order p^{2} must have a non trivial center, so proof in here can also show a group with order p^{2} must be abelian.
7 Consider the image of x in G / N.
8 From (4), we can see for any $x, y \in G$ and $n \in N$, we have

$$
n x y x^{-1} y^{-1}=x y x^{-1} y^{-1} n
$$

which implies n commute with any element taking form $x y$. Take $y=e$, then we obtain $n \in C(G)$.
9 There are too many ways to define dihedral group, we use the following one:

Definition 2.1.1 (dihedral group). Dihedral group $D_{n}, n>2$ is defined as follows

$$
D_{n}=\left\{r, s \mid r^{n}=e, s^{2}=e, s r s^{-1}=r^{-1}\right\}
$$

In this way, you can see the following things:
(a) You can think D_{n} characterizes the symmetries of a regular n-polygon: r means rotation by $\frac{2 \pi}{n}$ angles and s means reflection with respect to some axis. More explicitly, you can write them as matrices as

$$
r=\left(\begin{array}{cc}
\cos \frac{2 \pi}{n} & -\sin \frac{2 \pi}{n} \\
\sin \frac{2 \pi}{n} & \cos \frac{2 \pi}{n}
\end{array}\right), \quad s=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(b) We need $n>2$ in the definition, since there is no 2-gon;
(c) It's easy to see it's non abelian, since $s s^{-1} r^{-1}=r^{n-2} \neq e$;

In order to do some concrete computation, we need a more explicit expression.

Bonus 2.1.3. Show that every element of D_{n} is uniquely expressible as $s^{i} r^{j}$ where $0 \leq i \leq 1$ and $0 \leq j \leq n-1$.

If you have solved the bonus, you will find my definition is exactly the ugly one in textbook. In computation of D_{n}, we always divide into two cases. For example, if we want to see an element x whether lie in center of D_{n} or not, it suffices to use arbitrary element to conjugate x.
(a) $x=r^{a} s$. Then use $r^{b} s$ to conjugate it, we have

$$
\left(r^{b} s\right) r^{a} s\left(s r^{-b}\right)=r^{b} s r^{a} r^{-b}=r^{2 b-a} s
$$

In general this element depending on b, so an element taking form $r^{a} s$ won't lie in center.
(b) $x=r^{a}$. Then use $r^{b} s$ to conjugate it, we have

$$
\left(r^{b} s\right) r^{a}\left(s r^{-b}\right)=r^{-a}
$$

and it's clear r^{a} commutes with r^{b}.
So the only possible element in center of D_{n} takes the form r^{a} such that $r^{a}=r^{-a}=r^{n-a}$. We can only find such non trivial element in case that n is even, and only one, that is $r^{\frac{n}{2}}$. In conclusion,

$$
C\left(D_{n}\right)=\left\{\begin{array}{lr}
\{1\}, & n \text { is odd } \\
\mathbb{Z}_{2}, & n \text { is even }
\end{array}\right.
$$

Bonus 2.1.4. Find all finite subgroups of $\mathrm{O}(2)$, that is group of 2×2 orthogonal groups.

11 Omit.
12 In fact, you can see the hallmark of the proof in textbook is that you can always solve equation $w=z^{n}$ in \mathbb{C}^{*}.
Definition 2.1.2 (divisible group). A group G is divisible if for every $x \in G$ and positive integer n there is $y \in G$ such that $y^{n}=x$.
Bonus 2.1.5. Show:
(a) A quotient of a divisible group is divisible;
(b) Any finite divisible group is trivial;
(c) Show any finite index proper subgroup of $(\mathbb{Q},+)$ is trivial.

2.2. Solutions to 2.4.

1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 It's clear to see N has index 2 thus it's normal.
Bonus 2.2.1. You know that a normal subgroup must be a union of many conjugacy classes. So try to write down all conjugacy classes of D_{n}, and write N as a union of conjugacy classes.

Remark 2.2.1. You may wonder why I ask you to do such a boring thing, here is two things I want to explain:

1. A group without any non trivial normal subgroup is called simple group. Of course there is a smart way to show A_{5} is a simple group, but you can show A_{5} is simple by counting its conjugacy classes and see there is no non trivial subgroup can be a union of these conjugacy classes(Lagrange theorem may help). There is an easy way to count conjugacy classes of A_{5}, so it's a quick way.
Bonus 2.2.2. Show A_{5} is simple by counting its conjugacy classes.
2. Later maybe I will show you a little group reprensentation theory using dihedral groups. A fact is that the number of irreducible representations equals to the number of conjugacy classes.

7 Omit.

Remark 2.2.2. If you know a little about Lie group and Lie algebra, you will know this exercise can be used to show the Lie algebra of a abelian Lie group is also abelian. The hallmark of the proof is to note that inversion map $\iota(g)=g^{-1}$ is a group homomorphism and check Lie algebra homomorphism induced by ι is -id.

Bonus 2.2.3. Show Lie algebra of an abelian Lie group is still abelian.
8 Note that there is a one to one correspondence between normal subgroup of G / H and normal subgroup of G containing H.
9 Omit.
12 Textbook show that φ is surjective, here I try to show φ is injective: If $x^{m}=e$, thus order of x divides m, but we also have order of x divides the order of group, that is n, thus order of x divides $(m, n)=1$, which implies $x=e$.
13 Omit.
14 Omit.

2.3. Solutions to $\mathbf{2 . 5}$.

1 Omit.
2 It suffices to check any subgroup generated by two elements is cyclic, that is generated by one element: If $H=\langle a, b\rangle$, you can always find $r \in \mathbb{Q}$ such that $a=r a^{\prime}, b=r b^{\prime}$, thus $H=\langle a, b\rangle \subseteq\langle r\rangle$, thus H is cyclic, since it's a subgroup of cyclic subgroup.
Bonus 2.3.1. Use this exercise to show $(\mathbb{Q},+)$ is not isomorphic to $(\mathbb{Q} \times$ $\mathbb{Q},+)$. Hint: Find a finitely generated subgroup of $\mathbb{Q} \times \mathbb{Q}$ which is not cyclic.

3 If G is a cyclic group $\langle a\rangle$ of order p^{n}, where p is prime, it's clear all subgroups of G is a totally ordered set, since any subgroup of G takes form $\left\langle a^{k}\right\rangle$, where k divides p^{n}. Conversely, list all proper subgroups of G as follows

$$
\{e\} \leq H_{1} \leq \cdots \leq H_{m} \leq G
$$

If $\left|H_{m}\right|=p^{k}$ with $k<n$, take $g \in G-H_{m}$, then we must have $\langle g\rangle=G$, since $\langle g\rangle \neq H_{m}$, which implies G is cyclic.
Remark 2.3.1. It's a quite interesting phenomenon, that is property of the whole group is characterized by subgroups, and this exercise is not the only case, for example, here is a generalization:
Bonus 2.3.2. For every finite group G of order n, the following statements are equivalent:
(a) G is cyclic.
(b) For every divisor d of n, G has at most one subgroup of order d.

Later we will see other examples, when we learn more properties about group.
4 If $\varphi: G \rightarrow H$ is a group homomorphism, then I claim $o(\varphi(x))$ divides $o(x)$. Indeed, $o(x)=m$ implies $e_{H}=\varphi\left(e_{G}\right)=\varphi\left(x^{m}\right)=\varphi(x)^{m}$. So if φ is a group isomorphism, we have $o(x)$ divides $o(\varphi(x))$ and $o(\varphi(x))$ divides $o(x)$, thus φ preserves order of elements. It's clear group homomorphism won't preserve, just take trivial homomorphism $\varphi: G \rightarrow\{e\}$, all elements are mapped to an element of order 1.

