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0. Preface

0.1. About this lecture.

0.2. To readers. This note is divided into several parts:

(1) In the First part, we firstly introduce connections on a vector bundle E
in different viewpoints. Holding a connection on E, one can construct
connection on its dual bundle E∗, tensor product E ⊗ E∗ and so on.
When E is chosen to be tangent bundle equipped with a Riemannian
metric, there is a unique connection which is compatible with metric
and torsion-free, which is called Levi-Civita connection.

A section of tensor products of tangent bundle with its dual bundle is
called a tensor, and tensor computation is a powerful tool of Riemann-
ian geometry, so we collect some basic properties and operations about
tensor in section 2.

However, tensor computation may be quite complicated in general.
To give a neat local computation for tensor, we introduce geodesic in
section 3 in order to introduce normal coordinate. By the way we also
introduce Hopf-Rinow’s theorem about completeness.

(2) The Second part is about curvature. We introduce curvature using
two different views: curvature form and curvature tensor and prove
Bianchi identities in these two views. We also introduce Ricci identity
for tensor, which is a crucial step in Bochner’s technique. In the end we
introduce some other important curvatures such as sectional curvature,
Ricci curvature and scalar curvature.

(3) The Third part is about Bochner’s technique, which is one of the most
important techniques in modern Riemannian geometry. Holding this
technical, we can see how does bounded Ricci curvature appear as an
obstruction to the existence of Killing fields and harmonic 1-forms.
Aside these, we also introduce Hodge theory, which allows us to use
harmonic 1-forms to represent elements in the first homology group.
Then Bochner’s technique gives a kind of vanishing theorem.

(4) The goal of Fourth part is to solve the following question: “Given
two points p, q, what’ the length-minimizing curve connecting p, q in
a Riemannian manifold?”. To answer this, we consider the arc-length
functional, and
(a) First variation formula implies geodesics are critical points of arc-

length functional.
(b) Second variation formula implies if a geodesic contains no interior

conjugate points, then it’s locally minimum of arc-length functional.
Along the way we develop the tools of index form and Jacobi fields,
which are also quite important in the following parts.

(5) The Fifth part generalizes geodesic and Hessian of smooth function to
some extent. In this part we define what is second fundamental form,
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and when a smooth map between Riemannian manifold is harmonic
map. Finally, we consider its variation and Bochner’s formula.

(6) The Sixth part introduces how does curvature condition control the
topology of the whole manifold. We mainly consider the following three
cases:
(a) A Riemannian manifold M with non-positive sectional curvature is

K(π1(M), 1), that is M is covered by Rn. A fact in topology says
if a finite dimensional CW complex is a K(G, 1) space for some
group G, we must have G is torsion-free. Here Cartan’s torsion-free
theorem gives a neat proof of this fact by using deck transformations
and some basic facts about Lie group action. Furthermore, π1(M)
deserves many other interesting properties:

I Preissmann’s theorem says if M is compact with negative sec-
tional curvature, then any non-trivial Abelian subgroup of
π1(M) is isomorphic to Z and π1(M) itself is not abelian.

II Byers’ theorem says more: if M is compact with negative
sectional curvature, then any non-trivial solvable subgroup of
π1(M) is isomorphic to Z.

(b) A Riemannian manifold with curvature lower bounded is also quite
interesting.

I Myers’ theorem says a Riemannian manifold with positive
Ricci curvature is compact, and with finite fundamental group.
However, it’s meaningless to consider what will happen if
Ricci curvature is upper bounded, since every Riemannian n-
manifold admits a complete metric with Ric < 0 if n ≥ 3.

II Synge’s theorem says a little about fundamental group of Rie-
mannian manifold M with positive sectional curvature and
even dimension: If it’s orientable, then it’s simply-connected,
otherwise π1(M) = Z2.

(c) Finally, a celebrated theorem of Hopf implies every Riemannian
manifold with constant sectional curvature is covered by three basic
models, which are called space forms.

(7) The Seventh part is also about curvature, but it shows how to use
comparison in curvatures to obtain comparison in other objects, such as
length, metrics, volume and Hessian or Laplacian operators. A philos-
ophy is that the “larger” curvature is, the “smaller” other thing is. It
also gives us some rigidity theorem, an interesting result is that Cheng’s
theorem.
(a) If (M, g) be a Riemannian n-manifold with Ric(g) ≥ (n − 1)kg for

some constant k > 0, then Myers’ theorem implies diam(M) ≤
π/

√
k. If diam(M) = π/

√
k, then Cheng’s theorem says (M, g) is

isometric to Sn(1/
√
k) with standard metric.
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0.3. Some notations and conventions.
0.3.1. Conventions.
1. Einstein summation is always used.
2. Unless otherwise specified, we always work with the category of smooth

(real) manifolds which are connected.

0.3.2. Notations about smooth manifolds.
1. M is used to denote a smooth manifold, and x ∈M denotes its point.
2. TM and Ωk

M are used to denote tangent bundle and bundle of k-forms
over M respectively.

3. Ωk
M (E) is used to denote bundle of k-forms over M valued E.

4. v is used to denote vector in tangent space.
5. X is used to denote a vector field on M , and Xx denotes the value of X

at point x ∈M .
6. α is used to denote a k-form on M , and αx denotes the value of α at

point x ∈M .
7. For a vector bundle E over M , C∞(E,M) is used to denote its sections.
8. X(M) is used to denote the set of all vector fields on M .
9. ∂f

∂xi or ∂if is used to denote the partial derivative of a smooth function
f : Rn → R with respect to xi, where {xi}ni=1 is a coordinate of Rn.

0.3.3. Notations about Riemannian manifolds.
1. (M, g) is used to denote a Riemannian manifold, that is a smooth mani-

fold M together with a Riemannian metric g.
2. 〈-, -〉g is used to denote a Riemannian metric g, or directly 〈-, -〉 if there

is no ambiguity.
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Part 1. Basic settings
1. Connections

The notion of connection holds significant importance in the realm of
geometry of vector bundle, encompassing a multitude of perspectives for
comprehension. In this section, we present a comprehensive analysis, which
can be further divided into three distinct components:
(1) In the first section, we will introduce one approach to connection in two

different ways, the first one is often used in complex geometry, and the
second is given in [Car92].

(2) In the second section, we will put more restrictions on our connection,
such as compatibility with metric and torsion-free.

(3) In the third section, we introduce the Levi-Civita connection, which is
the unique connection such that it’s torsion-free and compatible with
given metric.

1.1. Two different viewpoints to connection.
1.1.1. First viewpoint. When I first learn Riemannian geometry or complex
geometry, I’m quite confused about why we need connection, and why we
define it like this? In fact, given a vector bundle π : E →M , connections on
E are arisen to take ‘‘derivative” of a section s : M → E in a given direction.
It’s quite natural to ask such a question, since when we learn calculus, we
already know how to take derivative of a smooth function f : M → Rm to
obtain a 1-form, that is a section of T ∗M . In another point of view, any
smooth function f : M → Rm can be regarded as a section of trivial vector
bundle M × Rm, as follows

x 7→ (x, f(x))

we can also regard its derivative df as a section of T ∗M ⊗ (M × Rm), so
taking derivative can be seen as the following operator:

∇ : C∞(M,M × Rm) → C∞(M,T ∗M ⊗ (M × Rm))

In general, we can define a connection as follows.
Definition 1.1.1 (connection). A connection ∇ on a vector bundle E on a
smooth manifold M is a linear operator

∇ : C∞(M,E) → C∞(M,T ∗M ⊗ E)

satisfying Leibniz rule ∇(fs) = df ⊗ s+ f∇s, where s ∈ C∞(M,E).
Remark 1.1.1 (local form). Let {eα} be a local frame of E. For any section
s of E written as sαeα, Leibniz rule implies

∇(sαeα) = dsαeα + sα∇eα
Thus ∇ is determined by

∇eα = ωβ
αeβ

where ωβ
α are 1-forms, which forms a 1-form valued matrix ω.
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1.1.2. Second viewpoint. The following is the definition given in [Car92].

Definition 1.1.2 (connection). A connection ∇ on a vector bundle E on a
smooth manifold M is a mapping

∇ : C∞(M,TM)× C∞(M,E) → C∞(M,E)

(X, s) 7→ ∇Xs

satisfying the following properties:
(1) ∇fX+gY s = f∇Xs+ g∇Y s
(2) ∇X(s+ s′) = ∇Xs+∇Xs

′

(3) ∇X(fs) = f∇Xs+X(f)s

where X,Y ∈ C∞(M,TM), f, g ∈ C∞(M) and s, s′ ∈ C∞(M,E).

Remark 1.1.2 (local form). Let { ∂
∂xi } and {eα} be local frames of TX and

E respectively. For vector field X and a section s of E locally written as
X = Xi ∂

∂xi and e = sαeα, one has

∇Xs = ∇Xi ∂

∂xi
sαeα

= Xi∇ ∂

∂xi
sαeα

= Xisα∇ ∂

∂xi
eα +Xi∂s

α

∂xi
eα

= Xisα∇ ∂

∂xi
eα +X(sα)eα

If we write ∇ ∂

∂xi
sα = Γβ

iαeβ, then

∇Xs = (XisαΓβ
iα +X(sβ))eβ

Then Γβ
iα, which is sometimes called Christoffel symbol, completely deter-

mines connection ∇.

Remark 1.1.3 (The equivalence between two definitions). Locally a con-
nection in Definition 1.1.1 is a 1-form valued matrix ω, and write it as
ωβ
α = Γβ

jαdx
j . Then

∇eα = ωβ
αeβ

= Γβ
iαdx

ieβ

So if we want to define ∇ ∂

∂xi
eα, ∇eα need to “eat” a vector field, and luckily

dxj can eat one, so we can define it as follows

∇ ∂

∂xi
eα :=Γβ

jαdx
j(

∂

∂xi
)eβ

=Γβ
iαeβ

From this we can see these two definitions are same.
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Remark 1.1.4 (connection and covariant derivative). Some authors may also
use terminology “covariant derivative”, here we make a clarification: Here
we give two definitions of connection ∇ on a vector bundle E. Given a
section s of E and a vector field X, we call ∇Xs the covariant derivative of
s with respect to X. In fact, you can see connection and covariant derivative
the same thing, just different terminology.

1.2. Compatibility and torsion-free.

1.2.1. Compatibility with metric. Now consider a vector bundle E with a
metric g, which can be locally written as gαβeα ⊗ eβ. So if there is a con-
nection ∇ on E, it’s natural to ask it to be compatible with our metric.

Definition 1.2.1 (compatibility). A connection ∇ on vector bundle E is
compatible with metric g, if for any two section s, t of E, we have

dg(s, t) = g(∇s, t) + g(s,∇t)

Remark 1.2.1 (local form). Let {eα} be a local frame of E. Direct compu-
tation shows

dgαβ = dg(eα, eβ)

= g(∇eα, eβ) + g(eα,∇eβ)
= ωγ

αgγβ + gαγω
γ
β

So in matrix notation we have1

dg = ωg + gωt

In particular, we have
∂

∂xi
gαβ = Γγ

iαgγβ + Γγ
iβgαγ

for all i, α, β.

1.2.2. Torsion-free. Now let’s consider connection on tangent bundle of a
Riemannian manifold (M, g).

Definition 1.2.2 (torsion-free). A connection ∇ of TM is torsion-free if
∇XY −∇YX = [X,Y ]

where X,Y are vector fields.

Remark 1.2.2 (local form). If we choose X = ∂
∂xi , Y = ∂

∂xj , then we have

∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xj

∂

∂xi
= (Γk

ij − Γk
ji)

∂

∂xk

= 0

which is equivalent to say Γk
ij is symmetric in i and j.

1Here we need to pay more attention, although as a number gαγω
γ
β = ωγ

βgαγ , we can
not write this matrix notation as dg = ωg + ωgt, since ωγ

βgγα is (β, α)-entry of ωgt, but
dgαβ and gαγω

γ
β are (α, β)-entries of gωt.
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1.3. Levi-Civita connection. There are infinitely many connections on
tangent bundle of a Riemannian manifold, but an interesting thing is that
there is only one of them which is both compatible with Riemannian metric
and torsion-free.

It suffices to see a connection which is compatible with metric and torsion-
free is completely determined, in other words, Γk

ij is completely determined.
Note that compatibility implies

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX)

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

where X,Y and Z are vector fields. Adding first two equations, subtract
the third one and use torsion-free condition, we will see
Xg(Y, Z)+Y g(Z,X)−Zg(X,Y ) = g([X,Z], Y )+g([Y, Z], X)+g([X,Y ], Z)+2g(Z,∇YX)

thus

g(Z,∇YX) =
1

2
(Xg(Y, Z)+Y g(Z,X)−Zg(X,Y )−g([X,Z], Y )−g([Y, Z], X)−g([X,Y ], Z))

which implies ∇XY is uniquely determined. Above formula is also called
Koszul formula.

Remark 1.3.1 (local form). Note that compatibility implies
∂gij
∂xk

= Γl
kiglj + Γl

kjgil

By permuting i, j, k we obtain the following two equations
∂gjk
∂xi

= Γl
ijglk + Γl

ikgjl

∂gki
∂xj

= Γl
jkgli + Γl

jigkl

By the symmetry of Γl
ij in i, j and symmetry of gij , we have

2Γl
ijglk =

∂gkj
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

If we use (gij) to denote the inverse matrix of (gij), then we have

Γl
ij =

1

2
gkl(

∂gkj
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)

which implies Christoffel symbol is completely determined by Riemannian
metric and its partial derivatives.
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2. Induced connections

2.1. Transpose. In this section we collect some notations about transpose
we will use later.

2.1.1. Transpose by duality. Let V be a vector space with dual vector space
V ∗ and {eα} be a basis of V with dual basis {eα}. For B = Bβ

αeα ⊗ eβ ∈
V ∗ ⊗ V , there is a natural way to define its transpose BT by the following
pairing

(Beα, e
β) = (eα, B

T eβ)

where (-, -) is dual pairing. This shows
Bβ

α = (BT )βα

which implies
BT = (BT )βαeβ ⊗ eα = Bβ

αeβ ⊗ eα ∈ V ⊗ V ∗

2.1.2. Transpose by metric. Let S,Q be two Euclidean vector spaces and
{eα}, {tβ} be orthonormal basis of S,Q respectively. For B = Bβ

αeα ⊗ tβ ∈
S∗ ⊗Q, its transpose BT ∈ Q∗ ⊗ S, given by

〈Beα, tβ〉Q = 〈eα, BT tβ〉S
where 〈-, -〉 are inner products on S,Q. This shows

Bβ
α = (BT )αβ

which implies
BT = (BT )αβ t

β ⊗ eα = Bβ
αt

β ⊗ eα

Remark 2.1.1. The reason for Einstein summation fails is that here we choose
orthonormal basis of S and Q, and there are some kronecker symbols we
omit.
2.2. Induced connections. Given a vector bundle E over a smooth man-
ifold M , you can construct many new vector bundles by algebraic method,
such as considering its dual bundle E∗, tensor product E ⊗ E and so on.
Now let’s see if we already have a connection on E, how to construct some
new connections on new vector bundles.

2.2.1. Induced connection on dual bundle. Let E be a vector bundle equipped
with connection ∇E . The induced connection on dual bundle E∗ is defined
as follows

d(s, t) = (∇E∗
s, t) + (s,∇Et)

where s, t are sections of E∗ and E respectively, and (-, -) denotes the dual
pairing. Suppose {eα} is a local frame of E with dual frame {eα}. Then

0 = ((ω∗)αγ e
γ , eβ) + (eα, ωγ

βeγ)

where ω and ω∗ are connection 1-forms of ∇E and ∇E∗ respectively. This
shows

(ω∗)αβ + ωα
β = 0
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This shows
ω∗ = (ω∗)αβeα ⊗ eβ = −ωα

β eα ⊗ eβ

that is ω∗ = −ωT .

Remark 2.2.1 (another viewpoint of torsion-free). Let ∇ be a connection on
TM , given by Christoffel symbol Γk

ij . Then induced connection on T ∗M is
given by

∇dxk = −Γk
ijdx

i ⊗ dxj

Given a section s of T ∗M , there is a natural 2-form obtained from taking ex-
terior derivative ds, and note that

∧2 T ∗M is just the skew-symmetrization
of T ∗M ⊗ T ∗M , so it’s natural to require the skew-symmetrization of ∇s is
ds. Locally it’s equivalent to skew-symmetrization of ∇dxk = 0, that is,

−Γk
ijdx

i ∧ dxj = 0

This shows torsion-free if and only if the skew-symmetrization of ∇s is ds.

2.2.2. Induced connection on tensor product. Let E,F be two vector bundles
equipped with connection ∇E ,∇F respectively. The induced connection on
E ⊕ F is given by

∇E⊗F (s⊗ t) := ∇Es⊗ t+ s⊗∇F t

where s, t are sections of E,F respectively.

2.2.3. Induced connection on wedge product. Let E be a vector bundle equipped
with connection ∇. There is an induced connection on

∧2E since it’s a sub-
bundle of

⊗2E. To be explicit

∇∧2E(s ∧ t) :=∇⊗2E(s⊗ t− t⊗ s)

=∇s⊗ t+ s⊗∇t−∇t⊗ s− t⊗∇s
=∇s ∧ t+ s ∧∇t

where s, t are sections of E.

Remark 2.2.2. In general case, there is an induced connection on ⊗kE given
by

∇⊗kE(s1 ⊗ · · · ⊗ sk) =
k∑

i=1

s1 ⊗ · · · ⊗ ∇si ⊗ · · · ⊗ sk

where s1, . . . , sk are sections of E. Its restriction on
∧k E gives a connection

on
∧k E, that is,

∇⊗kE(s1 ∧ · · · ∧ sk) =
k∑

i=1

s1 ∧ · · · ∧ ∇si ∧ · · · ∧ sk
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2.2.4. Induced connection on endomorphism bundle. Let E be a vector bun-
dle equipped with connection ∇E , there is an induced connection ∇ on
EndE, since we have EndE ∼= E ⊗ E∗. Suppose {eα} is a local frame of E
with dual frame {eα}. For section s of E⊗E∗ locally written as s = sαβeα⊗eβ,
direct computation shows

∇E⊗E∗
(sαβeα ⊗ eβ) = dsαβeα ⊗ eβ + sαβ(∇Eeα ⊗ eβ + eα ⊗∇E∗

eβ)

= dsαβeα ⊗ eβ + sαβω
γ
αeγ ⊗ eβ − sαβω

β
γ eα ⊗ eγ

= (dsαβ + sαβω
γ
α − ωβ

γ s
α
β)eα ⊗ eβ

Thus in matrix notation we have
∇s = ds+ sω − ωs

Remark 2.2.3. There is another way to construct a connection on E ⊗ E∗:
For any section s of E ⊗ E∗, we have a function s(eα, eβ), the induced
connection on E ⊗ E∗ is defined as

ds(eα, eβ) = ∇E⊗E∗
s(eα, eβ) + s(∇E∗

eα, eβ) + s(eα,∇Eeβ)

Locally if we write s = sαβeα ⊗ eβ, then
d(sαβ) = (∇s)αβ + s(−ωα

γ e
γ , eβ) + s(eα, ωγ

βeγ)

= (∇s)αβ − sγβω
α
γ + ωγ

βs
α
γ

which implies connections obtained from these two ways are same. In fact,
we will use this way to define induced connections of arbitrary tensor.
2.3. Induced connections on tensor. Let M be a smooth manifold.
Definition 2.3.1 (tensor). A section of

⊗s TM⊗
⊗r T ∗M is called a (s, r)-

tensor.
Example 2.3.1. A smooth function f is a (0, 0)-tensor.
Example 2.3.2. A vector field X is a (1, 0)-tensor.
Example 2.3.3. A 1-form ω is a (0, 1)-tensor.
Example 2.3.4. The Riemannian metric g is a (0, 2)-tensor.
Definition 2.3.2. For a (s, r)-tensor T , ∇T is a (s, r + 1)-tensor locally
defined by

∇T (dxj1 , . . . , dxjs , ∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
) :=

∂

∂xi
T (dxj1 , . . . , dxjs ,

∂

∂xi1
, . . . ,

∂

∂xir
)

−
s∑

l=1

T (dxj1 , . . . ,∇ ∂

∂xi
dxjl , . . . , dxjs ,

∂

∂xi1
, . . . ,

∂

∂xir
)

−
r∑

m=1

T (dxj1 , . . . , dxjs ,
∂

∂xi1
, . . . ,∇ ∂

∂xi

∂

∂xim
, . . . ,

∂

∂xir
)

Definition 2.3.3 (parallel tensor). A tensor T is called parallel if ∇T = 0.
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Definition 2.3.4 (covariant derivative of tensor). For a (s, r)-tensor T , the
covariant derivative of T with respect to vector field X is a (s, r)-tensor
locally defined by

∇XT := ∇T (dxj1 , . . . , dxjs , X, ∂

∂xi1
, . . . ,

∂

∂xir
)

Remark 2.3.1 (local form). If we write a (s, r)-tensor T locally as

T j1...js
i1...ir

∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs
⊗ dxi1 ⊗ · · · ⊗ dxir

and (s, r + 1)-tensor ∇T locally as

∇iT
j1...js
i1...ir

∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs
⊗ dxi ⊗ dxi1 ⊗ · · · ⊗ dxir

then by definition we have

∇iT
j1...js
i1...ir

=
∂T j1...js

i1...ir

∂xi
+

s∑
l=1

Γjl
iqT

j1...jl−1qjl+1...js
i1...ir

−
r∑

m=1

Γq
iim
T j1...js
i1...im−1qim+1...ir

Example 2.3.5. Consider (0, 0)-tensor f , that is a smooth function. Then
∇f is a (0, 1)-tensor, given by

∇f = ∇ifdx
i

by definition ∇if = ∂f
∂xi , it coincides with our usual notations.

Notation 2.3.1. For a smooth function f : M → R, the following notations
are same in Riemannian geometry:
(1) ∂f

∂xi

(2) ∂if
(3) ∇if

Any of them denotes the partial derivatives of f with respect to ∂
∂xi .

Inductively, we can define ∇2T to be ∇(∇T ), which is a (s, r+2)-tensor,
and locally write it as

∇2T = ∇2
k,iT

j1...js
i1...ir

∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs
⊗ dxk ⊗ dxi ⊗ dxi1 ⊗ · · · ⊗ dxir

Now there is a natural question: ∇2
k,iT is a (s, r)-tensor, and ∇k∇iT is also

a (s, r)-tensor, what’s the difference between them?

Example 2.3.6. For (0, 0)-tensor f , by definition we have ∇2f is ∇(∇ifdx
i),

which is called the Hessian of f , denoted by Hess f . More explicitly
Hess f = ∇(∇ifdx

i)

=
∂∇if

∂xk
dxk ⊗ dxi −∇if · Γi

kjdx
k ⊗ dxj

=

(
∂2f

∂xk∂xi
− Γj

ki

∂f

∂xj

)
dxk ⊗ dxi
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This shows
∇2

k,if =
∂2f

∂xk∂xi
− Γj

ki

∂f

∂xj

On the other hand
∇k∇if =

∂2f

∂xk∂xi

So in general, ∇2
k,if 6= ∇k∇if . However, later we will see by using normal

coordinate, at a point p we can always assume ∇2
k,if(p) = ∇k∇if(p).

Proposition 2.3.1.
∇2

k,iT
j1...js
i1...ir

= ∇k∇iT
j1...js
i1...ir

− Γj
ki∇jT

j1...js
i1...ir

Proof. Direct computation shows

∇2
k,iT

j1...js
i1...ir

=∇2T (dxj1 , . . . , dxjs ,
∂

∂xk
,
∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
)

=∇ ∂

∂xk
∇T (dxj1 , . . . , dxjs , ∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
)

=
∂

∂xk
∇T (dxj1 , . . . , dxjs , ∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
)︸ ︷︷ ︸

part I

−∇T (dxj1 , . . . , dxjs ,∇ ∂

∂xk

∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
)︸ ︷︷ ︸

part II

−
s∑

l=1

∇T (dxj1 , . . . ,∇ ∂

∂xk
dxjl , . . . , dxjs ,

∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xir
)︸ ︷︷ ︸

part III

−
r∑

m=1

∇T (dxj1 , . . . , dxjs , ∂

∂xi
,
∂

∂xi1
, . . . ,∇ ∂

∂xk

∂

∂xim
, . . . ,

∂

∂xir
)︸ ︷︷ ︸

part IV

Note that
(1) Part I+III+IV is ∇k∇iT

j1...js
i1...ir

.
(2) Part II is Γj

ki∇jT
j1...js
i1...ir

.
□

Remark 2.3.2 (another viewpoint of compatibility). Note that Riemannian
metric g is a (0, 2)-tensor in fact and the definition of compatibility is for
any vector fields X,Y, Z we have

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

On the other hand, by definition of ∇g we have
∇Zg(X,Y ) = Zg(X,Y )− g(∇ZX,Y )− g(X,∇ZY )

which shows that compatibility is equivalent to ∇g = 0.
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2.4. Type change of tensor. In general, for a (s, r)-tensor, we can change
its type into any type of (s − k, r + k) for all k such that s − k ≥ 0, r +
k ≥ 0, since TM is canonically isomorphic to T ∗M , which is called music
isomorphism. More explicitly, for any vector field X, it gives a 1-form by

X♭ : Y 7→ g(X,Y )

where Y is a vector field. Locally we have

g(
∂

∂xi
, Y ) = g(

∂

∂xi
, dxj(Y )

∂

∂xj
)

= dxj(Y )g(
∂

∂xi
,
∂

∂xj
)

= gijdx
j(Y )

that is ( ∂
∂xi )

♭ = gijdx
j of T ∗M . Similarly, for any 1-form ω, it can be

regarded as a section of TM = T ∗∗M as follows

ω♯ : β 7→ g(ω, β)

and locally we have

g(dxj , β) = g(dxj , β(
∂

∂xi
)dxi)

= β(
∂

∂xi
)gij

that is (dxj)♯ = gij ∂
∂xi . In a summary, we have the so-called music isomor-

phism locally looks like

[ : TM → T ∗M

∂

∂xi
7→ gijdx

j

] : T ∗M → TM

dxj 7→ gij
∂

∂xi

Example 2.4.1. For a smooth function f , ∇f is a (0, 1)-tensor, locally
written as

∇f =
∂f

∂xi
dxi

Then we can change its type into (1, 0), that is2

∇f = gij
∂f

∂xi
∂

∂xj

More generally, for a 1-form ω, locally looks like ωidx
i, we can change it

into a (1, 0)-tensor locally looks like

ω♯ = gijωi
∂

∂xj

2Sometimes the (1, 0)-type of ∇f is called gradient of f .
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Example 2.4.2 (Induced metric on T ∗M). Recall that a Riemannian metric
g is a (0, 2)-tensor, locally written as

g = gijdx
i ⊗ dxj

Then we can change its type into (2, 0), that is

gijg
ikgjl

∂

∂xk
⊗ ∂

∂xl
= δkj g

jl ∂

∂xk
⊗ ∂

∂xl
= gkl

∂

∂xk
⊗ ∂

∂xl

that is a metric on T ∗M .

2.5. Induced metric on tensor. If g is a Riemannian metric, then its
(2, 0)-type is a metric on T ∗M . Now we can induce a metric on T ∗M ⊗
T ∗M as follows: Take two (0, 2)-tensors T, S and write them locally as
T = Tijdx

i ⊗ dxj , S = Skldx
k ⊗ dxl. Then

g(T, S) = TijSklg(dx
i ⊗ dxj , dxk ⊗ dxl)

:= TijSklg
ikgjl

Remark 2.5.1. In general we also have induced metric on
⊗k T ∗M , and on

Ωk
M , which will be used later in Hodge theory.

Proposition 2.5.1. If connection ∇ on vector bundle T ∗M is compatible
with metric g on it, then induced connection on T ∗M ⊗ T ∗M is compatible
with induced metric g on it.

Proof. It suffices to check
∂

∂xm
g(dxi⊗dxj , dxk⊗dxl) = g(∇ ∂

∂xm
dxi⊗dxj , dxk⊗dxl)+g(dxi⊗dxj ,∇ ∂

∂xm
dxk⊗dxl)

By compatibility of ∇ and g, we have
∂gij

∂xk
= −Γi

klg
lj − Γj

klg
il

Thus direct computation shows
∂

∂xm
g(dxi ⊗ dxj , dxk ⊗ dxl) = −(Γi

mng
nk + Γk

mng
in)gjl − gik(Γj

mng
nl + Γl

mng
jn)

g(∇ ∂
∂xm

dxi ⊗ dxj , dxk ⊗ dxl) = −Γi
mng

nkgjl − Γj
mng

ikgnl

g(dxi ⊗ dxj ,∇ ∂
∂xm

dxk ⊗ dxl) = −Γk
mng

ingjl − Γl
mng

ikgjn

This yields the desired result. □

2.6. Trace of tensor. Let’s see a simple example: For a (1, 1)-tensor T ,
we can define its “trace”, since there is a natural isomorphism between
TM ⊗T ∗M and End(TM), and we can take its trace in the sense of matrix.
To be explicit, if we locally write T as T = T i

j
∂
∂xi ⊗ dxj , then trace of T ,

denoted by trg T , is defined as T i
i . If T is not in (1, 1)-type, then we change

it into (1, 1)-type and then take trace:
(1) If T = Tijdx

i ⊗ dxj , then T = gikTij
∂

∂xk ⊗ dxj . Thus trg T = gijTij .
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(2) If T = T ij ∂
∂xi ⊗ ∂

∂xj , then T = gkjT
ij ∂

∂xi ⊗ dxk, that is, trg T = gijT
ij .

In general, if a tensor of type (r, s) with r + s = 2n, we can change its type
into (n, n) and take trace n times to obtain a number. Later we will see we
obtain Ricci curvature by taking trace of curvature, and we obtain scalar
curvature by taking trace of Ricci curvature.

Remark 2.6.1 (scalar Laplacian). For a smooth function f : M → R, ∇2f is
a (0, 2)-form, locally looks like

∇2
i,jfdx

i ⊗ dxj

Then its trace looks like
trg ∇2f = gij∇2

i,jf

That’s called scalar Laplacian of f , denoted by ∆f .

Remark 2.6.2. If g is induced metric on (0, 2)-tensor, then for any (0, 2)-
tensor T , we have

g(g, T ) = g(gijdx
i ⊗ dxj , Tkldx

k ⊗ dxl)

= gijTklg
ikgjl

= δkj g
jlTkl

= gklTkl

= trg T

Proposition 2.6.1 (magic formula). For a (0, 2)-tensor T , we have
X(trg T ) = g(g,∇XT )

Proof. From above remark we can see trg T = g(g, T ). This completes the
proof since ∇ is compatible with metric. □
Remark 2.6.3 (local form). Locally we have

∇i(g
jkTjk) = gjk(∇iTjk)

that is, gjk can “pass through” taking covariant derivative which is called
“magic formula”.
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3. Geodesic and normal coordinate

In this section we always assume (M, g) is a Riemannian manifold equipped
with Levi-Civita connection ∇.

3.1. Geodesic.
Definition 3.1.1 (geodesic). A smooth curve γ : (−ε, ε) → M is called a
geodesic, if for each local coordinate {xi}, it satisfies

d2γk

dt
+

dγi

dt

dγj

dt
Γk
ij ◦ γ = 0

where γi = xi ◦ γ.
Remark 3.1.1. In Section 10, we will give a definition of geodesic by using
pullback connection.
Theorem 3.1.1. For any p ∈M, v ∈ TpM , there exists ε > 0 and a geodesic
γ : (−ε, ε) →M such that

γ(0) = p

γ′(0) = v

Moreover, any two such geodesics agree on their common domain.
Proof. It follows from standard result in ODEs’ theory. □
Remark 3.1.2. Note that standard result in ODEs’ theory only guarantees
the short time existence of geodesic. If we use I to denote the maximal
interval such that γ can be defined on it, then in general I 6= R.
Notation 3.1.1. For v ∈ TpM , γv denotes the unique geodesic such that
γ(0) = p and γ′(0) = v.
Lemma 3.1.1. For each p ∈M, v ∈ TpM and c, t ∈ R, one has

γcv(t) = γv(ct)

whenever either side is defined.
Proof. It’s clear by uniqueness. □
Definition 3.1.2. For any p ∈M , Vp is a subspace of TpM defined by

Vp := {v ∈ TpM | γv(1) is defined}
Remark 3.1.3. From Lemma 3.1.1, v ∈ Vp if |v| < ε for sufficiently small
ε > 0.
Definition 3.1.3 (exponential map). For p ∈ M , the exponential map at
point p is the map

expp : Vp →M

v 7→ γv(1)

Theorem 3.1.2. The exponential map expp maps a neighborhood 0 ∈ TpM
diffeomorphically onto a neighborhood of p ∈M .
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Proof. Note that
(d expp)0 : T0(TpM) → TpM

and if we identify T0(TpM) with TpM by using 0 + tv 7→ v, then (d expp)0
then becomes a linear map from TpM to itself. By inverse function theorem,
it suffices to check (d expp)0 is an identity map. For all v ∈ TpM , direct
computation shows

(d expp)0(v)
(1)
=

d

dt

∣∣∣∣
t=0

expp(0 + tv)

=
d

dt

∣∣∣∣
t=0

γtv(1)

=
d

dt

∣∣∣∣
t=0

γv(t)

= γ′v(0)

= v

where (1) holds from our identification T0(TpM) ∼= TpM and definition of
differential. □
Definition 3.1.4 (geodesic ball). For p ∈ M , if B(0, δ) is a ball in TpM
such that expp is a diffeomorphism on B(0, δ), then B(p, δ) := expp(B(0, δ))
is called a geodesic ball centered at p.
Theorem 3.1.3 (normal coordinate). For each p ∈ M , there exists a local
coordinate centered at p such that gij(0) = δij , which is called normal
coordinate.
Proof. Let { ∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
} be an orthonormal basis of TpM with respect

to Riemannian metric g, and fix the following linear isomorphism
Φ: TpM → Rn

vi
∂

∂xi

∣∣∣∣
p

7→ (v1, . . . , vn)

By Theorem 3.1.2 there exists a neighborhood U of p (for example, the
geodesic ball) which is mapped by Φ◦ exp−1

p diffeomorphically onto a neigh-
borhood of 0 ∈ Rn, so (Φ ◦ exp−1

p , U, p) gives a local coordinate centered at
p. Let ei denote (0, . . . , 1︸︷︷︸

i−th

, . . . , 0) ∈ Rn. Then

gij(0) = 〈d(expp ◦Φ−1)0ei, d(expp ◦Φ−1)0ej〉p
(1)
= 〈(d expp)0

∂

∂xi

∣∣∣∣
p

, (d expp)0
∂

∂xj

∣∣∣∣
p

〉p

(2)
= 〈 ∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

〉p

(3)
= δij
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where
(1) holds from Φ is a linear map, and thus dΦ−1 = Φ−1.
(2) holds from Theorem 3.1.2.
(3) holds from our choice of { ∂

∂xi

∣∣
p
}.

□

Theorem 3.1.4. In normal coordinate (xi, U, p)

Γk
ij(0) = 0

Proof. For arbitrary v = (v1, . . . , vn) ∈ Rn, γ(t) = expp(tΦ
−1(v)) is a geo-

desic with γ(0) = p and γ′(0) = Φ−1(v). In normal coordinate (xi, U, p) one
has γ(t) = (tv1, . . . , tvn), so geodesic equation is given by

Γk
ij(tv)v

ivj = 0

By Evaluating this expression at t = 0 one has Γk
ij(0)v

ivj = 0 for arbitrary
index k, and take v = 1

2(ei + ej) to conclude Γk
ij(0) = 0 for all i, j, k. □

Corollary 3.1.1. In normal coordinate (xi, U, p), the Taylor expansion of
gij around zero is

gij(x) = δij +O(|x|2)

Proof. It follows from
∂gij
∂xk

= Γl
ki(0)glj(0) + Γl

kj(0)gil(0) = 0

□

3.2. Arts of computation. Tensor computation is one of the hallmarks
of Riemannian geometry, but sometimes there is a way to avoid some com-
plicated computations if you don’t want to do it. In this section we collect
some useful tools which provide a neat to way to compute.

The philosophy is that if we want to prove an identity of tensors, it suffices
to check it pointwisely. Note that zero tensor is independent of the choice
of coordinates, so we may use the normal coordinate centered at this point,
since by Theorem 3.1.3, one has

xi(p) = 0

gij(p) = δij

Γk
ij(p) = 0

Example 3.2.1. For a (s, r)-tensor T , from Proposition 2.3.1 one has

∇2
k,iT

j1...js
i1...ir

= ∇k∇iT
j1...js
i1...ir

under normal coordinate. In particular, Hessian of a smooth function f
can be written as ∇k∇ifdx

k ⊗ dxi at a point , which is relatively easier to
compute.
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Proposition 3.2.1. Let (M, g) be a Riemannian manifold with Levi-Civita
connection ∇ and { ∂

∂xi } be a local frame of TM with dual basis {dxi}. Then

d = gijdxi ∧∇ ∂

∂xj

Proof. Firstly note that exterior derivative is independent of the choice of
coordinates, and direct computation also shows gijdxi ∧ ∇ ∂

∂xj
is also inde-

pendent of the choice of coordinates. Now it suffices to compute in normal
coordinate, that is to show d = dxi∧∇ ∂

∂xi
. For arbitrary k-form ω, without

lose of generality we may write it as fdx1 ∧ · · · ∧ dxk. Then
dxi ∧∇ ∂

∂xi
ω = dxi ∧∇ ∂

∂xi
(fdx1 ∧ · · · ∧ dxk)

= dxi ∧ ∂f

∂xi
dx1 ∧ · · · ∧ dxk

=
∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ dxk

= dω

□
3.3. Hopf-Rinow’s theorem. In this section, we endeavor to determine
the conditions under which the exponential map is defined for the entire
tangent space TpM .

Definition 3.3.1 (geodesically complete). A Riemannian manifold M is
geodesically complete if for all p ∈ M , the exponential map expp is defined
on the whole TpM .

At this stage it’s convenient to introduce a distance function on a Rie-
mannian manifold M which is not necessarily geodesic complete as follows:
For p, q ∈M , consider all the piecewise smooth curves joining p and q. Since
M is connected, such curves always exist (cover a continuous curve joining
p and q by a finite number of coordinates neighborhood and replace each
piece contained in a coordinate neighborhood by a smooth one).

Definition 3.3.2 (distance). Let (M, g) be a Riemannian manifold, p, q ∈
M , the distance between p and q is defined by the infimum of the lengths of
all piecewise smooth curves joining p and q, denoted by dist(p, q).

Proposition 3.3.1. The topology induced by distance function on M co-
incides with the original topology on M .

Proof. See Proposition 2.6 in Page146 of [Car92]. □
Theorem 3.3.1 (Hopf-Rinow). Let (M, g) be a Riemannian manifold and
p ∈M . The following statements are equivalent.
(1) M is geodesically complete.
(2) The closed and bounded sets of M are compact.
(3) M is complete as a topological space.
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In addition, any of statements above implies that for any p, q ∈ M , there
exists a geodesic joining p and q with length dist(p, q).

Proof. See Theorem 2.8 in Page146 of [Car92]. □
Remark 3.3.1. (2) is equivalent to (3) is a basic fact in general topology.

Definition 3.3.3 (complete). A Riemannian manifold is called complete, if
it’s geodesically complete, or it’s complete as a topological space.

Corollary 3.3.1. Any compact Riemannian manifold is complete.
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Part 2. Curvature
4. Riemannian Curvature

4.1. Curvature form. Let (M, g) be a Riemannian manifold with connec-
tion ∇ of a vector bundle E over M . Now we’re going to extend connection
to something called exterior derivative3 defined on sections of vector bundle
valued k-forms as follows

d∇ : C∞(M,Ωk
M ⊗ E) → C∞(M,Ωk+1

M ⊗ E)

ω ⊗ e 7→ dω ⊗ e+ (−1)kω ∧∇e

Suppose {eα} is a local frame of E, then

(d∇)2(sαeα) = d∇(dsα ⊗ eα + sαωβ
α ⊗ eβ)

= −dsα ∧ ωβ
α ⊗ eβ + d(sαωβ

α)⊗ eβ − sαωβ
α ∧ ωγ

β ⊗ eγ

= sα(dωβ
α − ωγ

α ∧ ωβ
γ )⊗ eβ

(d∇)2(eα) = d∇(ωβ
α ⊗ eβ)

= dωβ
α ⊗ eβ − ωβ

α ∧∇eβ
= dωβ

α ⊗ eβ − ωβ
α ∧ ωγ

β ⊗ eγ

= (dωβ
α − ωγ

α ∧ ωβ
γ )⊗ eβ

This shows smooth functions commutes with (d∇)2. In fact, it’s a tensor
property, which implies
(1) (d∇)2(eα) completely determines (d∇)2 locally, thus we can say (d∇)2

locally looks like dω − ω ∧ ω.
(2) (d∇)2 is a global section of Ω2

M ⊗ EndE, that is, it’s compatible with
change of basis. Indeed, for two local frames e, ẽ such that ẽ = ge, we
will see

g(d∇)2e = (d∇)2ge

= (d∇)2ẽ

= (dω̃ − ω̃ ∧ ω̃)ẽ
= (dω̃ − ω̃ ∧ ω̃)ge

which implies

g−1(dω̃ − ω̃ ∧ ω̃)g = dω − ω ∧ ω

In general case, for s ∈ C∞(M,Ωk
M ⊗E), locally written as s = sαeα, where

sα is a k-form, direct computation still yields

(d∇)2(sαeα) = sα ∧ (d∇)2(eα)

3Just like exterior derivative learnt in calculus.
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Definition 4.1.1 (curvature form). Let E be a vector bundle over M
equipped with connection ∇, there exists a section Θ ∈ C∞(M,Ω2

M ⊗
EndE), called curvature form, such that

(d∇)2s = Θ ∧ s
for all s ∈ C∞(X,Ωk

M ⊗ E).

Remark 4.1.1 (local form). Suppose {eα} is a local frame of E and write
Θ = Θβ

αeβ ⊗ eα, where
Θβ

α = Ωβ
ijαdx

i ∧ dxj

Then Θ = dω − ω ∧ ω shows
Θβ

ijαdx
i ∧ dxj = Θβ

α

= dωβ
α − ωγ

α ∧ ωβ
γ

= d(Γβ
iαdx

i)− (Γγ
iαdx

i) ∧ (Γβ
jγdx

j)

= (−∂jΓβ
iα − Γγ

iαΓ
β
jγ)dx

i ∧ dxj

that is Θβ
ijα = −(∂jΓ

β
iα + Γγ

iαΓ
β
jγ).

Remark 4.1.2. In physicists’ language, a connection is a “field”, the curvature
is the “strength” of the field, and choosing a local frame is called “fixing the
gauge”. The reason for these names comes from H. Weyl’s work, rewriting
Maxwell’s equations.

4.2. Curvature tensor. Let M be a smooth manifold, E a vector bundle
over M equipped with connection ∇, in [Car92], the curvature of a connec-
tion ∇ is defined as follows:

R : C∞(M,TM)× C∞(M,TM)× E → E

(X,Y, s) 7→ R(X,Y )s

where R(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s.

Proposition 4.2.1. The curvature R has tensorial property.

Remark 4.2.1 (local form). Suppose {eα} is a local frame of E, and write
R = Rβ

ijαdx
i ⊗ dxj ⊗ eα ⊗ eβ

Note that
∇ ∂

∂xi
∇ ∂

∂xj
eα = ∇ ∂

∂xi
(Γβ

jαeβ)

= ∂iΓ
β
jαeβ + Γβ

jαΓ
γ
iβeγ

= (∂iΓ
β
jα + Γγ

jαΓ
β
iγ)eβ

Thus
Rβ

ijαeβ = (∂iΓ
β
jα − ∂jΓ

β
iα + Γγ

jαΓ
β
iγ − Γγ

iαΓ
β
jγ)eβ

or in other words,
Rβ

α = (∂iΓ
β
jα − ∂jΓ

β
iα + Γγ

jαΓ
β
iγ − Γγ

iαΓ
β
jγ)dx

i ⊗ dxj
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Recall that our curvature form Ω is a section of Ω2
M ⊗ EndE, and you can

regard it as a section of T ∗M ⊗ T ∗M ⊗ EndE, that is

Θβ
α = (−∂jΓβ

iα − Γγ
iαΓ

β
jγ)dx

i ∧ dxj

= (∂iΓ
β
jα − ∂jΓ

β
iα + Γγ

jαΓ
β
iγ − Γγ

iαΓ
β
jγ)dx

i ⊗ dxj

So if you regard curvature form as a tensor, then it’s exactly curvature tensor
we defined here.

If we take E to be tangent bundle, then curvature tensor R is a (1, 3)-
tensor, locally looks like

Rr
ijkdx

i ⊗ dxj ⊗ dxk ⊗ ∂

∂xr

However, we always use its (0, 4) type, that is

Rijkl = grlR
r
ijk

Now let’s give a more explicit expression about Rijkl. Direct computation
shows

Rijkl = R(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
)

= 〈∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk
,
∂

∂xl
〉

= ∂i〈∇ ∂

∂xj

∂

∂xk
,
∂

∂xl
〉 − 〈∇ ∂

∂xj

∂

∂xk
,∇ ∂

∂xi

∂

∂xl
〉 − (∂j〈∇ ∂

∂xi

∂

∂xk
,
∂

∂xl
〉 − 〈∇ ∂

∂xi

∂

∂xk
,∇ ∂

∂xj

∂

∂xl
〉)

= ∂i〈∇ ∂

∂xj

∂

∂xk
,
∂

∂xl
〉 − ∂j〈∇ ∂

∂xi

∂

∂xk
,
∂

∂xl
〉︸ ︷︷ ︸

part I

+ 〈∇ ∂

∂xi

∂

∂xk
,∇ ∂

∂xj

∂

∂xl
〉 − 〈∇ ∂

∂xj

∂

∂xk
,∇ ∂

∂xi

∂

∂xl
〉︸ ︷︷ ︸

part II

For part II, we have
grs(Γ

r
ikΓ

s
jl − Γr

jkΓ
s
il)

For part I, note that

∂i(Γ
r
jkgrl) = ∂i(

1

2
grs(∂jgks + ∂kgjs − ∂sgjk)grl)

= ∂i(
1

2
δsl (∂jgks + ∂kgjs − ∂sgjk))

=
1

2
∂i(∂jgkl + ∂kgjl − ∂lgjk)

Thus we have part I is

∂i(Γ
r
jkgrl)− ∂j(Γ

r
ikgrl) =

1

2
(∂i∂kgjl + ∂j∂lgik − ∂i∂lgjk − ∂j∂kgil)

So we have an explicit expression for Rijkl

Rijkl =
1

2
(∂i∂kgjl + ∂j∂lgik − ∂i∂lgjk − ∂j∂kgil) + grs(Γ

r
ikΓ

s
jl − Γr

jkΓ
s
il)
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From this expression, we can see in general curvature depends on second
order partial derivatives of metric. Furthermore, there are some (skew)
symmetries of Rijkl listed as follows:
(1) Rijkl = −Rjikl.
(2) Rijkl = −Rijlk.
(3) Rijkl = Rklij .

4.3. Curvature of induced connections.

4.3.1. Curvature form of induced connection on dual bundle. Let E be a
vector bundle over a smooth manifold M , equipped with connection ∇ with
curvature Θ, and Θ∗ is curvature form of induced connection on E∗. Suppose
{eα} is a local frame of E with dual frame {eα}, then

(Θ∗)αβ = d(ω∗)αβ − (ω∗)βγ ∧ (ω∗)γα

= −dωα
β − ωβ

γ ∧ ωγ
α

= −dωα
β + ωγ

α ∧ ωβ
γ

= −Θα
β

Thus
Θ∗ = (Θ∗)αβeα ⊗ eβ = −Θα

βeα ⊗ eβ

that is Θ∗ = −ΘT .

4.3.2. Curvature form of induced connection on tensor product. Let E be
a vector bundles over a smooth manifold M , equipped with connection ∇
with curvature Θ. Suppose {eα} is a local frame of E, here we define

⊗ : C∞(M,Ωp
M ⊗ E)× C∞(M,Ωq

M ⊗ E) → C∞(M,Ωp+q
M ⊗ E ⊗ E)

(sαeα, t
βeβ) 7→ sα ∧ tβeα ⊗ eβ

Then for s ∈ C∞(M,Ωp
M ⊗ E), t ∈ C∞(M,Ωq

M ⊗ E), direct computation
shows

∇E⊗E(s⊗ t) =∇E⊗E(sα ∧ tβeα ⊗ eβ)

=d(sα ∧ tβ)eα ⊗ eβ + (−1)p+qsα ∧ tβ(∇eα ⊗ eβ + eα ⊗∇eβ)

=(dsα ∧ tβ + (−1)psα ∧ dtβ)eα ⊗ eβ + (−1)p+qsα ∧ tβ(∇eα ⊗ eβ + eα ⊗∇eβ)

=(dsα ∧ tβeα ⊗ eβ + (−1)p+qsα ∧ tβ∇eα ⊗ eβ)

+ (−1)psα ∧ dtβeα ⊗ eβ + (−1)p+qsα ∧ tβeα ⊗∇eβ
=(dsα ∧ tβeα ⊗ eβ + (−1)psα ∧∇eα ⊗ t) + (−1)p{s⊗ dtβeβ + (−1)qs⊗ (tβ ∧∇eβ)}
=∇s⊗ t+ (−1)ps⊗∇t
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Then curvature of ∇E⊗E can be computed as

(d∇
E⊗E

)2(s⊗ t) = d∇
E⊗E

(∇s⊗ t+ s⊗∇t)
(1)
= Θs⊗ t−∇s⊗∇t+∇s⊗∇t+ s⊗Θt

= Θs⊗ t+ s⊗Θt

where (1) holds from above computation. This shows

ΘE⊗E = Θ⊗ id+ id⊗Θ

In general case, by induction one can show

Θ⊗kE =
k∑

i=1

id⊗ · · · ⊗ Θ︸︷︷︸
i-th

⊗ · · · ⊗ id

4.3.3. Curvature form of induced connection on wedge product. Let E be
a vector bundles over a smooth manifold M , equipped with connection ∇
with curvature Θ. Suppose {eα} is a local frame of E, here we define

∧ : C∞(M,Ωp
M ⊗ E)× C∞(M,Ωq

M ⊗ E) → C∞(M,Ωp+q
M ⊗ ∧2E)

(sαeα, t
βeβ) 7→ sα ∧ tβeα ∧ eβ

By definition, for s ∈ C∞(M,Ωp
M ⊗ E), t ∈ C∞(M,Ωq

M ⊗ E) one has

s ∧ t = sα ∧ tβeα ∧ eβ
= sα ∧ tβ(eα ⊗ eβ − eβ ⊗ eα)

= s⊗ t− (−1)pqt⊗ s

Thus

∇∧2E(s ∧ t) :=∇E⊗E(s⊗ t− (−1)pqt⊗ s)

=∇s⊗ t+ (−1)ps⊗∇t− (−1)pq{∇t⊗ s+ (−1)qt⊗∇s}

=∇s⊗ t− (−1)(p+1)qs⊗ t+ (−1)p{s⊗∇t− (−1)p(q+1)∇t⊗ s}
=∇s ∧ t+ (−1)ps ∧∇t

Remark 4.3.1. In general case, by induction one can show

∇∧kE(s1 ∧ · · · ∧ sk) =
k∑

i=1

(−1)p1+···+pi−1s1 ∧ · · · ∧ ∇si ∧ · · · ∧ sk

where si ∈ C∞(M,Ωpi
M ⊗ E). Now let’s show curvature of ∇∧kE

4.3.4. Curvature form of induced connection on determinant. Let E be a
vector bundle of rank r over a smooth manifoldM , equipped with connection
∇ with curvature Θ, there is an induced connection on canonical line bundle
detE, since detE =

∧r E. In this case ΘdetE ∈ C∞(X,Ω2
M ), now we’re
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going to show ΘdetE = trE Θ. By tensorial of curvature form, it suffices to
check on local frame {eα}, and

ΘdetE(eα1 ∧ · · · ∧ eαr) =

n∑
i=1

eα1 ∧ · · · ∧ΘEeαi ∧ · · · ∧ eαr

=
n∑

i=1

eα1 ∧ · · · ∧ (Rβ
ijαi

dxi ⊗ eβ) ∧ · · · ∧ eαr

= Rα
ijαdx

i ⊗ eα1 ∧ · · · ∧ eαr

= trE Θ⊗ eα1 ∧ · · · ∧ eαr

This yields the desired result.

4.4. Ricci identity for tensor.
Theorem 4.4.1 (Ricci identity). Let (M, g) be a Riemannian manifold and
T a (s, r)-tensor, locally written as T j1...js

i1...ir
∂

∂xj1
⊗· · ·⊗ ∂

∂xjs ⊗dxi1 ⊗· · ·⊗dxir .
Then

∇2
k,iT

j1...js
i1...ir

−∇2
i,kT

j1...js
i1...ir

=
s∑

l=1

Rjl
kiqT

j1...jl−1qjl+1...js
i1...ir

−
r∑

m=1

Rq
kiim

T j1...js
i1...im−1qim+1...ir

Proof. Without lose of generality, we may choose normal coordinate, by
Proposition 2.3.1 and Remark 2.3.1, one has
∇2

k,iT
j1...js
i1...ir

= ∇k∇iT
j1...js
i1...ir

= ∇k(
∂T j1...js

i1...ir

∂xi
+

s∑
l=1

Γjl
iqT

j1...jl−1qjl+1...js
i1...ir

−
r∑

m=1

Γq
iim
T j1...js
i1...im−1qim+1...ir

)

=
∂2T j1...js

i1...ir

∂xk∂xi
+

s∑
l=1

∂Γjl
iq

∂xk
T
j1...jl−1qjl+1...js
i1...ir

−
r∑

m=1

∂Γq
iim

∂xk
T j1...js
i1...im−1qim+1...ir

This completes the proof, since in normal coordinate one has

Rl
ijk =

∂Γl
jk

∂xi
−
∂Γl

ik

∂xj

□
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5. Bianchi identities

There are two famous Bianchi identities in Riemannian geometry, in
[Car92] they are stated as follows
(1) First Bianchi identity: R(X,Y, Z,W )+R(Y, Z,X,W )+R(Z,X, Y,W ) =

0.
(2) Second Bianchi identity: ∇XR(Y, Z,W,R)+∇YR(Z,X,W,R)+∇ZR(X,Y,W,R) =

0.

5.1. First Bianchi. Locally we have first Bianchi identity as

Rijkl +Rjkil +Rkijl = 0

In order to compute we use (1, 3) type as follows

Rr
ijk +Rr

jki +Rr
kij = 0

since we have
Rr

ijk = ∂iΓ
r
jk − ∂jΓ

r
ik︸ ︷︷ ︸

part I

+Γs
jkΓ

r
is − Γs

ikΓ
r
js︸ ︷︷ ︸

part II

(1) For the first part, if we permute i, j, k, we have

∂iΓ
r
jk − ∂jΓ

r
ik + ∂jΓ

r
ki − ∂kΓ

r
ji + ∂kΓ

r
ij − ∂iΓ

r
kj = 0

since Γr
ij = Γr

ji by torsion-free.
(2) For the second part, if we permute i, j, k, we have

Γs
jkΓ

r
is − Γs

ikΓ
r
js + Γs

kiΓ
r
js − Γs

jiΓ
r
ks + Γs

ijΓ
r
ks − Γs

kjΓ
r
is = 0

by the same reason.
Thus, we obtain first Bianchi identity, which is just a consequence of torsion-
free.

Remark 5.1.1. If we consider connection on arbitrary vector bundle E, there
is no first Bianchi identity, since eα is just a section of E, not a section of
TM , so R(eα, -) or R(-, eα) is nonsense.

5.2. Second Bianchi. In fact, we can write second Bianchi identity for
arbitrary vector bundle E as follows

∇XR(Y, Z, s, t) +∇YR(Z,X, s, t) +∇ZR(X,Y, s, t) = 0

where s, t ∈ C∞(M,E) and X,Y, Z ∈ C∞(M,TM). That is to say

∇iRjkαβ +∇jRkiαβ +∇kRijαβ = 0

holds for arbitrary indices.
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5.2.1. The first approach. To prove it, for convenience we consider normal
coordinate. Then

∇ ∂

∂xi
g(∇ ∂

∂xj
∇ ∂

∂xk

∂

∂xl
−∇ ∂

∂xk
∇ ∂

∂xj

∂

∂xl
,
∂

∂xm
) =g(∇ ∂

∂xi
∇ ∂

∂xj
∇ ∂

∂xk

∂

∂xl
−∇ ∂

∂xi
∇ ∂

∂xk
∇ ∂

∂xj

∂

∂xl
,
∂

∂xm
)

By permuting i, j, k we have

∇ ∂

∂xi
∇ ∂

∂xj
∇ ∂

∂xk

∂

∂xl
−∇ ∂

∂xi
∇ ∂

∂xk
∇ ∂

∂xj

∂

∂xl

+∇ ∂

∂xj
∇ ∂

∂xk
∇ ∂

∂xi

∂

∂xl
−∇ ∂

∂xj
∇ ∂

∂xi
∇ ∂

∂xk

∂

∂xl

+∇ ∂

∂xk
∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xl
−∇ ∂

∂xk
∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xl

=R(
∂

∂xi
,
∂

∂xj
)∇ ∂

∂xk

∂

∂xl
+R(

∂

∂xj
,
∂

∂xk
)∇ ∂

∂xi

∂

∂xl
+R(

∂

∂xk
,
∂

∂xi
)∇ ∂

∂xj

∂

∂xl

=0

This completes the computation of second Bianchi identity.

5.2.2. The second approach. From another approach, recall that our curva-
ture form Θ is a section of Ω2

M ⊗EndE, which can be written as Θα
βeα ⊗ eβ

locally. According to Section 2.2.4, ∇Θ can be written as
∇Θ = dΘ+Θ ∧ ω − ω ∧Θ

However, ∇Θ = 0, since
∇Θ = dΘ+Θ ∧ ω − ω ∧Θ

= d(dω − ω ∧ ω) + (dω − ω ∧ ω) ∧ ω − ω ∧ (dω − ω ∧ ω)
= d2ω − dω ∧ ω + ω ∧ dω + dω ∧ ω − ω ∧ ω ∧ ω − ω ∧ dω + ω ∧ ω ∧ ω
= 0

If we back to local form, we have
dΘβ

α +Θγ
α ∧ ωβ

γ − ωγ
α ∧Θβ

γ = 0

More explicitly, if we write Θβ
α = Ωβ

ijαdx
i ∧ dxj , we obtain

(∂kΘ
β
ijα +Θγ

ijαΓ
β
kγ − Γγ

kαΘ
β
ijγ)dx

k ∧ dxi ∧ dxj = 0

In other words
∂kΘ

β
ijα +Θγ

ijαΓ
β
kγ − Γγ

kαΘ
β
ijγ

+∂iΘ
β
jkα +Θγ

jkαΓ
β
iγ − Γγ

iαΘ
β
jkγ

+∂jΘ
β
kiα +Θγ

kiαΓ
β
jγ − Γγ

jαΘ
β
kiγ = 0

Note that 2Θβ
ijα = Rβ

ijα, and

∇kR
β
ijα = ∂kR

β
ijα + Γβ

kγR
γ
ijα − Γγ

kαR
β
ijγ

So ∇Θ = 0 locally looks like
∇kR

β
ijα +∇iR

β
jkα +∇jR

β
kiα = 0
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This shows two Bianchi identities are same.
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6. Other curvatures

6.1. Sectional curvature. Closely related to Riemannian curvature is sec-
tional curvature that we’re going to define, which is used to characterize a
two-dimensional subspace of tangent space.

Fix p ∈ M and let x, y are two linearly independent tangent vectors in
TpM . Then sectional curvature for these two vectors are defined as

Kp(x, y) =
R(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2

In order to show it’s an invariant defined for a two-dimensional subspace,
we need to check if spanR{x, y} = spanR{z, w}, then

Kp(x, y) = Kp(z, w)

Indeed, if we write {
z = ax+ by

w = cx+ dy

Then by symmetry and skew symmetry properties of R we have
R(z, w,w, z) = R(ax+ by, cx+ dy, cx+ dy, ax+ by)

= R(ax, dy, dy, ax) +R(ax, dy, cx, by) +R(by, cx, dy, ax) +R(by, cx, cx, by)

= a2d2R(x, y, y, x)− abcdR(x, y, y, x)− abcdR(x, y, y, x) + b2c2R(x, y, y, x)

= (ad− bc)2R(x, y, y, x)

And by the same computations we have
g(z, z)g(w,w)− g(z, w)2 = (ad− bc)2{g(x, x)g(y, y)− g(x, y)2}

Thus
Kp(x, y) = Kp(z, w)

So the following definition is well-defined:

Definition 6.1.1 (sectional curvature). The sectional curvature Kp(σ) for
two-dimensional subspace σ ⊆ TpM is defined as

Kp(σ) := Kp(x, y)

where {x, y} is a basis of σ.

Definition 6.1.2 (isotropic). A Riemannian manifold (M, g) is called isotropic,
if for each point p ∈M , the sectional curvature Kp(σ) is independent of σ.

Definition 6.1.3 (constant sectional curvature). A Riemannian manifold
(M, g) has constant sectional curvature, if Kp(σ) is constant for arbitrary
σ ⊆ TpM,p ∈M .

Remark 6.1.1. By definition, we can see if a Riemannian manifold has con-
stant sectional curvature. Then it must be isotropic. Conversely, if the
dimension of a Riemannian manifold ≥ 3. Then isotropic is equivalent to
constant sectional curvature, see Corollary 7.1.1.
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Lemma 6.1.1.

−6R(X,Y, Z,W ) =
∂2

∂s∂t

∣∣∣∣
s=t=0

{R(X + sZ, Y + tW, Y + tW,X + sZ)

−R(X + sW, Y + tZ, Y + tZ,X + sW )}
where X,Y, Z,W are vector fields.

Proof. It suffices to compute coefficients of st of R(X + sZ, Y + tW, Y +
tW,X + sZ) and exchange Z with W to obtain coefficients of st of R(X +
sW, Y + tZ, Y + tZ,X + sW ).

It’s easy to see coefficients of st of R(X + sZ, Y + tW, Y + tW,X + sZ) is
R(Z,W, Y,X) +R(Z, Y,W,X) +R(X,W, Y, Z) +R(X,Y,W,Z)

So coefficients of st of R(X + sZ, Y + tW, Y + tW,X + sZ) is
R(W,Z, Y,X) +R(W,Y,Z,X) +R(X,Z, Y,W ) +R(X,Y, Z,W )

Thus the right hand of our desired identity is
−4R(X,Y, Z,W )−(R(Y, Z,W,X)+R(W,Y,Z,X))−(R(W,X, Y, Z)+R(W,Y,Z,X))

By first Bianchi identity we have
R(Y, Z,W,X) +R(W,Y,Z,X) = R(Y, Z,W,X) +R(Z,X,W, Y )

= R(X,Y, Z,W )

R(W,X, Y, Z) +R(W,Y,Z,X) = R(Y, Z,W,X) +R(Z,X,W, Y )

= R(X,Y, Z,W )

This completes the proof. □
Notation 6.1.1. For convenience, we use R0(X,Y, Z,W ) to denote

R0(X,Y, Z,W ) = g(X,W )g(Y, Z)− g(X,Z)g(Y,W )

where X,Y, Z,W are vector fields. Then we can write sectional curvature
as

Kp(σ) =
R(x, y, y, x)

R0(x, y, y, x)

where σ ⊆ TpM is spanned by x, y.

Proposition 6.1.1. A Riemannian manifold has constant sectional curva-
ture Kp at point p ∈M if and only if R = KpR0, where Kp is a constant(may
depend on p), R is curvature tensor.

Proof. If R = KpR0. Then for an arbitrary x, y, we have

Kp(x, y) =
R(x, y, y, x)

R0(x, y, y, x)
= Kp

Conversely, if K(σ) is constant at point p ∈M , that is for arbitrary x, y we
have

R(x, y, y, x)

R0(x, y, y, x)
= Kp
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If we denote
F (s, t) = R(x+ sz, y + tw, y + tw, x+ sz)−R(x+ sw, y + tz, y + tz, x+ sw)

F0(s, t) = R0(x+ sz, y + tw, y + tw, x+ sz)−R0(x+ sw, y + tz, y + tz, x+ sw)

we still have F (s, t) = KpF0(s, t). By Lemma 6.1.1, we have

R(x, y, z, w) = −1

6

∂2

∂s∂t

∣∣∣∣
s=t=0

F (s, t)

and it’s easy to see

R0(x, y, z, w) = −1

6

∂2

∂s∂t

∣∣∣∣
s=t=0

F0(s, t)

This completes the proof. □
Corollary 6.1.1. A Riemannian manifold is isotropic if and only if R =
KR0, where K is a smooth function.
Corollary 6.1.2. A Riemannian manifold has constant sectional curvature
K if and only if R = KR0, where K is a constant.
Remark 6.1.2. An important corollary is that curvature tensor of Riemann-
ian manifold with constant sectional curvature K is quite simple, since

Rijkl = K(gilgjk − gikgjl)

that is, curvature is completely determined by metric, not second order in
general.
Remark 6.1.3. Suppose the dimension of Riemannian manifold (M, g) is 2,
and {e1, e2} is a basis of TpM . Then

Kp = Kp(e1, e2) =
R(e1, e2, e2, e1)

|e1|2|e2|2 − |g(e1, e2)|2

is exactly Gauss curvature we learnt in theory of surface.
6.2. Ricci curvature and scalar curvature.
Definition 6.2.1 (Ricci curvature). For a Riemannian manifold (M, g), the
Ricci curvature is a (0, 2)-tensor, which is defined as

Ric(X,Y ) := trg(Z 7→ R(Z,X)Y )

where X,Y are vector fields.
Remark 6.2.1 (local form). The trace of above endomorphism is exactly Ri

ijk,
and it can be written as

gilRijkl

In other words, Ricci curvature tensor is the contracted tensor of curvature
with respect to the first and fourth index.
Definition 6.2.2 (Ricci curvature in one direction). For a point p ∈ M ,
and x ∈ TpM , Ricci curvature in the direction x is defined as

Ricp(x) := Ric(x, x)
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Remark 6.2.2. For x ∈ TpM , if we write it as x = xiei with respect to basis
{ei} of TpM . Then

Ricp(x) = Rjkx
jxk

Definition 6.2.3 (scalar curvature). For a Riemannian manifold (M, g),
the scalar curvature S at p ∈M is defined as trg Ric.

Remark 6.2.3 (local form). Locally we have

S = gjkRjk

Proposition 6.2.1 (contracted Bianchi identity).

gjk∇kRij =
1

2
∇iS

where Rij is Ricci curvature and S is scalar curvature.

Proof. Direct computation shows

gjk∇kRij = gjk∇kg
pqRpijq

= gjkgpq∇kRpijq

= gjkgpq(−∇pRikjq −∇iRkpjq)

= −gpq∇pRiq +∇iS

= −gjk∇kRij +∇iS

This completes the proof. □

Lemma 6.2.1.

S(p) =
n∑

i=1

Ricp(ei)

where {e1, . . . , en} is an orthonormal basis of TpM .

Proposition 6.2.2. The scalar curvature S at p ∈M is given by

S(p) =
1

αn

ˆ
Sn−1

Ricp(x)dSn−1

where αn is the volume of n-dimension unit ball in Rn+1.

Proof. Choose an orthonormal basis {e1, . . . , en} in TpM and write x = xiei.
Then

Ricp(x) = Ricp(x
iei)

= (xi)2Ricp(ei)
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Since |x| = 1. Then the vector µ = (x1, . . . , xn) is a unit normal vector on
Sn−1. Denoting V = (x1Ricp(e1), . . . , x

nRicp(en)). Then
1

αn

ˆ
Sn−1

(xi)2Ricp(ei)dSn−1 =
1

αn

ˆ
Sn−1

〈V, µ〉dSn−1

(1)
=

1

αn

ˆ
Bn

divV dBn

= divV

(2)
=

n∑
i=1

Ricp(ei)

= S(p)

where
(1) holds from Stokes theorem.
(2) holds from Lemma 6.2.1.

□
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7. Basic models

7.1. Einstein manifold.

Definition 7.1.1 (Einstein manifold). A Riemannian manifold (M, g) is
called Einstein manifold, if its Ricci curvature satisfies Rij = λgij for some
λ ∈ R.

Lemma 7.1.1 (Schur’s lemma). Let (M, g) be a Riemannian manifold with
dimM ≥ 3, suppose Rij = fgij , where f is a smooth function. Then (M, g)
is an Einstein manifold.

Proof. If Rij = fgij . Then contracted Bianchi identity shows
n

2
∇if = gjk∇kfgij

= ∇if

for arbitrary i, which implies f is constant, since n ≥ 3. □

Corollary 7.1.1. For a Riemannian manifold (M, g) with dimM ≥ 3, it is
isotropic if and only if it has constant sectional curvature.

Proof. By Remark 6.1.2, it suffices to show if M is isotropic then it has
constant sectional curvature. If M is isotropic. Then there exists a smooth
function K such that

Rijkl = K(gilgjk − gikgjl)

Consider its Ricci curvature, that is
Rjk = (n− 1)Kgjk

Then Schur’s lemma implies (n−1)K is constant, that is K is constant. □

Proposition 7.1.1. Let (M, g) be an Einstein 3-manifold. Then (M, g) has
constant sectional curvature.

Proof. For arbitrary point p ∈ M , without lose of generality we consider
normal coordinate, that is gij = δij . Then

R11 = gijRi11j = R2112 +R3113 = λ

Similarly, we have
R1221 +R3223 = λ

R1331 +R2332 = λ

Thus we can conclude

R1221 = R1331 = R2332 =
λ

2

that is
Rijkl =

λ

2
(δilδjk − δikδjl)

This shows (M, g) has constant sectional curvature λ/2. □
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Remark 7.1.1. In fact, it’s a special case of Ricci curvature controls curva-
ture. For an n-dimensional Riemannian manifold, it’s easy to see Rjk has
n(n + 1)/2 independent components. But for Rijkl, this counting problem
becomes a little complicated, it has

n2(n2 − 1)

12

independent components. Indeed, since Rijkl is skew symmetric in ij and
kl, this means that these pair of indices can take

m =

(
n

2

)
=
n(n− 1)

2

Rijkl is also symmetric when you swap ij with kl, this means there would
be

m(m+ 1)

2
=
n4 − 2n3 + 3n2 − 2n

8

choices. However, these are not independent, since there is first Bianchi
identity

Rijkl +Rjkil +Rkijl = 0

and it provides (
n

4

)
=
n4 − 6n3 + 11n2 − 6n

24

relations between these components, thus the number of independent com-
ponents of Rijkl is

n4 − 2n3 + 3n2 − 2n

8
− n4 − 6n3 + 11n2 − 6n

24
=
n4 − n2

12
=
n2(n2 − 1)

12

Therefore curvature is fully determined by the Ricci curvature if and only if

n2(n2 − 1)

12
≤ n(n+ 1)

2

or in other words, n ≤ 3.

7.2. Sphere.

Example 7.2.1 (sphere). Let Sn(R) denote n-dimensional sphere with ra-
dius R. There is a natural inclusion f : Sn(R) ↪→ (Rn+1, gcan), and we can
use f to pullback gcan to obtain a metric on Sn(R), denoted by g. Given a
local chart (xi, U), we can write

f(x1, . . . , xn) = (x1, . . . , xn,

√√√√R2 −
n∑

i=1

(xi)2)
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For any ∂
∂xi , we have

df(
∂

∂xi
) =

∂f j

∂xi
∂

∂xj

=
∂

∂xi
− xi√

K2 −
∑n

i=1(x
i)2

∂

∂xn+1

Thus for any two ∂
∂xi ,

∂
∂xj we have

g(
∂

∂xi
,
∂

∂xj
) = gcan(df(

∂

∂xi
), df(

∂

∂xj
))

= gcan(
∂

∂xi
− xi√

R2 −
∑n

i=1(x
i)2

∂

∂xn+1
,
∂

∂xj
− xj√

R2 −
∑n

i=1(x
i)2

∂

∂xn+1
)

= δij +
xixj

R2 −
∑n

i=1(x
i)2

which implies

gij = δij +
xixj

T 2

where T 2 = R2 −
∑

(xi)2. Thus we have

gij = δij − xixj

R2

∂gij
∂xk

=
δkix

j + δkjx
i

T 2
+

2xixjxk

T 4

So Christoffel symbol can be computed as

Γk
ij =

1

2
gkl(

∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

)

=
∑
l

1

2
(δkl − xkxl

R2
)(
δijx

l + δilx
j

T 2
+

2xixjxl

T 4
+
δjix

l + δjlx
i

T 2
+

2xixjxl

T 4
−
δlix

j + δkjx
i

T 2
− 2xixjxl

T 4
)

=
∑
l

xl

T 2
(δij +

xixj

T 2
)(δkl − xkxl

R2
)

=
gij
T 2
xk(1−

∑n
l=1(x

l)2

R2
)

=
xk

R2
gij

Direct computation shows curvature can be written as4

Rijkl =
1

2
(∂i∂kgjl + ∂j∂lgik − ∂i∂lgjk − ∂j∂kgil) + grs(Γ

r
ikΓ

s
jl − Γr

jkΓ
s
il)

=
1

R2
(gilgjk − gikgil)

4Here I omit a huge computation, and I suggest you compute it by yourself. Maybe
first it’s quite tough for you to do this first time, but you should try.
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So Ricci curvature and scalar curvature can be computed as follows

Rjk = gilRijkl

=
1

R2
gil(gilgjk − gikgjl)

=
1

R2
(ngjk − δlkgjl)

=
n− 1

R2
gjk

S = gjkRjk

=
n(n− 1)

R2

7.3. Hyperbolic space.

Example 7.3.1 (hyperbolic upper plane). Let Hn(R) = {(x1, . . . , xn−1, y) ∈
Rn | y > 0} with metric

g = R2 δijdx
i ⊗ dxj + dy ⊗ dy

y2

Example 7.3.2 (Poincaré disk). Let Dn(R) = {x ∈ Rn | |x| < R} with
metric

g = 4R4 δijdx
i ⊗ dxj

(R2 − |x|2)2

7.4. Lie group.

7.4.1. Invariant metrics.

Definition 7.4.1 (left-invariant metric). A Riemannian metric 〈-, -〉 on a
Lie group G is called left-invariant if

〈(Lg)∗X, (Lg)∗Y 〉 = 〈X,Y 〉

holds for arbitrary g ∈ G and vector fields X,Y .

Definition 7.4.2 (right-invariant metric). A Riemannian metric 〈-, -〉 on a
Lie group G is called right-invariant if

〈(Rg)∗X, (Rg)∗Y 〉 = 〈X,Y 〉

holds for arbitrary g ∈ G and vector fields X,Y .

Definition 7.4.3 (bi-invariant metric). A Riemannian metric 〈-, -〉 on a Lie
group G is called bi-invariant if it’s both left-invariant and right-invariant.

Proposition 7.4.1. Any compact Lie group G admits a bi-invariant metric.

Proposition 7.4.2. There is a bijective correspondence between left-invariant
metrics on a Lie group G and inner products on the Lie algebra g of G.
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Proof. Given an inner product 〈-, -〉e on Lie algebra g, we have a Riemannian
metric on G defined as follows

〈Xg, Yg〉 := 〈(Lg−1)∗Xg, (Lg−1)∗Yg〉e

where X,Y are two vector fields on G. It’s left-invariant, since

〈(Lh)∗Xg, (Lh)∗Yg〉 = 〈(Lhg−1)∗(Lh)∗Xg, (Lhg−1)∗(Lh)∗Yg〉e
= 〈(Lg−1)∗Xg, (Lg−1)∗Yg〉e
= 〈Xg, Yg〉

Conversely, if we have a left-invariant metric 〈-, -〉 on G, then it’s clear we
have an inner product on g, by just considering its value at identity. These
two constructions give the desired one to one correspondence. □

Proposition 7.4.3. There is a bijective correspondence between bi-invariant
metrics on a Lie group G, and Ad-invariant inner products on the Lie algebra
g of G.

Proof. Given a Ad-invariant inner product 〈-, -〉e on the Lie algebra g, by
Proposition 7.4.2, there is a left-invariant metric 〈-, -〉 on G, it suffices to
check it’s also right-invariant:

〈(Rh)∗Xg, (Rh)∗Yg〉 = 〈(Lhg−1)∗(Rh)∗Xg, (Lhg−1)∗(Rh)∗Yg〉e
= 〈Ad(h−1)(Lg−1)∗Xg,Ad(h

−1)(Lg−1)∗Yg〉e
= 〈(Lg−1)∗Xg, (Lg−1)∗Yg〉e
= 〈Xg, Yg〉

Conversely, if we start with a bi-invariant metric, then it’s restriction to
the Lie algebra is an Ad-invariant, since Ad(g) is exactly the differential of
Lg ◦Rg−1 . □

Lemma 7.4.1. Let G be a Lie group equipped with left-invariant metric
〈-, -〉, and ∇ the Levi-Civita connection with respect to it. Then for all
left-invariant vector fields X,Y, Z,

〈X,∇Y Y 〉 = 〈Y, [X,Y ]〉

Proof. By Koszul formula one has

〈X,∇Y Z〉 =
1

2
(Y 〈Z,X〉+Z〈X,Y 〉−X〈Y, Z〉−〈[Y,X], Z〉−〈[Z,X], Y 〉−〈[Y, Z], X〉)

But Y 〈Z,X〉 = Z〈X,Y 〉 = X〈Y, Z〉 = 0 since both metric and X,Y, Z are
left-invariant. Thus

〈X,∇Y Z〉 =
1

2
{〈Z, [X,Y ]〉+ 〈Y, [X,Z]〉+ 〈X, [Z, Y ]〉}

Now set Y = Z to conclude. □
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Proposition 7.4.4. Let G be a Lie group equipped with bi-invariant metric
〈-, -〉, and ∇ the Levi-Civita connection with respect to it. Then for all left-
invariant vector fields X,Y, Z,

〈[X,Y ], Z〉 = 〈X, [Y, Z]〉

Proof. Let φt be the flow of Y . Then

[X,Y ] = lim
t→0

(φt)∗X −X

t

On the other hand, since Y is left-invariant, one has Lg commutes with φt
for all g ∈ G, and thus

φt(g) = φt(Lg(e)) = Lgφt(e) = gφt(e) = Rϕt(e)(g)

As a consequence, one has (φt)∗ = (Rϕt(e))∗. Then

[X,Y ] = lim
t→0

(Rϕt(e))∗X −X

t

Note that the metric is bi-invariant, one has

〈X,Z〉 = 〈(Rϕt(e))∗(Lϕ−1
t (e))∗X, (Rϕt(e))∗(Lϕ−1

t (e))∗Z〉
= 〈(Rϕt(e))∗X, (Rϕt(e))∗Z〉

By differentiating the expression above with respect to t and setting t = 0
we conclude

0 = 〈[X,Y ], Z〉+ 〈X, [Z, Y ]〉

□

7.4.2. Levi-Civita connection of bi-invariant metric.

Theorem 7.4.1. Let G be a Lie group equipped with bi-invariant metric
〈-, -〉, and ∇ the Levi-Civita connection with respect to it. Then for every
left-invariant vector field X on G. Then ∇XX = 0.

Proof. From Lemma 7.4.1, we have

〈Y,∇XX〉 = 〈X, [Y,X]〉

From Proposition 7.4.4, we have

〈X, [Y,X]〉 = 〈[X,Y ], X〉 = −〈X, [Y,X]〉

that is 〈Y,∇XX〉 = 0 for arbitrary vector field Y , which implies ∇XX =
0. □

Corollary 7.4.1. The assumptions are as above. If X,Y are left-invariant
vector fields, then ∇XY = 1

2 [X,Y ].
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Proof. Note that
0 = ∇X+Y (X + Y )

= ∇XY +∇YX +∇XX +∇Y Y

= ∇XY +∇YX

= 2∇XY − [X,Y ]

Division by two finally yields

∇XY =
1

2
[X,Y ]

□
Corollary 7.4.2. The assumptions are as above. IfX,Y, Z are left-invariant
vector fields, then R(X,Y )Z = −1

4 [[X,Y ], Z].

Proof. Directly from ∇XY = 1
2 [X,Y ] and Jacobi’s identity. □

Corollary 7.4.3. The assumptions are as above. If X,Y are left-invariant
vector fields which are orthogonal, and σ is the plane generated by X and
Y , then

K(σ) =
1

4
‖[X,Y ]‖2

Proof.

K(σ) = −1

4
〈[[X,Y ], Y ], X〉 = −1

4
〈[X,Y ], [Y,X]〉 = 1

4
‖[X,Y ]‖2

□
Remark 7.4.1. Therefore, sectional curvature of a Lie group with bi-invariant
metric is non-negative. Furthermore, if the center of Lie algebra g is trivial,
then the sectional curvature is positive.
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Part 3. Bochner’s technique
8. Hodge theory on Riemannian manifold

For convenience, in this section we assume (M, g) is a compact oriented
Riemannian n-manifold, since we need to consider integral.

8.1. Inner product on Ωk
M . Before we talk about Hodge theory on (M, g),

let’s recall some basic facts about differential k-forms. For a k-form ϕ, locally
it can be written as

ϕ =
∑

1≤i1<···<ik≤n

ϕi1...ikdx
i1 ∧ · · · ∧ dxik

where ϕi1...ik := ϕ( ∂
∂xi1

, . . . , ∂
∂xik

), is skew-symmetric. If we don’t want
indices are arranged in order, we can write

ϕ =
1

k!
ϕi1...ikdx

i1 ∧ · · · ∧ dxik

where the summation runs over arbitrary different k indices. It’s clear these
two expressions are same, since both ϕi1...ik and dxi1 ∧ · · · ∧ dxik are skew-
symmetric.

Notation 8.1.1. ϕIdx
I denotes ϕi1...ikdx

i1 ∧ · · · ∧ dxik .

Recall that we already have an induced metric g on
⊗k T ∗M , and Ωk

M is
a subbundle of

⊗k T ∗M . Thus we can define a metric on Ωk
M as follows

Definition 8.1.1. Let ϕ,ψ be two k-forms, define

〈ϕ,ψ〉 := 1

k!
g(ϕ,ψ)

where g is induced metric on
⊗k T ∗M .