3. Homework 3

3.1. Solutions to $\mathbf{2 . 5}$.

5 Omit.
6 Given a surjective group homomorphism $\varphi: H \rightarrow G$ between cyclic groups, where generator of H is denoted by h. To see φ is an isomorphism, it suffices to check $\operatorname{ker} \varphi$ is trivial: Note that $\operatorname{ker} \varphi$ is a subgroup of H, then it's generated by h^{m} for some $m \in \mathbb{N}$. If $m \neq 0$, then $G \cong H / \operatorname{ker} \varphi=\mathbb{Z}_{m}$, a contradiction. So $\operatorname{ker} \varphi$ is trivial.
7 Omit.
8 Omit.
9 Given a group homomorphism $\varphi: H \rightarrow G$, where H is finite and G is infinite. By exercise 4 of 2.5 , we have order $\varphi(x)$ divides order of x, which implies $\varphi(x)=e_{G}$, otherwise order of $\varphi(x)$ will be infinite.

3.2. Solutions to 2.6.

1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.
8 It suffices to show that every element $\sigma \in S_{p}$ with order p has form $\left(1, i_{1}, \ldots, i_{p-1}\right)$, where i_{1}, \ldots, i_{p-1} is a permutation of $2,3, \ldots, p$, thus there are exactly $(p-1)$! elements with order p.

It's clear to see, if cycle type of σ is $\left(m_{1}, \ldots, m_{k}\right)$, then the order of σ is $\operatorname{lcm}\left(m_{1}, \ldots, m_{k}\right)$. So if order of σ is prime p, then its cycle type must be (p), since only divisors of p is $1, p$. Thus $\sigma=\left(1, i_{1}, \ldots, i_{i-1}\right)$.
Bonus 3.2.1. Use this exercise to show the number of Sylow p subgroups of S_{p} is $(p-2)$!.

9 Omit.
10 Since cases $n=1,2$ are trivial, let's assume $n \geq 3$. Note that A_{n} is generated by 3 -cycles if $n \geq 3$, and each 3 -cycle (abc) is a commutator, since

$$
(a b c)=(a b)(a c)(a b)(a c)
$$

Thus $A_{n} \subseteq\left[S_{n}, S_{n}\right]$. Conversely, since $S_{n} / A_{n}=\mathbb{Z}_{2}$ is abelian, then by Bonus 2.1.1 we have $\left[S_{n}, S_{n}\right] \subseteq A_{n}$. Thus we have $A_{n}=\left[S_{n}, S_{n}\right]$.
11 Let H be a subgroup of A_{4} with order 6, then choose a 3-cycle x not in H, and consists the cosets $H, x H, x^{2} H$ in A_{4} / H. Since A_{4} / H is a group of order 2, two of the cosets must be equal. But H and $x H$ are distinct, so $x^{2} H$ must be equal to one of them.
(a) If $x^{2} H=H$, then $x^{2}=x^{-1} \in H$, so $x \in H$, a contradiction;
(b) If $x^{2} H=x H$, then $x \in H$, a contradiction.

So H doesn't exist.
12 Omit.
13 Let H be a normal subgroup of S_{n}, then $H \cap A_{n}$ is a normal subgroup of A_{n}, thus
(a) $H \cap A_{n}=A_{n}$;
(b) $H \cap A_{n}=\{e\}$.

For the first case, we must have $H=S_{n}$, since there is no subgroup between $A_{n} \subset S_{n}$. For the second case, note that $A_{n}=\left[S_{n}, S_{n}\right]$, thus by exercise 8 of 2.3 we have $H \subset Z\left(S_{n}\right)=\{e\}$.
14 Consider isomorphism

$$
\begin{aligned}
r & \mapsto \sigma \\
s & \mapsto \tau
\end{aligned}
$$

3.3. Solutions to 2.7.

2 Consider G acts on the G / H, and denote group homomorphism corresponding to this action by $\varphi: G \rightarrow S_{n}$. Then consider normal subgroup $K=\operatorname{ker} \varphi$, we have $[G: K] \mid n!$. In particular, if $|G| \nmid n!$, then $|K| \neq 1$, which implies K is nontrivial (It's trivial $K \neq G$).
5 It's clear $|G| \nmid p$!, by exercise 2 there exists a nontrivial normal subgroup $K \subseteq H$ such that $[G: K] \mid p!$, which implies $[G: K]=p$. But

$$
p=[G: K]=[G: H][H: K]=p[H: K]
$$

so we have $K=H$.
7 By the same proof of exercise 2, it's clear to see there exists a normal subgroup N contained in H such that $[G: N] \mid n!<\infty$, thus

$$
[H: N] \leq[G: N]<\infty
$$

8 Omit.

4. Homework 4

4.1. Solutions to 2.7.

1 Omit.
3 (6) of Example 8 in textbook implies

$$
\sum_{x \in \operatorname{Conj} G} \frac{1}{|G x|}=1
$$

where $\operatorname{Conj} G$ is the set of conjugacy classes of G and $G x$ is the orbit of the action. So here we consider the conjugate action of G on itself and $G x$ is exactly the stabilizer of x. This gives the desired equation.
4 (a) Recall that you can write any normal subgroup N as a union of conjugacy classes, and for p-group, the number of elements in any conjugacy classes is exactly powers of p (since they're stabilizers of conjugate action). Since N contains at least one conjugacy classes with one element (the class of identity), and $|N|$ is also power of p, so it must contain other classes with just one element which must be classes of centeral elements of G.
(b) If H is a proper subgroup of G, consider right action of H on cosets G / H. It's clear $|G / H|$ is power of p, and there is at least one orbit with one element (the orbit consists of H), so there must be other orbits with one element, for example $H g$, that is $H g h=H g$ for arbitrary $h \in H$, which implies $g^{-1} H g=H$, thus $g \in N(H) \backslash H$, which implies $H \subsetneq N(H)$.
Remark 4.1.1. The ideals of proof for (a) and (b) are same.
(c) Note that H is a proper subgroup of G, by (b) we have $H \subsetneq N(H)$, which implies $N(H)=G$, thus H is normal.

Remark 4.1.2. Of course you can use exercise 5 of 2.7 , since you've proven it.

6 If $[G: H]=n<\infty$ and $|H|=k$, there are at most n distinct conjugates of H. Since the identity element is in all of the conjugacy classes, the union of conjugates of H has at most

$$
n(k-1)+1=n k-n+1
$$

elements. If $n=1$, that is H is normal, it's clear the union of conjugates of H can't be the whole group since H is proper subgroup. So we must have

$$
\left|\bigcup_{g \in G} g H g^{-1}\right| \leq n k-(n-1)<n k=|G|
$$

This completes the proof.
Bonus 4.1.1. Show that:

1. Only assume H is finite index, prove above exercise again;
2. Give an example to show if H is infinite index, then the conjugates of H may equal to the whole group. Hint: Recall what does Jordan normal form tell you?

9 Omit.
10 If $n \geq 3$, then for arbitrary i, j, you can pick $k \neq i, j$ and then $(i k)(i j) \in$ A_{n} translate i to j.

Definition 4.1.1 (2-transitive). A group G acts 2 -transitive on a set S if it acts transitively on the set

$$
\{(x, y) \in S \times S \mid x \neq y\}
$$

Remark 4.1.3. Similarly you can define what is k-transitive for $k \in \mathbb{Z}_{\geq 0}$.
Bonus 4.1.2. Show that:

1. S_{n} is n-transitive;
2. A_{n} is $n-2$-transitive, $n \geq 3$.

11 Omit.
12 Omit.
13 I think it's the same as exercise 6.
14 Omit.
15 Given a subgroup H with index 3 , then by exercise 2 of 2.7 we know that there exists a normal subgroup K contained in H such that $[G: K] \mid 3!=$ $1 \times 2 \times 3$. Thus $[G: K]$ may equal 3 or 6 . It suffices to check $[G: K] \neq 6$. If $[G: K]=6$, then $G / K \cong S_{3}$ and there exists a subgroup H / K with order 2 of G / K since S_{3} do, which implies

$$
[G: H]=[G / K: H / K]=2
$$

a contradiction.