Lemma 8.1.1. For ϕ = ϕIdx
I , ψ = ψJdx

J . Then
〈ϕ,ψ〉 = ϕIψJg

IJ

where

gIJ =
1

k!
g(dxI , dxJ) = det

gi1j1 · · · gi1jk

· · · · · · · · ·
gikj1 · · · gikjk


Proof. It suffices to show

g(dxI , dxJ) = k! det

gi1j1 · · · gi1jk

· · · · · · · · ·
gikj1 · · · gikjk


By definition one has

dxI = dxi1 ∧ · · · ∧ dxik =
∑
σ∈Sk

(−1)|σ|eiσ(1)
⊗ · · · ⊗ eiσ(k)
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Then
g(dxI , dxJ) =

∑
σ,τ

(−1)|σ|(−1)|τ |g(dxiσ(1) ⊗ · · · ⊗ dxiσ(k) , dxjτ(1) ⊗ · · · ⊗ dxjτ(k))

=
∑
σ,τ

(−1)|σ|(−1)|τ |giσ(1)jτ(1) . . . giσ(k)jτ(k)

=
∑
σ,τ

(−1)|στ
−1|g

iστ−1(1)j1 . . . g
iστ−1(k)jk

=
∑
σ

∑
ρ

(−1)|ρ|giρ(1)j1 . . . giρ(k)jk

=
∑
σ

det(gipjq)

= k! det(gipjq)

□
Remark 8.1.1. Note that here we don’t assume ϕI , ψI is skew-symmetric,
they can be arbitrary functions.

Corollary 8.1.1. For two k-forms ϕ,ψ, locally written as

ϕ =
∑

1≤i1<···<ik≤n

ϕi1...ikdx
i1 ∧ · · · ∧ dxik

ψ =
∑

1≤j1<···<jk≤n

ϕj1...jkdx
j1 ∧ · · · ∧ dxjk

with ϕI , ψJ is skew-symmetric. Then

〈ϕ,ψ〉 =
∑

1≤i1<...ik≤n
1≤j1<...jk≤n

ϕi1...ikψj1...jk det

 gi1j1 · · · gi1jk

· · · · · · · · ·
gikj1 · · · gikjk


Example 8.1.1. Let ϕ,ψ be two 2-forms, locally written as

ϕ = ϕi1i2dx
i1 ∧ dxi2

ψ = ψj1j2dx
j1 ∧ dxj2

where i1 < i2, j1 < j2. Then

〈ϕ,ψ〉 = 1

2
ϕi1i2ψj1j2g(dx

i1 ∧ dxi2 , dxj1 ∧ dxj2)

=
1

2
ϕi1i2ψj1j2g(dx

i1 ⊗ dxi2 − dxi2 ⊗ dxi1 , dxj1 ⊗ dxj2 − dxj2 ⊗ dxj1)

=
1

2
ϕi1i2ψj1j2(g

i1j1gi2j2 − gi1j2gi2j1 − gi2j1gi1j2 + gi2j2gi1j1)

= ϕi1i2ψj1j2(g
i1j1gi2j2 − gi1j2gi2j1)

= ϕi1i2ψj1j2 det

(
gi1j1 gi1j2

gi2j1 gi2j2

)
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Definition 8.1.2 (volume form). The volume form vol is an n-form such
that 〈vol, vol〉 = 1.

Remark 8.1.2 (local form). Locally the volume form is given by
√
det gdx1∧

· · · ∧ dxn.

Definition 8.1.3 (inner product on Ωk
M ). For two k-forms ϕ,ψ, their inner

product is defined as

(ϕ,ψ) :=

ˆ
M
〈ϕ,ψ〉 vol

Definition 8.1.4 (formal adjoint). For a k-form ϕ and a (k + 1)-form ψ,
the formal adjoint of d is an operator d∗ : C∞(M,Ωk+1

M ) → C∞(M,Ωk
M )

such that
(dϕ,ψ) = (ϕ, d∗ψ)

Remark 8.1.3. There is no guarantee for existence, but later we will see such
d∗ do exist, and give an explicit formula.

Definition 8.1.5 (Laplace-Beltrami operator). The Laplace-Beltrami op-
erator ∆g : C∞(M,Ωk

M ) → C∞(M,Ωk
M ) is defined as

∆g = dd∗ + d∗d

Definition 8.1.6 (harmonic). A k-form α is called harmonic, if ∆gα = 0.

Notation 8.1.2. The space of all harmonic forms is denoted by Hk(M).

Lemma 8.1.2. A k-form α is harmonic if and only if dα = 0 and d∗α = 0.

Proof. Note that
(α,∆α) = (α, dd∗α) + (α, d∗dα)

= ‖d∗α‖2 + ‖dα‖2

□

8.2. Hodge star operator. Although we have defined an inner product on
Ωk
M , it’s still quite difficult to compute it. However, inner product on Ωk

M
is independent of the choice of local frame, so we can use normal coordinate
to give a local frame, and define Hodge star operator on it, which will gives
us an effective method to compute.

8.2.1. Baby case. Recall that for a F-vector space V with inner product
〈-, -〉, and {e1, . . . , en} is a basis of V . For any 0 ≤ k ≤ n, there is a natural
basis of

∧k V , consisting of {eI := ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · · < ik ≤ n}.
Here are two special cases:

(1) For k = 0, we regard
∧0 V k as base field F, and eI = 1.

(2) For k = n, we use vol to denote basis e1 ∧ · · · ∧ en.
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With respect to this basis, we can write down the induced metric on
∧k V

as

〈ei1 ∧ · · · ∧ eik , ej1 ∧ · · · ∧ ejk〉 = det

〈ei1 , ej1〉 . . . 〈ei1 , ejk〉
...

...
〈eik , ej1〉 . . . 〈eik , ejk〉


It’s clear if {e1, . . . , en} is an orthonormal basis of V . Then {eI} is an
orthonormal basis of

∧k V . From now on, we assume {eI} is an orthonormal
basis of

∧k V .

Definition 8.2.1 (Hodge star). Hodge star operator is defined as

? :
k∧
V →

n−k∧
V

eI 7→ sign(I, Ic)eIc

where Ic is [n]− I = {i′1, . . . , i′n−k} and sign(I, Ic) is the sign of the permu-
tation (i1, . . . , ik, i

′
1, . . . , i

′
n−k).

Example 8.2.1. It’s clear ?1 = vol and ? vol = 1.

Proposition 8.2.1.
?2 = (−1)k(n−k) id

holds on
∧k V .

Proof. It suffices to check on basis eI as follows
?2eI = ?(sign(I, Ic)eIc)

= sign(I, Ic) sign(Ic, I)eI

= (−1)k(n−k)eI

□
Proposition 8.2.2. For u ∈

∧k V, v ∈
∧n−k V , we have

?(u ∧ v) = (−1)k(n−k)〈u, ?v〉

Proof. It suffices to check on basis eI = ei1 ∧ · · · ∧ eik , eJ = ej1 ∧ · · · ∧ ejn−k
.

Furthermore, it’s clear eI ∧ eJ = 0, if J 6= Ic, so we may assume J = Ic.
?(eI ∧ eIc) = ?(sign(I, Ic) vol)

= sign(I, Ic)

〈eI , ?eIc〉 = 〈eI , sign(I, Ic)eI〉
= sign(I, Ic)〈eI , eI〉
= sign(I, Ic)

□
Corollary 8.2.1. For u, v ∈

∧k V , we have
(1) u ∧ ?v = v ∧ ?u = 〈u, v〉 vol.
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(2) 〈?u, ?v〉 = 〈u, v〉.

Proof. For (1).
?(u ∧ ?v) = (−1)k(n−k)〈u, ?2v〉 = 〈u, v〉

which implies u ∧ ?v = 〈u, v〉 vol. Since 〈u, v〉 = 〈v, u〉, we obtain u ∧ ?v =
v ∧ ?u.

For (2).
〈?u, ?v〉 = (−1)k(n−k) ? (?u ∧ v)

= (−1)2k(n−k) ? (v ∧ ?u)

= (−1)3k(n−k)〈v ∧ ?2u〉

= (−1)4k(n−k)〈v, u〉
= 〈u, v〉

□
Remark 8.2.1.
(1) gives us a method to compute inner product, that’s why we define Hodge
star, some authors also use this property to denote Hodge star operator.
(2) implies that Hodge star operator is a linear isometry between

∧k V and∧n−k V .

Corollary 8.2.2 (almost self-adjoint). For u ∈
∧k V, v ∈

∧n−k V , we have
〈u, ?v〉 = (−1)k(n−k)〈?u, v〉

Proof.
〈u, ?v〉 = 〈?u, ?2v〉 = (−1)k(n−k)〈?u, v〉

□
Remark 8.2.2. This corollary implies the adjoint operator of ? is (−1)k(n−k)?,
so here I call it almost self-adjoint.

8.2.2. General case. Now we’re going to define Hodge star operator on M ,
that’s an operator from C∞(M,Ωk

M ) to C∞(M,Ωn−k
M ). If we define it point-

wise. Then everything reduces to the baby case. For each point p ∈ M ,
consider the local frame { ∂

∂x1 , . . .
∂

∂xn } of TM given by normal coordinate,
with dual frame {dx1, . . . , dxn}. Then

?(dxI) := sign(I, Ic)dxI
c

Theorem 8.2.1.
(1) ?1 = vol, ? vol = 1.
(2) ?2 = (−1)k(n−k) on k-forms.
(3) If u is a k-form and v a (n− k)-form. Then

?(u ∧ v) = (−1)k(n−k)〈u, ?v〉

〈u, ?v〉 = (−1)k(n−k)〈?u, v〉
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(4) For any two k-forms u, v. Then
u ∧ ?v = v ∧ ?u = 〈u, v〉 vol = 〈v, u〉 vol

〈?u, ?v〉 = 〈u, v〉

(5) d∗ = (−1)nk+n+1 ? d? on k-forms.

Proof. It suffices to check (5), other cases we have already solved in the case
of linear algebra. Take any (k − 1)-form α and k-form β, we need to show

(dα, β) = (α, d∗β)

that is to show ˆ
M

dα ∧ ?β =

ˆ
M
α ∧ ?d∗β

By Stokes theorem and Leibniz rule we have

0 =

ˆ
M

d(α ∧ ?β) =
ˆ
M

dα ∧ ?β + (−1)k−1

ˆ
M
α ∧ d ? β

Since ?2 = (−1)(n−k+1)(k−1) on (n− k + 1)-forms. Then

(−1)k−1

ˆ
M
α ∧ d ? β = (−1)k−1+(n−k+1)(k−1)

ˆ
M
α ∧ ?2d ? β

Therefore
(dα, β) =

ˆ
M

dα ∧ ?β

= (−1)k+(n−k+1)(k−1)

ˆ
M
α ∧ ? ? d ? β

= (−1)nk+k+1

ˆ
M
α ∧ ?(?d ? β)

which implies
d∗β = (−1)nk+k+1 ? d ? β

□
Remark 8.2.3. (4) allows us to give a new expression for inner product (ϕ,ψ),
where ϕ,ψ are two k-forms, that is

(ϕ,ψ) :=

ˆ
M
〈ϕ,ψ〉 vol =

ˆ
M
ϕ ∧ ?ψ

Some authors use this expression to define Hodge star operator, and prove
its properties shown in Theorem 8.2.1.

8.3. Computations of adjoint operator.

Lemma 8.3.1 (Jacobi’s formula). For a function (aij(t)) valued in GL(n,R),
we have

d

dt
det(aij(t)) = det(aij(t))a

ij(t)
daij(t)

dt
where (aij(t)) is the inverse matrix of (aij(t)).
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Lemma 8.3.2. Let (M, g) be a Riemannian manifold, for any two vector
fields X,Y , one has

∇Y ◦ ιX = ιX ◦ ∇Y + ι∇Y X

Proof. Let ω be a (k + 1)-form. Then for vector fields Y1, . . . , Yk, direct
computation shows

∇Y ◦ ιXω(Y1, . . . , Yk) =∇Y ω(X,Y1, . . . , Yk)

=Y ω(X,Y1, . . . , Yk)− ω(∇XY, Y1, . . . , Yk)

−
k∑

i=1

ω(X,Y1, . . . , Yi−1,∇XYi, Yi+1, . . . , Yk)

= (ιX ◦ ∇Y ω + ι∇XY ω)(Y1, . . . , Yk)

□

Lemma 8.3.3. Let (M, g) be a compact Riemannian manifold. Then

〈dxi ∧ α, β〉 = 〈α, gijι ∂

∂xj
β〉

where { ∂
∂x1 , . . . ,

∂
∂xn } is a local frame of TM , and α, β are forms with ap-

propriate degrees.

Proof. It suffices to check with respect to normal coordinate. If we locally
write α = αIdx

I and β = βJdx
J , it suffices to check the case there is no dxi

in dxI and there is dxi in dxJ , since other cases are trivial. Suppose |I| = k
and |J | = k + 1, and dxi in the m-th position of dxJ . Then

〈α, ι ∂

∂xi
β〉 = (−1)m+2αIβJ detG

where G is a k × k matrix. By definition if we write

〈dxi ∧ α, β〉 = αIβJ detG
′

where G′ is a (k+ 1)× (k+ 1) matrix. It’s clear detG′ = (−1)m+2 detG by
expansion of detG′ by the first row. □

Lemma 8.3.4. Let (M, g) be a Riemannian manifold with volume form vol,
then

LX vol = (
∂X i

∂xi
+

1

2
Xigpq

∂gpq
∂xi

) vol

= (
∂X i

∂xi
+ Γj

ijX
i) vol

Proof. Cartan’s magic formula shows that

LX = ιX ◦ d + d ◦ ιX
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So
LX vol = (ιX ◦ d + d ◦ ιX) vol

= d ◦ ιX vol

= d{(−1)i−1Xi
√

det gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn}

=
1√
det g

∂(Xi
√
det g)

∂xi
vol

=
1√
det g

(
∂X i

∂xi

√
det g +Xi∂

√
det g

∂xi
) vol

= (
∂X i

∂xi
+Xi∂ log

√
det g

∂xi
) vol

= (
∂X i

∂xi
+

1

2
Xi∂ log det g

∂xi
) vol

Then the following Jacobi’s formula shows the first equality
∂ log det g

∂xi
=

1

det g

∂ det g

∂xi
= gpq

∂gpq
∂xi

and the second equality holds from the formula of Christoffel in terms of
metric, that is gjk(Γl

ijglk + Γl
ikgjl) = 2Γj

ij . □

Proposition 8.3.1. Let (M, g) be a compact Riemannian manifold equipped
with Levi-Civita connection ∇. Then

d∗ = −gijι ∂

∂xi
∇ ∂

∂xj

where { ∂
∂x1 , . . . ,

∂
∂xn } is a local frame of TM .

Proof. Direct computation shows

0 =

ˆ
M

d(α ∧ ?β)

=

ˆ
M

L ∂

∂xi
(dxi ∧ α ∧ ?β)

=

ˆ
M

L ∂

∂xi
(〈dxi ∧ α, β〉 vol)

(1)
=

ˆ
M

L ∂

∂xi
(〈α, gijι ∂

∂xj
β〉 vol)

(2)
=

ˆ
M
(〈∇iα, g

ijι ∂

∂xj
β〉+ 〈α,∇i(g

ijι ∂

∂xj
β)〉+ 1

2
gpq

∂gpq
∂xi

〈α, gijι ∂

∂xj
β〉) vol

=

ˆ
M
(〈dxi ∧∇iα, β〉+ 〈α, ∂g

ij

∂xi
ι ∂

∂xj
β〉+ 〈α, gij∇i(ι ∂

∂xj
β)〉+ 1

2
gpq

∂gpq
∂xi

〈α, gijι ∂

∂xj
β〉) vol

(3)
=

ˆ
M
(〈dxi ∧∇iα, β〉+ 〈α, ∂g

ij

∂xi
ι ∂

∂xj
β〉+ 〈α, gijι ∂

∂xj
(∇iβ)〉+ 〈α, gilΓj

ilι ∂

∂xj
〉

+
1

2
gpq

∂gpq
∂xi

〈α, gijι ∂

∂xj
β〉) vol
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where
(1) holds from Lemma 8.3.3.
(2) holds from Lemma 8.3.4.
(3) holds from Lemma 8.3.2.

It’s easy to see
∂gij

∂xi
+ gilΓj

il +
1

2
gijgpq

gpq

∂xi
= 0

since
Γl
ij =

1

2
gkl(

∂gkj
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)

□

In the following examples, we always compute with respect to normal
coordinate.

Example 8.3.1. For a 1-form ω locally written as ωidx
i. Then

d∗ω = −
n∑

i=1

∂ωi

∂xi

Example 8.3.2. For a smooth function f . Then
∆gf = (dd∗ + d∗d)f

= d∗df

= d∗(
∂f

∂xi
dxi)

= −
n∑

i=1

∂2f

∂xi∂xi

So as you can see, Laplace-Beltrami operator differs a sign with scalar Lapla-
cian.

Example 8.3.3. For an n-form ω written as f vol, where f is a smooth
function. Then

d∗ω = (−1)n ? d ? (f vol)

= (−1)n ? df

= (−1)n ? (
∂f

∂xi
dxi)

=
n∑

i=1

(−1)n+i−1 ∂f

∂xi
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

8.4. Divergence.

Definition 8.4.1 (divergence). For any vector field X, its divergence divX
is defined as tr∇X.
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Remark 8.4.1 (local form). If we locally write X as Xi ∂
∂xi . Then

∇X = ∇iX
jdxi ⊗ ∂

∂xj

Then
divX = ∇iX

i

Proposition 8.4.1.
divX vol = LX vol

Proof. Cartan’s magic formula shows that
LX = ιX ◦ d + d ◦ ιX

So
LX vol = (ιX ◦ d + d ◦ ιX) vol

= d ◦ ιX vol

= d((−1)i−1Xi
√

det gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn)

=
1√
det g

∂(Xi
√
det g)

∂xi
vol

=
1√
det g

(
∂X i

∂xi

√
det g +Xi∂

√
det g

∂xi
) vol

= (
∂X i

∂xi
+Xi∂ log

√
det g

∂xi
) vol

= (
∂X i

∂xi
+

1

2
Xi∂ log det g

∂xi
) vol

Note that Jacobi’s formula says
∂ log det g

∂xi
=

1

det g

∂ det g

∂xi
= gjk

∂gjk
∂xi

= gjk(Γl
ijglk + Γl

ikgjl) = 2Γj
ij

Thus

LX vol = (
∂X i

∂xi
+

1

2
Xi∂ log det g

∂xi
) vol

= (
∂X i

∂xi
+ Γj

ijX
i) vol

= (
∂X i

∂xi
+ Γi

ijX
j) vol

= ∇iX
i vol

□

Remark 8.4.2. From the proof, we can say there is the following formula for
divergence of a vector field X written as Xi ∂

∂xi , one has

divX =
1√
det g

∂

∂xi
(
√
det gX i)



56 BOWEN LIU

Corollary 8.4.1 (divergence theorem).ˆ
M

divX vol = 0

Proposition 8.1. Let f be a smooth function on M . Then for any smooth
function ϕ, one has

−
ˆ
M
〈∇ϕ,∇f〉 vol =

ˆ
M

∆ϕ · f vol

Proof. Direct computation shows
div(f∇ϕ) = ∇k(f∇ϕ)k

=
∂(f∇ϕ)k

∂xk
+ Γk

ks(f∇ϕ)s

=
∂(fgik ∂φ

∂xi )

∂xk
+ Γk

ksfg
is ∂ϕ

∂xi

= gik
∂f

∂xk
∂ϕ

∂xi︸ ︷︷ ︸
part I

+ f(
∂gik

∂xk
∂ϕ

∂xi
+ gik

∂2ϕ

∂xk∂xi
+ gisΓk

ks

∂ϕ

∂xi
)︸ ︷︷ ︸

part II

We have the following observations:
(1) Part I equals

gik
∂f

∂xk
∂ϕ

∂xi
= gljg

lk ∂f

∂xk
gji

∂ϕ

∂xi

= 〈glk ∂f
∂xk

∂

∂xl
, gji

∂ϕ

∂xi
∂

∂xj
〉

= 〈∇f,∇ϕ〉

(2) Note
∂gik

∂xk
+ gisΓk

ks

∂ϕ

∂xi
= −gisgkt∂gst

∂xk
+

1

2
gisgkt(

∂gkt
∂xs

+
∂gst
∂xk

− ∂gks
∂xt

)

= −1

2
gisgkt(

∂gks
∂xt

+
∂gst
∂xk

− ∂gkt
∂xs

)

= −gktΓi
kt

where ∂gik

∂xk = −gisgkt ∂gst
∂xk holds from the fact gikgkt = δit. Then take

partial derivative with respect to xk to conclude.
(3) From (2) and local expression of ∆, it’s clear part II equals f∆ϕ.
Thus we have

div(f∇ϕ) = 〈∇ϕ,∇f〉+ f∆ϕ

Then divergence theorem completes the proof. □

Proposition 8.4.2. Let ω be a 1-form. Then
d∗ω = −div(ω♯)
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Proof. It suffices to check with respect to normal coordinate:
(1) Remark 8.4.2 or direct computation shows

divω♯ =

n∑
i=1

∂ωi

∂xi

(2) Example 8.3.1 implies

d∗ω = −
n∑

i=1

∂ωi

∂xi

This completes the proof. □

8.5. Conformal Laplacian. For a smooth function u, according to Propo-
sition 8.4.2 and Remark 8.4.2, we can write ∆gu as follows

∆gu = d∗du

= −div(gij
∂u

∂xi
∂

∂xj
)

= − 1√
det g

∂

∂xj
(
√
det ggij

∂u

∂xi
)

Thus Laplace-Beltrami ∆g with respect to g is

∆g = − 1√
det g

∂

∂xj
(
√

det ggij
∂

∂xi
)

So if we consider conformal transformation g̃ = e2fg for some smooth func-
tion f , we have

g̃ij = e2fgij

g̃ij = e−2fgij

det g̃ = e2nf det g√
g̃ = enf

√
det g

Thus

∆g̃ = − 1

enf
√
det g

∂

∂xj
(enf

√
det ge−2fgij

∂

∂xi
)

= − e−nf

√
det g

∂

∂xj
(e(n−2)f

√
det ggij

∂

∂xi
)

= − e−2f

√
det g

∂

∂xj
(
√
det ggij

∂

∂xi
)− (n− 2)e−2f

√
det g

∂f

∂xj

√
det ggij

∂

∂xi

= −e−2f∆g − (n− 2)e−2fgij
∂f

∂xj
∂

∂xi

So we have
∆g̃ = −e−2f∆g
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when n = 2. It’s a kind of conformal invariance. However, this fails in higher
dimension. Let’s consider the following so-called conformal Laplacian when
n > 3

L : C∞(M) → C∞(M)

u 7→ −4(n− 1)

n− 2
∆gu+ Su

where S is scalar curvature. Let’s show

L̃u = e−
n+2
2

fL(e
n−2
2

fu)

where L̃ is the conformal Laplacian after conformal transformation. Divide
computations into several parts:
(1)

∇2(e
n−2
2

fu) =∇(
n− 2

2
e

n−2
2

f ∂f

∂xi
udxi + e

n−2
2

f ∂u

∂xi
dxi)

=e
n−2
2

f∇2u+
n− 2

2
e

n−2
2

f ∂f

∂xj
∂u

∂xi
dxi ⊗ dxj

+ (
(n− 2)2

4
e

n−2
2

fu
∂f

∂xj
∂f

∂xi
+
n− 2

2
e

n−2
2

f ∂f

∂xi
∂u

∂xj
)dxi ⊗ dxj +

n− 2

2
e

n−2
2

fu∇2f

(2)

∆g(e
n−2
2

fu) = trg ∇2(e
n−2
2

fu)

=e
n−2
2

f∆gu+
n− 2

2
e

n−2
2

fgij
∂f

∂xj
∂u

∂xi

+ gij(
(n− 2)2

4
e

n−2
2

fu
∂f

∂xj
∂f

∂xi
+
n− 2

2
e

n−2
2

f ∂f

∂xi
∂u

∂xj
) +

n− 2

2
e

n−2
2

fu∆gf

(3)

e−
n+2
2

fL(e
n−2
2

fu) =− 4(n− 1)

n− 2
e−2f∆gu− 4(n− 1)e−2fgij

∂f

∂xj
∂u

∂xi

− gij(n− 2)(n− 1)e−2fu
∂f

∂xj
∂f

∂xi
− 2(n− 1)e−2fu∆gf + e−2fSu

=− 4(n− 1)

n− 2
e−2f∆gu− 4(n− 1)e−2fgij

∂f

∂xj
∂u

∂xi

− (n− 2)(n− 1)e−2fu|df |2 − 2(n− 1)e−2fu∆gf + e−2fSu

(4)

−4(n− 1)

n− 2
∆g̃u = −4(n− 1)

n− 2
e−2f∆gu− 4(n− 1)e−2fgij

∂f

∂xj
∂u

∂xi

(5) Note that

S̃ = e−2fS − 2(n− 1)e−2f∆gf − (n− 2)(n− 1)e−2f |df |2
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This completes the computation. In particular, in (2) if we take u = 1 we
have

−4(n− 1)

n− 2
∆g(e

n−2
2

f ) = −(n− 2)(n− 1)e
n−2
2

f |df |2 − 2(n− 1)e
n−2
2

f∆gf

Thus we have

S̃ = e−
n+2
2

f (−4(n− 1)

n− 2
∆ge

n−2
2

f + Se
n−2
2

f ) = e−
n+2
2

fL(e
n−2
2

f )

So if we put e2f = ϕ
4

n−2 , we have

S̃ = ϕ−n+2
n−2Lϕ

So it’s clear g is conformal to g̃ with constant scalar curvature λ if and only
if ϕ is a smooth positive solution to the Yamabe equation

Lϕ = λϕ
n+2
n−2

8.6. Hodge theorem and corollaries.

Theorem 8.6.1 (Hodge theorem). Consider the Laplace operator ∆g : C
∞(M,Ωk

M ) →
C∞(M,Ωk

M ). Then
(1) dimRHk(M) <∞.
(2) There is an orthogonal decomposition

C∞(M,Ωk
M ) = Hk(M) ⊥ im∆g

Corollary 8.6.1. More explicitly, we have the following orthogonal decom-
position

C∞(M,Ωk
M ) = Hk(M)⊕ d(C∞(M,Ωk−1

M ))⊕ d∗(C∞(M,Ωk+1
M ))

Proof. It suffices to check d(C∞(M,Ωk−1
M )) is orthogonal to d∗(C∞(M,Ωk+1

M )).
Take dα and d∗β, where α is a k − 1-form and β is a k + 1-form. Then

(dα, d∗β) = (d2α, β) = 0

□

Corollary 8.6.2.
ker d = Hk(M)⊕ d(C∞(M,Ωk−1

M ))

ker d∗ = Hk(M)⊕ d∗(C∞(M,Ωk+1
M ))

Proof. Clear from above corollary. □

Corollary 8.6.3. The natural map Hk(M) → Hk(M.R) is an isomorphism.
In other words, every element in Hk(M.R) is represented by a unique har-
monic form.

Proof. Clear from above corollary. □

Corollary 8.6.4. ? : Hk(M) → Hn−k(M) is an isomorphism.
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Proof. It suffices to show ∗ maps harmonic forms to harmonic forms, since
we already have ? maps k-forms to k-forms By Lemma 8.1.2, we just need
to show d ? α = d∗ ? α = 0 for a harmonic form α. Directly compute as
follows

d ? α = (−1)•1 ? ?d ? α = (−1)•2 ? d⋆α = 0

d∗ ? α = (−1)•3 ? d ? ?α = (−1)•4 ? dα = 0

Here we use •, •′ to denote the power of (−1), since it’s not necessary for us
to know what exactly it is. □
Remark 8.6.1. In fact, above corollary follows from the following identity

∆g? = ?∆g

which can be directly checked. In other words, Hodge star commutes with
Laplacian ∆. Here gives a method of computation: From what we have
done in the proof, we will see

?d∗d = (−1)•2d ? d = (−1)•2+•4dd∗?

?dd∗ = (−1)•4d∗ ? d∗ = (−1)•2+•4d∗d?

So all we need to do is to figure out the precise number of •2, •4 and show
that •2 + •4 is even.

Corollary 8.6.5 (Poincaré duality). Hk(M.R) ∼= Hn−k(M.R).

Proof. Clear from Corollary 8.6.3 and Corollary 8.6.4. □
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9. Bochner’s technique

9.1. Bochner formula. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Recall in Example 2.3.6 and Remark 2.6.1 we have
already seen Hessian of a smooth function f and its scalar Laplacian locally
as follows:

Hess f = ∇2
i,jfdx

i ⊗ dxj

∆f = gij∇2
i,jf

where

∇2
i,jf =

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

Example 8.3.2 shows that scalar Laplacian differs a sign with Laplace-
Beltrami operator.

Remark 9.1.1. Unless otherwise specified, we use ∆ to denote scalar Lapla-
cian and ∆g to denote Laplace-Beltrami operator.

Theorem 9.1.1. Let f : (M, g) → R be a smooth function. Then
(1) p ∈M is a local minimum or maximum. Then ∇f(p) = 0.
(2) p ∈M is a local minimum. Then{

Hess f(p) ≥ 0

∆f(p) ≥ 0

(3) p ∈M is a local maximum. Then{
Hess f(p) ≤ 0

∆f(p) ≤ 0

Proposition 9.1.1 (Bochner formula). Let f : (M, g) → R be a smooth
function. Then

1

2
∆|∇f |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆f,∇f)

Proof. For a tensor, its norm is independent of which type it is, so we write
∇f = gij∇if

∂
∂xj . Then

|∇f |2 = g(∇f,∇f)

= g(gij∇if
∂

∂xj
, gkl∇kf

∂

∂xl
)

= gijgklgjl∇if∇kf

= gij∇if∇jf
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In the following computation we may use normal coordinate. Then in this
case

1

2
∆|∇f |2 (1)

=
1

2
gkl∇k∇l(g

ij∇if∇jf)

(2)
=

1

2
gklgij∇k∇l(∇if∇jf)

(3)
= gklgij∇l∇if · ∇k∇jf + gklgij∇k∇l∇if · ∇jf

= |Hess f |2 + gklgij∇k∇l∇if · ∇jf

where
(1) holds from in normal coordinate ∆f = gij∇i∇jf .
(2) holds from Proposition 2.6.1, that is magic formula.
(3) holds from the following direct computation

∇k∇l(∇if∇jf) =∇k(∇l∇if · ∇jf +∇if · ∇l∇jf)

=∇k∇l∇if · ∇jf +∇l∇if · ∇k∇jf

+∇k∇if · ∇l∇jf +∇if · ∇k∇l∇jf

=2∇l∇if · ∇k∇jf + 2∇k∇l∇if · ∇jf

Then the following computation completes the proof:

gklgij∇k∇l∇if · ∇jf
(4)
= gklgij∇k∇i∇lf · ∇jf

(5)
= gklgij(∇i∇k∇lf −Rs

kil∇sf) · ∇jf

= gij∇i(g
kl∇k∇lf) · ∇jf + gijRs

i∇sf · ∇jf

= gij∇i(∆f) · ∇jf +Ric(∇f,∇f)
= g(∇∆f,∇f) + Ric(∇f,∇f)

where
(4) holds from symmetry of Hessian.
(5) holds from Theorem 4.4.1, that is Ricci identity.

□
9.2. Obstruction to the existence of Killing fields.
Definition 9.2.1 (Killing field). A vector field X on a Riemannian manifold
(M, g) is called a Killing field, if LXg = 0.
Proposition 9.2.1. X is a Killing field if and only if flows generated by X
acts as isometries.
Proof. If φt is the flow generated by X, then by definition of Lie derivative
one has

LXg =
d

dt

∣∣∣∣
t=0

(φt)
∗g

Thus X is a Killing vector field if and only if its flow acts as isometries. □
Theorem 9.2.1. The following statements are equivalent.
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(1) X is a Killing field.
(2) For any two vector fields Y, Z, we have

〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0

Proof. Note that
LX〈Y, Z〉 = X〈Y, Z〉 − 〈LXY, Z〉 − 〈Y,LXZ〉

= 〈∇XY, Z〉+ 〈Y,∇XZ〉 − 〈[X,Y ], Z〉 − 〈Y, [X,Z]〉
= 〈∇YX,Z〉+ 〈Y,∇ZX〉

□
Remark 9.2.1. For (2) locally we have

gkj∇iX
j = −gij∇kX

j

Thus X is a Killing vector if and only if ∇X is a skew-symmetric (1, 1)-
tensor, that is ∇iX

j is skew-symmetric in i, j.

Corollary 9.2.1. If X is a Killing field, then for arbitrary vector field Y
one has

〈∇YX,Y 〉 = 0

Proof. Set Y = Z in 〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0 to conclude. □
Corollary 9.2.2. If X is parallel, then X is Killing.

Proof. A zero matrix must be skew-symmetric. □
Corollary 9.2.3. If X is Killing, then divX = ∇iX

i = 0.

Proof. The trace of a skew-symmetric matrix is zero. □
Lemma 9.2.1 (Bochner formula for Killing field). Let X be a Killing field,
and f = 1

2 |X|2. Then
(1) ∇f = −∇XX.
(2) Hess f(Y, Y ) = 〈∇YX,∇YX〉 −R(Y,X,X, Y ) holds for any vector field

Y .
(3) ∆f = |∇X|2 − Ric(X,X).

Proof. For (1). By direct computation we have
∇f = 〈∇X,X〉

= 〈∇kX
idxk ⊗ ∂

∂xi
, Xj ∂

∂xj
〉

= gijX
j∇kX

idxk

I
= −gikXj∇jX

idxk

∇XX = Xj∇jX
i ∂

∂xi

= gikX
j∇jX

idxk
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where I holds from skew-symmetry of ∇X.
For (2). By direct computation we have

Hess f(Y, Y ) =
1

2
Y iY j∇i∇j(gklX

kX l)

= Y iY jgkl(∇iX
k∇jX

l +∇i∇jX
k ·X l)

= 〈∇YX,∇YX〉+ Y iY jgkl∇i∇jX
k ·X l

and
Y iY jgkl∇i∇jX

k ·X l = −Y iY jgkj∇i∇lX
k ·X l

II
= −Y iY jgkjX

l(∇l∇iX
k +Rk

ilmX
m)

= −Y iY jX lXmRilmj

= −R(Y,X,X, Y )

where (II) holds from gkjX
l∇l∇iX

k = 0, since this expression is skew sym-
metric in i, j.

(3) holds from (2) directly. □

Theorem 9.2.2 (Bochner). Let (M, g) be a compact, oriented Riemannian
manifold.
(1) If Ric(g) ≤ 0, then every Killing field is parallel.
(2) If Ric(g) ≤ 0 and Ric(g) < 0 at some point, then there is no non-trivial

Killing field.

Proof. For (1). Let X be a Killing field and set f = 1
2 |X|2. Then

0 =

ˆ
M

∆f vol

=

ˆ
M
(|∇X|2 − Ric(X,X)) vol

≥
ˆ
M

|∇X|2 vol

≥ 0

Thus |∇X| ≡ 0, that is X is parallel.
For (2). From proof of (1) one can see if Ric(g) ≤ 0 and X is a Killing

field, then ˆ
M

Ric(X,X) = 0

which implies Ric(X,X) ≡ 0. So if Ric(g) < 0 at some point p ∈ M , then
Xp = 0, thus X ≡ 0, since it’s parallel. □

9.3. Obstruction to the existence of harmonic 1-forms. To some ex-
tent, Killing field is dual to harmonic 1-form. Let’s explain this in more
detail.
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Lemma 9.3.1. For a harmonic 1-form α, locally written as αidx
i, we have

∇iαj = ∇jαi

gij∇jαi = 0

Proof. Recall α is harmonic if and only if
dα = 0

d∗α = 0

It’s clear
d(αjdx

j) = ∇iαjdx
i ∧ dxj = 0

implies ∇iαj = ∇jαi. Similarly, explicit expression for d∗ implies the second
identity. □

Remark 9.3.1. Recall Killing field implies gij∇kX
j is skew-symmetric in i, k,

we can see both Killing field and harmonic 1-form implies some (skew)symmetries.

Lemma 9.3.2. If α is a harmonic 1-form. Then
1

2
∆|α|2 = |∇α|2 +Ric(α♯, α♯)

Proof. Routine computation as follows:
1

2
∆|α|2g =

1

2
gkl∇k∇l(g

ijαiαj)

= |∇α|2 + gklgij∇k∇lαi · αj

= |∇α|2 + gklgij∇k∇iαl · αj

= |∇α|2 + gklgij(∇i∇kαl −Rs
kilαs)αj

= |∆α|2 − gklgijRs
kilαs · αj

= |∆α|2 +Ric(α♯, α♯)

□

Theorem 9.3.1 (Bochner). Let (M, g) be a compact, oriented Riemannian
manifold,
(1) If Ric(g) ≥ 0. Then every harmonic 1-form is parallel.
(2) If Ric(g) ≥ 0 and Ric(g) > 0 at some point. Then there is no non-trivial

harmonic 1-form.

Proof. The same as before. □

Corollary 9.3.1. Let (M, g) be a compact, oriented Riemannian manifold
with Ric(g) ≥ 0 and Ric(g) > 0 at some point. Then b1(M) = 0.

Proof. It’s clear from above theorem and Corollary 8.6.3. □

Remark 9.3.2. It’s a kind of vanishing theorem. In geometry, “positivity”
may cause “vanishing”, that’s a philosophy.
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Corollary 9.3.2. Let (M, g) be a compact Riemannian n-manifold with
Ric(g) ≥ 0. Then b1(M) ≤ n. Moreover, if b1(M) = n if and only if (M, g)
is isometric to a flat torus.

Proof. By Corollary 8.6.3 we have b1(M) = dimH1(M). Now if Ric(g) ≥ 0.
Then any harmonic 1-form is parallel, thus linear map H1(M) → TpM that
evaluates ω at point p is injective. In particular, dimH1 ≤ n.

If the equality holds, we obviously have n linearly independent parallel
fields Ei, i = 1, . . . , n. This shows M is flat. Thus the universal covering of
(M, g) is (Rn, gcan) with Γ = π1(M) acting by isometries. Now pull Ei back
to Ẽi to Rn, these vector fields are again parallel and are therefore constant
vector field. This means we can see them as usual Cartesian coordinate
vector field ∂

∂xi . In addition, they are invariant under the action of Γ. Thus
Γ consists of translations, which implies Γ is finitely generated, abelian and
torsion-free, thus Γ = Zq for some q. We must have q = n, otherwise Rn /Zq

is not compact. □



RIEMANNIAN GEOMETRY 67

Part 4. Minimal length curve problem
10. Pullback connection

10.1. Pullback and pushforward.

Definition 10.1.1 (pullback vector bundle). Let f : M → N be a smooth
map between manifolds, E a vector bundle over N . The pullback vector
bundle f∗E over M is defined by the set

Ê = f∗E := {(p, v) ∈M × E | f(p) = π(v)}

endowed with subspace topology.

Remark 10.1.1 (local form). A local frame of Ê can be written as
êα(x) := f∗eα(x) = eα ◦ f(x)

where x ∈M and {eα} is a local frame of E.

Let f : M → N be a smooth map between manifolds, and df : TM → TN
its differential. There is another viewpoint to see it, consider

df : TM → f∗TN ⊆M × TN

Xp 7→ (p, dfp(Xp))

that is one can regard df as a section of T ∗M ⊗ f∗TN .

Definition 10.1.2 (pushforward). For vector field X over M , the pushfor-
ward of X is defined as f∗X = df ◦X ∈ C∞(M, f∗TN).

Remark 10.1.2. In a word, pushforward of a vector field is no longer a vector
field, but a section of pullback bundle.

Remark 10.1.3 (local form). Let {xi} and {ym} be local coordinates of M,N
respectively, one has

f∗(
∂

∂xi
) =

∂fm

∂xi
f∗(

∂

∂ym
)

10.2. Pullback connection. Let f : M → N be a smooth map between
manifolds, E a vector bundle over N with connection ∇. Now we want to
give a connection ∇̂ on pullback bundle Ê induced by ∇. Let {eα} be a
local frame of E. Then {êα := f∗eα} is a local frame of Ê. Now we define

∇̂(êα) := f∗(∇eα)

and
(10.1) ∇̂(fŝ) := df ⊗ ŝ+ f∇̂ŝ

where ŝ = f∗s, and s is a section of E. Suppose ∇ is given by Christoffel
symbol Γβ

mα. Then by definition

(10.2) ∇̂(êα) = f∗(Γβ
mαdy

m ⊗ eβ) =
∂fm

∂xi
Γβ
mα(f) · dxi ⊗ êβ
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Then here comes a natural question, we need to check our definition is
independent of the choice of local frame, that is to check if {ê′β} is another
local frame with êα = gβαê′β. Then

∇̂(êα) = ∇̂(gβαê
′
β)

It’s straightforward computation, since the left hand is computed by (10.2),
and right hand can be computed by (10.1). Thus we obtain a linear operator

∇̂ : C∞(M, Ê) → C∞(M,T ∗M ⊗ Ê)

Now it remains to show it’s an affine connection, that is to check for any
smooth function f ∈ C∞(M) and s ∈ C∞(M, Ê), one has

∇̂(fs) = df ⊗ s+ f∇̂s

Note that it doesn’t follow from (10.1), since here locally if we write s =
sαêα, and by definition we only obtain

∇̂(fs) = ∇̂(fsαêα) = d(fsα)⊗ êα + fsα∇̂êα

and it’s necessary to do a stepforward computation to show above equation
equals to the following one

df ⊗ sαeα + f∇̂(sαeα)

Definition 10.2.1 (pullback metric). Let g be a metric on E, the pullback
metric on f∗E is ĝ = f∗g.