4.2. Solutions to $\mathbf{2 . 8}$.

1 Note that $\left|S_{4}\right|=24=2^{3} \times 3$, so there are 3 -sylow subgroups and 2-sylow subgroups of S_{4} :
(a) The number of 3 -sylow subgroups may be 1 or 4 . Note that elements in S_{4} with order 3 must have form (123), and there are 8 of them. As each of these is contained in at least one 3 -sylow subgroup, so there won't be only one 3 -sylow subgroups.
(b) The number of 2 -sylow subgroups may be 1 or 3 . Note that elements in S_{4} with order 4 must have form (1234) and there are 6 of them, elements in S_{4} with order 2 have form (12) or (12)(34) and there are both 6 of them. As each of these is contained in at least one 2 -sylow subgroup, so there won't be only one 2 -sylow subgroups.

Remark 4.2.1. This counting method is quite useful in showing a subgroup is not normal or not.

Bonus 4.2.1. Consider $\operatorname{SL}\left(2, \mathbb{F}_{3}\right)$, that is special linear group of 2×2 over \mathbb{F}_{3}, it's also a group with order 24 . Show that there is only one 2 -sylow subgroup. Hint: Firstly you need to show there are four 3 -sylow subgroups, and assume there are three 2 -sylow subgroups, you will get toooo many elements.

Bonus 4.2.2. For a group G with order $p q r$, where $p<q<r$ are distinct prime numbers, show r-sylow subgroup must be normal.

Proof. (Sketch). Firstly show there is at least a normal subgroup by counting method, if r-sylow subgroup is normal, then we're done. So we may assume p-sylow subgroup P is normal, then consider G / P, a group of order $q r$, which contains a normal r-sylow subgroup, then G contains a normal subgroup H of order $p r$ by correspondence. The r-sylow subgroup of G must be r-sylow subgroup of H, which implies the r-sylow subgroup of G is unique.

Bonus 4.2.3. For a group with order $p_{1} p_{2} \ldots p_{r}$ where $p_{1}<p_{2}<\cdots<p_{r}$ are distinct prime numbers, show there is only one p_{r}-sylow subgroup. Hint: Prove by induction.

2 Omit.
3 Omit.
4 By example 4 in textbook you can see there are only two groups with order 6 , one is \mathbb{Z}_{6} and the other one is S_{3}.
5 It suffices to check there is an element with order $p_{1} p_{2} \ldots p_{t}$. For each $1 \leq i \leq t$, there exists at least a p_{i}-sylow subgroup, which must be a cyclic subgroup generated by a_{i}. Since G is abelian then for arbitrary $i \neq j$ we have $a_{i} a_{j}=a_{j} a_{i}$. Then by exercise 10 of 2.2 we have $a_{1} a_{2} \ldots a_{t}$ is an element with desired order.

Remark 4.2.2. If you know the structure of finite abelian group, it's a trivial result.

6 Omit.
7 Omit.
8 Firstly, it's clear to see 11 -sylow subgroup P_{11} is normal, since $231=$ $11 \times 7 \times 3$. In order to show 11 -sylow subgroup P_{11} is contained in center, let's consider conjugate action of G on P_{11}, which induces a group homomorphism

$$
\varphi: G \rightarrow \operatorname{Aut}\left(P_{11}\right)=\mathbb{Z}_{10}
$$

Thus we obtain an isomorphism

$$
G / \operatorname{ker} \varphi \cong H
$$

where H is a subgroup of \mathbb{Z}_{10}. However, subgroups of \mathbb{Z}_{10} must have order $10,5,2,1$, and there is no subgroup of G with index $10,5,2$, which implies $|G / \operatorname{ker} \varphi|=1$, that is P_{11} is contained in center of G.
9 Omit.

10 If you have already solved Bonus 4.2 .2 , then it's clear 5 -sylow subgroup P_{5} is normal, thus $P_{5} P_{3}$ is a subgroup of G, where P_{3} is 3 -sylow subgroup. Furthermore, $P_{5} P_{3}$ is a normal subgroup of G since its index is 2 . However, it's clear that 3 -sylow subgroup of $P_{5} P_{3}$ is normal, thus 3 -sylow subgroup of G is also normal since $P_{5} P_{3}$ is normal in G.
11 Note that $72=2^{3} \times 3^{2}$, so the number of 3 -sylow subgroup of G, denoted by n_{3}, may be 1 or 4 .
(a) If $n_{3}=1$, there is nothing to prove, since 3 -sylow subgroup is normal;
(b) If $n_{3}=4$, let's consider G acts on the set of 3 -sylow subgroups by conjugate action, which induces a group homomorphism

$$
\psi: G \rightarrow S_{4}
$$

Note that $|G / \operatorname{ker} \varphi|$ divides $\left|S_{4}\right|=2^{3} \times 3$, so we must have 3 divides $\operatorname{ker} \varphi$, which implies ker $f \neq\{e\}$. Furthermore, $\operatorname{ker} \varphi \neq G$, otherwise there will only be one 3 -sylow subgroup, a contradiction. Thus in this case $\operatorname{ker} \varphi$ is a non-trivial normal subgroup of G.
12 I think there is one more condition required: G is not abelian. 14 Omit.
4.3. Solutions to 2.9. I think maybe most of you have encountered quite similar exercises when you're learning (inner) product of vector space, since vector space is an abelian group together with a field action on it in fact.
1 Omit.
2 Omit.
3 Omit.
4 Omit.
6 Omit.
8 It suffices to check for any i, we have $N_{i} \cap N_{1} \ldots N_{i-1} N_{i+1} \ldots N_{n}=\{e\}$. Indeed,

$$
\begin{aligned}
|G| & =\left|N_{i} N_{1} N_{2} \ldots N_{i-1} N_{i+1} \ldots N_{n}\right| \\
& =\frac{\left|N_{i}\right|\left|N_{1} \ldots N_{i-1} N_{i+1} \ldots N_{n}\right|}{\left|N_{i} \cap N_{1} \ldots N_{i-1} N_{i+1} \ldots N_{n}\right|} \\
& =\frac{|G|}{\left|N_{i} \cap N_{1} \ldots N_{i-1} N_{i+1} \ldots N_{n}\right|}
\end{aligned}
$$

9 Omit.
10 Firstly we need to show G is abelian: for any $a, b \in G$, we have

$$
a b=a^{-1} b^{-1}=(b a)^{-1}=b a
$$

since any element of G has order two. Then take arbitrary $a_{1} \in G$ and let $N_{1}=\left\langle a_{1}\right\rangle$, if $N_{1} \subsetneq G$, then choose $a_{2} \in G-N_{1}$ and let $N_{2}=\left\langle a_{2}\right\rangle$. Repeat this process to construct N_{i} untill $N_{1} N_{2} \ldots N_{i-1}=G$. It's clear such N_{1}, \ldots, N_{n} for some n satisfies the condition of exercise 9 , this shows G is product of some \mathbb{Z}_{2}.
11 Omit.
14 Omit.

5. Homework 5

5.1. Solutions to $\mathbf{2 . 1 0}$.

1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.
8\&9
Proposition 5.1.1. For any $n \in \mathbb{Z}_{>1}$, we have

$$
\operatorname{Aut} \mathbb{Z}_{n}=\left(\mathbb{Z}_{n}\right)^{\times}
$$

where $\left(\mathbb{Z}_{n}\right)^{\times}$is the multiplicative group of \mathbb{Z}_{n}.
Proof. Let x be a generator of \mathbb{Z}_{n}, then any automorphism φ of \mathbb{Z}_{n} is determined by $\varphi(x)$. Furthermore $\varphi(x)=x^{k}$ must generate the whole group \mathbb{Z}_{n}, which implies $\operatorname{gcd}(k, n)=1$, that is $x^{k} \in\left(\mathbb{Z}_{n}\right)^{\times}$, that is Aut $\mathbb{Z}_{n} \subseteq\left(\mathbb{Z}_{n}\right)^{\times} ;$Conversely, given an element in $\left(\mathbb{Z}_{n}\right)^{\times}$, it's easy to construct an automorphism.

Thus we obtain a one to one correspondence between $\operatorname{Aut} \mathbb{Z}_{n}$ and $\left(\mathbb{Z}_{n}\right)^{\times}$. Furthermore, it's an group isomorphism.
Corollary 5.1.1. For prime p, we have

$$
\text { Aut } \mathbb{Z}_{p}=\mathbb{Z}_{p-1}
$$

Proof. It's clear

$$
\left(\mathbb{Z}_{p}\right)^{\times}=\mathbb{Z}_{p-1}
$$

Corollary 5.1.2. For groups with 2-power order, we have

1. $\operatorname{Aut} \mathbb{Z}_{4}=\mathbb{Z}_{2}$;
2. Aut $\mathbb{Z}_{8}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$;
3. Aut $\mathbb{Z}_{2^{n}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}, n \geq 4$.

Proof. It's clear Aut $\mathbb{Z}_{4}=\mathbb{Z}_{2}$, since there are only two elements in $\left(\mathbb{Z}_{4}\right)^{\times}$, which can be seen from $\phi(4)=2$, where ϕ is Euler function. Similarly you can see there are four elements in Aut \mathbb{Z}_{8} since $\phi(8)=4$. To see it's not cyclic, we need to write $\left(\mathbb{Z}_{8}\right)^{\times}$down explicitly as follows

$$
\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}
$$

It's clear all elements except identity has order 2 , which implies Aut \mathbb{Z}_{8} is Klein four group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

For $n \geq 4$, it's left as an exercise for readers.
Lemma 5.1.1. If G, H are two groups with relatively prime order p, q respectively, then any group homomorphism $\varphi: G \rightarrow H$ is trivial.

Proof. For arbitrary $x \in G$ with $o(x)=n$, we assume $o(\varphi(x))=m$, then $n \mid p$ and $m \mid q$. Furthermore we have $m \mid n$, thus $m \mid p$, which implies $m \mid \operatorname{gcd}(p, q)=1$, that is φ is trivial.

Proposition 5.1.2. If G, H are two groups with relatively prime order, then $\operatorname{Aut}(G \times H)=\operatorname{Aut} G \times \operatorname{Aut} H$.

Proof. It's clear Aut $G \times \operatorname{Aut} H \subseteq \operatorname{Aut}(G \times H)$: Given $\varphi_{1} \in \operatorname{Aut} G, \varphi_{2} \in$ Aut H, we can define an automorphism φ on $G \times H$ by

$$
(g, h) \mapsto\left(\varphi_{1}(g), \varphi_{2}(h)\right)
$$

Note that inclusion in this direction puts no requirement on order of G, H.
Conversely, since order of G, H are relatively prime, then Lemma 5.1.1 implies $G \times\left\{e_{H}\right\}$ and $\left\{e_{G}\right\} \times H$ are characteristic subgroup of $G \times H$, that is subgroup which is invariant under automorphisms. Then restrict φ on these two subgroups to obtain $\varphi_{1} \in \operatorname{Aut} G, \varphi_{2} \in \operatorname{Aut} H$.
Example 5.1.1. For \mathbb{Z}_{12}, we can write it as $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$, where 3 and 8 are relatively prime, thus

$$
\begin{aligned}
\operatorname{Aut}\left(\mathbb{Z}_{12}\right) & =\operatorname{Aut} \mathbb{Z}_{3} \times \operatorname{Aut} \mathbb{Z}_{4} \\
& =\mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{aligned}
$$

Example 5.1.2. For \mathbb{Z}_{24}, we can write it as $\mathbb{Z}_{3} \times \mathbb{Z}_{8}$, where 3 and 8 are relatively prime, thus

$$
\begin{aligned}
\operatorname{Aut}\left(\mathbb{Z}_{24}\right) & =\operatorname{Aut} \mathbb{Z}_{3} \times \operatorname{Aut} \mathbb{Z}_{8} \\
& =\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{aligned}
$$

10 Given an abelian group G and if $x, y \in G$ are torsion element, then

1. Identity e is torsion, since $o(e)=1$;
2. $x y$ is torsion, since we must have $o(x y)$ divides $\operatorname{lcd}((o(x), o(y))$, which implies $x y$ is finite;
3. x^{-1} is torsion, since $o\left(x^{-1}\right)=o(x)$.

We use T to denote subgroup consists of torsion element, then we claim G / T is torsion-free. Indeed, if $x+T$ is torsion in G / T, that is the smallest m such that $x^{m} \in T$ is finite, which implies there exists a finite n such that $\left(x^{m}\right)^{n}=e$, so x is torsion in G, that is $x \in T$.

6. Homework 6

6.1. Solutions to 2.11.

1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 It's clear that S_{n} is nilpotent when $n>2$, since in this case center of S_{n} is trivial. To see S_{3}, S_{4} are solvable, it suffices to show A_{3}, A_{4} are solvable:
(a) A_{3} is clearly solvable, since $A_{3} \cong \mathbb{Z}_{3}$;

Remark 6.1.1. There is another way to show S_{3} is solvable: Just note that $S_{3} \cong D_{3}$, and we will show D_{n} is solvable in exercise 6 .
(b) Note that there exists a Klein four group K_{4} in A_{4} and it's normal. To see this, it suffices to write down all conjugacy classes of A_{4} and check K_{4} can be written as a union of conjugacy classes.
6 For a dihedral group $D_{n}=\left\{r, s \mid r^{n}=e, s^{2}=e, s r s^{-1}=r^{-1}\right\}$. It's clear cyclic subgroup generated by r is solvable and normal in D_{n}. Furthermore, the quotient $D_{n} /\langle r\rangle \cong \mathbb{Z}_{2}$ is also solvable. Thus D_{n} is solvable.
7 Omit.
8 Just consider $G=S_{3}$ and $K=A_{3}$.
9 Omit.
10 Let G be a group of order $p^{2} q$ where p, q are distinct primes. To see G is solvable, it suffices to show either p-sylow subgroup or q-sylow subgroup is normal, since we already know a group with order p^{2} or q is abelian.
(a) If $p>q$, then p-sylow subgroup must be normal;
(b) If $p<q$ and the number of q-sylow subgroups is p^{2}, then the number of elements with order q is $p^{2}(q-1)$. The remaining elements form only one p-sylow subgroup, which implies p-sylow subgroup is normal.
Remark 6.1.2. In fact, there is the following theorem:
Theorem 6.1.1 (Burnside theorem). If G is a finite group of order $p^{a} q^{b}$ where p and q are distinct primes, and a and b are non-negative integers, then G is solvable.

6.2. Solutions to 3.1.

1 Omit.
2 Suppose R is a finite domain, then for any $0 \neq a \in R$, there exists $n \in \mathbb{Z}_{\geq 0}$ such that $a^{n}=e$, since R is finite. If $n=1$, it's trivial; and if $n \geq 2$, then a^{n-1} is the inverse of a, which implies R is divisible.

Remark 6.2.1. In fact, there is the following theorem:
Theorem 6.2.1 (Wedderburn's little theorem). Every finite domain is a field.
3 If there exists an idempotent $a \neq 0,1$,

$$
a(1-a)=0
$$

contradicts to the fact that the ring is a domain, since $a \neq 0,1-a \neq 0$.
Remark 6.2.2. In communicative algebra we're most interested in communicative ring with identity element, and they're closely related to geometry, which is called algebraic geometry. Here I want to show you some geometry explainations about idempotents. In the following of this remark, we always assume A is a communicative ring R with identity element e.