Remark 10.2.1 (local form). On local frames one has

ĝαβ ê
α ⊗ êβ :=f∗(gαβe

α ⊗ eβ)

=gαβ(f) · êα ⊗ êβ

that is ĝαβ = gαβ(f).

Proposition 10.2.1. If connection ∇ is compatible with metric g. Then
pullback connection ∇̂ is compatible with ĝ, that is for any vector field X

of M and section s, t of Ê, we have

Xĝ(s, t) = ĝ(∇̂Xs, t) + ĝ(s, ∇̂Xt)

Proof. It suffices to check on local frames, consider X = ∂
∂xi , s = êα, t = êβ.

Then
∂

∂xi
ĝαβ =

∂

∂xi
gαβ(f)

=
∂fm

∂xi
∂

∂ym
gαβ(f)

(1)
=
∂fm

∂xi
(Γγ

mα(f) · gγβ(f) + Γγ
mβ(f) · gαγ(f))
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ĝ(∇̂ ∂

∂xi
êα, êβ) = Γγ

mα(f) ·
∂fm

∂xi
· gγβ(f)

ĝ(êα, ∇̂ ∂

∂xi
êβ) = Γγ

mβ(f) ·
∂fm

∂xi
· gαγ(f)

where (1) holds from ∇ is compatible with g. □
10.3. Pullback curvature.

Definition 10.3.1 (pullback curvature). Let f : M → N be a smooth map
between manifolds, E a vector bundle over N with connection ∇. The
curvature tensor R̂ of pullback connection ∇̂ on vector bundle Ê → M is
given by

R̂(X,Y, s, t) = ĝ(∇̂X∇̂Y s− ∇̂Y ∇̂Xs, t)

where X,Y are vector fields on M and s, t are sections of Ê.

Remark 10.3.1 (local form).

R̂ijαβ = Rmnαβ
∂fm

∂xi
∂fn

∂xj

where Rmnαβ is curvature of ∇.
Proof.

R̂ijαβ = R̂(
∂

∂xi
,
∂

∂xj
, êα, êβ)

= ĝ(R̂(
∂

∂xi
,
∂

∂xj
)êα, êβ)

= ĝ(∇̂ ∂

∂xi
∇̂ ∂

∂xj
êα − ∇̂ ∂

∂xj
∇̂ ∂

∂xi
êα, êβ)

The first term can be computed as follows

∇̂ ∂

∂xi
∇̂ ∂

∂xj
êα = ∇̂ ∂

∂xi
(Γγ

mα(f) ·
∂fm

∂xj
êγ)

=
∂

∂xi
(Γγ

mα(f) ·
∂fm

∂xj
)êγ + Γγ

mα(f) ·
∂fm

∂xj
∇̂ ∂

∂xi
êγ

= (
∂Γγ

mα

∂yn
∂fn

∂xi
∂fm

∂xj
+ Γγ

mα(f) ·
∂2fm

∂xi∂xj
)êγ +

∂fm

∂xj
∂fn

∂xi
Γγ
mαΓ

δ
nγ êδ

=
∂fm

∂xj
∂fn

∂xi
(
∂Γγ

mα

∂yn
+ Γδ

mαΓ
γ
nδ)êγ + Γγ

mα

∂2fm

∂xi∂xj
êγ

Thus
∇̂ ∂

∂xi
∇̂ ∂

∂xj
êα − ∇̂ ∂

∂xj
∇̂ ∂

∂xi
êα =

∂fm

∂xj
∂fn

∂xi
Rγ

mnαêγ

that is
R̂ijαβ = ĝ(

∂fm

∂xj
∂fn

∂xi
Rγ

mnαêγ , êβ)

=
∂fm

∂xj
∂fn

∂xi
Rγ

mnαgγβ

=
∂fm

∂xj
∂fn

∂xi
Rmnαβ



70 BOWEN LIU

□
10.4. Parallel transport. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇, γ : I →M a smooth curve, E a vector bundle over M
and γ∗E endowed with pullback connection ∇̂.

Definition 10.4.1 (parallel). Let s be a section of γ∗E, it’s called parallel
along γ, if ∇̂ d

dt
s = 0.

From local form we can see ∇̂ d
dt
s = 0 is a system of ODEs locally, which

can always be solved uniquely in a sufficiently short interval if an initial
value is given, that’s how we define parallel transport.

Definition 10.4.2 (parallel transport). For t0, t ∈ I, parallel transport
Pt0,t;γ is an isomorphism5 between vector spaces defined by

Pt0,t;γ : Eγ(t0) → Eγ(t)

s0 7→ s(t)

where s is the unique parallel section along γ satisfying s(t0) = s0.

Definition 10.4.3 (parallel orthonormal frame along curve). Suppose {eα}
is an orthonormal basis of Eγ(t0), then there is a local frame {eα(t)} of Eγ(t)

along γ obtained by parallel transport, such that eα(0) = eα.

Proposition 10.4.1. A connection ∇ is compatible with metric if and only
if for arbitrary curve γ : I → M and two parallel sections s1, s2 along γ we
have g(s1, s2) is constant.

Proof. It’s clear if ∇ is compatible with metric g, then for any two sections
s, t which are parallel along γ, one has

dg(s1, s2) = g(∇s1, s2) + g(s1,∇s2) = 0

which implies g(s, t) is constant. Conversely, suppose {eα(t)} is a parallel
orthonormal frame with respect to g along γ and write

s1(t) = sα1 (t)eα(t)

s2(t) = sα2 (t)eα(t)

Direct computation shows

g(∇s1, s2) + g(s1,∇s2) =
∑
α

dsα1
dt

sα2 + sα1
dsα2
dt

=
d

dt
(
∑
α

sα1 s
α
2 )

=
d

dt
g(s1, s2)

□
5Its inverse is Pt,t0;γ .
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Proposition 10.4.2. Let (M, g) be a Riemannian manifold, γ : I → M a
smooth curve and Ps,t;γ : Tγ(s)M → Tγ(t)M is the parallel transport along
γ. For any s ∈ I with v = γ′(s), one has

∇vR =
d

dt

∣∣∣∣
t=s

(Ps,t;γ)
∗Rγ(t)

In particular, if ∇R = 0 then

(Ps,t;γ)
∗Rγ(t) = Rγ(s)

holds for arbitrary t, s ∈ I.

Proof. Let v1 = v and choose v2, . . . , v5 ∈ Tγ(s)M . For each 1 ≤ i ≤ 5, we
define vector fields along γ(t) by Xi(t) = P γ

s,t(vi). In particular, one has
X1(t) = γ′(t). Direct computation shows

(∇R)p(v1, . . . , v5) = lim
t→s

∇R(X1, . . . , X5)

= lim
t→s

X1R(X2, . . . , X5)−
5∑

i=2

R(X2, . . . , ∇̂ d
dt
Xi, . . . , X5)

(1)
= lim

t→s
X1R(X2, . . . , X5)

=
d

dt

∣∣∣∣
t=s

Rγ(t)(X2(t), . . . , X5(t))

=
d

dt

∣∣∣∣
t=s

(Ps,t;γ)
∗Rγ(t)(v2, . . . , v5)

where (1) holds from Xi(t) are parallel vector fields along γ(t). □

10.5. Second fundamental form. In this section, we fix the following
notations:
(1) Let (M, g), (N, g′) be Riemannian manifolds with Levi-Civita connection

∇ and ∇′ respectively.
(2) f : M → N is a smooth map between manifolds.
(3) Γk

ij is used to denote Christoffel symbol of ∇ and Γl
mn is used to denote

Christoffel symbol of ∇′.
(4) ∇̂ is the connection on f∗TN induced by ∇′.

Definition 10.5.1 (second fundamental form). The second fundamental
form B ∈ C∞(M,T ∗M ⊗ T ∗M ⊗ f∗TN) of f is defined as

B(X,Y ) := ∇̂X(f∗Y )− f∗(∇XY ) ∈ C∞(M, f∗TN)

where X,Y ∈ C∞(M,TM).
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Remark 10.5.1 (local form). Note that

f∗(∇ ∂

∂xi

∂

∂xj
) = Γk

ijf∗(
∂

∂xk
) = Γk

ij

∂fm

∂xk
f∗(

∂

∂ym
)

∇̂ ∂

∂xi
(
∂fm

∂xj
f∗(

∂

∂ym
)) =

∂2fm

∂xi∂xj
f∗(

∂

∂ym
) +

∂fm

∂xj
∇̂ ∂

∂xi
f∗(

∂

∂ym
)

= (
∂2f l

∂xi∂xj
+
∂fn

∂xi
∂fm

∂xj
Γl
nm(f))f∗(

∂

∂yl
)

Therefore

Bij : = B(
∂

∂xi
,
∂

∂xj
)

= (
∂2f l

∂xi∂xj
+
∂fn

∂xi
∂fm

∂xj
Γl
mn(f)− Γk

ij

∂f l

∂xk
)f∗(

∂

∂yl
)

that is

B = (
∂2f l

∂xi∂xj
+
∂fn

∂xi
∂fm

∂xj
Γl
mn(f)− Γk

ij

∂f l

∂xk
)dxi ⊗ dxj ⊗ f∗(

∂

∂yl
)

Proposition 10.5.1. The second fundamental form B is symmetric.

Proof. It’s clear from local expression. □

Corollary 10.5.1 (torsion-free). For X,Y ∈ C∞(M,TM), one has

∇̂X(f∗Y )− ∇̂Y (f∗X) = f∗(∇XY −∇YX) = f∗([X,Y ])

Proof. The first equality holds from the symmetry of second fundamental
form and the second equality holds since ∇ is torsion-free. □

Example 10.5.1 (geodesic). A smooth curve γ : I → M can be regarded
as γ : (I, gcan) → (M, g), thus second fundamental form in this case is

B = (
d2γk

dt2
+

dγi

dt

dγj

dt
Γk
ij ◦ γ)dt⊗ dt⊗ γ∗(

∂

∂xk
)

since canonical metrics on I has vanishing Christoffel symbol. In this view-
point, a smooth curve is a geodesic, if it has vanishing second fundamental
form as smooth maps between Riemannian manifolds.

Example 10.5.2 (Hessian). A smooth function f can be regarded as f : (M, g) →
(R, gcan), thus second fundamental form in this case is

B = (
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
)dxi ⊗ dxj ⊗ f∗(

∂

∂y
)

since canonical metrics on R has vanishing Christoffel symbol. Recall Hes-
sian of f is

Hess f =
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
dxi ⊗ dxj

So second fundamental form generalizes Hessian of smooth function.
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Proposition 10.5.2. Let B be fundamental form of f . Then
B = ∇̃df

where ∇̃ is the connection on T ∗M ⊗ f∗TN induced by ∇ together with
pullback connection ∇̂ on f∗TN .

Proof. Suppose df is locally written as

df =
∂fm

∂xi
dxi ⊗ f∗(

∂

∂ym
)

Then direct computation shows

∇̃df =∇̃(
∂fm

∂xi
dxi ⊗ f∗(

∂

∂ym
))

=
∂2fm

∂xj∂xi
dxj ⊗ dxi ⊗ f∗(

∂

∂ym
)− ∂fm

∂xi
Γi
jkdx

j ⊗ dxk ⊗ f∗(
∂

∂ym
)

+
∂fm

∂xi
∂fn

∂xj
Γl
mn(f) · dxi ⊗ dxj ⊗ f∗(

∂

∂yl
)

=(
∂2f l

∂xi∂xj
− ∂f l

∂xk
Γk
ij +

∂fm

∂xi
∂fn

∂xj
Γl
mn(f))dx

i ⊗ dxj ⊗ f∗(
∂

∂yl
)

=B

This completes the proof. □
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11. Variation formulas of curves

In this section and Section 12, we fix the following notations:
(1) I = [a, b] ⊆ R is a closed interval.
(2) (M, g) is a Riemannian manifold equipped with Levi-Civita connection

∇.
(3) For two different points p, q ∈M , the space of piecewise smooth curves

from p to q is denoted as Lp,q.
(4) For γ ∈ Lp,q, γ′(t) denotes γ∗( d

dt), which is a piecewise smooth vector
field along γ.

(5) The arc-length functional and energy functional on Lp,q are defined as
follows

L(γ) =

ˆ b

a
|γ′(t)|ĝdt

E(γ) =
1

2

ˆ b

a
|γ′(t)|2ĝdt

where ĝ is pullback metric on γ∗TM .

11.1. First variation formula.

Definition 11.1.1 (variation). Given γ ∈ Lp,q, a variation (fixing end-
points) of γ is a map

α : [a, b]× (−ε, ε) →M

such that
(1) α(-, s) ∈ Lp,q for any s ∈ (−ε, ε).
(2) There is a subdivision a = t0 < t1 < · · · < tk = b of I such that α is

smooth on each strip (ti−1, ti]× (−ε, ε) for i = 1, . . . , k.
(3) α(t, 0) = γ(t) for any t ∈ [a, b].

Remark 11.1.1. In general, we can consider variations of γ without fixing
endpoints, but in this section we only consider variations fixing endpoints.

Notation 11.1.1. For pullback bundle α∗TM , ∇ and g denote connection
and metric pulled back from the ones on TM respectively. By definition the
restriction of ∇ on γ∗TM is exactly ∇̂, and the restriction of g on γ∗TM is
ĝ.

Definition 11.1.2 (variation vector field). For a variation α of γ ∈ Lp,q,
α∗(

∂
∂s)
∣∣
s=0

is called variation vector field of variation α, which is a piecewise
smooth vector field along γ.

Remark 11.1.2. Note that for a variation{
α(a, s) = p

α(b, s) = q



RIEMANNIAN GEOMETRY 75

holds for any s ∈ (−ε, ε). Thus we have{
α∗(

∂
∂s)(a, s) = 0

α∗(
∂
∂s)(b, s) = 0

holds for any s ∈ (−ε, ε). In particular, it holds for s = 0. In other words,
variation vector field vanishes at endpoints.

Lemma 11.1.1. Let γ ∈ Lp,q and X a piecewise smooth vector field along
γ which vanishes at endpoints. Then there exists a variation α of γ such
that the variation vector field is exactly X, that is

α∗(
∂

∂s
)

∣∣∣∣
s=0

= X

Proof. See Proposition 2.2 in Page193 of [Car92]. □

Theorem 11.1.1 (first variation formula of smooth version). Let γ : I →
(M, g) be a unit-speed smooth curve, α a variation of γ with variation vector
fields V . Then

d

ds

∣∣∣∣
s=0

L(α(-, s)) (1)
=

d

ds

∣∣∣∣
s=0

E(α(-, s)) (2)
=

ˆ b

a
〈∇̂ d

dt
V, γ′(t)〉dt

(3)
= −

ˆ b

a
〈V, ∇̂ d

dt
γ′(t)〉dt

Proof. Note that

d

ds

∣∣∣∣
s=0

L(α(-, s)) =
ˆ b

a

1

2|γ′(t)|
∂

∂s

∣∣∣∣
s=0

|α∗(
∂

∂t
)|2dt = 1

|γ′(t)|
d

ds

∣∣∣∣
s=0

E(α(-, s))

since γ is unit-speed, This show equation marked by (1). Since γ(t) is
smooth, integration by parts shows

0 =

ˆ b

a

d

dt
〈V, γ′(t)〉dt =

ˆ b

a
〈∇̂ d

dt
V, γ′(t)〉dt+

ˆ b

a
〈V, ∇̂ d

dt
γ′(t)〉dt

This shows equation marked by (3). For equation marked by (2), direct
computation shows

d

ds
E(α(-, s)) = d

ds

1

2

ˆ b

a
|α∗(

∂

∂t
)|2dt

=
1

2

ˆ b

a

∂

∂s
|α∗(

∂

∂t
)|2dt

=
1

2

ˆ b

a
2〈∇ ∂

∂s
α∗(

∂

∂t
), α∗(

∂

∂t
)〉gdt

(4)
=

ˆ b

a
〈∇ ∂

∂t
α∗(

∂

∂s
), α∗(

∂

∂t
)〉gdt
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The hallmark of above computation is the equality marked by (4), which
can be seen from Corollary 10.5.1. Thus

d

ds

∣∣∣∣
s=0

E(α(-, s)) =
ˆ b

a
〈∇̂ d

dt
V, γ′(t)〉dt

since α∗(
∂
∂s)
∣∣
s=0

= V and α∗(
∂
∂t)
∣∣
s=0

= γ′(t). □

Corollary 11.1.1 (first variation formula of piecewise smooth version).
Let γ : I → (M, g) be a unit-speed piecewise smooth curve with breakpoints
a = t0 < t1 < · · · < tk = b, α a variation of γ with the variation vector field
V . Then
d

ds

∣∣∣∣
s=0

L(α(-, s)) = d

ds

∣∣∣∣
s=0

E(α(-, s)) =
ˆ b

a
〈∇̂ d

dt
V, γ′(t)〉dt

= −
ˆ b

a
〈V, ∇̂ d

dt
γ′(t)〉dt−

k−1∑
i=1

〈Vti ,∆tiγ
′〉

where ∆tγ
′ = γ′(t+)− γ′(t−).

Proof. Note that γ(t) is smooth on each (ti−1, ti]. Then by Theorem 11.1.1
one has

d

ds

∣∣∣∣
s=0

L(α(-, s)) =
ˆ ti

ti−1

〈∇̂ d
dt
V, γ′(t)〉dt

and integration by parts shows

〈V, γ′(t)〉
∣∣ti
ti−1

=

ˆ ti

ti−1

d

dt
〈V, γ′(t)〉dt =

ˆ ti

ti−1

〈∇̂ d
dt
V, γ′(t)〉dt+

ˆ ti

ti−1

〈V, ∇̂ d
dt
γ′(t)〉dt

Then we add these equations together to obtain desired equation. □
Remark 11.1.3. Suppose α is a variation of γ without fixing endpoints with
variation vector field V , from the proof of equality marked by (3), it’s clear
to see its first variation formula is
d

dt

∣∣∣∣
s=0

L(α(-, s)) = 〈V (b), γ′(b)〉−〈V (a), γ′(a)〉−
ˆ b

a
〈V, ∇̂ d

dt
γ′(t)〉dt−

k−1∑
i=1

〈Vti ,∆tiγ
′〉

Corollary 11.1.2. Given γ ∈ Lp,q. The following statements are equivalent.
(1) γ is a critical point of energy functional E : Lp,q → R.
(2) γ has constant speed |γ′(t)| = c > 0 and γ is a critical point of arc-length

functional L : Lp,q → R.
(3) γ is a geodesic. In particular, it’s smooth.

Proof. From (3) to (2). Firstly a geodesic must have constant speed c, and
c > 0 since p, q are distinct points. It’s also a critical point of L since first
variation formula implies

d

ds

∣∣∣∣
s=0

L(α(-, s)) = −
ˆ b

a
〈V, ∇̂ d

dt
γ′(t)〉dt = 0
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Note that there is only one term in first variation formula, since geodesic is
a smooth curve.

From (2) to (1). It’s clear, since from above proof we have already seen for
constant speed curve, the first variation of arc-length functional and energy
functional only differs a scalar.

From (1) to (3). In order to show ∇̂ d
dt
γ′(t) = 0 and it’s smooth, it suffices

to choose appropriate variation vector fields to conclude. □

11.2. Second variation formula. We already know a geodesic γ is a crit-
ical point for energy functional or arc-length functional, so it suffices to
compute second variation of geodesics to determine whether it’s local min-
imum or not. To see this, we need to consider the following 2-dimensional
variation

α : [a, b]× (−ε1, ε1)× (−ε2, ε2)
such that
(1) α(t, 0, 0) = γ(t)
(2) α(-, s1, s2) is a smooth curve connecting p and q.

11.2.1. Second variation formula for energy.

Theorem 11.2.1 (second variation formula for energy). Let γ : [a, b] →
(M, g) be a smooth curve. If α is a 2-dimensional variation of γ with varia-
tion fields V,W . Then
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(-, s1, s2)) =
ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt

−
ˆ b

a
R(V, γ′, γ′,W )dt−

ˆ b

a
〈∇ ∂

∂s1

α∗(
∂

∂s2
)

∣∣∣∣
s1=s2=0

, ∇̂ d
dt
γ′(t)〉dt

Proof. By first variation formula we have
∂

∂s2
E(α(-, s1, s2)) = −

ˆ b

a
〈α∗(

∂

∂s2
),∇ ∂

∂t
α∗(

∂

∂t
)〉gdt

Thus
∂2

∂s1∂s2
E(α(-, s1, s2)) = −

ˆ b

a
〈∇ ∂

∂s1

α∗(
∂

∂s2
),∇ ∂

∂t
α∗(

∂

∂t
)〉gdt︸ ︷︷ ︸

part I

−
ˆ b

a
〈α∗(

∂

∂s2
),∇ ∂

∂s1

∇ ∂
∂t
α∗(

∂

∂t
)〉gdt︸ ︷︷ ︸

part II

For part II, we have

∇ ∂
∂s1

∇ ∂
∂t
α∗(

∂

∂t
) = R(α∗(

∂

∂s1
), α∗(

∂

∂t
))α∗(

∂

∂t
) +∇ ∂

∂t
∇ ∂

∂s1

α∗(
∂

∂t
)

Thus we can write part II as

−
ˆ b

a
〈α∗(

∂

∂s2
), R(

∂

∂s1
,
∂

∂t
)α∗(

∂

∂t
)〉gdt−

ˆ b

a
〈α∗(

∂

∂s2
),∇ ∂

∂t
∇ ∂

∂s1

α∗(
∂

∂t
)〉gdt︸ ︷︷ ︸

part III
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For part III, we have

−
ˆ b

a
〈α∗(

∂

∂s2
),∇ ∂

∂t
∇ ∂

∂s1

α∗(
∂

∂t
)〉gdt = −

ˆ b

a
〈α∗(

∂

∂s2
),∇ ∂

∂t
∇ ∂

∂t
α∗(

∂

∂s1
)〉gdt

=

ˆ b

a
〈∇ ∂

∂t
α∗(

∂

∂s2
),∇ ∂

∂t
α∗(

∂

∂s1
)〉gdt

Now let’s evaluate at s1 = s2 = 0. Then we have
(1) Part I

−
ˆ b

a
〈∇ ∂

∂s1

α∗(
∂

∂s2
)

∣∣∣∣
s1=s2=0

, ∇̂ d
dt
γ′(t)〉dt

(2) Part II ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt−

ˆ b

a
R(V, γ′, γ′,W )dt

This completes the proof. □

Corollary 11.2.1. Let γ : [a, b] → (M, g) be a geodesic. Then

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(-, s1, s2)) =
ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt−

ˆ b

a
R(V, γ′, γ′,W )dt

11.2.2. Second variation formula for arc-length.

Theorem 11.2.2 (second variation formula for arc-length). Let γ : [a, b] →
(M, g) be a unit-speed curve. If α is a 2-dimensional variation of γ with
variation fields V,W . Then
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(-, s1, s2)) =
ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt−

ˆ b

a
R(V, γ′, γ′,W )dt

−
ˆ b

a
〈∇ ∂

∂s1

α∗(
∂

∂s2
)

∣∣∣∣
s1=s2=0

, ∇̂ d
dt
γ′(t)〉dt

−
ˆ b

a
〈∇̂ d

dt
V, γ′〉〈∇̂ d

dt
W,γ′〉dt

Corollary 11.2.2. Let γ : [a, b] → (M, g) be a unit-speed geodesic. If α is
a 2-dimensional variation of γ with variation fields V,W . Then
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(-, s1, s2)) =
ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt−

ˆ b

a
R(V, γ′, γ′,W )dt

−
ˆ b

a
〈∇̂ d

dt
V, γ′〉〈∇̂ d

dt
W,γ′〉dt

=

ˆ b

a
〈∇̂ d

dt
V ⊥, ∇̂ d

dt
W⊥〉dt−

ˆ b

a
R(V ⊥, γ′, γ′,W⊥)dt

where
V ⊥ = V − 〈V, γ′〉γ′, W⊥ =W − 〈W,γ′〉γ′
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Proof. It suffices to check the second equality. Direct computation shows:
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉 = 〈∇̂ d

dt
(V ⊥ + 〈V, γ′〉γ′), ∇̂ d

dt
(W⊥ + 〈W,γ′〉γ′)〉

= 〈∇̂ d
dt
V ⊥, ∇̂ d

dt
W⊥〉+ 〈∇̂ d

dt
V, γ′〉〈∇̂ d

dt
W,γ′〉

Thus
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉 − 〈∇̂ d

dt
V, γ′〉〈∇̂ d

dt
W,γ′〉 = 〈∇̂ d

dt
V ⊥, ∇̂ d

dt
W⊥〉

since
∇̂ d

dt
(〈V, γ′〉γ′) = 〈∇̂ d

dt
V, γ′〉γ′

and it’s clear
R(V, γ′, γ′,W ) = R(V ⊥, γ′, γ′,W⊥)

□
So if we want to show a geodesic γ is a (locally) minimal geodesic, it

suffices to show for any 2-dimensional variation α with variation vector fields,
we have

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(-, s1, s2)) ≥ 0

This motivates us to consider the following bilinear form defined on the
space of variation vector fields.

Definition 11.2.1 (index form). Let γ : [a, b] → (M, g) be a unit-speed
geodesic. The index form Iγ is defined as

Iγ(V,W ) =

ˆ b

a
〈∇̂ d

dt
V, ∇̂ d

dt
W 〉dt−

ˆ b

a
R(V, γ′, γ′,W )dt

where V,W are vector fields along γ.

By Corollary 11.2.2, a geodesic γ is locally minimal if and only if index
form defined on the space of normal6 variation fields are semi-positive defi-
nite. In the following section, we will study when the index form defined on
the normal variation vector fields along γ is positive definite, semi-positive
definite or not.

6A vector field V along γ is called normal, if V is perpendicular to γ′.
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12. Jacobi field I: as the null space

12.1. First properties.

Definition 12.1.1 (Jacobi field). A vector field J along geodesic γ is called
a Jacobi field, if it satisfies

∇̂ d
dt
∇̂ d

dt
J +R(J, γ′)γ′ = 0

Notation 12.1.1. For convenience,

J ′ = ∇̂ d
dt
J

J ′′ = ∇̂ d
dt
∇̂ d

dt
J

Remark 12.1.1 (local form). Suppose {e1, . . . , en} is a parallel orthonormal
frame along γ, and J(t) = J i(t)ei(t), the condition for Jacobi fields becomes

d2Jk

dt2
+ 〈J jR(ej , γ

′)γ′, ek〉 = 0

Thus by standard results in ODEs, a Jacobi field J is completely determined
by its initial conditions

J(0), J ′(0) ∈ Tγ(0)M

Consequently, the set of Jacobi fields is a vector space with dimension 2n.

Example 12.1.1. There is always a trivial Jacobi field along geodesic
γ : [a, b] →M , that is J(t) = (at+ b)γ′(t).

Proposition 12.1.1. Let J(t) be a Jacobi field along geodesic γ.
(1) If J(t) 6≡ 0. Then the set consisting of zeros of J(t) is discrete.
(2) There exist constants λ, µ such that

J(t) = J⊥(t) + (λt+ µ)γ′(t)

where 〈J⊥(t), γ′〉 ≡ 0.
(3) J(t) ⊥ γ′ if and only if there exist t1 6= t2 such that

〈J(t1), γ′(t1)〉 = 〈J(t2), γ′(t2)〉 = 0

(4) If there exists t0 such that
〈J(t0), γ′(t0)〉 = 〈J ′(t0), γ

′(t0)〉 = 0

then J(t) ⊥ γ′(t).

Proof. For (3). Note that
d2

dt2
〈J(t), γ′(t)〉 = 〈∇̂ d

dt
∇̂ d

dt
J, γ′〉 = 〈R(J, γ′)γ′, γ′〉 = 0

Thus 〈J(t), γ′(t)〉 = λt + µ. Note that 〈Ji(t1), γ′(t1)〉 = 〈Ji(t2), γ′(t2)〉 = 0,
which implies 〈J(t), γ′(t)〉 ≡ 0.

□
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Proposition 12.1.2. Let γ : [a, b] → (M, g) be a geodesic and α : [a, b] ×
(−ε, ε) → (M, g) a variation of γ consisting of geodesics. Then

J = α∗(
∂

∂s
)

∣∣∣∣
s=0

is a Jacobi field.

Proof. Direct computation shows

∇ ∂
∂t
∇ ∂

∂t
α∗(

∂

∂s
)
(1)
= ∇ ∂

∂t
∇ ∂

∂s
α∗(

∂

∂t
)

= R(
∂

∂t
,
∂

∂s
)α∗(

∂

∂t
) +∇ ∂

∂s
∇ ∂

∂t
α∗(

∂

∂t
)

(2)
= R(

∂

∂t
,
∂

∂s
)α∗(

∂

∂t
)

where
(1) holds from Corollary 10.5.1.
(2) holds from α is a variation consisting of geodesics.

Set s = 0 one has

∇̂ d
dt
∇̂ d

dt
J = R(γ′, J)γ′ = −R(J, γ′)γ′

which implies J is a Jacobi field. □

Remark 12.1.2. In fact, all Jacobi fields can be obtained by above construc-
tion.

Corollary 12.1.1. Let (M, g) be a Riemannian manifold, and (xi, U, p)
is a normal coordinate centered at p ∈ M . For each q ∈ U \ {p}, and
w ∈ TqM , there exists a Jacobi field J along geodesic connecting p, q such
that J(0) = 0, J(0)′ = w and J(1) = w.

Proof. For q ∈ U \{p}, there exists a unique v ∈ TpM such that expp(v) = q,
and γ(t) = expp(tv). Consider the following variation of γ(t) consisting of
geodesics

α(t, s) = expp(t(v + sw))

where w ∈ TpM . Its variation vector field J(t) = α∗(
∂
∂s)
∣∣
s=0

is a Jacobi field
along γ. In normal coordinate (xi, U, p), α(t, s) can be written explicitly as

α(t, s) = (t(v1 + sw1), . . . , t(vn + swn))

where v = (v1, . . . , vn), w = (w1, . . . , wn). Thus J(t) is given by the formula

J(t) = twi ∂

∂xi

∣∣∣∣
γ(t)

and it’s clear J(0) = 0, J(0)′ = w and J(1) = w. □
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12.2. Conjugate points.

Definition 12.2.1 (conjugate point). Let p 6= q be two endpoints of a
geodesic γ. p and q are called conjugate along γ if there exists a non-zero
Jacobi field J along γ which vanishes at endpoints.

Notation 12.2.1. The conjugate locus of p is defined as
conj(p) := {q ∈M | p and q are conjugate along some geodesic.}

Proposition 12.2.1. There are at most n− 1 linearly independent Jacobi
fields J(t) along γ such that J(a) = J(b) = 0.

Proof. By Remark 12.1.1, there are at most n linearly independent Jacobi
fields such that J(a) = 0, and the trivial Jacobi field J(t) = (t − a)γ′(t)
never vanishes at t = b. □
Theorem 12.2.1. Let (M, g) be a Riemannian manifold, p ∈ M and v ∈
Vp ⊆ TpM . Then (d expp)v is not injective if and only if q = expp(v) is
conjugate to p along expp(tv).

Proof. For any 0 6= w ∈ TpM , if (d expp)v(w) = 0, then J(t) = (d expp)tv(tw)
is a Jacobi field such that J(0) = J(1) = 0, which implies p is conjugate to
q. Conversely, if p and q are conjugate along expp(tv), then there exists a
Jacobi field J such that J(0) = J(1) = 0. Note that J(t) can be written as

J(t) = (d expp)tv(tw)

where 0 6= w = J ′(0) ∈ TpM , since J(t) is determined by J(0) and J ′(0). In
particular, one has

(d expp)v(w) = J(1) = 0

which implies (d expp)v is not injective. □

Corollary 12.2.1. Let (M, g) be a complete Riemannian manifold, p ∈
M . If the conjugate locus conj(p) = ∅, then expp : TpM → M is a local
diffeomorphism.

Proof. The exponential map expp : TpM →M is surjective since M is com-
plete. On the other hand, for arbitrary v ∈ TpM , (d expp)v is injective since
the conjugate locus conj(p) = ∅. Thus expp is a local diffeomorphism. □

Example 12.2.1. For p ∈ Sn, conj(p) = {−p}.

Example 12.2.2. For p ∈ S1 × R, conj(p) = ∅.

12.3. Locally minimal geodesic.

Lemma 12.3.1. Let γ : [a, b] → (M, g) be a unit-speed geodesic with no
conjugate points, there exist Jacobi fields J2, . . . , Jn along γ such that
(1) Ji(a) = 0, i ≥ 2 and {γ′(b), J2(b), . . . , Jn(b)} is an orthonormal basis of

Tγ(b)M .
(2) 〈Ji(t), γ′(t)〉 ≡ 0 for any t ∈ [a, b].
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(3) {γ′(t), J2(t), . . . , Jn(t)} are linearly independent for t ∈ (a, b].

Proof. Suppose {γ′(b), e2, . . . , en} is an orthonormal basis of Tγ(b)M , since
there is no conjugate points along γ, there exists a unique Jacobi field Ji
such that

Ji(a) = 0, Ji(b) = ei
for each i = 2, . . . , n. Now it suffices to show Jacobi fields Ji(t) satisfy
properties (2) and (3).

For (2). Note that 〈Ji(a), γ′(a)〉 = 〈Ji(b), γ′(b)〉 = 0. Then by (3) of
Proposition 12.1.1 one 〈Ji(t), γ′(t)〉 ≡ 0.

For (3). Suppose there exists c ∈ (a, b] and λi ∈ R such that
n∑

i=2

λiJi(c) = 0

which implies

W (t) =
n∑

i=2

λiJi(t) ≡ 0

on (a, c] since there is no conjugate points. By (1) of Proposition 12.1.1
one has W (t) ≡ 0 on (a, b], thus we have λi = 0, i = 2, . . . , n, since
{γ′(b), J2(b), . . . , Jn(b)} is linearly independent. □
Theorem 12.3.1. Let γ : [a, b] → (M, g) be a unit-speed geodesic. Then
(1) If γ has no conjugate points. Then index form Iγ is positive definite

on vector space consisting of normal variation fields.
(2) If γ only has conjugate points as endpoints. Then index form is semi-

positive definite on vector space consisting of normal variation fields.
Furthermore, Jacobi field is null space.

(3) If γ has an interior conjugate point. Then index form is not positive
definite on vector space consisting of normal variation fields.

Proof. For (1). Suppose γ(t) has no conjugate points, choose Jacobi fields
{J1(t) = γ′(t), J2(t), . . . , Jn(t)} in Lemma 12.3.1. Then for any normal
variation vector V along γ we write it as

V =
n∑

i=2

V i(t)Ji(t)

Then it’s clear V i(b) = 0 since V (b) = 0 and {J2(b), . . . , Jn(b)} is linearly
independent. Direct computation shows

Iγ(V, V ) =

n∑
i,j=2

ˆ b

a
V iV j〈J ′

i , J
′
j〉+

dV i

dt
V j〈Ji, J ′

j〉+ V idV
j

dt
〈J ′

i , Jj〉dt︸ ︷︷ ︸
Part I

+

ˆ b

a

{
dV i

dt

dV j

dt
〈Ji, Jj〉 − V iV jR(Ji, γ

′, γ′, Jj)

}
dt︸ ︷︷ ︸

Part II
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Note that
〈J ′

i , Jj〉 = 〈Ji, J ′
j〉

Then Part I is ˆ b

a

{
(V iV j〈J ′

i , Jj〉)′ − V iV j〈J ′′
i , Jj〉

}
dt

Thus

Iγ(V, V ) =
n∑

i,j=2

V iV j〈J ′
i , Jj〉

∣∣b
a
+

n∑
i,j=2

ˆ b

a

dV i

dt

dV j

dt
〈Ji, Jj〉dt

=

n∑
i,j=2

ˆ b

a

dV i

dt

dV j

dt
〈Ji, Jj〉dt

≥ 0

Furthermore, Iγ(V, V ) = 0 if and only if
∑n

i=2
dV i

dt Ji(t) = 0 if and only if
dV i

dt (t) = 0, t ∈ [a, b], thus V i(t) ≡ 0, that is V = 0.
For (2). For any c ∈ (a, b), consider geodesic γc : [a, c] → (M, g). By

(1) one has Iγc is positive definite on the vector space consisting of normal
variation fields along γc. Then a standard approximation argument shows
Iγ is semi-positive definite.

To see its null space: It’s clear a normal variation Jacobi field V satisfies
Iγ(V, V ) = 0. Conversely, if a normal variation field V satisfies Iγ(V, V ) = 0,
then by a variation argument we have for arbitrary W we have

Iγ(V,W ) = 0

Take appropriate W to see V satisfies the equation for Jacobi fields.
For (3). If γ(a) is conjugate to γ(c) for some c ∈ (a, b), then there exists

a non-zero normal Jacobi field J̃(t) along γ such that J̃(a) = J̃(c) = 0.
Consider

J(t) =

{
J̃(t) t ∈ [a, c]

0 t ∈ [c, b]

Although J(t) may not be a smooth vector field along γ, one still has
Iγ(J, J) = 0 by integrating piecewisely. Let W be a smooth normal variation
vector field along γ such that

W (c) = − lim
t→c−

∇ d
dt
J̃(t)

It’ clear W (c) 6= 0, otherwise J̃(t) ≡ 0. If we define Jε = J + εW , then one
has

Iγ(Jε, Jε) = 2εIγ(J,W ) + ε2Iγ(W,W )

And integration by parts implies

Iγ(J,W ) = 〈∇̂ d
dt
J̃ ,W 〉

∣∣∣c
a
= −W (c)2 < 0
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So for sufficiently small ε we have Iγ(Jε, Jε) < 0, and by approximation
argument we can show there exists a smooth normal variation field such
that Iγ(V, V ) < 0, a contradiction. □
Corollary 12.3.1. Let γ : [a, b] → (M, g) be a unit-speed geodesic with
no conjugate points, and V,W are normal vector fields satisfying V (a) =
W (a), V (b) = W (b). If V is a Jacobi field. Then Iγ(V, V ) ≤ Iγ(W,W ), and
the equality holds if and only if V =W .

Proof. Since V,W agree at end points, then V −W is a normal variation
field. Thus we have

0 ≤ Iγ(V −W,V −W ) = Iγ(V, V ) + Iγ(W,W )− 2Iγ(V,W )

Since V is a Jacobi field, then integration by parts shows

Iγ(V, V ) = 〈∇̂ d
dt
V, V 〉

∣∣∣b
a
= 〈∇̂ d

dt
V,W 〉

∣∣∣b
a
= Iγ(V,W )

Hence we get Iγ(V, V ) ≤ Iγ(W,W ), and the equality holds if and only if
V =W . □
Remark 12.3.1. From second variation formula, we can conclude that a ge-
odesic γ is a locally minimal geodesic if and only if it has no interior
conjugate points. However, it may not be globally minimal geodesic.
For example, consider M = S1 × R. It’s clear there is no conjugate points
for any geodesic on M , and thus for geodesic γ : [a, b] → M starting at
(x, y) ∈ M , it’s locally minimal. But if there exists c ∈ (a, b) such that
γ(c) ∈ {−x} × R, then γ is not a minimal curve.
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13. Cut locus and injective radius

13.1. Cut locus.

Definition 13.1.1 (cut time/point/locus). Let (M, g) be a complete Rie-
mannian manifold, p ∈M and v ∈ TpM .
(1) The cut time of (p, v) is defined as

tcut(p, v) = sup{c > 0 | γv|[0,c] is a minimal geodesic}
(2) If tcut(p, v) <∞, the cut point of p along γv is defined as γv(tcut(p, v)).
(3) The cut locus of p is defined as

cut(p) = {q ∈M | ∃v ∈ TpM such that q is a cut point of p along γv.}

Remark 13.1.1.
(1) It’s possible for tcut(p, v) = +∞. For example, consider (M, g) =

(Rn, gcan).
(2) If cut point exists, it occurs at or before the first conjugate point.
(3) It’s clear that tcut(p, v) depends on the |v|, but γv(tcut(p, v)) is indepen-

dent of |v|.

Theorem 13.1.1. Let (M, g) be a complete Riemannian manifold, p ∈
M, v ∈ TpM with |v| = 1. Let c = tcut(p, v) ∈ (0,∞].
(1) If 0 < b < c and b is finite, then γv|[0,b] has no conjugate point and it is

the unique minimal unit-speed geodesic between endpoints.
(2) If c <∞, then γv|[0,c] is a minimal geodesic.
(3) In the case of (2), one or both of the following holds.

(a) γv(c) is conjugate to p along γv.
(b) There are two or more different unit-speed minimal geodesic con-

necting p and γv(c).