Definition 6.2 .1 (spectrum of ring). The set of all prime ideals in A is called the (prime) spectrum of A, denoted by $\operatorname{Spec} A$.
Bonus 6.2.1 (Zariski topology). Given a subset E of $A, V(E)$ denotes all prime ideals of A which contain E. Prove that

1. If \mathfrak{a} is the ideal generated by E, then $V(E)=V(\mathfrak{a})$.
2. $V((0))=X, V((1))=\varnothing$.
3. if $\left(E_{i}\right)_{i \in I}$ is any family of subsets of A, then

$$
V\left(\bigcup_{i \in I} E_{i}\right)=\bigcap_{i \in I} V\left(E_{i}\right)
$$

4. $V(\mathfrak{a} \cap \mathfrak{b})=V(\mathfrak{a b})=V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

These results show that the sets $V(E)$ satisfy the axioms for closed sets in a topological space. The resulting topology is called the Zariski topology of $\operatorname{Spec} A$.

Bonus 6.2.2. Show that the following statements are equivalent:
(a) $X=\operatorname{Spec}(A)$ is disconnected.
(b) $A \cong A_{1} \times A_{2}$ where neither of the rings A_{1}, A_{2} is the zero ring.
(c) A contains an idempotent $\neq 0,1$.

So as you can see, the geometry explaination of non-trivial idempotents is that they reprensent connected component of $\operatorname{Spec} A$ with respect to Zariski topology.

4 Omit.
8 Assume \mathbb{Z}_{n} is generated by a, that is $a \in \mathbb{Z}_{n}$ is an element of order n, then a^{m} is a unit if and only if $(m, n)=1$, so there are $\varphi(n)$ units in \mathbb{Z}_{n}, where φ is Euler function.
9 Omit.
Bonus 6.2.3. Let R be a ring, prove that:
(a) Any ideal of $M_{n}(R)$ takes the form $M_{n}(I)$, where I is an ideal of R.
(b) If R is a field, then $M_{n}(R)$ is a simple ring, that is a ring without non-trivial ideal.

10 Omit.
Remark 6.2.3. As Wedderburn's little theorem say, every finite domain is a field, in particular, every finite divisible ring is a field. So if you want to find a divisible ring which is not a field, you need to find them among
infinite rings. An important example is exactly Hamilton quaternions \mathbb{H}.
In fact, there is the following theorem:
Theorem 6.2.2 (Frobenius theorem). All finite-dimensional ${ }^{2}$ divisible rings containing a proper subring isomorphic to the real numbers are listed as follows:

1. Complex number \mathbb{C};
2. Hamilton quaternions \mathbb{H}.

11 Omit.

[^1]
7. Homework 7

7.1. Solutions to 3.2.

1 Omit.
2 It's clear that $r(I)$ is an additive subgroup of R, and for all $r \in R, x \in$ $r(I)$, we have

$$
r x u=r 0=0, \quad \forall u \in I
$$

which implies $r s \in r(I)$.
Remark 7.1.1. Standard notation of $r(I)$ is ann (I), which is called annihilator of ideal ${ }^{3} I$.

3 It's clear that ($R: I$) is an additive subgroup of R, since I is. and for all $r \in R, x \in(R: I)$, we have

$$
r^{\prime}(r x) \in U, \quad \forall r^{\prime} \in R
$$

which implies $r x \in(R: I)$.
Bonus 7.1.1. Show that ${ }^{4}$

$$
(R: I)=\operatorname{ann}(R / I)
$$

Remark 7.1.2. In general we can define

$$
(\mathfrak{a}: \mathfrak{b}):=\{x \in R \mid x \mathfrak{b} \in \mathfrak{a}\}
$$

where $\mathfrak{a}, \mathfrak{b}$ are two ideals of R.
Bonus 7.1.2. Show that

1. $\mathfrak{a} \subseteq(\mathfrak{a}: \mathfrak{b})$
2. $(\mathfrak{a}: \mathfrak{b}) \mathfrak{b} \subseteq \mathfrak{a}$
3. $((\mathfrak{a}: \mathfrak{b}): \mathfrak{c})=(\mathfrak{a}: \mathfrak{b c})=((\mathfrak{a}: \mathfrak{c}): \mathfrak{b})$
4. $\left(\bigcap_{i} \mathfrak{a}_{i}: \mathfrak{b}\right)=\bigcap_{i}\left(\mathfrak{a}_{i}: \mathfrak{b}\right)$
5. $\left(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}\right)=\bigcap_{i}\left(\mathfrak{a}: \mathfrak{b}_{i}\right)$
where $\mathfrak{a}_{i}, \mathfrak{b}_{i}$ are ideals of R.
4 Omit.
5 Omit.
7 Omit.
8 Omit.
9 Omit.
11 Omit.
12 Omit.
13 Omit.
[^2]Remark 7.1.3. Local ring is a quite important object in communicative algebra or algebraic geometry. As what it's called, you can imagine a local ring reprensents a local piece of some geometric objects. Note that we said non-trivial idempotents reflect some disconnectness, and you can imagine a local piece of some geometric objects must be connected, and that's a view to understand the following one:

Bonus 7.1.3. A local ring contains no idempotents $\neq 0,1$.
Later maybe I will show you an operation called localization, it's a technique to construct local rings. In Spec A we know that every point is a prime ideal, and localize A with respect to prime ideal \mathfrak{p} is to focus on local properties of $\operatorname{Spec} A$ at point \mathfrak{p}.
16 Omit.
Remark 7.1.4. Firstly note that for a communicative ring A with identity, we have

Bonus 7.1.4. The nilradical of A is the intersection of all the prime ideals of A.

Thus every prime ideal of A contains our nilradical \mathfrak{N}, which implies as sets we have

$$
\operatorname{Spec} A / \mathfrak{N}=V(\mathfrak{N})=V((0))=\operatorname{Spec} A
$$

In fact you can prove
Bonus 7.1.5. Spec A is homeomorphic to $\operatorname{Spec} A / \mathfrak{N}$ with respect to Zariski topology.

So you may wonder what's the role of nilradical of A, in fact we have:
Bonus 7.1.6. A topological space X is said to be irreducible if $X \neq \varnothing$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that $\operatorname{Spec}(A)$ is irreducible if and only if the nilradical of A is a prime ideal.

Remark 7.1.5. To prove above, you may need to show the complement of $V(f), f \in A$, which is denoted by X_{f}, form a basis of Zariski topology, and note that:

1. $X_{f} \cap X_{g}=X_{f g}$;
2. $X_{f}=\varnothing$ if and only if f is nilpotent.

7.2. Solutions to 3.3.

1 Omit.
2 Omit.
3 Since divisible ring R has no trivial ideal ${ }^{5}$, so kernel of any endomorphism of R must be trivial, which implies it's injective.

[^3]Remark 7.2.1. In particular, any endomorphism of a field must be injective.

5 (a) Since any automorphism f maps 1 to 1 , thus $f(n)$ is determined for all $n \in \mathbb{Z}$, and any element of \mathbb{Q} can be written as $m n^{-1}$, which implies f is identity;
(b) Firstly we need to show for any automorphism f of \mathbb{R}, it's strictly increasing. Indeed, since for all $a \in \mathbb{R}^{+}$we have $f(a)=f^{2}(\sqrt{a})>0$, which implies $f(a)-f(b)>0$ if $a>b$. By the same argument you can show f is also identity on \mathbb{Q}, and for arbitrary irrational number r, you always can find two rational numbers a, b such that $a<r<b$ such that $a-b<\varepsilon$ for arbitrary small $\varepsilon>0$. Then

$$
a<f(r)<b
$$

Take limit $\varepsilon \rightarrow 0$ to obtain $f(r)=r$.
6 Omit.
7 Omit.
12 Omit.

7.3. Solutions to 3.4.

1 Omit.

Remark 7.3.1. In fact, it's localization with respect to S.
Bonus 7.3.1. If $S=A \backslash \mathfrak{p}$, where \mathfrak{p} is a prime ideal of a communicative ring A with identity, show A_{S} is a local ring.
Remark 7.3.2. Standard notation for localization with respect to prime ideal \mathfrak{p} is $A_{\mathfrak{p}}$.
2 It's clear ${ }^{6}$, since the fractional field of a domain R is exactly making all elements without 0 to be invertible.

3

4 Omit.
5 Omit.
6 Omit.
7 Omit.
Remark 7.3.3. In general, localization with respect to a multiplicative closed set S is also unique, since localization has some universal property, and any universal object is unique up to a unique isomorphism.
8 Omit.

[^4]
8. Homework 8

8.1. Solutions to 3.5.

1 Omit.
2 Omit.
3 Omit.
5 If $a+b \sqrt{-1}=(m+n \sqrt{-1})(d+e \sqrt{-1})$, then taking norm we have

$$
p=a^{2}+b^{2}=\left(m^{2}+n^{2}\right)\left(d^{2}+e^{2}\right)
$$

without lose of generality we may assume $m^{2}+n^{2}=1$, that is $m+n \sqrt{-1}$ is a unit in $\mathbb{Z}[\sqrt{-1}]$, which implies $a+b i$ is irreducible.
6
8 Omit.
9 If $p=a b$, where a, b are proper divisor of p, without lose of generality we may assume $p \mid a$, that is $a=p d$, thus

$$
p=p d b
$$

which implies $d b=1$, since R is a domain, a contradiction to b is not unit.
10 Omit.

8.2. Solutions to 3.6.

1 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Let δ be a Euclidean valuation of a domain R, for all $a, b \in R, b \neq 0$, we write it as $a=b q+r$ with $r \neq 0$ and $\delta(r)<\delta(b)$. To see $\varphi=n+\delta$ is a Euclidean valuation, it suffices to see
(a) $n+\delta(r)<n+\delta(b)$;
(b) $n+\delta(a) \leq n+\delta(a b)$.
and it's trivial ${ }^{7}$. You can see $n \delta$ is also an Euclidean valuation by the same way.
7 Omit.
8 Omit.
9 Let $\alpha=a_{1}+a_{2} \sqrt{2}$ and $\beta=b_{1}+b_{2} \sqrt{2}$ be elements of $\mathbb{Z}[\sqrt{2}]$ with $\beta \neq 0$. We wish to show that there exist γ and δ in $\mathbb{Z}[\sqrt{2}]$ such that $\alpha=\gamma \beta+\delta$ and $N(\delta)<N(\beta)$. To that end, note that in $\mathbb{Q}(\sqrt{2})$ we have $\frac{\alpha}{\beta}=c_{1}+c_{2} \sqrt{2}$, where

$$
c_{1}=\frac{a_{1} b_{1}-2 a_{2} b_{2}}{b_{1}^{2}-2 b_{2}^{2}}, \quad c_{2}=\frac{a_{2} b_{1}-a_{1} b_{2}}{b_{1}^{2}-2 b_{2}^{2}}
$$

Let q_{1} be an integer closest to c_{1} and q_{2} an integer closest to c_{2}; then $\left|c_{1}-q_{1}\right| \leqslant 1 / 2$ and $\left|c_{2}-q_{2}\right| \leqslant 1 / 2$. Now let $\gamma=q_{1}+q_{2} \sqrt{2}$; certainly $\gamma \in \mathbb{Z}[\sqrt{2}]$. Next, let $\theta=\left(c_{1}-q_{1}\right)+\left(c_{2}-q_{2}\right) \sqrt{2}$. We have $\theta=\frac{\alpha}{\beta}-\gamma$, so

[^5]that $\theta \beta=\alpha-\gamma \beta$ Letting $\delta=\theta \beta$, we have $\alpha=\gamma \beta+\delta$. It remains to be shown that $N(\delta)<N(\beta)$. To that end, note that
$$
N(\theta)=\left|\left(c_{1}-q_{1}\right)^{2}-2\left(c_{2}-q_{2}\right)^{2}\right| \leqslant\left|\left(c_{1}-q_{1}\right)^{2}\right|+\left|-2\left(c_{2}-q_{2}\right)^{2}\right|
$$
by the triangle inequality. Thus we have
$$
N(\theta) \leqslant\left(c_{1}-q_{1}\right)^{2}+2\left(c_{2}-q_{2}\right)^{2} \leqslant(1 / 2)^{2}+2(1 / 2)^{2}=3 / 4
$$

In particular, $N(\delta) \leqslant \frac{3}{4} N(\beta)$ as desired.
10 Omit.

9. Homework 9

9.1. Solutions to 3.7.

1 Omit.
2 Omit.
3 Omit.
4 It suffices to find an irreducible polynomial in $\mathbb{Z}_{5}[x]$ with degree 5 .
5 Omit.
6 Omit.
Remark 9.1.1. From this exercise one can see if you have an irreducible polynomial of degree d in $\mathbb{Z}_{p}[x]$, you can construct a finite field of order p^{n}. So you may wonder the existence of a given order in \mathbb{Z}_{p} (It's not trivial, since you can't find irreducible polynomial with degree ≥ 3 in $\mathbb{R}[x]$.$) .$

The answer is yes, and even you can write down the number of monic irreducible polynomial of degree n in $\mathbb{Z}_{p}[x]$ as follows

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is Möbius function.
7 If $f g=1$, then consider $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$ implies $\operatorname{deg} f+\operatorname{deg} g=0$, thus $\operatorname{deg} f=\operatorname{deg} g=0$, since the degree of polynomials are non-negative, that is f, g are non-zero constants.
8 Assume $\varphi(x)=g(x)$, where $\operatorname{deg} g=k$, then for arbitrary $f(x)$ with $\operatorname{deg} f=n$, we have $\operatorname{deg} \varphi(f(x))=n k$, which implies polynomials in image of φ must have degree which is a multiply of k. However, φ is surjective, thus $k=1$.
9 Note that $x^{p}+a=(x+a)^{p}$ in $\mathbb{Z}_{p}[x]$.
10 Consider the inclusion of U into fractional field of R.
11 Omit.
12 Omit.

9.2. Solutions to 3.8.

1 Omit.
2 Note that

$$
\mathbb{Z}[x] /\left(2, x^{2}+x+1\right) \cong \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \cong \mathbb{Z}_{4}
$$

3 Note that

$$
\mathbb{Z}[x] /(15, x-7) \cong \mathbb{Z}_{15}[x] /(x-7) \cong \mathbb{Z}_{15}
$$

5 That's exactly Zariski topology, we have encountered before.
6 Omit.
7 Consider $h\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right) g\left(x_{1}, \ldots, x_{n}\right)$. Since for each $\left(a_{1}, \ldots, a_{r}\right)$ such that $g\left(a_{1}, \ldots, a_{n}\right) \neq 0$ we have $f\left(a_{1}, \ldots, a_{n}\right)=0$, which implies $h=0$. Furthermore, since $F\left[x_{1}, \ldots, x_{n}\right]$ is a domain, we have $f=0$.

8 Omit.
9 Omit.
10 Let $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be the inverse of f. Since $f g=1$, then clearly we have $a_{0} b_{0}=1$, thus a_{0} is a unit; Conversely, if a_{0} is a unit, then consider the formal Taylor expansion of $1 / f$ at $x=0$ to conclude.

10. Homework 10

10.1. Solutions to 3.9.

1 Just note that $\mathbb{Z}[x] /(x, m) \cong \mathbb{Z}_{m}$, and \mathbb{Z}_{m} is a field if and only if m is prime.
2 Recall that in textbook we say P is a prime ideal if $a b \in P$, then $a \in P$ or $b \in P$.
(a) If P satisfies the condition in this exercise, then consider ideals $(a),(b)$ generated by a, b, then $a b \in P$ implies $(a)(b) \in P$, then by condition in this exercise one has $(a) \in P$ or $(b) \in P$, that is $a \in P$ or $b \in P$.
(b) If P satisfies the condition in the textbook and $I J \subset P$, assuming $I \subsetneq P$, we can pick $a \in I, a \notin P$, then for all $b \in J$, we have $a b \in P$, which implies $b \in J$, that is $J \subset P$.
3 Omit.
Definition 10.1.1. A communicative ring with unit is called 1-dimension (in the sense of Krull), if every prime ideal is maximal.