Proof. For (1). It’s clear γv|[0,b] has no conjugate point since cut point occurs
at or before the first conjugate point, and it’s minimal by definition. To see
it’s unique, suppose σ : [0, b] → M is another minimal unit-speed geodesic.
Note that γ′v(b) 6= σ′(b), otherwise by uniqueness one has γv(t) = σ(t) in
t ∈ [0, b]. Now we take b′ ∈ (b, c), and construct a new unit-speed curve as
follows

γ̃(t) =

{
σ(t), t ∈ [0, b]

γv(t), t ∈ (b, b′]

Then γ̃ has length b′, so it’s also a minimal curve from p to γv(b
′), since

dist(p, γv(b
′)) = b′. However, γ̃(t) is not smooth at t = b, which contradicts

to the fact that minimal curve are smooth geodesics.
For (2). By definition, there exists a sequence {ci} increasing to c such

that γv|[0,ci] is minimal. By continuity of distance function, one has
dist(p, γv(c)) = lim

i→∞
dist(p, γv(ci)) = lim

i→∞
ci = c

which implies γv is minimal on [0, c].
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For (3). Assume γv(c) is not conjugate to p along γv, we shall prove
the existence of another unit-speed minimal geodesic from p to γv(c). Let
{ci} be a sequence descending to c. By definition γv : [0, ci] → M is not a
minimal geodesic, so there exists a unit-speed minimal geodesic γi : [0, ai] →
M connecting p and γv(ci). By construction one has γi(ai) = γv(ci) and
ai < ci. If we denote ωi = γ′i(0) ∈ TpM , by compactness of unit sphere in
TpM and the fact {ai} is bounded, by taking subsequence twice we can find
a subsequence of {γi(t)}, still denoted by {γi(t)}, such that ωi converging
to some w ∈ TpM with |w| = 1, and limi→∞ ai = a. In fact a = c, since

c = dist(p, γv(c))

= lim
i→∞

dist(p, γv(ci))

= lim
i→∞

dist(p, γi(ai))

= lim
i→∞

ai = a

Since γv(c) is not conjugate to p, (d expp)cv is non-degenerated, which im-
plies expp is injective in Bε(cv) for sufficiently small ε > 0. On one hand we
have aiwi 6= civ since ai < ci, but on the other hand we have

expp(civ) = γv(ci) = γi(ai) = expp(aiwi)

Thus injectivity implies aiwi 6∈ Bε(cv) for sufficiently large i, since civ ∈
Bε(cv). By taking limits one has

aw 6= cv

This shows w 6= v since a = c, and thus expp(tw) gives another unit-speed
minimal geodesic connecting p and γv(c), since expp(cw) = expp(aw) =
expp(av). □

Corollary 13.1.1. If γ : [0, b] → M is a minimal geodesic connecting γ(0)
and γ(b), then it’s the unique minimal geodesic connecting any two points
strictly between γ(0) and γ(b).

Proof. It follows from the proof of (1). □

Corollary 13.1.2. Let (M, g) be a complete Riemannian manifold with
p, q ∈M .
(1) If q ∈ cut(p), then p ∈ cut(q).
(2) If q 6∈ cut(p), then there exists a unique minimal geodesic connecting p

and q.

Proof. For (1). If q is cut point of p along geodesic γ, then γ is a minimal
geodesic connecting p and q, and by Theorem 13.1.1, there are the following
two cases.
(a) q is conjugate to p along γ.
(b) There are two more different unit-speed geodesic connecting p and q.
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Note that we already have γ−1 is a minimal geodesic connecting q and p, so
if we want to show p ∈ cut(q), it suffices to show γ−1 is no longer minimal
after p. Let’s discuss case by case.
(a) It’s clear γ−1 is no longer minimal after p in the first case, since if q is

conjugate to p, then p is also conjugate to q.
(b) In the second case, if γ−1 is still minimal after p, then by Corollary

13.1.1, one has γ−1 is the unique minimal geodesic connecting q and p,
which contradicts to the second case.

For (2). If there exist two or more minimal geodesic connecting p and q.
Then for any minimal geodesic γ connecting p and q, it’s no longer minimal
after q by Corollary 13.1.1, which contradicts to q 6∈ cut(p). □

Example 13.1.1.
(1) For p ∈ Sn, cut(p) = conj(p) = {−p}. In this case both (a), (b) hold in

Theorem 13.1.1.
(2) For p ∈ S1 × R, cut(p) = {−p} × R and there is no conjugate point. In

this case (a) fails and (b) holds in Theorem 13.1.1.

Definition 13.1.2 (tangent cut locus and injectivity domain). Let (M, g)
be a complete Riemannian manifold, given p ∈M , we define
(1) the tangent cut locus

TCL(p) := {v ∈ TpM : |v| = tcut(p, v/|v|)}

(2) the injectivity domain

ID(p) := {v ∈ TpM : |v| < tcut(p, v/|v|)}

It’s clear that TCL(p) = ∂ ID(p) and cut(p) = expp(TCL(p)). Further-
more, we have the following properties.

Proposition 13.1.1. Let (M, g) be a complete Riemannian manifold and
p ∈M . Then
(1) The cut locus of p is a closed subset of M of measure zero.
(2) The restriction of expp to ID(p) is a diffeomorphism onto M \ cut(p).

Proof. See Theorem 10.34 of Page311 of [Lee18]. □

13.2. Injective radius.

Definition 13.2.1 (injective radius). Let (M, g) be a Riemannian manifold,
p ∈M . The injective radius of p is defined as

inj(p) := sup{ρ > 0 : expp is defined on B(0, ρ) ⊆ TpM and injective}

The injectivity radius of M is

inj(M) := inf
p∈M

inj(p)
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Theorem 13.2.1. Let (M, g) be a complete Riemannian manifold. Then

inj(p) =

{
dist(p, cut(p)) cut(p) 6= ∅
∞ cut(p) = ∅

Proof. See [Lee18, Proposition 10.36]. □
Proposition 13.2.1. Let (M, g) be a complete Riemannian manifold and
p ∈ M . Suppose there exists some point q ∈ cut(p) such that dist(p, q) =
dist(p, cut(p)). Then
(1) Either q is a conjugate point of p along some minimizing geodesic from

p to q, or there are exactly two minimizing geodesics from p to q, say
γ1, γ2 : [0, b] →M , such that γ′1(b) = −γ′2(b).

(2) If in addition that inj(p) = inj(M), and q is not conjugate to p along
any minimizing geodesic. Then there is a closed unit-speed geodesic
γ : [0, 2b] → M such that γ(0) = γ(2b) = p and γ(b) = q where b =
dist(p, q).

Proof. For (1). Suppose q is not conjugate to p along any minimizing ge-
odesic. Then by Theorem 13.1.1 there are at least two unit-speed minimal
geodesics γ1(t), γ2(t) such that γ1(b) = γ2(b) = q. Suppose γ′1(b) 6= −γ′2(b).
Then there exists a unit vector v ∈ TqM such that

〈v, γ′1(b)〉 < 0, 〈v, γ′2(b)〉 < 0

Since q is not conjugate to p along γ1, there exists a neighborhood U1 of
bγ′1(0) in TpM such that expp |U1 is diffeomorphism. Now choose a suffi-
ciently small s and let

ξ1(s) = (expp |U1)
−1 expq(sv)

Consider the following variation of γ1 consisting of geodesics:

α1(t, s) = exp(
t

b
ξ1(s))

It’s clear α1(t, 0) = γ1(t), since ξ1(0) = (expp |U1)
−1 expq(0) = (expp |U1)

−1(q) =
bγ′1(0). Then by Remark 11.1.3, that is the first variation formula of general
variation, one has

dL(γs)

ds

∣∣∣∣
s=0

= 〈v, γ′1(b)〉 < 0

which implies for sufficiently small s we have L(α1(t, s)) < L(γ1(t)). For
γ2 we can do the same construction and the same argument implies for
sufficiently small s we have L(α2(t, s)) < L(γ2(t)). Thus for each sufficiently
small s we have two geodesics α1(t, s), α2(t, s) from p to expq(sXq). However,
(13.1) d(p, expq(sv)) ≤ L(α1(t, s)) < L(γ1(t)) = dist(p, q) = inj(p)

A contradiction to the definition of injective radius. So any two different
minimizing geodesics γ1, γ2 from p to q satisfy γ′1(b) = −γ′2(b), which implies
there are exactly two minimizing geodesics from p to q.
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For (2). By (1) we know that there exists exactly two geodesics γ1, γ2 such
that γ1(b) = γ2(b) = q with γ′1(b) = γ′2(b). Consider the loop γ = γ1 ◦ γ−1

2 .
Then it’s a unit-speed geodesic such that γ(0) = γ(2b) = p, γ(b) = q, where
b = dist(p, q), since we have already shown γ′1(b) = −γ′2(b). To show γ
is a closed geodesic, it suffices to show γ′(2b) = γ′(0), that is equivalent
to show (γ−1

1 )′(b) = (γ−1
2 )′(b). Note that in the proof of (1), condition

of dist(p, q) = dist(p, cut(p)) = inj(p) is used in inequality (13.1), and in
fact we only need dist(p, q) ≤ inj(p), strict equality is not necessary. So if
inj(p) = inj(M), thus

dist(q, p) = dist(p, q) = inj(p) ≤ inj(q)

Then (1) implies (γ−1
1 )′(b) = (γ−1

2 )′(b). □
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14. Jacobi field II: a useful tool

14.1. Taylor expansion of Jacobi field.

Proposition 14.1.1. Let (M, g) be a Riemannian manifold, and γ : [0, 1] →
M is a geodesic with γ(0) = p, γ′(0) = v, where p ∈ M, v ∈ TpM . For any
w ∈ TpM with |w| = 1, suppose J(t) is the Jacobi field along γ given by

J(t) = (d expp)tv(tw)

Then
|J(t)|2 = t2 − 1

3
R(J ′, γ′, γ′, J ′)(0)t4 +O(t4)

|J(t)| = t− 1

6
R(J ′, γ′, γ′, J ′)(0)t3 +O(t3)

Proof. It suffices to prove the first equality, and the second follows from the
first one. Note that J(0) = 0, J ′(0) = w, direct computation shows

〈J, J〉(0) = 0

〈J, J〉′(0) = 2〈J, J ′〉(0) = 0

〈J, J〉′′(0) = 2〈J ′, J ′〉(0) + 2〈J ′′, J〉(0) = 2

〈J, J〉′′′(0) = 6〈J ′, J ′′〉(0) + 2〈J ′′′, J〉(0)
= 6〈J ′, R(J, γ′)γ′〉(0) = 0

〈J, J〉′′′′(0) = 8〈J ′, J ′′′〉(0) + 6〈J ′′, J ′′〉(0) + 2〈J ′′′′, J〉(0)
= 8〈J ′, J ′′′〉(0) + 6〈R(J, γ′)γ′, R(J, γ′)γ′〉(0)
= 8〈J ′, J ′′′〉(0)

Now it remains to compute J ′′′. For arbitrary vector field W along γ, direct
computation shows

〈∇̂ d
dt
R(J, γ′)γ′,W 〉 = d

dt
〈R(J, γ′)γ′,W 〉 − 〈R(J, γ′)γ,W ′〉

=
d

dt
〈R(W,γ′)γ′, J〉 − 〈R(J, γ′)γ,W ′〉

= 〈R(W,γ′)γ′, J ′〉 − 〈∇̂ d
dt
R(W,γ′)γ′, J〉 − 〈R(J, γ′)γ,W ′〉

= 〈R(J ′, γ′)γ′,W 〉 − 〈∇̂ d
dt
R(W,γ′)γ′, J〉 − 〈R(J, γ′)γ,W ′〉

By setting t = 0 we obtain

〈J ′, J ′′′〉(0) = −〈J ′(0), ∇̂ d
dt
R(J, γ′)γ′

∣∣∣
t=0

〉 = −R(J ′, γ′, γ′, J ′)(0)

As a consequence

|J(t)|2 = t2 − 1

3
R(J ′, γ′, γ′, J ′)(0)t4 +O(t4)

□
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Corollary 14.1.1. In normal coordinate (xi, U, p), one has

gij = δij −
1

3
Riklj(0)x

kxl +O(|x|3)

Corollary 14.1.2. In normal coordinate (xi, U, p), one has
(1) gij = δij +

1
3Riklj(0)x

kxl +O(|x|3)
(2) det(gij) = 1− 1

3Rkl(0)x
kxl +O(|x|3)

(3)
√
det(gij) = 1− 1

6Rkl(0)x
kxl +O(|x|3)

Proof. For (1). Note that gij gives a Riemannian metric on T ∗M , and Levi-
Civita connection ∇ on T ∗M with respect to gij is exactly the induced
connection from the one on TM . Note that

∇dxk = −Γk
ijdx

i ⊗ dxj

where Γk
ij is the Christoffel symbol for Levi-Civita connection on TM , we

have curvature form in this case differs a sign since

Rl
ijk(0) =

∂Γl
jk

∂xi
−
∂Γl

ik

∂xj

Thus all computations are same as proof above, but result differs a sign in
curvature.

For (2). By Jacobi’s formula, we have
∂ det(gij)

∂xk
= det(gij)g

ij ∂gij
∂xk

Thus ∂ det(gij)

∂xk (0) = 0, since first-order partial derivatives of gij vanishes.
Furthermore, since first-order partial derivatives of gij also vanishes, we
have

1

2

∂2 det(gij)

∂xl∂xk
= det(gij)g

ij 1

2

∂2gij
∂xl∂xk

= det(gij)g
ij(−1

3
Rikljx

kxl)

= −1

3
det(gij)Rklx

kxl

which implies

det(gij) = 1− 1

3
Rkl(0)x

kxl +O(|x|3)

For (3). It follows from (2). □

Theorem 14.1.1. Let (M, g) be a Riemannian manifold. For all p ∈ M
and r sufficiently small, the volume of B(p, r) is

Vol(B(p, r)) = αnr
n(1− S(p)

6(n+ 2)
r2 +O(r3))

where αn is the volume of n-dimension unit ball in Rn+1.



RIEMANNIAN GEOMETRY 93

Proof. Direct computation shows

Vol(B(p, r)) =

ˆ r

0

ˆ
Sn−1(t)

√
det gdSdt

(1)
=

ˆ r

0

ˆ
Sn−1(t)

(1− 1

6
Ricp(x) +O(|x|3))dSdt

(2)
= αnr

n − αn

6

ˆ r

0
S(p)tn+1dt+O(rn+3)

= αnr
n − αnS(p)r

n+2

6(n+ 2)
+O(rn+3)

= αnr
n(1− S(p)

6(n+ 2)
r2 +O(r3))

where
(1) holds from Corollary 14.1.2.
(2) holds from Proposition 6.2.2.

□
14.2. Gauss lemma. Let (M, g) be a Riemannian manifold, and (xi, U, p)
is the normal coordinate centered at p ∈M .

Definition 14.2.1 (radial distance function). The radial distance function
r defined on U is given by

r(q) :=

√√√√ n∑
i=1

(qi)2

where q = (q1, . . . , qn) in normal coordinate (xi, U, p).

Definition 14.2.2 (radial vector field). The radial vector field in U \ {p}
is defined as

∂r =
xi

r

∂

∂xi

Proposition 14.2.1. The geodesic starting at p with unit-speed is the in-
tegral curve of radial vector field ∂r over U \ {p}.

Proof. Let γ : I → U be a geodesic with γ(0) = p, γ′(0) = v, where |v| = 1,
by definition we need to show

γ′(b) = ∂r|γ(b)
where I is an open interval and b ∈ I. In normal coordinate γ looks like
γ(t) = (tv1, . . . , tvn). If we denote γ(b) = q = (q1, . . . , qn). Then it’s clear
vi = qi/b, and r(q) = b, since |v| = 1. Then

γ′(b) = vi
∂

∂xi

∣∣∣∣
q

=
qi

b

∂

∂xi

∣∣∣∣
q

=
qi

r(q)

∂

∂xi

∣∣∣∣
q

= ∂r|q

□
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Lemma 14.2.1. Let f : M → R be a smooth function and X a vector field
over M , if
(1) Xf = |X|2.
(2) X is perpendicular to the level set of f .
Then X = ∇f .

Theorem 14.2.1 (Gauss lemma). The radial vector field ∂r is perpendicular
to the level set of radial distance function r on U \ {p}.

Proof. For any q ∈ U \ {p} written as q = (q1, . . . , qn) in normal coordinate
with b = r(q). Given w ∈ TqM which is tangent to the level set of r, we need
to show 〈∂r|q, w〉 = 0. By definition there exists a curve c(s) : (−ε, ε) →
M such that c(0) = q, c′(0) = w with

∑n
i=1(c

i(s))2 = b, where ci is the
coordinates of c in normal coordinate. Taking derivative with respect to s
one has

n∑
i=1

2ci(s)(ci(s))′ = 0

In particular, one has
∑n

i=1 c
i(0)(ci)′(0) = 0. By Corollary 12.1.1 there is a

Jacobi field J(t) along geodesic connecting p, q such that J(0) = 0, J ′(0) = w
and J(1) = w. Note that the metric at TpM is standard metric, thus
〈J ′(0), γ′(0)〉 = 0, and by construction 〈J(0), γ′(0)〉 = 0. Then by (4)
of Proposition 12.1.1 one has 〈J(t), γ′(t)〉 ≡ 0. In particular, one has
〈J(1), γ′(1)〉, which complete the proof since γ′(t) is integral curve of ∂r. □

Corollary 14.2.1.
(1) |∂r|2 = 1.
(2) gij ∂r

∂xi
∂

∂xj = ∇r = ∂r.

Proof. For (1). It’s clear, since we have already shown geodesic with unit-
speed is integral curve of ∂r.

For (2). By Lemma 14.2.1 and Theorem 14.2.1, it suffices to show Xr =
|∂r|2, which can be seen from

Xr =
xi

r

∂r

∂xi
=

n∑
i=1

(xi)2

r2
= 1 = |∂r|2

□

Corollary 14.2.2. The following identities hold in (xi, U, p):
(1) gijx

j = xi.
(2) gim = δim − ∂gij

∂xmxj .
(3)

∂gij
∂xmxj =

∂gmj

∂xi x
j .

(4)
∂gij
∂xmxjxi =

∂gmj

∂xi x
jxi = 0.

(5) Γk
ijx

ixj = 0.
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Proof. For (1). On one hand by Corollary 14.2.1 we have ∂r = ∇r =

gij x
i

r
∂

∂xj . On the other hand by definition of ∂r we have ∂r = xj

r
∂

∂xj , which
implies

gijxi = xj

This shows (1).
For (2). Take partial derivatives of (1) with respect to xm, we have

∂gij
∂xm

xj + gijδjm = δim

This shows (2).
For (3). It follows from (2), since gim, δim are symmetric in i,m.
For (4). It follows from (1) and (2), since

∂gij
∂xm

xjxi
(2)
= (δim − gim)xi = xm − gimx

i (1)
= 0

∂gmj

∂xi
xjxi

(2)
= (δmi − gmi)x

i = xm − gimx
i (1)
= 0

For (5). It follows from (4) and

Γk
ij =

1

2
gmk(

∂gmj

∂xi
+
∂gim
∂xj

− ∂gij
∂xm

)

□

Corollary 14.2.3.
∇∂r∂r = 0

holds in U \ {p}.

Proof. Direct computation shows

∇∂r∂r =
xk

r
∇ ∂

∂xk
(gij

xi

r

∂

∂xj
)

= gij
xk

r
{(δki

r
− xkxi

r3
)
∂

∂xj︸ ︷︷ ︸
part I

+
xi

r
Γm
kj

∂

∂xm︸ ︷︷ ︸
part II

}

By (1) and (5) of Corollary 14.2.2 one has

gij
xkxi

r
Γm
kj =

1

r
Γm
kjx

kxj = 0

which implies part II is zero. For part I, we have

1

r2
(gijxkδki −

(xk)2

r2
gijxi) =

1

r2
(gijxi − gijxi) = 0

□
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14.3. Jacobi fields on constant sectional curvature manifold.

Proposition 14.3.1. Let (M, g) be a Riemannian manifold with constant
sectional curvature k and γ : [0, b] → M a unit-speed geodesic. Then the
normal Jacobi field with J(0) = 0 is of the form

J(t) = m snk(t)E(t)

where
(1) The constant m is determined by J ′(0) = mE(0).
(2)

snk(t) =


t, k = 0
sin(

√
kt)√
k

, k > 0
sinh(

√
−kt)√

−k
, k < 0

(3) E(t) is a normal parallel vector field along γ with |E(t)| = 1

Proof. Since (M, g) has constant sectional curvature k, thusRijkl = k(gilgjk−
gikgjl), so for any normal vector field J along γ we have

R(J, γ′, γ′,W ) = k(〈J,W 〉〈γ′, γ′〉 − 〈J, γ′〉〈γ′,W 〉)
= k〈J,W 〉

which implies
R(J, γ′)γ′ = kJ

since γ is unit-speed and J is normal. Thus equation for Jacobi field can be
written as

0 = J ′′ + kJ

Assume J = u(t)E(t). Then

(u′′(t) + ku(t))E(t) = 0

So if we want to find normal Jacobi fields J , it suffices to solve{
u′′(t) + ku = 0

u(0) = 0

and it’s clear snk(t) is the solution of this ODE. □

14.4. Polar decomposition of metric with constant sectional cur-
vature. Let π : Rn \{0} → Sn−1 given by π(x) = x/|x|. We can use π to
pullback canonical metric on Sn−1, and still use gSn−1 to denote it.

Lemma 14.4.1. Let g be the Euclidean metric on Rn \{0}. Then

g = dr ⊗ dr + r2gSn−1

where r(x) = |x|.
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Theorem 14.4.1 (polar decomposition). Let (xi, U, p) be a normal coor-
dinate centered at p ∈ S(n, k). Then in U the metric g can be written
as

g = dr ⊗ dr + sn2k(r)gSn−1

where r is radial distance function.

Proof. We use gc to denote metric dr ⊗ dr + sn2k(r)gSn−1 and g to denote
standard metric on Euclidean space. By Corollary 14.2.1, we have

g(∂r, ∂r) = 1 = gc(∂r, ∂r)

So it remains to show for each q ∈ U \ {p} and w1, w2 ∈ TqM such that
g(wi, ∂r|q) = 0, i = 1, 2, we have

g(w1, w2) = gc(w1, w2)

By polarization it suffices to show that g(w,w) = gc(w,w) for every such
vector w.

Suppose dist(p, q) = b, on one hand we have

|w|2gc
(1)
= sn2k(b)|w|2gSn−1

(2)
=

snk(b)

b2
|w|2g

where
(1) holds from definition of gc.
(2) holds from polar decomposition of standard metric of Euclidean space,
that is Lemma 14.4.1.

On the other hand, let γ : [0, b] → U be a unit-speed geodesic connecting
p, q, and we can write it with respect to normal coordinate U as

γ(t) = (
tq1

b
, . . . ,

tqn

b
)

where q = (q1, . . . , qn) in normal coordinate U . Let J be a Jacobi field such
that J(0) = 0, J(b) = w. Then we have

|w|2g = |J(b)|2g
(3)
= sn2k(b)|J ′(0)|2g

(4)
= sn2k(b)|J ′(0)|2g

where
(3) holds from the fact Jacobi field on constant sectional curvature space
is of form J(t) = |J ′(0)| snk(t)E(t).
(4) holds from the metric on TpM is standard metric in normal coordinate.

Furthermore, suppose J ′(0) = a. Then we can write it as J(t) = α∗(
∂
∂s)
∣∣
s=0

,
where

α(s, t) = expp(t(γ
′(0) + sJ ′(0)))

In normal coordinate we can write α(s, t) explicitly as

α(s, t) = (
tq1

b
+ tsa1, . . . ,

tqn

b
+ tsan)
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thus J(t) = tai ∂
∂xi

∣∣
γ(t)

. We can conclude ai = wi

b by setting t = b, in

particular, we have J ′(0) = wi

b
∂
∂xi

∣∣∣
p
. Then

sn2k(b)|J ′(0)|2g = sn2k(b)
|w|2g
b2

= |w|2gc

□

Remark 14.4.1. Note that there are four points we need in the proof of above
theorem, and the key point is (3), that is Jacobi field of S(n, k) has the
form of

J(t) = m snk(t)E(t)

So this motivates us that if on a normal neighborhood of some point, the
Jacobi field has the above form. Then metric g can be written as

g = dr ⊗ dr + snk(r)
2gSn−1

in U . In particular, it has constant sectional curvature k.

14.5. A criterion for constant sectional curvature space. Recall that
for a smooth function f : M → R, Hess f is a (0, 2)-tensor, we use Hf to
denote its (1, 1)-type, that is

g(Hf (X), Y ) = Hess f(X,Y )

where X,Y are two vector fields.
In particular, if r is the radial distance function on a normal coordinate.

Then Hessian r is a (2, 0)-tensor, that is ∇2r. Then we have

Hr = ∇∂r

since (1, 0)-type of ∇r is ∂r.

Proposition 14.5.1. Let (M, g) be a complete Riemannian manifold, (xi, U, p)
a normal coordinate centered at p and r the radial distance function on U .
If γ : [0, b] →M is unit-speed geodesic with γ(0) = p, γ′(0) = v ∈ TpM , and
J is a normal Jacobi field along γ with J(0) = 0. Then for all t ∈ (0, b]

Hr(J(t)) = J ′(t)

Hr(γ
′(t)) = 0
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Proof. Here we only prove the first identity, the second can be computed in
the same method. Let J ′(0) = w. Then J(t) = twi ∂

∂xi

∣∣
γ(t)

,

J ′(t) = ∇̂ d
dt
( twi ∂

∂xi

∣∣∣∣
γ(t)

)

= wi ∂

∂xi

∣∣∣∣
γ(t)

+ twi∇̂ d
dt

∂

∂xi

∣∣∣∣
γ(t)

= wi ∂

∂xi

∣∣∣∣
γ(t)

+ twiΓk
ij(γ(t))

dγj

dt

∂

∂xk

∣∣∣∣
γ(t)

= (wk + twivjΓk
ij(γ(t)))

∂

∂xk

∣∣∣∣
γ(t)

Hr(J(t)) = ∇J(t)∂r

= ∇
twi ∂

∂xi

∣∣∣
γ(t)

(
xj

r

∂

∂xj
)

= twi∇ ∂

∂xi

∣∣∣
γ(t)

(
xj

r

∂

∂xj
)

= twix
j

r
Γk
ij(γ(t))

∂

∂xk

∣∣∣∣
γ(t)

+

n∑
i=1

twi(
δij
r

− xixj

r3
)
∂

∂xj

∣∣∣∣∣
γ(t)

However, we have the following observations:
(1) r(γ(t)) = t.
(2) xi = tvi.
(3)

∑n
i=1 a

ivi = 0

where the last equality holds since J is a normal vector field. Then
0 = 〈J(t), γ′(t)〉 = 〈J(0), γ′(0)〉+ 〈J ′(0), γ′(0)〉t

implies 〈J ′(0), γ′(0)〉 =
∑n

i=1 a
ivi = 0. □

Corollary 14.5.1. With the same assumption as above proposition, for any
vector field W along γ with W (0) = 0,

Hess r(J(s),W (s))
(1)
= g(Hr(J(s),W (s)))

(2)
= g(J ′(t),W (s))

(3)
=

ˆ s

0
〈J ′(t),W (t)〉′dt

(4)
=

ˆ s

0
〈J ′(t),W ′(t)〉 −R(J, γ′, γ′,W )dt

Proof. It’s clear, since
(1) holds from definition of Hr.
(2) holds from Hr(J(t)) = J ′(t).
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(3) holds from W (0) = 0.
(4) holds from J is a Jacobi field.

□

Corollary 14.5.2. Let p ∈ U ⊆ S(n, k), where U is a normal neighborhood
of p. Then the following holds in U \ {p}

Hr =
sn′k(r)

snk(r)
πr

where r is the radial distance function on U , and for each q ∈ U \ {p}, πr :
TqM → TqM is the orthogonal projection onto the orthogonal complement
of ∂r|q.

Proof. For p ∈ U \ {q}, it’s clear

Hr(∂r|q) = 0 =
sn′k(r)

snk(r)
πr(∂r|q)

For w ∈ TqM such that g(w, ∂r|q), choose a unit-speed geodesic γ : [0, b] →
M connecting p and q and J(t) is the Jacobi field such that J(0) = 0, J(b) =
w. Then we must have

J(t) = m snk(t)E(t)

where E(t) is a normal parallel vector field along γ with |E(t)| = 1. Then
m sn′k(t)E(t) = J ′(t)

= Hr(J(t))

= Hr(m snk(t)E(t))

= m snk(t)Hr(E(t))

Setting t = b and dividing by snk(b) one has

Hr(E(b)) =
sn′k(b)

snk(b)
E(b)

Note that w = m snk(b)E(b), this completes the proof. □

Furthermore, the converse of above corollary still holds:

Proposition 14.5.2. Let (M, g) be a Riemannian manifold and U a normal
neighborhood of p ∈M , r radial distance function. If

Hr =
sn′k(r)

snk(r)
πr

holds in U \ {p}. Then (M, g) has constant sectional curvature k in U .

Proof. Let γ : [0, b] → U be a unit-speed geodesic r(0) = p, J is a normal
Jacobi vector field along γ with J(0) = 0. Then Hr(J) = J ′ implies

J ′(t) =
sn′k(t)

snk(t)
J(t)
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holds for t ∈ (0, b], that is
(
J(t)

snk(t)
)′ = 0

holds for t ∈ (0, b]. So we can write every normal Jacobi fields as J(t) =
m snk(t)E(t), where E is normal a parallel vector field with |E| = 1 and
t ∈ [0, b]. Thus by Remark 14.4.1, g has constant sectional curvature k in
U . □
Remark 14.5.1. For convenience, we record the exact formulas for the quo-
tient sn′k

snk
as follows

sn′k(t)

snk(t)
=


1
t , k = 0
1√
k
cot t√

k
, k > 0

1√
k
coth t√

k
, k < 0

and we can draw the graph as follows.
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Part 5. Harmonic maps
15. Harmonic map

In this section, let f : (M, g) → (N,h) be a smooth map between Rie-
mannian manifolds with second fundamental form B ∈ C∞(M,T ∗M ⊗
T ∗M ⊗ f∗TN).

15.1. Harmonic map and totally geodesic.

Definition 15.1.1 (scalar Laplacian). The scalar Laplacian of f is defined
as

∆f : = trg B ∈ C∞(M, f∗TN)

Definition 15.1.2 (harmonic map). f is called a harmonic map if its scalar
Laplacian ∆f = 0.

Definition 15.1.3 (totally geodesic). f is called totally geodesic, if its sec-
ond fundamental form B = 0.

Example 15.1.1. For a geodesic γ : [a, b] → (M, g), if [a, b] is endowed with
standard metric. Then γ is totally geodesic, thus it’s harmonic.

Example 15.1.2. For a smooth function f : (M, g) → R, if R is endowed
with standard metric. Then f is a harmonic map if and only if it’s a har-
monic function.

Lemma 15.1.1. Let γ : [a, b] →M be a smooth curve and γ̃ = f ◦ γ. Then

∇̃ d
dt
γ̃∗(

d

dt
) = f∗(∇̂ d

dt
γ∗(

d

dt
)) + γ∗B

where ∇̂ and ∇̃ are the induced connection on γ∗TM and γ̃∗TN respectively.

Proof. Direct computation shows

∇̃ d
dt
γ̃∗(

d

dt
) = (

d2γ̃l

dt2
+ Γl

mn(γ̃) ·
dγ̃m

dt

dγ̃n

dt
)
∂

∂yl

=

{
∂f l

∂xk
d2γk

dt2
+ (

∂2f l

∂xi∂xj
+ Γl

mn

∂fm

∂xi
∂fn

∂xj
)
∂γi

dt

∂γj

dt

}
∂

∂yl

=

{
∂f l

∂xk
(
d2γk

dt2
+ Γk

ij

dγi

dt

dγj

dt
) + (

∂2f l

∂xi∂xj
+
∂fm

∂xi
∂fn

∂xj
Γl
mn − Γk

ij

∂f l

∂xk
)
dγi

dt

dγj

dt

}
∂

∂yl

= f∗(∇̂ d
dt
γ∗(

d

dt
)) + γ∗B

□
Theorem 15.1.1. The following statements are equivalent.
(1) f is totally geodesic.
(2) f maps geodesics in M to geodesics in N .

Proof. It follows from above lemma. □
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15.2. First variation of smooth map.
Definition 15.2.1 (energy functional). The energy density of f is defined
as e(f) = |df |2, and the energy functional of f is

E(f) =
1

2

ˆ
M
e(f) vol

Remark 15.2.1 (local form). Suppose df is locally given by ∂fm

∂xi dx
i⊗f∗( ∂

∂ym ).
Then

e(f) = 〈∂f
m

∂xi
dxi ⊗ f∗(

∂

∂ym
),
∂fn

∂xj
dxj ⊗ f∗(

∂

∂yn
)〉

= gij
∂fm

∂xi
∂fn

∂xj
hmn(f)

Lemma 15.2.1. ∆f = −∇̂∗df ∈ C∞(M, f∗TN).
Theorem 15.2.1. The critical point of energy functional is harmonic maps.
Proof. We fix the following notations in the proof:
(1) Consider a smooth variation f : M ×R → N of f , we also write ft(-) =

F (-, t) for convenience.
(2) Set M =M × R and there is a natural metric g = g × gR on M .
(3) The pullback F ∗TN bundle is denoted by W , and induced connection

on W is denoted by ∇W .
(4) Fix t ∈ R, ft : M → N . Then dft is a section of T ∗M ⊗ f∗t TN , and we

can regard it as a section of T ∗M ⊗W .
Holding above notations, we have

d

dt
E(ft) =

1

2

d

dt

ˆ
M

|dft|2 vol

=

ˆ
M
〈∇T ∗M⊗W

∂
∂t

dft, dft〉 vol

Here we claim

〈∇T ∗M⊗W
∂
∂t

dft, dft〉
1
= 〈∇T ∗M⊗W

∂
∂t

dF, dft〉
2
= 〈∇WF∗(

∂

∂t
), dft〉

(1) For equation marked 1: Note that

dF − dft =
∂Fm

∂xi
dxi ⊗ ∂

∂ym
+
∂Fm

∂t
dt⊗ ∂

∂ym
− ∂fmt

∂xi
dxi ⊗ ∂

∂ym

=
∂Fm

∂t
dt⊗ ∂

∂ym

since ∂Fm

∂xi =
∂fm

t

∂xi . So we have

∇T ∗M⊗W (dF − dft) =
∂2F l

∂t2
dt⊗ dt⊗ ∂

∂yl
+
∂Fm

∂t
dt⊗ (

∂Fn

∂t
Γl
mndt⊗

∂

∂yl
+
∂Fn

∂xi
Γl
mndx

i ⊗ ∂

∂yl
)

= (
∂2F l

∂t2
+
∂Fm

∂t

∂Fn

∂t
Γl
mn)dt⊗ dt⊗ ∂

∂yl
+
∂Fm

∂t

∂Fn

∂xi
Γl
mndx

i ⊗ dt⊗ ∂

∂yl
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Thus we have

∇T ∗M⊗W
∂
∂t

(dF − dft) = (
∂2F l

∂t2
+
∂Fm

∂t

∂Fn

∂t
Γl
mn)dt⊗

∂

∂yl

From above expression it’s clear

〈∇T ∗M⊗W
∂
∂t

(dF − dft), dft〉 = 0

since there is no dt in dft, which implies equation marked 1 holds.
(2) For equation marked 2: For arbitraryX ∈ C∞(M,TM) ⊆ C∞(M,T ∗M),

since second fundamental form is symmetric, thus

(∇T ∗M⊗W
∂
∂t

dF )(X) = (∇T ∗M⊗W
X dF )(

∂

∂t
)

= ∇W
X F∗(

∂

∂t
)− F∗(∇M

X

∂t

∂t
)

= ∇W
X F∗(

∂

∂t
)

Now let v be an arbitrary variation vector field, that is

v = F∗(
∂

∂t
)

∣∣∣∣
t=0

∈ C∞(M, f∗TN)

Hence when t = 0 we have

(∇WF∗(
∂

∂t
))

∣∣∣∣
t=0

= ∇̂v

where ∇̂ is the induced connection on f∗TN . So we have first variation
formula

d

dt

∣∣∣∣
t=0

E(ft) =

ˆ
M
〈∇̂v, df〉 vol

=

ˆ
M
〈v, ∇̂∗df〉 vol = 0

where ∇̂∗ is the formal adjoint operator of ∇̂. Since v is arbitrary, we deduce
∇̂∗df = 0. □

15.3. Second variation formula of harmonic map. Consider the fol-
lowing variation map of f

f : M × (−ε1, ε1)× (−ε2, ε2) → N

with variation fields

v = F∗(
∂

∂t
)

∣∣∣∣
s=t=0

∈ C∞(M, f∗TN)

w = F∗(
∂

∂s
)

∣∣∣∣
s=t=0

∈ C∞(M, f∗TN)

For convenience we denote F (-, s, t) = fs,t(-).
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Theorem 15.3.1 (second variation formula). If f : (M, g) → (N,h) is a
harmonic map. Then the second variation of the harmonic map f along
v, w is

∂2

∂s∂t

∣∣∣∣
s=t=0

E(fs,t) =

ˆ
M
〈∇̂v, ∇̂w〉 vol−

ˆ
M
gijRpmnqv

pwq ∂f
m

∂xi
∂fn

∂xj
vol

Proof. In this proof, we still use the notations in proof of first variation
formula. By first variation formula, we have

∂

∂t
E(fs,t) =

ˆ
M
〈∇WF∗(

∂

∂t
), dfs,t〉 vol

So
∂2

∂s∂t
E(fs,t) =

ˆ
M
〈∇T ∗M⊗W

∂
∂s

∇WF∗(
∂

∂t
), dfs,t)〉 vol︸ ︷︷ ︸

part I

+

ˆ
M
〈∇WF∗(

∂

∂t
),∇T ∗M⊗W

∂
∂s

dfs,t〉 vol︸ ︷︷ ︸
part II

Note that

∇T ∗M⊗W
∂
∂s

dfs,t = ∇T ∗M⊗W
∂
∂s

(
∂Fm

∂xi
dxi ⊗ ∂

∂ym
)

=
∂2Fm

∂s∂xi
dxi ⊗ ∂

∂ym
+
∂Fm

∂xi
∂Fn

∂s
Γl
mndx

i ⊗ ∂

∂yl

= (
∂2F l

∂s∂xi
+
∂Fm

∂xi
∂Fn

∂s
Γl
mn)dx

i ⊗ ∂

∂yl

∇̂w = ∇̂ ∂

∂xi
(
∂Fn

∂s

∣∣∣∣
t=s=0

)dxi ⊗ ∂

∂yn
+
∂Fm

∂s

∂Fn

∂xi

∣∣∣∣
t=s=0

Γl
mndx

i ⊗ ∂

∂yl

= (
∂2F l

∂s∂xi
+
∂Fm

∂xi
∂Fn

∂s

∣∣∣∣
t=s=0

Γl
mn)dx

i ⊗ ∂

∂yl

which implies setting t = s = 0 we have part II is
ˆ
M
〈∇̂v, ∇̂w〉 vol

For part I, take arbitrary X ∈ C∞(M,TM) ⊆ C∞(M,T ∗M), we have
Hence we obtain

∇T∗M⊗W
∂
∂s

∇WF∗(
∂

∂t
)(X) = (∇T∗M⊗W∇WF∗(

∂

∂t
)(X))(

∂

∂s
,X)

Setting t = s = 0 we have
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Hence
∂2

∂s∂t

∣∣∣∣
t=s=0

E (fs,t) =

ˆ
M
〈∇̂(∇W

∂
∂s

F∗(
∂

∂t
)

∣∣∣∣
s=t=0

), df〉 vol

+

ˆ
M
gijRpmqnv

pwq ∂f
m

∂xi
∂fn

∂xj
vol+

ˆ
M
〈∇̂w, ∇̂v〉 vol

If f is harmonic, that is ∇̂∗df = 0, we obtain the desired formula. □

15.4. Bochner formula for harmonic map. Recall that for a smooth
function f : (M, g) → R,

1

2
∆|df |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆f,∇f)

In this section we generalize this formula to smooth map f : (M, g) → (N,h)
between Riemannian manifolds, to get similar Bochner’s theorem we have
proven before.

Theorem 15.4.1. Let f : (M, g) → (N,h) be a smooth map between Rie-
mannian manifolds. Then
1

2
∆|df |2 = |∇̃df |2+〈∇̂(df), df〉+gikgjlRij

∂fm

∂xk
∂fn

∂xl
hmn−gklgijRmnpq

∂fm

∂xi
∂fn

∂xj
∂fp

∂xk
∂f q

∂xl

Theorem 15.4.2. Let f : (M, g) → (N,h) be a harmonic map between
Riemannian manifolds. If
(1) M is compact with positive Ricci curvature.
(2) N has non-positive sectional curvature.
Then f is constant.

Proof. Suppose |df |2 attains its maximum at some point p ∈M , we have
∆|df |2(p) ≤ 0

On the other hand,
1

2
∆|df |2 ≥ gikgjlRij

∂fm

∂xk
∂fn

∂xl
hmn − gklgijRmnpq

∂fm

∂xi
∂fn

∂xj
∂fp

∂xk
∂f q

∂xl

since |∇̃df |2 + 〈∇̂(df), df〉 ≥ 0.
Without lose of generality, we may assume gij(p) = δij , hmn(f(p)) = δmn

by choosing normal coordinates. Then
1

2
∆|df |2 ≥

∑
i,j,m

Rij
∂fm

∂xi
∂fm

∂xj
−
∑
i,j

Rmnpq
∂fm

∂xi
∂fn

∂xi
∂fp

∂xj
∂f q

∂xj
≥ 0

since Rij is positive, which implies df ≡ 0, thus f is constant since we
always assume M is connected. □
Corollary 15.4.1. Let (M, g) be a compact Riemannian manifold with non-
negative Ricci curvature, (N,h) a Riemannian manifold with non-positive
sectional curvature, and f : (M, g) → (N,h) a harmonic map. Then
(1) f is totally geodesic.
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(2) If Ric(g) is strictly positive at some point. Then f is constant.
(3) If sectional curvature of h is negative. Then either f is constant or its

image is a closed geodesic.
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Part 6. Topology of Riemannian manifold
16. Isometry group

16.1. Isometry and local isometry.

Definition 16.1.1 (local isometry). A smooth map f : (M, gM ) → (N, gN )
between Riemannian manifolds is called a local isometry if for each point
p ∈M the differential (df)p : TpM → Tf(p)N is a linear isometry.

Definition 16.1.2 (isometry). A local isometry f : (M, gM ) → (N, gN )
between Riemannian manifolds is called an isometry if it’s a diffeomorphism.

Proposition 16.1.1. Let f : (M, gM ) → (N, gN ) be smooth map between
Riemannian manifolds. The following statements are equivalent.
(1) f is a local isometry.
(2) For each p ∈ M , there are open neighborhoods U of p and V of f(p)

such that f |U : U → V is an isometry.

Proof. It’s clear (2) implies (1), and the converse follows immediately from
inverse function theorem. □

Definition 16.1.3 (isometry group). The isometry group Iso(M, g) of Rie-
mannian manifold (M, g) is the group consisting of all isometries from (M, g)
to itself.

Proposition 16.1.2. Let f : (M, gM ) → (N, gN ) be a local isometry.
(1) f maps geodesics to geodesics.
(2) f ◦ expp = expf(p) ◦(df)p holds on Vp.
(3) f is distance decreasing.
(4) If f is an isometry, then f is distance preserving.

Proof. See [Pet16, Proposition 5.6.1]. □

Remark 16.1.1. A non-trivial fact is that any bijective map which preserves
distance is an isometry. See [MS39] or [Pal57].

Theorem 16.1.1. Let ϕ,ψ : (M, gM ) → (N, gN ) be two local isometries
between Riemannian manifolds, and M is connected. If there exists p ∈ M
such that

ϕ(p) = ψ(p)

(dϕ)p = (dψ)p

then ϕ = ψ.

Proof. Consider the following set

A = {p ∈M | ψ(p) = ϕ(p), (dψ)p = (dϕ)p}

Since M is connected, it suffices to show it’s both open and closed.
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(1) To see it’s open: For p ∈ A, let B(p, δ) be a geodesic ball centered at p
such that ϕ|B(p,δ), ψ|B(p,δ) are diffeomorphisms. Then

f := (ϕ−1 ◦ ψ)|B(p,δ) : B(p, δ) → B(p, δ)

satisfies f(p) = p, (df)p = id. For any q ∈ B(p, δ), there exists a unique
v ∈ TpM such that expp(v) = q. Then

f(q) = f ◦ expp(v)
= expf(p) ◦(df)p(v)
= expp(v)

= q

which implies q ∈ A, and thus A is open.
(2) To see it’s closed: Suppose {pi}ni=1 ⊆ A, that is

ψ(pi) = ϕ(pi)

(dψ)pi = (dϕ)pi

The desired result can be obtained from taking limits.
□

Theorem 16.1.2 (Myers-Steenrod). Let (M, g) be a Riemannian manifold
and G = Iso(M, g). Then
(1) G is a Lie group with respect to compact-open topology.
(2) for each p ∈M , the isotropy group Gp is compact.
(3) G is compact if M is compact.

Proof. See [MS39]. □

16.2. Properties of Killing field.

Proposition 16.2.1. Let (M, g) be a Riemannian manifold and X be a
Killing field.
(1) If γ is a geodesic, then J(t) = X(γ(t)) is a Jacobi field.
(2) For any two vector fields Y, Z,

∇Y ∇ZX −∇∇Y ZX +R(X,Y )Z = 0

Proof. For (1). Suppose ϕs is the flow generated by X. Then we obtain a
variation α(s, t) = ϕs(γ(t)) consisting of geodesics, and thus

X(γ(t)) =
∂ϕs(γ(t))

∂s

∣∣∣∣
s=0

is a Jacobi field.
For (2). It’s an equation of tensors, so we check it pointwisely and use nor-

mal coordinate {xi} centered at p. Furthermore, we assume X = Xi ∂
∂xi , Y =
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∂
∂xj , Z = ∂

∂xk . Then

∇Y ∇ZX −∇∇Y ZX +R(X,Y )Z = ∇j∇kX +XiRl
ijk

∂

∂xl

= (
∂2X l

∂xj∂xk
+Xi∂Γ

l
ki

∂xj
+XiRl

ijk)
∂

∂xl

= (
∂2X l

∂xj∂xk
+Xi

∂Γl
jk

∂xi
)
∂

∂xl

since Rl
ijk =

∂Γl
jk

∂xi − ∂Γl
ik

∂xj +Γs
jkΓ

l
is −Γs

ikΓ
l
js. Now it suffices to show ∂2Xl

∂xj∂xk +

Xi ∂Γ
l
jk

∂xi ≡ 0. In order to show this, for arbitrary p ∈M , consider a geodesic
γ starting at p and consider Jacobi field J(t) = X(γ(t)). Direct computation
shows

J ′(t) = (
∂X i

∂xk
dγk

dt
+XiΓl

ki

dγk

dt
)
∂

∂xl

∣∣∣∣
γ(t)

J ′′(0) = (
∂2X l

∂xj∂xk
dγj

dt

dγk

dt
+Xi∂Γ

l
ki

∂xj
dγj

dt

dγk

dt
)
∂

∂xl

∣∣∣∣
p

= (
∂2X l

∂xj∂xk
+Xi∂Γ

l
ki

∂xj
)
dγj

dt

dγk

dt

∂

∂xl

∣∣∣∣
p

= (
∂2X l

∂xj∂xk
+Xi

∂Γl
jk

∂xi
+Xi∂Γ

l
ki

∂xj
−Xi

∂Γl
jk

∂xi
)
dγj

dt

dγk

dt

∂

∂xl

∣∣∣∣∣
p

= (
∂2X l

∂xj∂xk
+Xi

∂Γl
jk

∂xi
)
dγj

dt

dγk

dt

∂

∂xl

∣∣∣∣∣
p

−R(X, γ′)γ′

which implies
∂2X l

∂xj∂xk
+Xi

∂Γl
jk

∂xi
= 0

holds at point p, and since p is arbitrary, this completes the proof. □

Corollary 16.2.1. Let (M, g) be a complete Riemannian manifold and
p ∈ M . Then a Killing field X is determined by the values Xp and (∇X)p
for arbitrary p ∈M .

Proof. The equation LXg ≡ 0 is linear in X, so the space of Killing fields is
a vector space. Therefore, it suffices to show if Xp = 0 and (∇X)p = 0, then
X ≡ 0. For arbitrary q ∈ M , let γ : [0, 1] → M be a geodesic connecting p
and q with γ′(0) = v. Since J(t) = X(γ(t)) is a Jacobi field, and a direct
computation shows

(∇vX)p = J ′(0)

Thus J(t) ≡ 0, since Jacobi field is determined by two initial values. In
particular, Xq = J(1) = 0, and since q is arbitrary, one has X ≡ 0. □
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Corollary 16.2.2. The dimension of vector space consisting of Killing fields
≤ n(n+ 1)/2.

Proof. Note that ∇X is skew-symmetric and the dimension of skew-symmetric
matrices is n(n − 1)/2. Thus the dimension of vector space consisting of
Killing fields ≤ n+ n(n− 1)/2 = n(n+ 1)/2. □
Lemma 16.2.1. Killing field on a complete Riemannian manifold (M, g) is
complete.

Proof. For a Killing field X, we need to show the flow ϕt : M →M generated
by X is defined for t ∈ R. Otherwise, we assume ϕt is defined on (a, b). Note
that for each p ∈ M , curve ϕt(p) is a curve defined on (a, b) having finite
constant speed, since ϕt is isometry. Then we have ϕt(p) can be extended
to the one defined on R, since M is complete. □
Theorem 16.2.1. Let (M, g) be a complete Riemannian manifold and g
the space of Killing fields. Then g is isomorphic to the Lie algebra of G =
Iso(M, g).

Proof. It’s clear g is a Lie algebra since [LX ,LY ] = L[X,Y ]. Now let’s see it’s
isomorphic to Lie algebra consisting of Killing field as Lie algebra.
(1) Given a Killing field X, by Lemma 16.2.1, one deduces that the flow

ϕ : R×M →M generated byX is a one parameter subgroup γ : R → G,
and γ′(0) ∈ TeG.

(2) Given v ∈ TeG, consider the one-parameter subgroup γ(t) = exp(tv) : R →
G which gives a flow by

ϕ : R×M →M

(t, p) 7→ exp(tv) · p
Then the vector field X generated by this flow is a Killing field.

This gives a one to one correspondence between Killing fields and Lie algebra
of G, and it’s a Lie algebra isomorphism. □
Corollary 16.2.3 (Cartan decomposition). Let (M, g) be a complete Rie-
mannian manifold and G = Iso(M, g) with Lie algebra g. The Lie algebra g
of G has the following decomposition as vector spaces

g = k⊕m

where
k = {X ∈ g | Xp = 0}
m = {X ∈ g | (∇X)p = 0}

and they satisfy
[k, k] ⊆ k, [m,m] ⊆ k, [k,m] ⊆ m

Proof. The decomposition follows from Corollary 16.2.1 and Theorem 16.2.1,
and it’s easy to see

[k, k] ⊆ k, [m,m] ⊆ k
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For arbitrary X ∈ k, Y ∈ m and v ∈ TpM , one has
∇v[X,Y ] = ∇v∇XY −∇v∇YX

= −R(Y, v)X +∇∇vXY +R(X, v)Y −∇∇vYX

= 0

since Xp = 0 and (∇Y )p = 0. This shows [k,m] ⊆ m. □

16.3. Cartan-Ambrose-Hicks theorem.

Theorem 16.3.1 (Cartan-Ambrose-Hicks). Let (M, g) and (M̃, g̃) be two
Riemannian manifolds, and Φ0 : TpM → Tp̃M̃ is a linear isometry, where p ∈
M, p̃ ∈ M̃ . For 0 < δ < min{injp(M), injp̃(M̃)}, The following statements
are equivalent.
(1) There exists an isometry ϕ : B(p, δ) → B(p̃, δ) such that ϕ(p) = p̃ and

(dϕ)p = Φ0.
(2) For v ∈ TpM, |v| < δ, γ(t) = expp(tv), γ̃(t) = expp̃(tΦ0(v)), if we define

Φt = P0,t;γ̃ ◦ Φ0 ◦ Pt,0;γ : Tγ(t)M → Tγ̃(t)M̃

then Φt preserves curvature, that is (Φt)
∗R = R.

Proof. From (1) to (2). If we can show Φt = (dϕ)γ(t). Then it’s clear that
Φt preserves curvature, since ϕ is an isometry. By definition of Φt, it suffices
to show the following diagram commutes

TpM Tp̃M̃

Tγ(t)M Tγ̃(t)M̃

(dφ)p

P γ
0,t

P0,t;γ̃

(dφ)γ(t)

since (dϕ)p = Φ0. Note that ϕ(γ(t)) = γ̃(t) since both of them are geodesics,
and they and their derivatives agree at t = 0. So it’s tautological that

Pφ◦γ
0,t ◦ (dϕ)p(v) = (dϕ)γ(t) ◦ P

γ
0,t(v)

where v = γ′(0), since
P γ
0,t(v) = γ′(t)

(dϕ)γ(t)(γ
′(t)) = (ϕ ◦ γ)′(t) = Pφ◦γ

0,t ◦ (dϕ)p(v)

Now consider w ∈ TpM which is not parallel to v = γ′(0). Since both (dϕ)γ(t)
and parallel transport preserve angles, so Pφ◦γ

0,t ◦ (dϕ)p(w) and (dϕ)γ(t) ◦
P γ
0,t(w) has the same angle with (dϕ)γ(t)(γ

′(t)), and they have the same
length, so they’re equal.

From (2) to (1). Define

ϕ = expp̃ ◦Φ0 ◦ exp−1
p
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It suffices to show for any q ∈ B(p, δ),
(dϕ)q : TqM → Tφ(q)M̃

is a linear isometry. For any w ∈ TqM , by Corollary 12.1.1, there exists a
geodesic γ : [0, 1] → M with γ(0) = p, γ(1) = q and a Jacobi field J such
that J(0) = 0, J(1) = w along γ. Now we claim:
(1) Claim 1: J̃(t) = Φt(J(t)) is a Jacobi field.
(2) Claim 2: J̃(1) = (dϕ)q(J(1)).
From claim 2 we have

|(dϕ)q(w)| = |J̃(1)| = |J(1)| = |w|
since Φt preserves length. This completes the proof. Now let’s give proofs
of these two claims.
(1) Proof of Claim 1: Given an orthonormal {e1(0) = γ′(0)

|γ′(0)| , e2(0), . . . , en(0)}
of TpM and use parallel transport to obtain a parallel frame along
γ. With respect to this frame we can write J(t) = J i(t)ei(t). Then
J̃(t) = J i(t)ẽi(t), where ẽi(t) = Φt(ei(t)). Furthermore, ẽi(t) is also a
parallel frame by definition of Φt. Then J̃(t) is a Jacobi field, since

d2J j

dt2
+ J i(t)|γ̃(t)|2R̃(ẽi(t), ẽ1(t), ẽ1(t), ẽj(t))

=
d2J j

dt2
+ J i(t)|γ(t)|2R(ei(t), e1(t), e1(t), ej(t))

=0

holds for arbitrary j, where we use the fact Φt preserves the length and
curvature, and J(t) is a Jacobi field.

(2) Proof of Claim 2: Since J̃(t) = Φt(J(t)). Then J̃ ′(0) = Φ0J
′(0). On

the other hand, by Corollary one has
J(t) = (d expp)tγ′(0)(tJ

′(0))

J̃(t) = (d expp̃)tγ̃′(0)(tJ̃
′(0))

Therefore
J̃(1) = (d expp̃)γ̃′(0) ◦ Φ0(J

′(0))

= (d expp̃)γ̃′(0)
◦ Φ0 ◦ (d expp)−1

γ′(0)(J(1))

which completes the proof of claim 2.
□
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17. Riemannian covering

17.1. Riemannian covering.

Definition 17.1.1 (smooth covering). A smooth map π : M̃ →M between
smooth manifolds is called a smooth covering if

(1) π is a covering.
(2) π is a local diffeomorphism.

Definition 17.1.2 (Riemannian covering). A smooth map π : (M̃, g̃) →
(M, g) between Riemannian manifolds is called a Riemannian covering if

(1) π is a smooth covering map.
(2) π is a local isometry.

Example 17.1.1. Let (M, g) be a Riemannian manifold with smooth cover-
ing π : M̃ →M . If M̃ is equipped with pullback metric g̃, then π : (M̃, g̃) →
(M, g) is a Riemannian covering.

Proposition 17.1.1. Let π : (M̃, g̃) → (M, g) be a Riemannian universal
covering with deck transformation Γ ⊆ Iso(M̃, g̃). Then

(1) (M, g) is isometric to (M̃/Γ, g̃).
(2) Γ acts on M̃ isometrically, transitively and properly discontinuous.

Proposition 17.1.2. If π : (M̃, g̃) → (M, g) is a Riemannian covering, then
M is complete if and only if M̃ is.

Proposition 17.1.3. Let (M, gM ), (N, gN ) be Riemannian manifolds with
M is complete and let f : M → N be a local diffeomorphism such that for all
p ∈M , and for all v ∈ TpM , one has |(df)pv| ≥ |v|. Then f is a Riemannian
covering map.

Proof. It suffices to show f has path lifting property, that is, for a smooth
curve c : [0, 1] → N and p ∈ M such that f(p) = c(0), there exists a curve
c̃ : [0, 1] → M such that f ◦ c̃ = c and c̃(0) = p. Let A be the set of values
such that c can be lifted to a curve defined on A. It’s clear A ⊆ [0, 1] and
A 6= ∅. Now it suffices to show A is both open and closed.

(1) To see it’s open: For x ∈ A, note that f is a local diffeomorphism at
c(x), so there exists an open interval I of x such that c can be lifted on
U , and thus A is open.

(2) To see it’s closed: It suffices to show if an increasing sequence {xi}∞i=1 ⊆
A converging to x, then one has x ∈ A. Firstly we claim {c̃(xi)}∞i=1 is
contained in a compact set K. If not, the distance from c̃(xi) to c̃(0)
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can be arbitrary large since M is complete. However,

l0,xi(c) =

ˆ xi

0
|dc
dt

|dt

=

ˆ xi

0
|(df)c(t)

dc

dt
|dt

≥
ˆ xi

0
|dc
dt

|dt

≥ dist(c̃(xi), c̃(0))

implies the length of c between c̃(xi) and c̃(0) is bounded, a contradic-
tion. Since {c̃(xi)}∞i=1 is contained in a compact set K, there exists a
converging subsequence, still denoted by {c̃(xi)}∞i=1 which converges to
r ∈M , and by continuity one has f(r) = c(x). Let V be a neighborhood
of r such that f |V is a diffeomorphism. Then one has c(x) ∈ f(V ), and
by continuity there exists an open interval I of x such that c(I) ⊆ f(V ).
Pick an index n such that c̃(xn) ∈ V , there is a lifting of segment
c : [xn, x] → M since f |V is a diffeomorphism, which implies c can be
lifted to a curve defined on [0, x], that is, x ∈ A.

□
Corollary 17.1.1. Let (M, gM ) be a complete Riemannian manifold and
f : (M, gM ) → (N, gN ) be a local isometry. Then f is a Riemannian covering
map.
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18. Topology of non-positive sectional curvature manifold

18.1. Cartan-Hadamard manifold.

Definition 18.1.1 (Cartan-Hadamard manifold). A simply-connected, com-
plete Riemannian manifold with non-positive sectional curvature is called
Cartan-Hadamard manifold.

18.1.1. Expansion property of exponential map.

Theorem 18.1.1. Let (M, g) be a simply-connected complete Riemannian
manifold. The following statements are equivalent.
(1) M is Cartan-Hadamard manifold.
(2) For any p ∈M and v, w ∈ TpM , we have

|(d expp)vw| ≥ |w|
(3) For any p ∈M,T > 0 and v, w ∈ TpM , we have

|v − w| ≤
dist(expp(tv), expp(tw))

t
holds for arbitrary t > 0.

Proof. From (1) to (2). For all p ∈M and v, w ∈ TpM , J(t) = (d expp)tv(tw)
is a Jacobi field along expp(tv). If M has non-positive sectional curvature,
direct computation shows

|J(t)|′′ = |J2||J ′|2 − 〈J, J ′〉2

|J |3
− R(J, γ′, γ′, J)

|J |
≥ 0

for all t > 0. Thus consider
f(t) = |J(t)| − t|w|

It’s clear f ′′(t) ≥ 0 and f ′(0) = 0, and thus f(t) ≥ 0 for all t > 0 since
f(0) = 0. In particular, set t = 1 we have

|(d expp)v(w)| − |w| ≥ 0

From (2) to (1). If M has sectional curvature K(σ) > 0 at p ∈M , where
σ is the plane spanned by v, w with |v| = |w| = 1. Then consider geodesic
expp(tv) and Jacobi field

J(t) = (d expp)tv(tw)

along it. Then by Proposition 14.1.1 we have |J(t)|′′ < 0 for sufficiently
small t. If we set f(t) = |J(t)| − t|w|. Then we can see f(0) = 0, f ′(0) = 0
and f ′′(0) < 0 for sufficiently small t. In particular, we have

|(d expp)εv(εw)| − |εw| = f(ε) < 0

where ε > 0 is sufficiently small. This leads to a contradiction.
From (2) to (3). For arbitrary t > 0. Let γ(s) : [0, 1] → M be a geodesic

connecting expp(tv), expp(tw) and choose a curve v(s) ∈ TpM such that
expp(v(s)) = γ(s)
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for all s ∈ [0, 1]. Hence v(0) = tv, v(1) = tw. Then

dist(expp(tv), expp(tw)) =

ˆ 1

0
|γ′(s)|ds

=

ˆ 1

0
|(d expp)v(s)(v′(s))|ds

≥ |
ˆ 1

0
v′(s)ds|

= t|v − w|

This shows

|v − w| ≤
dist(expp(tv), expp(tw))

t
holds for arbitrary t > 0.

From (3) to (2). Note that

|(d expp)v(w)| = lim
t→0

dist(expp(v + tw), expp(v))

t

= lim
t→0

dist(expp(tv
′ + tw), expp(tv

′))

t

≥ |v′ + w − v′|
= |w|

□

Remark 18.1.1. This shows the exponential map of simply-connected com-
plete Riemannian manifold with non-positive sectional curvature has “ex-
pansion” property.

Corollary 18.1.1. Let (M, g) be a Cartan-Hadamard manifold with a, b, c ∈
M . Such points determine a unique geodesic triangle T with vertices a, b, c.
Let α, β, γ be the angles of the vertices a, b, c respectively, and let A,B,C
be the lengths of the side opposite the vertices a, b, c respectively. Then
(1) A2 +B2 − 2AB cos γ ≤ C2(< C2, if K < 0).
(2) α+ β + γ ≤ π(< π, if K < 0)

Proof. See Lemma 3.1 in Page259 of [Car92]. □

18.1.2. Complete Riemannian manifold with non-positive sectional curvature
is K(G, 1).

Lemma 18.1.1. If (M, g) is a complete Riemannian manifold with sec-
tional curvature K ≤ 0, then for any p ∈ M , conj(p) = ∅. In particular,
expp : TpM →M is a local diffeomorphism.

Proof. Suppose q is conjugate to p along γ : [0, 1] →M , and without lose of
generality we may assume there is no conjugate point for t ∈ (0, 1). Let J
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be a Jacobi field along γ with J(0) = J(1) = 0. Then

(
1

2
|J |2)′ = (g(J ′, J))′

= g(J ′′, J) + g(J ′, J ′)

= −R(J, γ′, γ′, J) + |J ′|2

≥ |J ′|2

Since J ′(0) 6= 0, we have

g(J ′, J)(t) ≥
ˆ t

0
|J ′|2 + g(J ′(0), J(0))

=

ˆ t

0
|J ′|2

> 0

which implies (12 |J |
2)′ = g(J ′, J) > 0, a contradiction to J(1) = 0. □

Theorem 18.1.2 (Cartan-Hadamard). If (M, g) is a complete Riemannian
manifold with sectional curvatureK ≤ 0, then expp : TpM →M is a covering
map.

Proof. Lemma 18.1.1, together with Proposition 17.1.3 and Theorem 18.1.1
completes the proof. □
Corollary 18.1.2. Cartan-Hadamard manifold is diffeomorphic to Rn.

Corollary 18.1.3. If (M, g) is a complete Riemannian manifold with K ≤
0, then πk(M) = 0, k ≥ 2, that is M is K(π1(M), 1).

Remark 18.1.2. Theory in topology says if a finite dimensional CW-complex
is a K(G, 1) space, then its fundamental group is torsion-free. In particular,
if M is a complete Riemannian manifold with K ≤ 0, then π(M) is torsion-
free. This fact can be proved later by tools of Riemannian manifold, called
Cartan’s torsion-free theorem.

Corollary 18.1.4. If M and N are two compact Riemannian manifold and
one of them is simply-connected, thenM×N has no metric with non-positive
sectional curvature.

Proof. If both of M and N are simply-connected, and M × N admits a
metric with non-positive sectional curvature, then it’s diffeomorphic to Rn

for some positive integer n, a contradiction to compactness.
Without lose of generality, we assume M is simply-connected and N is

not simply-connected with universal covering Ñ . Then there is a universal
covering

π : M × Ñ →M ×N

If M × N admits a Riemannian metric g with non-positive sectional cur-
vature, then π∗g is a complete metric of non-positive sectional curvature
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on M × Ñ , so we have M × Ñ is diffeomorphic to Rn for some n. M is
orientable since it’s simply-connected, which implies Hm(M) = Z, where
m = dimM . By Künneth formula Hm(M × Ñ) 6= 0, a contradiction to
Poincaré lemma. □

Remark 18.1.3. The condition simply-connected is crucial, for example S1×
S1 admits a metric with flat curvature.

18.2. Cartan’s torsion-free theorem.

Lemma 18.2.1. Let (M, g) be a Cartan-Hadamard manifold and p ∈ M ,
v ∈ TpM . For all q ∈M , one has

2 dist(p, q)2 + dist(p0, p)
2 + dist(p1, p)

2 ≤ dist(p0, q)
2 + dist(p1, q)

2

where p0 = expp(−v) and p1 = expp(v).

Proof. Since expp : TpM → M is a diffeomorphism, there exists w ∈ TpM
such that q = expp(w) with dist(p, q) = |w|. Direct computation shows

dist(p0, q) = dist(expp(−v), expp(w)) ≥ |w + v|
dist(p1, q) = |w − v|
dist(p, q)2 = |w|2

=
|w + v|2 + |w − v|2

2
− |v|2

≤ dist(p0, q)
2 + dist(p1, q)

2

2
− dist(p0, p)

2 + dist(p1, p)
2

2

□

Lemma 18.2.2 (Serre). Let (M, g) be a Cartan-Hadamard manifold, p ∈M
and B(p, r) is the closed ball of radius r. If ∅ 6= Ω ⊆ M is a bounded set
with

rΩ = inf{r > 0 | Ω ⊆ B(p, r), p ∈M}
then there exists a unique pΩ ∈M such that Ω ⊆ B(pΩ, rΩ).

Proof. Choose a bounded sequence {ri > rΩ} converging to rΩ and pi ∈ M
such that

Ω ⊆ B(pi, ri)

For fixed q ∈ Ω, one has dist(q, pi) ≤ ri for each i, and thus {pi} is bounded
since {ri} is bounded. Since M is complete, then {pi} has a convergent
subsequence, and the limit of this convergent subsequence is pΩ, which gives
the existence of pΩ. Suppose p1, p2 ∈M are two points such that

Ω ⊆ B(p0, rΩ) ∩B(p1, rΩ)

Since expp0 is a diffeomorphism, there exists a unique v0 such that p1 =
expp0(v0). By Lemma 18.2.1, if we denote p = expp0(v0/2), then for all
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q ∈ Ω one has

dist(p, q)2 ≤ dist(p0, q)
2 + dist(p1, q)

2

2
− dist(p0, p)

2 + dist(p1, p)

2

≤ r2Ω − dist(p0, p1)
2

4

since dist(p0, p) = dist(p1, p) = dist(p0, p1)/2. By the definition of rΩ, one
has dist(p0, p1) = 0, and thus p0 = p1. □

Theorem 18.2.1 (Cartan’s fixed point theorem). Let (M, g) be a Cartan-
Hadamard manifold and G is a compact Lie group acting on M isometrically.
Then G has a fixed point.

Proof. For p ∈M , suppose Ω is the orbit of p, that is

Ω = {gp | g ∈ G}

It’s a bounded since M is compact, and

Ω = gΩ ⊆ B(gpΩ, rΩ)

since Ω is the orbit. Then by uniqueness of pΩ, one has pΩ is a fixed point
of G. □

Corollary 18.2.1. If (M, g) is a complete Riemannian manifold with K ≤
0, then π1(M) is torsion-free.

Proof. Let (M̃, g̃) be the universal covering of M with pullback metric. Then
(M̃, g̃) is a Cartan-Hadamard manifold, and (M, g) is isometric to (M̃/Γ, g̃),
where Γ ⊆ Iso(M̃, g̃) is isomorphic to π1(M) which acts on M̃ freely.

Now it suffices to show Γ has no torsion element. If not, suppose ϕ is
a torsion element, then consider the finite group G generated by ϕ, which
is a 0-dimension Lie group if it’s equipped with discrete topology. By Car-
tan’s fixed point theorem there exists a fixed point of G, which implies ϕ is
identity, since Γ acts on M̃ freely. □

18.3. Preissmann’s Theorem.

Definition 18.3.1 (axis). Let (M, g) be a complete Riemannian manifold
and ϕ : M →M be an isometry. A non-trivial geodesic γ : R →M is called
an axis of ϕ if there exists 0 6= c ∈ R such that

ϕ(γ(t)) = γ(t+ c)

Definition 18.3.2 (axial). An isometry without fixed points which has an
axis is said to be axial.

Lemma 18.3.1. Let (M, g) be a complete Riemannian manifold and ϕ : M →
M be an isometry. If δφ(p) = dist(p, ϕ(p)) has a positive minimum, then ϕ
has an axis.
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Proof. Suppose δφ attains its minimum at p ∈ M and γ(t) : [0, 1] → M
is a minimum geodesic connecting p and ϕ(p). Then ϕ ◦ γ : [0, 1] → M is
also a geodesic connecting ϕ(p) and ϕ2(p), since ϕ is an isometry. We claim
these two geodesics form an angle π at point ϕ(p) and thus fit together an
extension of γ to [0, 2]. Indeed, for any t ∈ [0, 1], one has

δφ(p) = dist(p, ϕ(p))

≤ δφ(γ(t))

= dist(γ(t), ϕ ◦ γ(t))
≤ dist(γ(t), γ(1)) + dist(γ(1), ϕ ◦ γ(t))
= dist(γ(t), γ(1)) + dist(ϕ ◦ γ(0), ϕ ◦ γ(t))
= dist(γ(t), γ(1)) + dist(γ(0), γ(t))

= δφ(p)

Thus we have ϕ(γ(t)) = γ(1 + t) for 0 ≤ t ≤ 1. Repeating this argument to
obtain a geodesic γ : R →M with period 1, and it’s an axis for ϕ. □
Lemma 18.3.2. Let π : M̃ → M be the universal covering and ϕ be a
non-trivial deck transformation.
(1) Let γ̃0, γ̃1 : [0, 1] → M̃ be curves connecting x̃0, ϕ(x̃0) and x̃1, ϕ(x̃1) re-

spectively. Then π ◦ γ̃1 is free homotopic to π ◦ γ̃2.
(2) Let γ̃0 : [0, 1] → M̃ be a path connecting x̃0 and ϕ(x̃0) and γ0 = π ◦ γ̃0.

Then any loop γ1 that is freely homotopic to γ0 must be of the form
γ1 = π ◦ γ̃1, where γ̃1 : [0, 1] → M̃ has property ϕ(γ̃1(0)) = γ̃1(1).

Proof. For (1). Consider the path H̃(s, 0) : [0, 1] → M̃ with H̃(0, 0) = x̃0
and H̃(0, 1) = x̃1 and define

H̃(s, 1) = ϕ(H̃(s, 0))

H̃(0, t) = γ̃0(t)

H̃(1, t) = γ̃1(t)

This defines H̃ on the boundary of [0, 1] × [0, 1], and it can be extended a
continuous H̃ : [0, 1] × [0, 1] → M̃ since M̃ is simply-connected. Therefore
H = π ◦ H̃ gives a free homotopy between π ◦ γ̃1 and π ◦ γ̃2.

For (2). Let H : [0, 1]× [0, 1] →M be a free homotopy from γ0 to γ1 and
H̃ : [0, 1] × [0, 1] be its lift such that H̃(0, 0) = x̃0. The unique homotopy
lifting property implies γ̃0(t) = H̃(0, t). Note that both H̃(s, 0) and H̃(s, 1)

are lifts of the same curve H(s, 0), but on the other hand, ϕ ◦ H̃(s, 0) is also
a lift of H(s, 0) and ϕ◦ H̃(0, 0) = H̃(0, 1). Then by unique homotopy lifting
property again one has ϕ◦H̃(s, 0) = H̃(s, 1). Now we define γ̃1(t) = H̃(1, t).
Then

γ̃1(0) = H̃(1, 0)

γ̃1(1) = H̃(1, 1) = ϕ ◦ H̃(1, 0) = ϕ(γ̃1(0))
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This completes the proof. □

Proposition 18.3.1. Let (M, g) be a compact Riemannian manifold with
universal covering M̃ . If ϕ is a non-trivial deck transformation, then
(1) δφ has a positive minimum ≥ 2 inj(M), and thus ϕ has an axis γ : R →

M̃ .
(2) π ◦ γ is a closed geodesic in M whose length is minimal in its homotopy

class.

Proof. For (1). By (1) of Lemma 18.3.2, if ϕ is a non-trivial deck trans-
formation, then none of loops obtained by projecting path connecting x̃0
and ϕ(x̃0) can be homotopically trivial. This implies δφ(x̃) ≥ 2 injπ(x̃)M , as
otherwise the minimal geodesic from x̃0 to ϕ(x̃0) would generate a loop of
length < 2 injπ(x̃)M , which are contractible as they lie in geodesical ball.

For (2). Let {x̃i} be a sequence in M̃ such that lim δφ(x̃i) = inf δφ and
{γ̃i} be a sequence of minimal geodesics such that γ̃i(0) = x̃i and γ̃i(1) =
ϕ(x̃i). Then {γi := π ◦ γ̃i} is a sequence of loops in M . Since |γ̃′i| = |γ′i| =
δφ(x̃i), the compactness of M implies that we may assume x = lim γi(0) and
v = lim γ′i(0) ∈ TqM with |v| = inf δφ by passing subsequences. □

Lemma 18.3.3. Let (M, g) be a Cartan-Hadamard manifold with negative
sectional curvature. If isometry ϕ : M →M has an axis, then it’s unique up
to reparametrization.

Proof. Suppose γ1, γ2 : R →M are two axes of ϕ, without lose of generality
we may assume

ϕ(γ1(t)) = γ1(t+ 1)

ϕ(γ2(t)) = γ2(t+ 1)

If γ1, γ2 do not intersect, then points A = γ1(0), B = γ1(1) = ϕ(A), C =
γ2(0) and D = γ2(1) = ϕ(C) are all distinct. Let γ be a geodesic from A
to C. Then ϕ ◦ γ is the geodesic from B to D. Furthermore, the geodesic
quadrilateral ABCD has angle sum 2π, since ϕ preserves angles. However,
according to Corollary 18.1.1, triangle 4ABC and 4BCD have angle sum
strictly less than π, and

∠ACD ≤ ∠ACB + ∠BCD
∠ABD ≤ ∠ABC + ∠CBD

thus the angle sum of ABCD is strictly less than 2π, a contradiction. Hence
γ1 and γ2 must intersect at some point p = γ1(t1) = γ2(t2). Then

ϕ(p) = ϕ(γ1(t1)) = γ1(t1 + 1)

= ϕ(γ2(t2)) = γ2(t2 + 1)

is another intersection point. Since (M, g) is a Cartan-Hadamard man-
ifold, any two points are joined by a unique geodesic, and thus γ1 is a
reparametrization of γ2. □
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Lemma 18.3.4. If H is an additive subgroup of R, then either H is dense
in R or H ∼= Z.

Proof. Let H be an additive subgroup of R. It’s clear H ∩R>0 6= ∅, and we
consider

b := inf{h ∈ H ∩ R>0}

(1) If b > 0: Let h ∈ H and k ∈ Z such that

kb ≤ |h| < (k + 1)b

then we have |h| − kb ∈ H, and 0 ≤ |h| − kb < (k + 1)b − kb = b. By
the choice of b, we have |h| − kb, which implies h = ±kb. In this case
H = bZ.

(2) If b = 0: For arbitrary r ∈ R≥0 and ε > 0, there exists h ∈ H ∩ (0, ε]
since b = 0 and k ∈ N such that

kh ≤ r ≤ (k + 1)h

Thus
0 ≤ r − kh ≤ (k + 1)h− kh = h ≤ ε

which implies |r − kh| ≤ ε, that is H is dense in R≥0. For the same
argument you can show H is also dense in R≤0.

□

Theorem 18.3.1 (Preissmann). If (M, g) is a compact Riemannian mani-
fold with negative sectional curvature, then any non-trivial abelian subgroup
of π1(M) is isomorphic to Z.

Proof. Let (M̃, g̃) be the universal covering of M equipped with pullback
metric. Then it’s a Cartan-Hadamard manifold with negative sectional cur-
vature. Now it suffices to show every non-trivial abelian subgroup H of
group consisting of deck transformations is isomorphic to Z. Let ϕ be a
non-trivial deck transformation in H. Then Proposition 18.3.1, ϕ has an
axis γ : R → M̃ , that is there exists c 6= 0 such that

ϕ ◦ γ(t) = γ(t+ c)

for all t ∈ R. If ψ is another non-trivial element of H, then for any t ∈ R
we have

ϕ ◦ ψ(γ(t)) = ψ ◦ ϕ(γ(t)) = ψ ◦ γ(t+ c)

which implies ψ ◦ γ is also an axis of ϕ. So by Lemma 18.3.3 we have ψ ◦ γ
is a reparametrization of γ. Furthermore, ψ ◦ γ and γ have the same speed
since ψ is an isometry, and thus there are two cases:
(1) ψ ◦ γ(t) = γ(t+ a).
(2) ψ ◦ γ(t) = γ(−t+ a)
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(2) can’t happen, otherwise ψ ◦ γ(a2 ) = γ(a2 ), contradicts to deck transfor-
mation acts on M̃ freely. Consider

f : H → R
ψ 7→ a

where a is determined ψ ◦ γ(t) = γ(t + a). It’s easy to see F is a group
homomorphism with trivial kernel thus F (H) is an additive subgroup of R.
Consider

b := inf{h ∈ F (H) ∩ R>0}
By Lemma 18.3.4, it suffices to show b > 0. If b = 0, then there exist
a ∈ (0, inj(M)) and ψ ∈ H such that a = F (ψ), that is

ψ ◦ γ(t) = γ(t+ a)

Since π ◦ ψ = π, we have π ◦ γ(t) = π ◦ γ(t+ a). Set t = 0 one has
π ◦ γ(a) = π ◦ γ(0)

A contradiction to 0 < a < inj(M) since π ◦ γ is a geodesic. □

Corollary 18.3.1. Suppose M and N are compact smooth manifolds. Then
M×N doesn’t admit a Riemannian metric with negative sectional curvature.

Proof. If M ×N admits a Riemannian metric with negative sectional curva-
ture, Cartan’s torsion-free theorem implies π1(M × N) is torsion-free, and
thus for arbitrary α ∈ π1(M), β ∈ π1(N), unless either M or N is simply-
connected, π1(M ×N) will contain an abelian subgroup Z×Z generated by
α, β, which contradicts to Preissmann’s theorem.

Without lose of generality, we assume M is simply-connected. Then con-
sider the universal covering M × Ñ of M ×N , Cartan-Hadamard’s theorem
implies it’s diffeomorphic to Rn for n ∈ Z>0, but M is orientable since
it’s simply-connected, so Hm(M) = Z where m = dimM . So by Künneth
formula Hn(M × Ñ) 6= 0, a contradiction to Poincaré lemma. □

Lemma 18.3.5. Let (M, g) be a complete Riemannian manifold with non-
positive sectional curvature and M̃ be the universal covering. If γ : R → M̃
is a common axis for all deck transformations, then M is not compact.

Proof. For any point x̃ = γ̃(s0) ∈ M̃ and a real number k > 0, consider the
unit-speed geodesic β̃ : [0, k] → M̃ such that

β̃(0) = x̃

〈β̃′(0), γ̃′(s0)〉 = 0

Let β = π ◦ β, γ = π ◦ γ̃ and x = π(x̃). If αk is a minimizing geodesic in
M connecting β(k) and β(0), then `(αk) ≤ `(β) = `(β̃) = k. Now we’re
goinng to show `(αk) = k, and since k can be arbitrarily large, one has M
is unbounded, and thus non-compact.
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Let α̃k be the lift of αk starting from β̃(k) and ϕ be the deck transforma-
tion given by the loop α−1

k β. Since γ̃ is a common axis, one has
ϕ(x̃) = ϕ(γ̃(s0)) = γ̃(s0 + c)

Since the sectional curvature is non-positive, by Corollary 18.1.1 one has
`(α̃k) ≥ `(β̃)

On the other hand, one has
`(α̃k) = `(αk) ≤ k

Hence we deduce `(α̃k) = k, which completes the proof. □
Theorem 18.3.2 (Preissmann). If (M, g) is a compact Riemannian mani-
fold with negative sectional curvature, then π1(M) is not abelian.

Proof. Suppose π1(M) is abelian and γ is the axis of some deck transforma-
tion. Then it’s the axis of all deck transformations since π1(M) is abelian,
which implies M is non-compact by Lemma 18.3.5, a contradiction. □
18.4. Other facts.
Theorem 18.4.1 (Byers). If (M, g) is a compact Riemannian manifold
with negative sectional curvature, then any non-trivial solvable subgroup of
π1(M) is isomorphic to Z.

Theorem 18.4.2 (Yau). Let (M, g) be a compact Riemannian manifold
with non-positive sectional curvature. If π1(M) is solvable, then M is flat.