So this exercise gives an example of a ring with 1-dimension. In particular, if $n=2$, we have

Bonus 10.1.1. Let R be a communicative ring with unit, and for every $x \in R, x^{2}=x$, then R is called a Boolean ring, and the followings are equivalent:
(a) $2 x=0$ for all $x \in R$;
(b) every prime ideal \mathfrak{p} is maximal, and R / \mathfrak{p} is a field with two elements;
(c) every finitely generated ideal in R is principal.

4 Omit.
Bonus 10.1.2. Find all the maximal ideals of R, where R consists of continous functions defined on open interval $(0,1)$.

5 Omit.
6 Omit.
7 In my notation, \mathfrak{N} denotes the nilradical of a ring and \mathfrak{R} denotes the Jacobson radical of a ring. There is a useful property of \mathfrak{R} :

Bonus 10.1.3. $x \in \mathfrak{R}$ if and only if $1-x y$ is a unit in R for all $y \in R$.
and we have the following properties of polynomial ring:
Bonus 10.1.4. Let R be a communicative ring with unit and let $R[x]$ be the ring of polynomials in an indeterminate x, with coefficients in R. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$. Prove that

1. f is a unit in $R[x] \Leftrightarrow a_{0}$ is a unit in R and a_{1}, \ldots, a_{n} are nilpotent.
2. f is nilpotent $\Leftrightarrow a_{0}, a_{1}, \ldots, a_{n}$ are nilpotent.
3. f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in R such that $a f=0$.
4. f is said to be primitive if $\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(1)$. Prove that if $f, g \in$ $R[x]$, then $f g$ is primitive $\Leftrightarrow f$ and g are primitive.

Now let's solve this exercise: Since we already have $\mathfrak{N} \subseteq \mathfrak{R}$, it suffices to show for any $f \in \mathfrak{R}$, it's nilpotent. Note that by above bonus 10.1.3, we have $1-f g$ is unit for any $g \in R[x]$. Choose g to be x, then by (1) of bonus 10.1.4 we know that all coefficients of f is nilpotent in A, and by (2) of bonus 10.1.4, f is nilpotent. This completes the proof.

8 Assume $\mathfrak{N} \subsetneq \mathfrak{R}$, there exists a non-trivial idempotent e in \mathfrak{R}. Since $e(1-e)=0$, thus $1-e$ is not a unit, a contradiction.
9 Omit.
11 Omit.
Remark 10.1.1. Primary ideal is also an important topic in communicative algebra, and has an interesting geometry explaination in algebraic geometry. Readers are advised to read Atiyah for further readings.

12 Omit.

10.2. Solutions to 4.1.

1 Omit.
2 Omit.
3 Omit.
4 The key point is to note that $\left[F(u): F\left(u^{2}\right)\right] \leq 2$.
5 Omit.
6 Omit.
7 Pick $v \in K \backslash F$, then by definition of $F(u)$ one can write v as

$$
v=\frac{f(u)}{g(u)}
$$

where $f, g \in F[x]$ with $g \neq 0$. Thus we have $f(u)-v g(u)=0$. If $f(x)-v g(x) \equiv 0$, which implies $v \in F$, since coefficients of f, g lie in F, this completes the proof.
8 Omit.
9 Assuming β is algebraic over F, that is $[F(\beta): F]<\infty$, then by exercise 7 one has $[F(\alpha): F(\beta)]<\infty$, then

$$
[F(\alpha): F]=[F(\alpha): F(\beta)][F(\beta): F]<\infty
$$

a contradiction.
10 It's clear β is transcendent over F, otherwise

$$
[F(\alpha, \beta): F]=[F(\alpha, \beta): F(\beta)][F(\beta): F]<\infty
$$

a contradiction to α is transcendent over F. Furthermore, since α is algebraic over $F(\beta)$, then there exists a polynomial

$$
x^{n}+a_{n-1}(\beta) x^{n-1}+\cdots+a_{0}(\beta)
$$

such that α fits it, where $a_{i}(\beta) \in F(\beta)$, that is we can write

$$
a_{i}(\beta)=\frac{f_{i}(\beta)}{g_{i}(\beta)}
$$

where $f_{i}, g_{i} \in F$ and $g \neq 0$. If we multiply above polynomial by $\prod_{i=0}^{n-1} g_{i}(\beta)$, then we obtain a polynomial $f \in F[x, y]$ satisfying $f(\alpha, \beta)=0$, which implies β is algebraic over $F(\alpha)$.

11. Homework 11

11.1. Solutions to 4.2 .

1 Omit.
2 It's clear $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Note that
(a) $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$;
(b) $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}] \neq 2$;
(c) $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}] \mid[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]$

These facts implies $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. In particular, $\mathbb{Q}(\sqrt{2}+\sqrt{3})=$ $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
Remark 11.1.1. In fact, any finite seperable extension is simple extension, that is a field extension generated by one element. This is called primitive element theorem. Although there is a standard, basic proof, later we will use Galois theory to give a neat proof.
3 Omit.
4 For $n=1$, if the minimal polynomial of u is

$$
u^{n}+a_{n-1} u^{n-}+\cdots+a_{1} u+a_{0}
$$

then since a_{0} is a unit, we have

$$
u^{-1}=-a_{0}^{-1}\left(u^{n-1}+\cdots+a_{1}\right)
$$

This follows $F(u)=F[u]$. Then by induction one can show desired result.
5 Omit.
6 Omit.
7 It's clear \mathbb{C} is algebraic closure of \mathbb{R}, since it's algebraic over \mathbb{R}, and it's algebraic closed. Furthermore,
(a) Algebraic closure must contain infinitely many elements, otherwise if algebraic closure E is a finite field, with $|E|=q$, then $x^{q}-x+1$ has no roots in E.
(b) Just note that $[\mathbb{C}: \mathbb{R}]=2$.

8 Omit.
9 Omit.
10 Omit.
$11 E$ is algebraic over \mathbb{R}, since it's finite, thus by exercise 10 we can embed it into \mathbb{C}, which implies $[E: \mathbb{R}] \leq 2$. In particular, if $\mathbb{R} \subsetneq E$, then $[E: \mathbb{R}]=2$.

11.2. Solutions to 4.4.

1 Omit.
2 Omit.
3 Omit.
4 Omit.
5 Omit.
6 Omit.
7 Omit.

11 In fact, we can prove a stronger result, that is $[E: F] \mid n$!. Let's prove by induction on degree of f. It's clear for $\operatorname{deg} f=1$. Now assume $\operatorname{deg} f=n+1$. Let's consider the following cases:
(a) If f is reducible, let p be an irreducible factor of f with degree k, and L the splitting field of p over F. Then E is the splitting field of f / p over L. Note that degree of p and f / p are $\leq n$, then by induction hypothsis one has

$$
[E: F]=[E: L][L: F]|k!\times(n+1-k)!|(n+1)!
$$

(b) Suppose f is irreducible, then consider $L=F[x] /(f) \cong F(\alpha)$, where α is a root of f. It's clear $[L: F]=n+1$. Now consider polynomial $f /(x-\alpha)$ over L, it's clear that E is the splitting field of it. The same argument yields the result.

12. Homework 12

12.1. Solutions to 4.4 .

8 Note that $f(x)$ is irreducible over $\mathbb{Z}_{2}[x]$, then $\mathbb{Z}_{2}[x] /(f(x))$ contains a root u of $f(x)$. Furthermore, note that if $f(u)=0$, then $f(u+1)=0$, thus $\mathbb{Z}_{2}[x] /(f(x))$ contains all roots of $f(x)$, that is it's splitting field of f.
9 The same argument shows $\mathbb{Z}_{3}[x] /(f(x))$ is splitting field of f.
10 It's clear that we must have f is irreducible over \mathbb{Q} and its splitting field is exactly $\mathbb{Q}[x] /(f(x))$, since $[\mathbb{Q}[x] /(f(x)): \mathbb{Q}]=3$. This is equivalent to the discriminant $\sqrt{\Delta}$ of f in \mathbb{Q}.