Theorem 18.4.3 (Farrell-Jones). Let (Mi, gi), i = 1, 2 be two compact
Riemannian manifolds with non-positive sectional curvature. If π1(M1) =
π1(M2), then M1 and M2 are homeomorphic.
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19. Topology of positive curvature manifold

19.1. Myers’ theorem.

Theorem 19.1.1 (Myers). Let (M, g) be a complete Riemannian n-manifold
with Ric(g) ≥ n−1

R2 g. Then diam(M) ≤ πR, and thus M is compact.

Proof. If diam(M) > πR, then there exists b > πR and a minimal geodesic
γ : [0, b] → M of unit-speed, since M is complete. Let {e1(t), . . . , en(t)}
be a parallel orthonormal frame along γ with e1(t) = γ′(t), and for each
i = 2, . . . , n, we define

Vi(t) = sin(
πt

b
)ei(t)

It’s clear Vi(0) = Vi(b) = 0 for 2 ≤ i ≤ n. Note that

Iγ(Vi, Vi) =

ˆ b

0
〈∇̂ d

dt
Vi, ∇̂ d

dt
Vi〉dt−

ˆ b

0
R(Vi, γ

′, γ′, Vi)dt

=

ˆ b

0
sin2(

πt

b
)
{
(
π

b
)2 −R(ei, e1, e1, ei)

}
dt

Thus

Iγ(
n∑

i=2

Vi,
n∑

i=2

Vi) =

ˆ b

0
sin2(

πt

b
)

{
(n− 1)(

π

b
)2 −

n∑
i=2

R(ei, e1, e1, ei)

}
dt

≤
ˆ b

0
sin2(

πt

b
)

{
(n− 1)(

π

b
)2 − (n− 1)

R2

}
dt

Since γ is a minimal geodesic, one has Iγ is semi-positive definite, which
implies b ≤ πR. □
Remark 19.1.1. The estimate for the diameter given by Myers’ theorem
can’t be improved. Indeed, the unit sphere Sn ⊆ Rn+1 has constant sec-
tional curvature K = 1 and diam(Sn) = π. Furthermore, there is a rigidity
theorem: Let (M, g) be a complete Riemannian n-manifold, Ric(g) ≥ n−1

R2 g
and diam(M) = πR. Then (M, g) is isometric to sphere Sn(R) with standard
metric, that’s Cheng’s theorem, we will see it in Theorem 22.4.2.

Corollary 19.1.1. Let M be a complete Riemannian manifold with positive
Ricci curvature. Then the fundamental group π1(M) is finite.

Proof. Let M̃ be the universal covering of M equipped with pullback metric
g̃. It’s clear (M̃, g̃) is a complete Riemannian manifold with positive Ricci
curvature. By Myers’ theorem M̃ is compact, which implies π : M̃ → M is
a finite covering, that is π1(M) is finite, since |π1(M)| equals the number of
sheets of covering. □

19.2. Synge’s theorem.

Lemma 19.2.1. Let A be an orthogonal linear transformation of Rn−1 and
suppose detA = (−1)n. Then 1 is an eigenvalue of A.
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Proof.
(1) If n is even, then det(λI−A) is a polynomial of odd degree, therefore A

has at least a real eigenvalue, and it must be ±1 since A is orthogonal.
Furthermore, since detA = 1 and the product of complex eigenvalue is
positive, there is at least a real eigenvalue which equals 1.

(2) If n is odd, then detA = −1. Because the product of complex eigenvalue
is positive, there are at least two real eigenvalues, and one of them is 1.

□
Theorem 19.2.1 (Synge). Let (M, g) be a compact Riemannian manifold
with positive sectional curvature. Then
(1) If dimM is even and orientable, then M is simply-connected.
(2) If dimM is odd, then M is orientable.

Proof. Let (M̃, g̃) be the universal covering of M equipped with pullback
metric, and M̃ is equipped with pullback orientation if dimM is even, oth-
erwise equipped with arbitrary orientation. Suppose the conclusions are not
correct, and thus π1(M) is non-trivial. Choose a non-trivial deck transfor-
mation f : M̃ → M̃ such that
(1) If dimM is even, F is orientation preserving.
(2) If dimM is odd, F is orientation reserving.
By Lemma, there exists an axis γ̃ : R → M̃ for F and γ = π ◦ γ̃ is a closed
geodesic in M that minimizes the length in [γ],

F (γ̃(t)) = γ̃(t+ 1)

□
Corollary 19.2.1. Let (M, g) be a compact Riemannian manifold with
even dimension and positive sectional curvature. If M is non-orientable,
then π1(M) = Z2.

Proof. Let M̃ be the orientable double covering of M equipped with pullback
metric. Synge’s theorem implies M̃ is simply-connected, and thus it’s the
universal covering of M . This shows π1(M) = Z2. □
Example 19.1. RPn × RPn admits no Riemannian metric with positive
sectional curvature, since its fundamental group is Z2×Z2.
Conjecture 19.2.1 (Hopf conjecture). Does S2 × S2 admit a Riemannian
metric with positive sectional curvature?
19.3. Other facts.
Theorem 19.3.1. Let (M, g) be a compact, simply-connected Riemannian
n-manifold.
(1) (Hamilton) If n = 3, Ric(g) > 0, then M is diffeomorphism to S3.
(2) (Hamilton) If n = 4 with curvature operator > 0, then M is diffeomor-

phism to S4.
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(3) (Böhm-Wilking) If curvature operator > 0, then M is diffeomorphism
to Sn.

Theorem 19.3.2 (soul theorem). Let (M, g) be a complete, non-compact
Riemannian n-manifold.
(1) If M has non-negative sectional curvature, then there exists a compact

totally geodesic submanifold S ⊆ M (called a soul of M) such that M
is diffeomorphic to the normal bundle of S in M .

(2) If M has positive sectional curvature, then its soul is a point and M is
diffeomorphic to Rn.

Theorem 19.3.3 (differentiable sphere theorem). Let (M, g) be a compact,
simply-connected Riemannian n-manifold with n ≥ 4. If sectional curvature
satisfies 1

4 < K ≤ 1, then M is diffeomorphism to Sn.
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20. Topology of constant sectional curvature manifold

20.1. Hopf’s theorem.

Theorem 20.1.1 (Hopf). Let (M, g) be a simply-connected complete Rie-
mannian manifold with constant sectional curvature K. Then (M, g) is
isometric to (M̃, gcan), where

(M̃, gcan) =


(Sn( 1√

K
), gcan) K > 0

(Rn, gcan) K = 0

(Hn( 1√
−K

), gcan) K < 0

Proof. Let M be a simply-connected complete Riemannian manifold with
constant sectional curvature K.
(1) If K ≤ 0, let M̃ = Rn or Hn( 1√

−K
). Fix p ∈ M, p̃ ∈ M̃ and a linear

isometry Φ0 : Tp̃M̃ → TpM , Cartan-Ambrose-Hicks’s theorem implies

ϕ = expp ◦Φ0 ◦ exp−1
p̃ : M̃ →M

is a local isometry. Furthermore, Cartan-Hadamard’s theorem implies ϕ
is a diffeomorphism, since M, M̃ are simply-connected with non-positive
sectional curvature. This completes the proof of this part.

(2) If K > 0, let M̃ = Sn( 1√
K
). Fix p ∈ M, p̃ ∈ M̃ and a linear isometry

Φ0 : Tp̃M̃ → TpM . Consider the following smooth map

ϕ1 = expp ◦Φ0 ◦ exp−1
p̃ : M̃ \ {−p̃} →M

it’s well-defined since the only cut point of p̃ is its antipodal point −p̃.
Then Cartan-Ambrose-Hicks’s theorem implies ϕ1 is a local isometry.
Choose q̃ ∈ M̃ \ {p̃,−p̃}, q = ϕ1(q̃) and Ψ0 = (dϕ1)q̃ : Tq̃M̃ → TqM .
Then the same argument shows

ϕ2 = expq ◦Φ0 ◦ exp−1
q̃ : M̃ \ {−q} →M

is a well-defined local isometry defined on M̃ \ {−q̃}. Note that
ϕ2(q̃) = q = ϕ1(q̃)

(dϕ2)q̃ = Ψ0 = (dϕ1)q̃

So by Theorem 16.1.1, we have the ϕ1 agrees with ϕ2 on M̃ \ {−p̃,−q̃}.
Thus

ϕ(x) =

{
ϕ1(x), x ∈ M̃ \ {−p̃}
ϕ2(x), x ∈ M̃ \ {−q̃}

is a well-defined local isometry from M̃ →M . In particular, ϕ is a local
diffeomorphism. Then by Proposition ?? we have ϕ is a diffeomorphism,
since Sn is compact and simply-connected, and thus ϕ is an isometry.

□
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Corollary 20.1.1. Let (M, g) be a Riemannian manifold with constant sec-
tional curvature K. Then (M, g) is isometric to M̃/Γ, where Γ ⊆ Iso(M̃, g̃)
is isomorphic to π1(M) and

(M̃, g̃) =


(Sn( 1√

K
), gcan) K > 0

(Rn, gcan) K = 0

(Hn( 1√
−K

), gcan) K < 0

Proof. Let (M̃, g̃) be the universal covering of M with pullback metric. Then
M is isometric to M̃/Γ, where Γ ⊆ Iso(M̃, g̃) is isomorphic to π1(M). Since
(M̃, g̃) is a simply-connected Riemannian manifold with constant sectional
curvature k, the Hopf’s theorem completes the proof. □
Definition 20.1.1 (space form). A complete, simply-connected Riemannian
n-manifold with constant sectional curvature k is called space form, and is
denoted by S(n, k).

Example 20.1.1. Let (M, g) be a complete Riemannian manifold with con-
stant sectional curvature K = 1. If dimM = 2n. Then (M, g) is isometric
to the sphere (S2n, gcan) or the real projective space (RP2n, gcan).

Proof. Note that Hopf’s theorem implies (M, g) is isometric to (S2n/Γ, gcan),
where Γ is isomorphic to π1(M), and Synge’s theorem implies if dimM is
even and K > 0. Then π1(M) = {e} or π1(M) = Z2.
(1) If π1(M) = {e}. Then (M, g) is isometric to (S2n, gcan).
(2) If π1(M) = {e, ϕ}, to show (M, g) is isometric to (RP2n, gcan), it suffices

to show ϕ is antipodal map. Note that only possible eigenvalues of ϕ is
±1, and if 1 is an eigenvalue of ϕ. Then it exists a fixed point, which
implies ϕ = e, since π1(M) acts on S2n freely.

□
Remark 20.1.1. In general, we have no ideal about what does π1(M) look
like.
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Part 7. Comparison theorems
21. Comparison theorems based on sectional curvature

In this section, we will see the following philosophy: “The larger curvature
is, the smaller the distance is.”

21.1. Rauch comparison. Rauch comparison theorem is one of the most
important comparison theorems, which gives bounds on the sizes of Jacobi
fields based on sectional curvature bounds. Recall that Jacobi field is a quite
useful tool, based on the following observations:
(1) Corollary 12.1.1 implies that in a normal neighborhood of p, every vector

field can be represented as the value of Jacobi field that vanishes at p.
(2) The zeros of Jacobi fields corresponds to conjugate points, beyond which

geodesics can’t be minimal.

Theorem 21.1.1 (Rauch comparison). Let (M, g) and (M̃, g̃) be two Rie-
mannian manifold with dimM ≤ dim M̃ . Suppose γ : [0, b] → M and
γ̃ : [0, b] → M̃ are two unit-speed geodesics such that
(1) For all t ∈ [0, b], and any planes Σ ⊆ Tγ(t)M,γ′(t) ∈ Σ, Σ̃ ⊆ Tγ̃(t)M̃, γ̃′(t) ∈

Σ̃, we have Kγ(t)(Σ) ≤ Kγ̃(t)(Σ̃).
(2) γ̃(0) has no conjugate points along γ̃|[0,b].
Then for any Jacobi fields J(t) and J̃(t) with
(1) {

J(0) = cγ′(0)

J̃(0) = cγ̃′(0)

(2) |J ′(0)| = |J̃ ′(0)|.
(3) 〈J ′(0), γ′(0)〉 = 〈J̃ ′(0), γ̃′(0)〉.
One has |J(t)| ≥ |J̃(t)| for all t ∈ [0, b].

Proof. Firstly we consider the following simple case:
(1) J(0) = J̃(0) = 0.
(2) |J ′(0)| = |J̃ ′(0)|.
(3) 〈J ′(0), γ′(0)〉 = 〈J̃ ′(0), γ̃′(0)〉 = 0.
Since γ̃(0) has no conjugate points along γ̃|[0,b]. Then |J(t)|2

|J̃(t)|2
is well-defined

for all t ∈ (0, b], and standard calculus implies

lim
t→0

|J |2

|J̃2|
= lim

t→0

〈J ′(t), J(t)〉
〈J̃ ′(t), J̃(t)〉

= lim
t→0

|J ′|2

|J̃ ′|2
= 1

So it suffices to show in (0, b] we have
d

dt
(
|J |2

|J̃ |2
) ≥ 0
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Direct computation shows above inequality is equivalent to:
〈J ′(t), J(t)〉

|J(t)|2
≥ 〈J̃ ′(t), J̃(t)〉

|J̃(t)|2

holds for arbitrary t ∈ (0, b]. For arbitrary s ∈ (0, b], we can define the
following Jacobi fields by scaling J(t):

Ws(t) =
J(t)

|J(s)|
, W̃s(t) =

J̃(t)

|J̃(s)|
Then

〈J ′(s), J(s)〉
|J(s)|2

= 〈W ′
s(s),Ws(s)〉

So it suffices to show
〈W ′

s(s),Ws(s)〉 ≥ 〈W̃ ′
s(s), W̃s(s)〉

holds for arbitrary s ∈ (0, b]. Direct computation shows:

〈W ′
s(s),Ws(s)〉 =

ˆ s

0
(〈Ws(t),Ws(t)〉)′dt

=

ˆ s

0
〈W ′

s(t),W
′
s(t)〉dt+

ˆ s

0
〈W ′′

s (t),Ws(t)〉dt

=

ˆ s

0
〈W ′

s(t),W
′
s(t)〉dt−

ˆ s

0
R(Ws(t), γ

′(t), γ′(t),W (t))dt

Choose a parallel orthonormal frame {e1(t), . . . , en(t)} with e1(t) = γ′(t), e2(t) =
Ws(t). With respect to this frame we write

Ws(t) = λi(t)ei(t)

Similarly, we choose a parallel orthogonal frame {ẽ1(t), . . . , ẽn(t)} and con-
struct the following vector field

Ṽ (t) = λi(t)ẽi(t)

Then it’s clear we haveˆ s

0
〈W ′

s(t),W
′
s(t)〉dt =

ˆ s

0
〈Ṽ ′(t), Ṽ ′(t)〉dt

and our curvature condition impliesˆ s

0
R(Ws(t), γ

′(t), γ′(t),Ws(t))dt ≤
ˆ s

0
R̃(Ṽ (t), γ′(t), γ′(t), Ṽ (t))dt

Thus we have

〈W ′
s(s),Ws(s)〉 ≤

ˆ s

0
〈Ṽ ′(t), Ṽ ′(t)〉dt−

ˆ s

0
R(Ṽ (t), γ′(t), γ′(t), Ṽ (t))dt

= Ĩ(Ṽ , Ṽ )

where Ĩ is index form on M̃ . According to Corollary 12.3.1, we have
Ĩ(Ṽ , Ṽ ) ≥ Ĩ(W̃s, W̃s)
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since W̃s is a Jacobi field. This shows the desired result.
For general case, we consider the following decomposition

J(t) = J1(t) + 〈J(t), γ′(t)〉γ′(t)

J̃(t) = J̃1(t) + 〈J̃(t), γ̃′(t)〉γ̃′(t)

Then it’s clear J1(t) and J̃1(t) satisfy requirement of our simple case, that
is for t ∈ [0, 1] we have

|J1(t)| ≥ |J̃1(t)|
Furthermore,

〈J(t), γ′(t)〉 = 〈J̃(t), γ̃′(t)〉
always holds, since

〈J(t), γ′(t)〉 = 〈J(0), γ′(0)〉+ 〈J ′(0), γ′(0)〉t
(1)
= 〈J̃(0), γ̃′(0)〉+ 〈J̃ ′(0), γ̃′(0)〉t

= 〈J̃(t), γ̃′(t)〉
where (1) holds from our assumption. □
Corollary 21.1.1. Let (M, g) be a Riemannian manifold, U a normal neigh-
borhood of p ∈M , γ : [0, b] → U a unit-speed geodesic with γ(0) = p and J
a Jacobi field along γ with J(0) = 0.
(1) If the sectional curvature K ≤ k in U . Then |J(t)| ≥ snk(t)|J ′(0)|, for

all t ∈ [0, b0], where

b0 =

{
b, k ≤ 0

min{b, πR}, k = 1
R2 > 0

(2) If the sectional curvature K ≥ k in U . Then
|J(t)| ≤ snk(t)|J ′(0)|

for all t ∈ [0, b].

Proof. Apply Rauch comparison between M and space form M̃ = S(n, k) to
conclude. However, in order to avoid geodesic γ̃ of M̃ from having conjugate
points, we need to let b0 < min{b, πR}, when k = 1

R2 > 0. □
Remark 21.1.1. In particular, from above corollary, we immediately have
the following corollary when K ≤ k:
(1) If k ≤ 0, we have already known M has no conjugate point along any

geodesic.
(2) If k = 1

R2 > 0. Then there is no conjugate point along any geodesic with
length < πR. Or in other words, the distance between two consecutive
conjugate points is ≥ πR.

Corollary 21.1.2 (metric comparison). Let (M, g) be a Riemannian n-
manifold, U a normal neighborhood of p ∈ M . For all k ∈ R, we use gk to
denote the metric dr ⊗ dr + snk(r)gSn−1 in U \ {p}.
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(1) If K ≤ k holds for all q ∈ U \ {p}. Then for w ∈ TqM we have
g(w,w) ≥ gk(w,w)

holds in U0 \ {p}, where

U0 =

{
U, k ≤ 0

U ∩B(p, πR), k = 1
R2 > 0

(2) If K ≥ k holds for all q ∈ U \ {p}. Then for w ∈ TqM we have
g(w,w) ≤ gk(w,w)

holds in U \ {p}.

Proof. If w = ∂r|q, it’s clear
g(∂r|q, ∂r|q) = 1 = gk(∂r|q, ∂r|q)

by Gauss lemma. Then it suffices to check for w ∈ TqM such that g(w, ∂r|q) =
0, we have

g(w,w) ≥ gk(w,w)

Let γ : [0, b] → M be a unit-speed geodesic connecting p and q, and J a
Jacobi field such that J(0) = 0, J(b) = w. In normal coordinate J(t) can be
written as tai ∂

∂xi

∣∣
γ(t)

for some ai.
Since (xi, U, p) is both normal coordinate for metric g and gk, thus γ is

also a radial geodesic for gc, and J(t) is also a Jacobi field with respect to
gc along γ. Thus we have

g(w,w) = |J(b)|2g
gk(w,w) = |J(b)|2gk

Then by Corollary 21.1.1, this completes the proof. □

Remark 21.1.2. The ideal of this proof and the proof of Theorem 14.4.1 is
almost the same, that is by using Corollary 12.1.1 to construct a Jacobi field
valued a given vector, and then one can use Rauch comparison to compare
length of given vectors.

Corollary 21.1.3. Let (M, g) and (M̃, g̃) be two Riemannian manifolds
with K ≤ K̃. Fix p ∈M, p̃ ∈ M̃ , linear isometry Φ0 : TpM → Tp̃M̃ and 0 ≤
δ < min(inj(p), inj(p̃)). Then for any smooth curve γ : [0, 1] → expp(B(0, δ))

and γ̃(t) = expp̃ ◦Φ0 ◦ exp−1
p (γ(t)), we have

L(γ) ≥ L(γ̃)

Proof. Let c(s) = exp−1
p ◦γ(s) and c̃(s) = exp−1

p̃ ◦γ̃(s). Then c̃(s) = Φ0(c(s)).
Consider the following variations

α(t, s) = expp(tc(s))

α̃(t, s) = expp̃(tc̃(s))
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and Jacobi fields
Js(t) = α∗(

∂

∂s
)(t, s)

J̃s(t) = α̃∗(
∂

∂s
)(t, s)

A crucial observation is for arbitrary s0 ∈ [0, 1], we have
Js0(1) = γ′(s0)

J̃s0(1) = γ̃′(s0)

So it suffices to prove |Js0(1)| ≥ |J̃s0(1)| holds for arbitrary s0 ∈ [0, 1], that
is we need to use Rauch comparison to Jacobi fields Js0(t), J̃s0(t) along γs0
and γ̃s0 , where γs0(t) = α(t, s0) and γ̃s0(t) = α̃(t, s0). Check requirements
as follows:
(1) Js0(0) = J̃s0(0) = 0.
(2) J ′

s0(0) = c′(s0), J̃
′
s0(0) = c̃′(s0), and c̃(s0) = Φ0(c(s0)) implies |J ′

s0(0)| =
|J̃ ′

s0(0)|, since Φ0 is linear isometry.
(3) 〈J̃ ′

s0(0), γ̃
′
s0(0)〉 = 〈Φ0(c

′(s0)),Φ0(c(s0))〉 = 〈c′(s0), c(s0)〉 = 〈J ′
s0(0), γ

′
s0(0)〉.
□

Corollary 21.1.4. Let (M, g) be a Riemannian n-manifold, 0 < k1 ≤ K ≤
k2. Let γ be any geodesic in M and b the distance along γ between two
consecutive conjugate points. Then

π√
k2

≤ b ≤ π√
k1

Proof. Without lose of generality, we assume γ : [0, b] → M is a unit-speed
geodesic with γ(0) = p, γ(b) = q and p, q are two consecutive conjugate
points along γ.
(1) By Remark 21.1.1, we have already seen b ≥ π√

k2
.

(2) Apply Rauch comparison to (M, g) and (Sn( π√
k1
), gcan), we have

|J(t)| ≤ |J̃(t)|

for t ∈ [0, b], where J(t), J̃(t) are defined the same as before. Suppose
b > π√

k1
. Then take t = π√

k1
, we have

0 < |J(t)| ≤ |J̃(t)| = 0

A contradiction.
□

Theorem 21.1.2. Let (M, g) be a compact Riemannian manifold with sec-
tional curvature K ≤ k, k > 0. If we define

l(M) := inf{L(γ) | γ is a closed geodesic in M}

Then either inj(M) ≥ π√
k

or inj(M) = l(M)
2 .
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Proof. By compactness of M , there exists p, q ∈ M, q ∈ cut(p) such that
dist(p, q) = inj(M) = inj(p). Let γ : [0, b] → M be a minimal geodesic
connecting p and q, that is b = dist(p, q) = inj(M). Then

(1) If p and q are conjugate along γ. Then by Corollary 21.1.4 we have
inj(M) = b ≥ π√

k
.

(2) If p and q are not conjugate along γ. Then by Proposition 13.2.1 there
exists a unit-speed closed geodesic γ : [0, 2b] →M with γ(0) = p, γ(b) =
q, where b = dist(p, q) = inj(M). On one hand by definition of l(M, g)
one has 2b ≥ l(M). On the other hand, l(M) ≥ 2b, since dist(p, q) = q.
Thus in this case inj(M) = l(M)

2 .

□

21.2. Hessian comparison.

Theorem 21.2.1 (Hessian comparison). Let (M, g) and (M̃, g̃) be two Rie-
mannian manifolds with the same dimension, U ⊆M, Ũ ⊆ M̃ normal neigh-
borhoods around p ∈M and p̃ ∈ M̃ respectively. Suppose

γ : [0, b] → U, γ(0) = p, γ(b) = q

γ̃ : [0, b] → Ũ , γ̃(0) = p̃, γ̃(b) = q̃

are two unit-speed geodesics such that

For all t ∈ [0, b], and any planes Σ ⊆ Tγ(t)M,γ′(t) ∈ Σ, Σ̃ ⊆ Tγ̃(t)M̃, γ̃′(t) ∈
Σ̃, we have Kγ(t)(Σ) ≤ Kγ̃(t)(Σ̃).

Then for any v ∈ TqM, ṽ ∈ Tq̃M̃ with unit length and v ⊥ γ′(b), ṽ ⊥ γ̃′(b),
we have

(1) Hess r(v, v) ≥ Hess r̃(ṽ, ṽ).
(2) ∆r(γ(t)) ≥ ∆̃r̃(γ̃(t)) for all t ∈ (0, b].
(3) Moreover, the equality holds if and only if KΣ(γ(t)) = K̃

Σ̃
(γ̃(t)).

Proof. For (1). Let {e1(t), . . . , en(t)} be a parallel orthonormal basis along
γ such that en(t) = γ′(t) and {ẽ1(t), . . . , ẽn(t)} a parallel orthonormal basis
along γ̃ such that ẽn(t) = γ̃′(t). Without lose of generality we may assume
〈v, ei(b)〉g = 〈ṽ, ẽi(b)〉g̃ for i = 1, . . . , n− 1, it’s just a trick of linear algebra.

Use Corollary 12.1.1 to construct Jacobi fields{
J(0) = 0, J(b) = v

J̃(0) = 0, J̃(b) = ṽ
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With respect to {ẽi(t)} we can write J̃(t) as J̃(t) = λi(t)ẽi(t), and construct
V (t) = λi(t)ei(t). Then

Hess r(v, v) = Hess r(J(b), J(b))

I
=

ˆ b

0
〈J ′(t), J ′(t)〉 −R(J, γ′, γ′, J)dt

II
≥
ˆ b

0
〈V ′(t), V ′(t)〉 −R(V, γ′, γ′, V )dt

III
≥
ˆ b

0
〈J̃ ′(t), J̃ ′(t)〉 − R̃(J̃ , γ̃, γ̃, J̃)dt

= Hess r̃(J̃(b), J̃(b))

= Hess r̃(ṽ, ṽ)

where
I holds from Corollary 14.5.1.
II holds from Corollary 12.3.1.
III holds from our assumption on curvature and the choice of V .

For (2) and (3). They directly follow from (1) and proof of (1).
□

Corollary 21.2.1 (Hessian and Laplacian comparison). Let (M, g) be a
Riemannian n-manifold and U a normal neighborhood of p ∈M .
(1) If sectional curvature K ≤ k in U \ {p}. Then

Hr ≥
sn′k(r)

snk(r)
πr, ∆r ≥ (n− 1)

sn′k(r)

snk(r)

holds in U0 \ {p}, where

U0 =

{
U, k ≤ 0

U ∩B(p, πR), k = 1
R2 > 0

(2) If sectional curvature K ≥ k in U \ {p}. Then

Hr ≤
sn′k(r)

snk(r)
πr, ∆r ≤ (n− 1)

sn′k(r)

snk(r)

holds in U \ {p}.
(3) Moreover, if equality holds, g has constant sectional curvature k in U0

or U .

Proof. For (1). Apply Hessian comparison to (M, g) and space form S(n, k).
Then we directly have

Hess r(v, v) ≥ Hess r̃(ṽ, ṽ)
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for any v ∈ TqM, ṽ ∈ TqS(n, k) with unit length and v ⊥ γ′(b), ṽ ⊥ γ̃′(b),
where

γ : [0, b] → U, γ(0) = p, γ(b) = q

γ̃ : [0, b] → Ũ , γ̃(0) = p̃, γ̃(b) = q̃

are two unit-speed geodesics, and U, Ũ are normal neighborhoods of p, p̃
respectively. However, we must be careful here, since if sectional curvature
of M is ≤ 0. Then b can be infinite, and in this case if k > 0, the diameter
of Ũ is < π√

k
. Thus we only have

Hess r(v, v) ≥ Hess r̃(ṽ, ṽ)

for 0 < b < π√
k

if k > 0, and there is no restriction for b if k ≤ 0. Thus by
taking different geodesics and different Jacobi fields, we can show this holds
for arbitrary v ∈ TqM, ṽ ∈ TqS(n, k), where q ∈ U0 \ {p}, that is we have

Hr ≥
sn′k(r)

snk(r)
πr

holds in U0 \ {p}. By taking trace we obtain ∆r ≥ (n − 1)
sn′k(r)
snk(r)

holds in
U0 \ {p}, since πr is a projection onto a subspace with codimension 1.

For (2), the same as (1).
For (3), if

Hr =
sn′k(r)

snk(r)
πr

holds in U \ {p}. Then it’s directly from Proposition 14.5.2. If

∆r ≥ (n− 1)
sn′k(r)

snk(r)

holds in U \ {p}, that is the trace of Hr −
sn′k(r)
snk(r)

πr vanishes identically in
U \ {p}. Then Hr −

sn′k(r)
snk(r)

πr vanishes identically, since it’s semi-positive
definite. □



RIEMANNIAN GEOMETRY 139

22. Comparison theorems based on Ricci curvature

22.1. Local Laplacian comparison.

Theorem 22.1.1 (local Laplacian comparison). Let (M, g) be a Riemann-
ian n-manifold and U a normal coordinate of p ∈ M . If there exists k ∈ R
such that Ric(g) ≥ (n− 1)kg. Then

∆r ≤ (n− 1)
sn′k(r)

snk(r)

holds in U0 \ {p}, where

U0 =

{
U, k ≤ 0

U ∩B(p, πR), k = 1
R2 > 0

Moreover, if equality holds. Then g has constant sectional curvature in U0.

22.1.1. Proof by using Jacobi fields.

Proof of Theorem 22.1.1 via Jacobi fields. For arbitrary q ∈ U0\{p}, choose
a unit-speed geodesic γ : [0, b] →M with γ(0) = p, γ(b) = q, and {e1(t), . . . , en(t)}
is a parallel orthonormal frame along γ with en(t) = γ′(t). Then by defini-
tion ∆r =

∑n
i=1Hess r(ei, ei).

By Corollary 12.1.1 one can construct Jacobi fields Ji(t), i = 1, . . . , n such
that Ji(0) = 0, Ji(b) = ei(b). Then we have

∆r =
n−1∑
i=1

Hess r(Ji(b), Ji(b))
(1)
=

n−1∑
i=1

I(Ji, Ji)

where (1) holds from Corollary 14.5.1. Now let M̃ be the space form S(n, k)

and Ũ a normal coordinate of p̃ ∈ M̃ . Repeat the same process as above we
have

(n− 1)
sn′k(r)

snk(r)
= ∆̃r̃ =

n−1∑
i=1

Ĩ(J̃i, J̃i)

If we denote Vi(t) = f(t)ei(t), routine computation shows

∆r =
n−1∑
i=1

I(Ji, Ji)

≤
n−1∑
i=1

I(Vi, Vi)

=
n−1∑
i=1

ˆ b

0
〈V ′

i (t), V
′
i (t)〉 −R(Vi, γ

′, γ′, Vi)dt

Until now, all computations are the same as what we have done in Hes-
sian comparison based on sectional curvature. A crucial observation is that
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J̃i(t) = f(t)ẽi(t), and the key point is that f(t) is independent of i. Then

∆r
(2)
=

n−1∑
i=1

ˆ b

0
〈V ′

i (t), V
′
i (t)〉 − f2(t)R(ei, en, en, ei)dt

=

n−1∑
i=1

ˆ b

0
〈V ′

i (t), V
′
i (t)〉 −

ˆ b

0
f2(t)Ric(en, en)dt

≤
n−1∑
i=1

ˆ b

0
〈J̃i(t), J̃i(t)〉 −

ˆ b

0
(n− 1)kf2(t)dt

=

n−1∑
i=1

Ĩ(J̃i, J̃i)

= (n− 1)
sn′k(r)

snk(r)

the key point is used in equality marked by (2), and others are routines. □

22.1.2. Proof by using Bochner’s technique.

Lemma 22.1.1. Let (M, g) be a Riemannian manifold, (xi, U, p) a normal
coordinate centered at p. Then

∆r = ∂r log(r
n−1
√

det g)

in U \ {p}. Moreover, along any unit-speed geodesic γ : [0, b] → U with
γ(0) = p, if we define f(t) := ∆r(γ(t)). Then

f(t) =
n− 1

t
+O(1)

Proof. Direct computation shows

∆r =
1√
det g

∂

∂xi
(gij
√
det g

∂r

∂xj
)

=
1√
det g

∂

∂xi
(gij
√
det g

xj

r
)

=
1√
det g

∂

∂xi
(
xi

r

√
det g)

=
∂

∂xi
(
xi

r
) +

1√
det g

xi

r

∂

∂xi
(
√
det g)

=
n− 1

r
+

1√
det g

∂r(
√

det g)

= ∂r log(r
n−1
√
det g)

Moreover, for unit-speed geodesic γ : [0, b] → U , we have

f(t) =
n− 1

r(γ(t))
+ ∂r(log

√
det g)

∣∣∣
γ(t)
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Then note that
(1) r(γ(t)) = t, since γ is unit-speed geodesic.
(2) Jacobi’s formula implies

∂r(log
√
det g)

∣∣∣
γ(t)

=
1

2
gij
∂gij
∂xk

dγk

dt
= O(1)

we obtain the desired results. □
Lemma 22.1.2 (Riccati comparison theorem). If f : (0, b) → R is a smooth
function satisfying
(1) f(t) = 1

t +O(1).
(2) f ′ + f2 + k ≤ 0.
Then

f(t) ≤
sn′k(t)

snk(t)

for all t ∈ (0, b), where k > 0, b ≤ π√
k
.

Proof. Consider fk(t) =
sn′k(t)
snk(t)

, it’s a smooth function defined on (0, b) sat-
isfying
(1) fk(t) =

1
t +O(1)

(2) f ′k + f2k + k = 0

Choose a smooth function f : (0, b) → R satisfying
(1) F (t) = 2 log t+O(1).
(2) F ′(t) = f + fk
Then

d

dt
(eF (f − fk)) = eF (f2 − f2k + f ′ − f ′k) ≤ 0

lim
t→0

eF (f − fk) = 0

Then we have f(t) ≤ fk(t) holds for all t ∈ (0, b). □
Lemma 22.1.3.

|Hess r|2 ≥ (∆r)2

n− 1

Proof. Let {e1, . . . , en} be an orthonormal frame with e1 = ∂r. Then

|Hess r|2 =
n∑

i,j=1

(〈∇ei∂r, ej〉)2

=
n∑

i,j=2

(〈∇ei∂r, ej〉)2

≥ 1

n− 1

n∑
i=2

(〈∇ei∂r, ei〉)2

=
1

n− 1
(∆r)2
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The inequality

|A|2 ≥ 1

k
| tr(A)|2

for a k×k matrix A is a direct consequence of the Cauchy-Schwarz inequality.
□

Proof of Theorem 22.1.1 by using Bochner’s technique. Recall Bochner’s tech-
nique says

1

2
∆|∇f |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆f,∇f)

Set f = r we have

0 = |Hess r|2 +Ric(∇r,∇r) + g(∇∆r,∇r)
(1)

≥ |Hess r|2 + ∂r(∆r) + (n− 1)k

(2)

≥ (
∆r

n− 1
)2 + ∂r(

∆r

n− 1
) + k

where
(1) holds from ∂r = ∇r and lower bounded of Ricci.
(2) holds from Lemma 22.1.3 and divided by n− 1.

Thanks to Lemma 22.1.1, we can apply Riccati comparison to f(r) = ∆r
n−1 .

Then we have
∆r

n− 1
≤

sn′k(r)

snk(r)

This shows desired comparison.
Furthermore, if equality holds

∆r

n− 1
=

sn′k(r)

snk(r)

then direct computation shows

(
∆r

n− 1
)2 + ∂r(

∆r

n− 1
) + k = 0

which implies inequalities in (1) and (2) are in fact equalities. In particular,
one has

|Hess r|2 = (∆r)2

n− 1

that is inequality in Cauchy-Schwarz inequality holds, which implies

Hr =
sn′k(r)

snk(r)
πr

Then g has constant sectional curvature k in U0 by Proposition 14.5.2. □
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22.2. Maximal principle.

Proposition 22.2.1. Let (M, g) be a Riemannian manifold and f, h be two
smooth functions on M . If there is a point p such that f(p) = h(p) and
f(x) ≥ h(x) for all x near p. Then

∇f(p) = ∇h(p), Hess f |p ≥ Hess h|p , ∆f(p) ≥ ∆h(p)

Proof. Firstly let’s consider the case (M, g) ⊆ (Rn, gcan), it’s a simple cal-
culus since we can use Taylor expansion. To be explicit, for all x near p, we
have

f(x) = f(p) +∇f(p)T (x− p) +
1

2
(x− p)T Hess f |p(x− p) +O(|x|3)

where ∇f is an n column vector and Hess f is an n× n matrix in this case.
Similarly, we have

h(x) = h(p) +∇h(p)T (x− p) +
1

2
(x− p)T Hessh|p(x− p) +O(|x|3)

Then consider

f(x)−h(x) = (∇f−∇h)(p)T (x−p)+ 1

2
(x−p)T Hess(f−h)|p(x−p)+O(|x|3)

Since f(x)− h(x) ≥ 0 for all x near p. Then we must have
∇f(p) = ∇h(p)

Hess f |p ≥ Hessh|p
By taking trace we have

∆f(p) ≥ ∆h(p)

For general case, take γ : (−ε, ε) → M to be a geodesic with γ(0) = p.
Then use previous case on f ◦ γ, h ◦ γ to obtain

∇γ′(0)f(p) = ∇γ′(0)h(p)

Hess fp(γ
′(0), γ′(0)) ≥ Hesshp(γ

′(0), γ′(0))

Then it’s clear this proposition holds if we let v = γ′(0) run over all v ∈
TpM . □
Definition 22.2.1 (barrier sense). Let (M, g) be a Riemannian manifold
and f ∈ C(M). Suppose fq is a C2 function defined in a neighborhood of U
of q ∈M .
(1) fq is called a lower barrier function of f at q if

fq(q) = f(q), fq(x) ≤ f(x), x ∈ U

(2)

∆f(q) ≥ c

in the barrier sense if for all ε > 0, there exists a lower barrier function
fq,ε of f at q such that

∆fq,ε(q) ≥ c− ε
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(3)

∆f(q) ≤ c

in the barrier sense if for all ε > 0, there exists an upper barrier function
fq,ε of f at q such that

∆fq,ε(q) ≤ c+ ε

Definition 22.2.2 (distribution sense). Let (M, g) be an orientable Rie-
mannian manifold and f ∈ C(M).

∆f ≤ h

in distribution sense, if ˆ
M
f∆ϕ ≤

ˆ
M
hϕ

holds for all ϕ ≥ 0 ∈ C∞
c (M)

Theorem 22.2.1 (maximal principle). Let (M, g) be a Riemannian mani-
fold and f ∈ C(M).
(1) If ∆f ≥ 0 in the barrier sense or distribution sense. Then if f has a

local(global) maximum. Then it’s local(global) constant.
(2) If ∆f ≤ 0 in the barrier sense or distribution sense. Then if f has a

local(global) minimal. Then it’s local(global) constant.
(3) ∆f = 0 implies f ∈ C∞(M).

Proof. See Theorem 66 in Page280 of [Pet16]. □

22.3. Global Laplacian comparison.

22.3.1. In the barrier sense.

Proposition 22.3.1. Let (M, g) be a complete Riemannian manifold and
p, q ∈M . Let γ : [0, b] →M be a unit-speed minimal geodesic with γ(0) = p
and γ(b) = q. For any small ε > 0,

rε(x) = ε+ dist(γ(ε), x)

where x ∈M . Then
(1) q /∈ cut(γ(ε)) and in particular, rε is smooth at q.
(2) rε is an upper barrier function of r(x) = dist(p, x) at point q.

Proof. For (1). If q ∈ cut(γ(ε)), by Corollary 13.1.2, one has γ(ε) ∈ cut(q),
a contradiction to γ is a minimal geodesic connecting p and q.

For (2). Firstly note that γ(b) = q. Then

r(q) = dist(p, q) = dist(γ(0), γ(b))
I
= dist(γ(0), γ(ε))+dist(γ(ε), γ(b))

II
= rε(q)

where
I holds since γ is a minimal geodesic.
II holds since γ is unit-speed minimal geodesic. Then dist(γ(0), γ(ε)) = ε.
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By triangle inequality, one has

r(q′) = dist(p, q′) ≤ ε+ dist(γ(ε), q) = rε(q
′)

for all q′ near q. Combining these two facts together we have rε is an upper
barrier function of r. □

Theorem 22.3.1 (global Laplacian comparison). Let (M, g) be a complete
Riemannian manifold with

Ric(g) ≥ (n− 1)kg

Then for q ∈M

∆r(q) ≤ (n− 1)
sn′k(r(q))

snk(r(q))

in the barrier sense.

Proof. We consider the following three cases:
(1) If q ∈M \ {p} ∪ cut(p), it’s exactly smooth case we have proven.
(2) If q = p, it’s clear, since the right hand is infinite.
(3) For arbitrary q ∈ cut(p), there exists a unit-speed γ : [0, b] → M with

γ(0) = p, γ(b) = q. Then for each γ > 0, define

γε(x) = ε+ dist(γ(ε), x)

Then by Proposition 22.3.1 we have γε(x) is an upper barrier of r(x)
and γε is smooth at q. Thus we have

∆γε(q) = ∆dist(γ(ε), q)

≤ (n− 1)
sn′k(γε(q)− ε)

snk(γε(q)− ε)

= (n− 1)
sn′k(γ(q)− ε)

snk(γ(q)− ε)

which descends to (n − 1)
sn′k(γ(q))
snk(γ(q))

as ε → 0 by monotonicity. This
completes the proof.