12.2. Solutions to 4.5 .

2 Omit.
3 For arbitrary $\beta \in F(\alpha)$, we need to show β is a seperable element over F. It suffices to show $F(\beta)$ is seperable over F. Note that $F \subseteq F(\beta) \subseteq F(\alpha)$, then the desired result follows from the following bonus.

Bonus 12.2.1. Let $F \subseteq E \subseteq K$ be field extensions, if K / F is a seperable extension, then $K / E, E / F$ are seperable.

9 Omit.
10 If F is a perfect field, then it's clear every finite extension E of F is seperable, since any element of E fits a irreducible polynomial, and every irreducible polynomial of F is seperable; Conversely, if $F \neq F^{p}$, then there exists $u \in F \backslash F^{p}$, then $x^{p}-u$ is irreducible, but not seperable over F, a contradiction.
11 Omit.
12 Omit.

12.3. Solutions to $\mathbf{4 . 6}$.

1 Let $\mathbb{Z}_{p} \subset F$ be prime subfield of F, then for arbitrary $a \in \mathbb{Z}_{p}$, one has

$$
(\alpha+a)^{p}-(\alpha+a)-c=\alpha^{p}+a^{p}-\alpha-a-c=\alpha^{p}-\alpha-c=0
$$

which implies $\alpha+a$ is a root of $x^{p}-x-c=0$. Thus we obtain p roots of it, and it contains at most p root since its degree is p, which implies $F(\alpha)$ is the splitting field.

Remark 12.3.1. $x^{p}-x-c$ is called Artin-Schreier polynomial, now try to prove:

Bonus 12.3.1. If $x^{p}-x-c$ has no roots in F, then $x^{p}-x-c$ is irreducible.
2 Omit.
3 Omit.
5 Since E is finite normal extension of F, then it's the splitting field of some $f \in F[x]$. Then
(a) If we regard f as a polynomial in $K[x]$, its splitting field is also E;
(b) If $\eta: K / F \rightarrow E / F$ is an injective homomorphism, then E is also the splitting of $\eta(f)$.

This shows $\eta: K / F \rightarrow \eta(K) / F$ can be extended to $E / F \rightarrow E / F$.
6 Omit.
8 Just note that every finite field is the splitting field of some polynomial, and finite extension of a finite field is also a finite field.
9 Omit.

13. Homework 13

13.1. Solutions to $\mathbf{4 . 7}$.

1 There are many ways to show $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, and any element in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ can be written as $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})$, so it's clear to see subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ are $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6})$.
Remark 13.1.1. Note that $\operatorname{Gal}(\sqrt{2}, \sqrt{3} / \mathbb{Q})$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and there are three subgroups of index 2 , so by Galois correspondence you can also find all subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Bonus 13.1.1. Show

$$
\mathbb{Q}\left(\sqrt{p}_{1}+\cdots+\sqrt{p}_{k}\right)=\mathbb{Q}\left(\sqrt{p}_{1}, \cdots, \sqrt{p}_{k}\right)
$$

where $p_{i}, i=1, \ldots, k$ are primes.
2 All roots of $x^{4}+1$ are $\left\{\sqrt[4]{-1}, \xi_{4} \sqrt[4]{-1}, \xi_{4}^{2} \sqrt[4]{-1}, \xi_{4}^{3} \sqrt[4]{-1}\right\}$, where ξ_{4} is exactly i. Note that

$$
\sqrt[4]{-1}=e^{\frac{\pi i}{4}}=\frac{(1+i) \sqrt{2}}{2}
$$

Then the splitting field of $x^{4}+1$ are $\mathbb{Q}(\sqrt{2}, i)$, and it's clear Galois group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
3 Omit.
4 Omit.
5 Note that in \mathbb{Z}_{3} one has

$$
x^{4}+2=\left(x^{2}+1\right)(x+1)(x-2)
$$

which implies its Galois group is \mathbb{Z}_{2}.
6 We have already seen for Artin-Schreier polynomial, if α is its root, then it's splitting field is $F(\alpha)$, and Bonus 12.3 .1 says it's irreducible ${ }^{8}$. Then the Galois group is \mathbb{Z}_{p}.

[^6]
14. Homework 14

14.1. Solutions to 4.8 .

1 Oimt.
Remark 14.1.1. A field F is called a perfect field, if $F=F^{p}$, where $p=\operatorname{char} F$. So this exercise says any finite field is perfect field.
Bonus 14.1.1. A field F is perfect if and only if any irreducible polynomial in $F[x]$ is seperable.

2 Omit.
4 Omit.
10 Omit.

14.2. Solutions to 4.9 .

1 If F contains n-th primitive root ω, then $x^{n}-1$ has no multiple root, since $1, \omega, \ldots, \omega^{n-1}$ are different roots of it, thus $n x^{n-1} \neq 0$, which implies if char $F \neq 0$, then char $F \neq n$.
2 We divide into two parts:
(a) It's clear E / K is Galois, with Galois group $\operatorname{Gal}(E / K)$, which is abelian, since any subgroup of abelian group is still abelian. So E / K is an abelian extension;
(b) Note that K / F is Galois if and only if $\operatorname{Gal}(E / K)$ is a normal subgroup of $\operatorname{Gal}(E / F)$, and it's clear any subgroup of abelian group is normal, thus K / F is Galois. Furthermore it's Galois group is $\operatorname{Gal}(E / F) / \operatorname{Gal}(E / K)$, which implies K / F is abelian extension, since any quotient group of abelian group is still abelian;
3 Just the same as above.

15. Homework 15

15.1. Solutions to 4.9 .

4 It suffices to show if z is a n-th primitive root of unity, then $-z$ is a $2 n$-th primitive root of unit, since cyclotomic polynomial is the product of these roots. Let $z=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$ is n-th primitive root of unity, thus $(k, n)=1$. Note that

$$
\begin{aligned}
-z & =\cos \left(\frac{2 k \pi}{n}+\pi\right)+i \sin \left(\frac{2 k \pi}{n}+\pi\right) \\
& =\cos \frac{2(2 k+n) \pi}{2 n}+i \sin \frac{2(2 k+n) \pi}{2 n}
\end{aligned}
$$

So if we want to show $-z$ is a $2 n$-th primitive root, it suffices to show $(2 k+n, 2 n)=1$.
5 Omit.
6 It's isomorphic to Aut \mathbb{Z}_{12}, and by previous result we have it's $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
7 I think it's the same as Exercise 1 of 4.9.

15.2. Solutions to $\mathbf{4 . 1 0}$.

1 Omit.

2 Omit.
3 Note that Cayley's theorem says any finite group is a subgroup of S_{n} for some $n \in \mathbb{Z}_{>0}$, and for each $n \in \mathbb{Z}_{>0}$, there exists an irreducible polynomial with S_{n} as its Galois group, then Galois correspondence theorem completes the proof.
4 Omit.

References

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P.R. China,

Email address: liubw22@mails.tsinghua.edu.cn

[^0]: ${ }^{1}$ A semi-homomorphism of ring must be a homomorphism or anti-homomorphism.

[^1]: ${ }^{2}$ Here I mean the dimension as a \mathbb{R}-vector space.

[^2]: ${ }^{3}$ I'm quite confused why textbook uses U to denote an ideal, standard notations for ideals are I, J or $\mathfrak{a}, \mathfrak{b}$.
 ${ }^{4}$ Almost trivial.

[^3]: ${ }^{5}$ So do I.

[^4]: ${ }^{6}$ However, you need to check by definition.

[^5]: ${ }^{7}$ A quite boring problem.

[^6]: ${ }^{8}$ I don't think it's trivial, though answer in textbook says that.