□

22.3.2. In the distribution sense.

Proposition 22.1. Let (M, g) be an orientable Riemannian manifold and
f : M → R a Lipschitz function. Then for any ϕ ∈ C∞

0 (M,R), one has

−
ˆ
M
〈∇ϕ,∇f〉dvolg =

ˆ
M

∆ϕ · fdvolg

Theorem 22.3.2 (global Laplacian comparison II). Let (M, g) be a com-
plete Riemannian manifold with

Ric(g) ≥ (n− 1)kg
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Then for x ∈M

∆r(x) ≤ (n− 1)
sn′k(r(x))

snk(r(x))

in the distribution sense.

Proof. For fixed p ∈M , the domain Σ(p) of injective radius inj(p) is a star-
shaped open subset of TpM and M = expp(Σ(p)) ∪ cut(p). The boundary
of Σ(p) is locally a graph of continuous function and so there exists a family
of star-shaped domains {Uj} with smooth boundaries such that

Uj ⊆ Uj+1 ⊆ · · · ⊆ Σ(p), Σ(p) =
⋃
Uj

If we set Ω = expp(Σ(p)). Then Ω =
⋃
Ωj , where Ωj = expp(Uj). Since

each Uj is star-shaped, by Gauss lemma, on each boundary ∂Ωj , one has
∂r
∂v = g(∇r, v) ≥ 0 where v is the outer normal vector on ∂Ωj .

Therefore for each ϕ ∈ C∞
c (M) with ϕ ≥ 0, one has

ˆ
M
r∆ϕ vol

(1)
= −

ˆ
M
〈∇r,∇ϕ〉 vol

(2)
= − lim

j

ˆ
Ωj\{p}

〈∇r,∇ϕ〉

(3)
= lim

j
(

ˆ
Ωj\{p}

∆rϕ vol−
ˆ
∂Ωj

ϕ
∂r

∂v
)

(4)

≤ lim
j

ˆ
Ωj\{p}

∆rϕ vol

(5)

≤ lim
j

ˆ
Ωj\{p}

(n− 1)
sn′k(r)

snk(r)
ϕ vol

(6)
=

ˆ
Ω\{p}

(n− 1)
sn′k(r)

sn′k(r)
vol

(7)
=

ˆ
M
(n− 1)

sn′k(r)

snk(r)
ϕ vol

where
(1) holds from the fact r is Lipschitz and Proposition 22.1.
(2) and (6) holds from dominated convergence theorem.
(3) holds from Stokes theorem.
(4) holds from ϕ ≥ 0 and ∂r

∂v ≥ 0.
(5) holds from Local Laplacian comparison theorem, that is Theorem 22.1.1.
(7) holds from the fact cut(p) is zero-measure.

□

22.4. Volume comparison.
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Lemma 22.4.1. Let (M, g) be a complete, connected Riemannian manifold
and p ∈M . For any δ ∈ R+

expp(B(0, δ) ∩ Σ(p)) ⊆ B(p, δ) ⊆ expp(B(0, δ) ∩ Σ(p)) ∪ cut(p)

In particular, under the map Φ: R+×Sn−1 → TpM \{0} given by Φ(ρ, ω) =
ρω

Vol(B(p, δ)) = Vol(expp(B(0, δ)) ∩ Σ(p))

=

ˆ
B(0,δ)∩Σ(p)

exp∗p vol

=

ˆ
B(0,δ)

χΣ(p) exp
∗
p vol

=

ˆ
Sn−1

ˆ δ

0
χΣ(p)

√
det g ◦ Φ(ρ, ω)ρn−1dρ volSn−1

Corollary 22.4.1. Let p ∈ S(n, k)

(1) If k ≤ 0. Then for any δ ∈ R+

Vol(B(p, δ)) =

ˆ
Sn−1

ˆ δ

0
snn−1

k (ρ)dρ volSn−1

(2) If k = 1
R2 ≥ 0. Then for any δ ∈ R+

Vol(B(p, δ)) =

ˆ
Sn−1

ˆ δ

0
χB(0,πR) sn

n−1
k (ρ)dρ volSn−1

Lemma 22.4.2. Let (M, g) be a Riemannian manifold, and (xi, U, p) be a
geodesic ball chart of radius b around p ∈M .
(1) If K ≤ k. Then for each fixed ω ∈ Sn−1 the volume density ratio

λ(ρ, ω) =
ρn−1

√
det g ◦ Φ(ρ, ω)
snn−1

k (ρ)

is non-decreasing in ρ ∈ (0, b0) where

b0 =

{
b, k ≤ 0

min{b, πR}, k = 1
R2

Moreover, limρ→0 λ(ρ, ω) = 1.
(2) If K ≥ k or Ric(g) ≥ (n−1)kg. Then for each fixed ω ∈ Sn−1 the volume

density ratio λ(ρ, ω) is non-increasing in ρ ∈ (0, b) and limρ→0 λ(ρ, ω) =
1.

Proof. By Corollary 21.2.1 and Lemma 22.1.1

∂r log(r
n−1
√
det g) = ∆r ≥ (n− 1)

sn′k(r)

snk(r)
= ∂r log(sn

n−1
k (r))
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Hence log

(
rn−1

√
det g

snn−1
k (r)

)
is a non-decreasing function of r along each radial

geodesic γ, that is

d

dt

(
log

(
rn−1

√
det g

snn−1
k (r)

)
◦ γ(t)

)
≥ 0

Hence, f(r) = rn−1
√
det g

snn−1
k (r)

is a non-decreasing function of r along each radial
geodesic γ. It is easy to see that r ◦ Φ = ρ (the exponential map is used in
normal coordinate). Hence,

λ(ρ, ω) = f ◦ Φ(ρ, ω)

is nondecreasing in ρ for any fixed ω ∈ Sn−1. It is obvious that

lim
ρ→0

√
det g = lim

ρ→0

ρn−1

snn−1
k (ρ)

= 1

The proof of (2) is similar. □

Lemma 22.4.3. Let f : [0,+∞) → [0,+∞), g : [0,+∞) → (0,+∞) be two
integrable functions. If

λ(t) =
f(t)

g(t)
: [0,+∞) → [0,+∞)

is non-increasing. Then

F (t) =

´ t
0 f(τ)dτ´ t
0 g(τ)dτ

: [0,+∞) → [0,+∞)

is non-increasing. Moreover, if there exists 0 < t1 < t2 such that

F (t1) = F (t2),

then λ(t) ≡ λ(t1) for almost all t ∈ [0, t2].

Proof. We can assume f(t) > 0 for all t ∈ [0,+∞), otherwise we replace it
by f(t) + εg(t) for some ε > 0. Given 0 < t1 < t2, we need to show

ˆ t1

0
f(τ)dτ

ˆ t2

0
g(τ)dτ −

ˆ t2

0
f(τ)dτ

ˆ t1

0
g(τ)dτ ≥ 0
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Indeed,
ˆ t1

0
f(τ)dτ

ˆ t2

0
g(τ)dτ −

ˆ t2

0
f(τ)dτ

ˆ t1

0
g(τ)dτ

=

ˆ t1

0
f(τ)dτ

ˆ t2

0
g(τ)dτ −

ˆ t1

0
f(τ)dτ

ˆ t1

0
g(τ)dτ −

ˆ t2

t1

f(τ)dτ

ˆ t1

0
g(τ)dτ

=

ˆ t1

0
f(τ)dτ

ˆ t2

t1

g(τ)dτ −
ˆ t2

t1

f(τ)dτ

ˆ t1

0
g(τ)dτ

(1)

≥
ˆ t1

0

f(t1)

g(t1)
g(τ)dτ

ˆ t2

t1

g(t1)

f(t1)
f(τ)dτ −

ˆ t2

t1

f(τ)dτ

ˆ t1

0
g(τ)dτ

=0

where (1) holds from λ(t) is non-increasing. It is clear that if F (t1) = F (t2).
Then the inequality marked by (1) is an equality, which implies for almost
all t ∈ [0, t2], λ(t) ≡ λ(t1). □

Remark 22.4.1. For any 0 ≤ δ1 < δ2 ≤ δ3 < δ4, we can slightly adapt above
proof to show ´ δ4

δ3
f(τ)dτ´ δ4

δ3
g(τ)dτ

≤
´ δ2
δ1
f(τ)dτ´ δ2

δ1
g(τ)dτ

Indeed, just note that
ˆ δ4

δ3

f(τ)dτ

ˆ δ1

δ2

g(τ)dτ −
ˆ δ2

δ1

f(τ)dτ

ˆ δ4

δ3

g(τ)dτ

≤
ˆ δ4

δ3

f(δ3)

g(δ3)
g(τ)dτ

ˆ δ1

δ2

g(τ)dτ −
ˆ δ2

δ1

f(δ2)

g(δ2)
g(τ)dτ

ˆ δ4

δ3

g(τ)dτ

=(
f(δ3)

g(δ3)
− f(δ2)

g(δ2)
)

ˆ δ1

δ2

g(τ)dτ

ˆ δ4

δ3

g(τ)dτ

≤0

Theorem 22.4.1 (Bishop-Gromov). Let (M, g) be a complete Riemannian
manifold and p ∈M . Let B(p, δ) be the metric ball centered at p with radius
δ and gk be the metric with constant sectional curvature k on B(p, δ) \ {p}.

(1) Suppose K ≤ k. Then the volume ratio Volg(B(p,δ))
Volgk (B(p,δ)) is non-decreasing for

any 0 < δ ≤ δ0 where δ0 = inj(p) if k ≤ 0, and δ0 = min{inj(p), π/
√
k}

if k > 0. Moreover,

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1

In particular,
Volg(B(p, δ)) ≥ Volgk(B(p, δ)),
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(2) If K ≥ k or Ric(g) ≥ (n − 1)kg. Then the volume ratio Volg(B(p,δ))
Volgk (B(p,δ)) is

non-increasing for δ ∈ R+. Moreover,

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1

In particular,
Volg(B(p, δ)) ≤ Volgk(B(p, δ)),

(3) Furthermore, if there exists δ1 < δ2 such that
Volg(B(p, δ1))

Volgk(B(p, δ1))
=

Volg(B(p, δ2))

Volgk(B(p, δ2))

then Volg(B(p, δ)) = Volgk(B(p, δ)) for any δ ∈ [0, δ2] and g has constant
sectional curvature k on B(p, δ2).

Proof. For (1). By the assumption, we know the metric ball B(p, δ) is actu-
ally a geodesic ball. We have the expression

Volg(B(p, δ))

Volgk(B(p, δ))

I
=

´
Sn−1

´ δ
0 ρ

n−1
√
det g ◦ Φ(ρ, ω)dρdVolSn−1´

Sn−1

´ δ
0 snn−1

k (ρ)dρdVolSn−1

II
=

1

Vol(Sn−1)

ˆ
Sn−1

(

´ δ
0 ρ

n−1
√
det g ◦ Φ(ρ, ω)dρ´ δ

0 snn−1
k (ρ)dρ

)dVolSn−1

where
I holds from Lemma 22.4.1.
II holds from Fubini’s theorem.

By Lemma 22.4.2, one has λ(ρ, ω) = ρn−1
√
det g◦Φ(ρ,ω)

snn−1
k (ρ)

is non-decreasing in ρ.

Then by Lemma 22.4.3 we have Volg(B(p,δ))
Volgk (B(p,δ)) is non-decreasing in ρ. On the

other hand,

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1

Hence, for any 0 < δ ≤ δ0,Volg(B(p, δ)) ≥ Volgk(B(p, δ))
For (2). Let’s divide into the following two cases:

(a) If k ≤ 0, for any δ ∈ R+, we get

Volg(B(p, δ))

Volgk(B(p, δ))
=

´
Sn−1

´ δ
0 χΣ(p)ρ

n−1
√
det g ◦ Φ(ρ, ω)dρdVolSn−1´

Sn−1

´ δ
0 snn−1

k (ρ)dρdVolSn−1

=
1

Vol(Sn−1)

ˆ
Sn−1

(

´ δ
0 χΣ(p)ρ

n−1
√
det g ◦ Φ(ρ, ω)dρ´ δ

0 snn−1
k (ρ)dρ

)dVolSn−1

where these two equalities hold from the same reasons. So in this case
we consider

λ̃(ρ, ω) := χΣ(p)λ(ρ, ω)
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It’s clear λ̃ is also non-increasing in ρ, since χΣ(p) is just a cut-off func-
tion. Then the same argument implies for arbitrary δ ∈ R+, one has
Volg(B(p, δ)) ≤ Volgk(B(p, δ)).

(b) If k = 1
R2 > 0, for any δ ∈ R+, we get

Volg(B(p, δ))

Volgk(B(p, δ))
=

´
Sn−1

´ δ
0 χΣ(p)ρ

n−1
√
det g ◦ Φ(ρ, ω)dρdVolSn−1´

Sn−1

´ δ
0 χB(0,πR) sn

n−1
k (ρ)dρdVolSn−1

=
1

Vol(Sn−1)

ˆ
Sn−1

(

´ δ
0 χΣ(p)ρ

n−1
√
det g ◦ Φ(ρ, ω)dρ´ δ

0 χB(0,πR) sn
n−1
k (ρ)dρ

)dVolSn−1

So in this case we consider7

λ̃(ρ, ω) :=
χΣ(p)

χB(0,πR)
λ(ρ, ω)

Then the same argument shows the result.
For (3).

□

Corollary 22.4.2. Let (M, g) be a complete Riemannian n-manifold with
Ric(g) ≥ 0. Then the volume growth of (M, g) satisfies

Volg(B(p, r)) ≤ cnr
n

where cn is a constant > 0 depending only on n.

Proof. Consider k = 0 and use Theorem 22.4.1, one has

Volg(B(p, r)) ≤ Volg0(B(p, r)) =
Volg1(Sn−1)rn

n

where Sn−1 is the unit sphere. Thus we just set cn = Volg1(Sn−1)/n to
conclude. □

Corollary 22.4.3. Let (M, g) be a complete Riemannian n-manifold with
Ric(g) ≥ 0. If

lim
r→∞

Volg(B(p, r))

rn
≥ Volg1(Sn−1)

n

where Sn−1 is unit sphere. Then (M, g) is isometric to (Rn, gcan).

7Be careful, our notation here is a little ambiguous, since it’s nonsense if χB(0,πR) = 0.
However, Myers’ theorem implies diam(M, g) ≤ πR, hence Σ(p) ⊆ B(0, πR), so here the
explicit means of χΣ(p)

χB(0,πR)
is as follows

χΣ(p)

χB(0,πR)

=

{
1, δ ∈ Σ(p)

0, otherwise
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Proof. Note that Volg0(B(p, r)) =
Volg1 (S

n−1)rn

n . Then our assumption is
equivalent to say

lim
r→∞

Volg(B(p, r))

Volg0(B(p, r))
= 1

However, by Theorem 22.4.1 we know volume ratio Volg(B(p,r))
Volg0 (B(p,r)) is non-

increasing, with

lim
r→0

Volg(B(p, r))

Volg0(B(p, r))
= 1

which implies Volg(B(p,r))
Volg0 (B(p,r)) = 1 holds for arbitrary r > 0. By rigidity of

volume comparison, we conclude g has constant sectional curvature 0 on
B(p, r) for arbitrary r > 0. Since B(p,∞) = M , we deduce (M, g) has
constant sectional curvature 0.

Thanks to Hopf’s theorem, now it suffices to show M is simply-connected,
suppose π : Rn →M is the universal covering, one deduces that

|π1(M)| = Volg0(Rn)

Volg(M)
= 1

which implies M is simply-connected. □

Corollary 22.4.4. Let (M, g) be a complete Riemannian n-manifold with
Ric(g) ≥ (n− 1)kg for some constant k > 0. Then

Volg(M) ≤ Volgk(S
n(

1√
k
))

If the equality holds. Then (M, g) is isometric to Sn(1/
√
k) with standard

metric.

Proof. Let k = 1/R2. Then Myers’ theorem implies diam(M, g) ≤ πR, thus
compact. Hence, for any p ∈M one has Σ(p) ⊆ B(0, πR). Therefore

Volg(B(p, πR)) = Volg(M)

where B(p, πR) is a metric ball in M . On the other hand, it is obvious that

Volgk(B(p, πR)) = Volgk(S
n(R))

Hence by Theorem 22.4.1, one has

Volg(M) ≤ Volgk(S
n(R))

Furthermore, if the equality holds, g has constant sectional curvature on
B(p, πR). Then use the argument in Corollary 22.4.3 completes the proof.

□

Corollary 22.4.5. Let (M, g) be a complete Riemannian manifold and
p ∈ M . Let B(p, δ) be the metric ball centered at p with radius δ and
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gk be the metric with constant sectional curvature k on B(p, δ) \ {p}. If
Ric(g) ≥ (n− 1)kg. Then for any 0 ≤ δ1 < δ2 ≤ δ3 < δ4

Volg(B(p, δ4))−Volg(B(p, δ3))

Volg(B(p, δ2))−Volg(B(p, δ1))
≤ Volgk(B(p, δ4))−Volgk(B(p, δ3))

Volgk(B(p, δ2))−Volgk(B(p, δ1))

Proof. Just note that volume density ratio is non-decreasing. Then by Re-
mark 22.4.1, one has

Volg(B(p, δ4))−Volg(B(p, δ3))

Volgk(B(p, δ4))−Volgk(B(p, δ3))
≤ Volg(B(p, δ2))−Volg(B(p, δ1))

Volgk(B(p, δ2))−Volgk(B(p, δ1))

This gives desired result. □
Theorem 22.4.2 (Cheng). Let (M, g) be a complete Riemannian n-manifold
with Ric(g) ≥ (n−1)kg for some constant k > 0. If diam(M) = π/

√
k. Then

(M, g) is isometric to Sn(1/
√
k) with standard metric.

Proof. Let k = 1/R2. Since M is complete, there exist points p, q ∈M and
dist(p, q) = πR, thus for any δ ∈ (0, πR)

B(p, δ) ∩B(q, πR− δ) = ∅

Then

Volg(M)
(1)

≥ Volg(B(p, δ)) + Volg(B(q, πR− δ))

(2)

≥ Volgk(B(p, δ))
Volg(B(p, πR))

Volgk(B(p, πR))
+ Volgk(B(q, πR− δ))

Volg(B(q, πR))

Volgk(B(q, πR))

(3)
= Volg(M)

where
(1) holds from B(p, δ) ∩B(q, πR− δ) = ∅.
(2) holds from Theorem 22.4.1.
(3) holds since for any x, y ∈M , Volg(B(x, πR)) = Volg(M) and

Volgk(B(x, πR)) = Volgk(S
n(R))

Volgk(B(x, δ)) + Volgk(B(y, πR− δ)) = Volgk(S
n(R))

Hence, for any 0 < δ < πR.
Volg(B(p, δ))

Volgk(B(p, δ))
=

Volg(B(p, πR))

Volgk(B(p, πR))
=

Volg(M)

Volgk(Sn(R))
Let δ → 0, and we deduce Volg(M) = Volgk(Sn(R)). By Proposition 22.4.4,
(M, g) is isometric to Sn(R) with standard metric. □
Theorem 22.4.3 (Bishop-Yau). Let (M, g) be a complete non-compact
Riemannian n-manifold with Ric(g) ≥ 0. Then the volume growth of (M, g)
satisfies

cnVolg(B(p, 1)) · r ≤ Volg(B(p, r))

for r ≥ 1, where cn is a positive constant depending only on n.
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Proof. Let x ∈ ∂B(p, 1 + r). Then
B(p, 1) ⊆ B(x, 2 + r) \B(x, r), B(x, r) ⊆ B(p, 1 + 2r)

By Corollary 22.4.5, one has
Volg(B(p, 1)) ≤ Volg(B(x, 2 + r))−Volg(B(x, r))

≤ Volg(B(x, r)) · Vol(B(x, 2 + r))−Vol(B(x, r))

Vol(B(x, r))

≤ Volg(B(p, 1 + 2r)) · (2 + r)n − rn

rn

≤ Volg(B(p, 1 + 2r)) · 1
r
cn

where r ≥ 1. By changing variable, we obtain the lower bound. □
Proposition 22.4.1. Let (M, g) be a Cartan-Hadamard manifold with
Ric(g) ≤ −kg for some k > 0. Then for any p ∈M

Volg(B(p, r)) ≥ cne
√
kr

where cn is a positive constant depending only on n.

Proposition 22.4.2 (Cheeger-Colding). For each integer n ≥ 2, there ex-
ists a real number δ(n) ∈ (0, 1) with the following property: if (M, g) is a
compact Riemannian manifold of dimension n with Ric(g) ≥ (n− 1)g and

Vol(M, g) ≥ (1− δ(n))Vol(Sn)
then M is diffeomorphic to Sn.
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23. Splitting theorem

23.1. Geodesic rays.

Definition 23.1.1 (geodesic ray). A geodesic ray is a unit-speed geodesic
γ : [0,∞) →M such that for any s, t ≥ 0,

dist(γ(s), γ(t)) = |s− t|

Lemma 23.1.1. Let (M, g) be a complete Riemannian manifold. Then the
following statements are equivalent.
(1) M is non-compact.
(2) For any p ∈M , there exists a geodesic ray γ : [0,∞) →M starting from

p.

Proof. From (1) to (2). If M is non-compact, for any p ∈ M , there is
a sequence of points {pi} such that dist(p, pi) = i. Let γi(t) = expp(tvi)
be a unit-speed minimal geodesic connecting p and pi, that is γi(0) = p
and γi(i) = pi. By possibly passing to a subsequence, we may assume
vi → v ∈ TpM . Then

γ(t) = expp(tv), t ∈ [0,+∞)

is a unit-speed geodesic ray. Indeed, for any s, t ≥ 0, and for any k >
max{s, t}, one has

dist(γk(s), γk(t)) = |s− t|

By continuity of exponential map expp, one obtains

dist(γ(s), γ(t)) = lim
k→+∞

dist(γk(s), γk(t)) = |s− t|

Hence γ is a geodesic ray.
From (2) to (1). It’s trivial. □

23.2. Buseman function.

Definition 23.2.1. Let (M, g) be a complete Riemannian manifold, p ∈M
and γ : [0,∞) → M be a geodesic ray starting from p. For any t ≥ 0,
btγ :M → R as

btγ(x) := dist(x, γ(t))− t

Proposition 23.2.1. Let (M, g) be a complete non-compact Riemannian
manifold, p ∈ M and γ be a geodesic ray starting from p. The function
btγ(x) :M → R has the following properties:
(1) For any fixed x ∈M, btγ(x) is non-increasing in t.
(2) For any x ∈M and t ≥ 0, |btγ(x)| ≤ dist(x, γ(0)).
(3) For any x, y ∈M and t ≥ 0, |btγ(x)− btγ(y)| ≤ dist(x, y).
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Proof. For (1). Note that for t > s > 0, one has

btγ(x)− bsγ(t) = dist(x, γ(t))− dist(x, γ(s)) + s− t

≤ dist(γ(t), γ(s)) + s− t

= |t− s|+ s− t

= 0

For (2), (3). Directly from triangle inequality. □

Definition 23.2.2 (Buseman function). The Buseman function with re-
spect to the geodesic ray is defined as

bγ := lim
t→∞

btγ(x)

Example 23.2.1 (Buseman function on hyperbolic plane). Note that geodesics
on H = {(x, y) ∈ R2 | y ≥ 0} are
(1) Semicircles centered on R.
(2) Straight lines perpendicular to R.
Given x ∈ H, in order to compute Buseman function

bγ(x) = lim
t→∞

dist(x, γ(t))− dist(γ(0), γ(t))

It suffices to solve the following calculus: Fix z1, z2 ∈ H and α ∈ ∂H =
R∪{∞}, solve

(23.1) lim
q→α

dist(q, z1)− dist(q, z2) =?

then we can set q = γ(t), α = γ(∞), z1 = x, z2 = γ(0) to conclude. Let’s
divide into several steps:
Step one: For arbitrary r > s > 0, the distance between ri, si in H is ln r

s ,
where i is imaginary number. Indeed, since metric on this line is exactly
dy⊗dy

y2
.

Step two: In hyperbolic planes, it’s possible to use isometry to translate
any two points to the positive imaginary axis. To be explicit, consider the
Möbius transformation V mapping Poincaré disk D to H with inverse V −1,
given by

z = V (w) =
−iw + 1

w − i

w = V −1(z) =
iz + 1

z + i

Now for arbitrary z1, z2 ∈ H, firstly use V −1 to send z1, z2 to w1, w2 ∈ D
respectively. Then let S(w) = eiθ w−w1

1−w1w
be transformation in D that send

w1 to 0, with θ chosen carefully so that w2 get sent to the positive imaginary
axis, that is, w2 get sent to the point ki, where k = |S(w2)|. Finally apply
V to this situation, 0 gets sent to i and ki get sents to 1+k

1−k i.
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Step three: Combine step one and two, one can conclude that for arbitrary
z1, z2 ∈ H, the distance between them are

dist(z1, z2) = ln
1 + k

1− k

If we express k in terms of z1, z2, one has

dist(z1, z2) = ln
|z1 + z2|+ |z1 − z2|
|z1 + z2| − |z1 − z2|

Step four: Consider a special case of (23.1), that is we assume z1 = ri, z2 =
i, where ln r = dist(z1, z2). Now we choose a sequence qn = un + ivn such
that un → α and vn → v, where v = 0 as n→ ∞. Then

lim
q→α

(dist(q, ri)− dist(q, i)) = lim
n→∞

(ln(
|qn + ri|+ |qn − ri|
|qn + ri| − |qn − ri|

)− ln(
|qn + i|+ |qn − i|
|qn + i| − |qn − i|

))

= lim
n→∞

(ln(
|qn + ri|+ |qn − ri|
|qn + i|+ |qn − i|

) + ln(
|qn + i| − |qn − i|
|qn + ri| − |qn − ri|

))

= lim
n→∞

ln

√
u2n + (vn + r)2 +

√
u2n + (vn − r)2√

u2n + (vn + 1)2 +
√
u2n + (vn − 1)2

+ lim
n→∞

ln

√
u2n + (vn + 1)2 −

√
u2n + (vn − 1)2√

u2n + (vn + r)2 −
√
u2n + (vn − r)2

= lim
vn→0

ln

√
α2 + (vn + r)2 +

√
α2 + (vn − r)2√

α2 + (vn + 1)2 +
√
α2 + (vn − 1)2︸ ︷︷ ︸

part I

+ lim
vn→0

ln

√
α2 + (vn + 1)2 −

√
α2 + (vn − 1)2√

α2 + (vn + r)2 −
√
α2 + (vn − r)2︸ ︷︷ ︸

part II

It’s clear Part I is
√
α2+r2√
α2+1

, and apply L’Hospital’s rule to Part II one has

lim
vn→0

√
α2 + (vn + 1)2 −

√
α2 + (vn − 1)2√

α2 + (vn + r)2 −
√
α2 + (vn − r)2

= lim
vn→0

vn+1√
α2+(vn+1)2

− vn−1√
α2+(vn−1)2

vn+r√
α2+(vn+r)2

− vn−r√
α2+(vn−r)2

=

√
α2 + r2

r
√
α2 + 1

which implies

lim
q→α

dist(q, ri)− dist(q, i) = ln
α2 + r2

α2 + 1
− ln r

Step five: In order to solve general case of (23.1), we can use processes in
step two to translate z1, z2 to the positive imaginary axis. However, α is
also translated into a new point α′, that is

α′ = V ◦ S ◦ V −1(α)
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where V, V −1 and S are defined in step two. Thus from step four one has

lim
q→α

dist(q, z1)− dist(q, z2) = ln
(α′)2 + r2

(α′)2 + 1
− ln r

where ln r = dist(z1, z2).

Proposition 23.2.2. Let (M, g) be a complete non-compact Riemannian
manifold, p ∈ M and γ be a geodesic ray starting from p. The Busemann
function bγ : M → R is Lipschitz continuous with Lip(bγ) ≤ 1

Proof. It follows from Arezla-Ascoli lemma. □
Proposition 23.2.3. Let (M, g) be a complete non-compact Riemannian
manifold, and γ be a geodesic ray starting from p ∈M . If Ric(g) ≥ 0. Then

∆bγ ≤ 0

in the sense of distribution.

Proof. For any non-negative smooth function ϕ ∈ C∞
0 (M), one hasˆ

M
∆ϕbtγ vol =

ˆ
M

∆ϕ(dist(x, γ(t))− t) vol

(1)
=

ˆ
M

∆ϕ dist(x, γ(t)) vol

(2)

≤
ˆ
M

(n− 1)ϕ

dist(x, γ(t))
vol

where
(1) holds from Stokes’ theorem.
(2) holds from Theorem 22.3.2.

Then Lebesgue’s dominated convergence impliesˆ
M

∆ϕbγ vol ≤ 0

□
Definition 23.2.3 (geodesic line). A geodesic line is a unit-speed geodesic
γ : (−∞,∞) →M such that for any s, t ∈ R,

dist(γ(s), γ(t)) = |s− t|

Lemma 23.2.1. Let (M, g) be a connected, non-compact Riemannian man-
ifold. If M contains a compact subset K such that M \K has at least two
unbounded components8. Then there is a geodesic line passing through K.

Proof. Since M \K has at least two unbounded components, there are two
unbounded sequences of points {pi} and {qi} such that any curve from pi to
qi passes through K. Let γi : [−ai, bi] →M be minimal geodesics connecting
pi and qi with γi(−ai) = pi, γi(bi) = qi and γi(0) ∈ K. Hence, ai → +∞

8Some authors use “ends” to call such unbounded components.
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and bi → +∞. By possibly passing to subsequences, {γi} converges to a
geodesic line γ∞ : (−∞,+∞) →M . □

Proposition 23.2.4. Let (M, g) be a complete non-compact Riemannian
manifold with Ric(g) ≥ 0. If (M, g) contains a geodesic line γ. Then bγ± :
M → R are smooth harmonic functions with

|∇bγ± | = 1, Hess bγ± = 0

where γ±(t) = γ(±t) : [0,+∞) →M .

Proof. Let b(x) = bγ+(x) + bγ−(x). By the triangle inequality
b(x) = lim

s→+∞
dist(x, γ+(s)) + dist(x, γ−(s))− 2s

= lim
s→+∞

dist(x, γ(s)) + dist(x, γ(−s))− 2s

≥ 0

By Proposition 23.2.3, ∆b ≤ 0 in the sense of distributions. On the other
hand,

b(γ(t)) = lim
s→+∞

dist(γ(t), γ(s)) + dist(γ(t), γ(−s))− 2s = 0

Hence the subharmonic function b attains its absolute minimum, by Theo-
rem 22.2.1, b ≡ 0, that is bγ+ = −bγ− . Hence ∆bγ+ = ∆bγ− = 0, and by
Wely’s lemma one has bγ± are smooth.

Bochner’s formula says
1

2
∆|∇f |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆f,∇f)

Let f = bγ+ . Then
1

2
∆|∇bγ+ |2 ≥ |Hess bγ+ |2 ≥ 0

since bγ+ is harmonic and Ric(g) ≥ 0, thus |∇bγ+ |2 is superharmonic. On
the other hand, by Proposition 23.2.2, Lip(bγ+) ≤ 1, and so |∇bγ+ | ≤ 1.
Note that

bγ+(γ+(t)) = lim
s→+∞

dist(γ+(t), γ+(s))− s = lim
s→+∞

|t− s| − s = −t

For any x = γ+(t0)

|∇bγ+ |(x)
(1)
= |∇bγ+ ||γ′+(t0)|

(2)

≥ |〈∇bγ+(x), γ′+(t0)〉| = 1

where
(1) holds from the trivial fact γ+ is unit-speed.
(2) holds from Cauchy-Schwarz inequality.

Hence, the superharmonic function |∇bγ+ |2 attains its absolute maximum in
M , hence |∇bγ+ |2 ≡ 1 on M . Again by the Bochner formula, one has Hess
bγ+ = 0. The same argument holds for bγ− , this completes the proof. □
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Lemma 23.2.2. Let (M, g) be a complete Riemannian manifold, and V
a smooth vector field with |V |g ≤ C for some constant C. Then V is a
complete vector field.

Proof. We need to show the integral curve of V is globally defined, that is
defined on R. Suppose γ : (a, b) →M is an integral curve of M and b <∞.
For arbitrary t, s ∈ (a, b), we have

γ(t) = γ(s) +

ˆ t

s
V (γ(τ))dτ

By using the boundedness of V , we can conclude that
|γ(t)− γ(s)| ≤ C|t− s|

which implies γ(t) is uniformly continuous on (a, b), thus it’s possible to
extend γ to (a, b] since b <∞, a contradiction. □

Proposition 23.2.5. Let (M, g) be a complete Riemannian manifold. Sup-
pose f ∈ C∞(M,R) satisfies

|∇f | = 1 and Hess f = 0

Let Σ denote f−1(0), with induced metric h := g|Σ.
(1) (Σ, h) is a totally geodesic submanifold of (M, g).
(2) The map

f : (R× Σ, gR ⊕ h) → (M, g), F (t, p) = expp(t∇pf)

is an isometry.

Proof. For (1). Recall that (Σ, h) is a totally geodesic submanifold of (M, g)
if the second fundamental form of Σ vanishes, and facts in basic differential
geometry says the second fundamental form of a hyperplane Σ with induced
metric is given by

II(v, w) := 〈∇vn,w〉
where n is the normal vector of Σ. In this case, if we consider Σ = f−1(0).
Then the normal vector of Σ is exactly ∇f , and thus

II(v, w) := 〈∇v∇f, w〉

Then Hess f = ∇2f = 0 implies the second fundamental form of Σ vanishes,
that is Σ is a totally geodesic submanifold of (M, g).

For (2). For a fixed p, let X = ∇f , and consider γ(t) = expp(tXp). Since
∇X = 0, we have E(t) = X(γ(t)) and γ′(t) are two parallel vector fields
along γ with the same initial value. Hence

γ′(t) = X(γ(t))

that is γ is exactly the integral curve of X. Furthermore, since |X| = 1,
by Lemma 23.2.2 one has γ is globally defined, and one can deduce F is a
global flow of X, thus it’s a diffeomorphism.
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Now it remains to prove that F is an isometry. For v ∈ TpΣ, let J be the
Jacobi field along γ with J(0) = 0 and J ′(0) = v. By the radial curvature
equation

R(-,∇f,∇f, -) = Hess(
1

2
|∇f |2)(-, -)− (∇∇f Hess f)(-, -)−Hess f(∇-∇f, -)

one has R(-,∇f,∇f, -) = 0, thus Jacobi equation
J ′′(t) +R(J, γ′)γ′ = 0

reduces to J ′′(t) = 0. It implies that J ′(t) is a parallel vector field and in
particular, |J ′(t)| ≡ |J ′(0)| = |v|. By uniqueness of Jacobi fields, we deduce

J(t) = tJ ′(t)

Then F is an isometry holds as follows:
(a) It is easy to see that (dF )(1,p)v = J(1), thus |(dF )(1,p)v| = |J(1)| =

|J ′(1)| = |v|.
(b) |(dF )(0,p)∂t| = |∇f | = 1 = |∂t|.

□
23.3. Splitting theorem and its corollaries.
Theorem 23.3.1 (splitting theorem). Let (M, g) be a complete Riemannian
n-manifold with Ric(g) ≥ 0. If there is a geodesic line in M . Then (M, g)
is isometric to (R×N, gR ⊕ gN ), where Ric(gN ) ≥ 0.

Proof. Directly from Proposition 23.2.4 and Proposition 23.2.5. □
Corollary 23.3.1. Let (M, g) be a complete Riemannian n-manifold with
Ric(g) ≥ 0

(1) (M, g) is isometric to (Rk ×N, gRk ⊕ gN ), where N does not contain a
geodesic line and Ric(gN ) ≥ 0.

(2) The isometry group splits
Iso(M, g) ∼= Iso(Rk)× Iso(N, gN )

Theorem 23.3.2 (structure theorem for manifold with Ric ≥ 0). Let (M, g)

be a compact Riemannian manifold with Ric(g) ≥ 0, and π : (M̃, g̃) →
(M, g) is its universal covering with the pullback metric.
(1) There exists some integer k ≥ 0 and a compact Riemannian manifold

(N, gN ) with Ric(gN ) ≥ 0 such that (M̃, g̃) is isometric to (Rk×N, gcan⊕
gN ).

(2) The isometry group splits
Iso(M̃, g̃) ∼= Iso(Rk)× Iso(N, gN )

Proof. For (1). Suppose to the contrary that N is non-compact. Then fix a
point x0 ∈ N , there exists a geodesic ray γ : [0,∞) → N starting from x0.
Since M is compact, there exists a compact subset K̃ ⊆ M̃ such that

Autπ(M̃)K̃ = M̃
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□
Corollary 23.3.2. Sn × S1 doesn’t admit any Ricci flat metrics when n =
2, 3.

Proof. If Sn × S1 admits a Ricci flat metric, after splitting its universal
covering we obtain a Ricci flat metric on Sn. However, Sn doesn’t admit
such a metric when n = 2, 3. Indeed, since any Einstein manifold with
dimension 2 or 3 has constant sectional curvature, thus if Sn, n = 2, 3 admit
a Ricci flat metric. Then it has constant sectional curvature 0, and it’s
also simply-connected, so Hopf’s theorem implies it’s diffeomorphic to Rn,
a contradiction. □
Remark 23.3.1. It’s clear S1×S1 admits a Ricci flat metric, and when n ≥ 4,
we don’t know whether Sn admit a Ricci flat metric or not.

Corollary 23.3.3. Let (M, g) be a compact Riemannian manifold with
Ric(g) ≥ 0, and (M̃, g̃) is its universal covering equipped with pullback
metric.
(1) If M̃ is contractible, then (M̃, g̃) is isometric to (Rn, gcan) and (M, g) is

flat.
(2) If (M̃, g̃) doesn’t contain a geodesic line, then π1(M) is finite and b1(M) =

0.

Proof. For (1). If M̃ ∼= N × Rk is contractible, we must have N is just a
point, since it’s compact,

For (2). If M̃ doesn’t contain a geodesic line. Then M̃ is compact, which
implies |π1(M)| is finite. Furthermore, since there is a natural Hurwicz
surjective

h : π1(M) → H1(M.Z)
thus H1(M.Z) can’t have free part, otherwise h can’t be surjective, since
there is no surjective map from a finite group to an infinite one. So we have
b1(M) = 0. □
Corollary 23.3.4. Let (M, g) be a compact Riemannian manifold with
Ric(g) ≥ 0. If there exists a point p ∈ M such that Ric(g) > 0 on TpM .
Then π1(M) is finite and b1(M) = 0.

Proof. Since Ric(g) > 0 on the whole tangent space TpM , the universal
covering (M̃, g̃) can’t split into a product (Rk ×N, gcan ⊕ gN ), since metric
on M̃ is pullback metric, and gcan on Rk has vanishing Ricci curvature. Thus
M̃ is compact, consequently, we have |π1(M)| is finite and b1(M) = 0. □
Remark 23.3.2. We have already seen this in Bochner’s technique.
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Part 8. Appendix
Appendix A. Fundamental group

A.1. Homotopy. In this section we assume I = [0, 1], a path in a topologi-
cal space X is a continuous map γ : I → X and a loop is a path γ such that
γ(0) = γ(1).

Definition A.1.1 (homotopy). Let X and Y be topological spaces and
f, g : X → Y be continuous maps. A homotopy from f to g is a continuous
map F : X × I → Y such that for all x ∈ X, one has

F (x, 0) = f(x)

F (x, 1) = g(x)

If there exists a homotopy from f to g, then we say f and g are homotopic,
and write f ' g.

Definition A.1.2 (stationary homotopy). Let X and Y be topological
spaces and A ⊆ X an arbitrary subset. A homotopy F between contin-
uous maps f, g : X → Y is said to be stationary on A if

F (x, t) = f(x)

for all x ∈ A and t ∈ I. If there exists such a homotopy, then we say f and
g are homotopic relative to A.

Remark A.1.1. If f and g are homotopic relative to A, then f must agree
with g on A.

Definition A.1.3 (path homotopy). Let X be a topological space and γ1, γ2
be two paths in X. They are said to be path homotopic if they are homotopic
relative on {0, 1}, and write γ1 ' γ2.

Definition A.1.4 (loop homotopy). Let X be a topological space and γ1, γ2
be two loops in X. They’re called loop homotopic if they are homotopic
relative on {0}, and write γ1 ' γ2.

Remark A.1.2. For convenience, if γ1, γ2 are paths (or loops), then when we
say γ1 is homotopic to γ2, we mean γ1 is path (or loop) homotopic to γ2.

Definition A.1.5 (free homotopy). Let X be a topological space and γ1, γ2
be two loops in X. They are said to be free (loop) homotopic if they’re
homotopic through loops (but not necessarily preserving the base point),
that is, there exists a homotopy F (s, t) : [0, 1]× [0, 1] → X such that

F (s, 0) = γ1(s)

F (s, 1) = γ2(s)

F (0, t) = F (1, t) holds for all t ∈ [0, 1]
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A.2. Fundamental group.

Proposition A.2.1. Let X be a topological space. For any p, q ∈ X, path
homotopy is an equivalence relation on the set of all paths in X from p to
q. For any path γ in X, the path homotopy class is denoted by [γ].

Proof. For path γ : I → X, γ is homotopic to itself by F (s, t) = γ(s). If γ1
is homotopic to γ2 by F , then γ2 is homotopic to γ1 by G(s, t) = F (s, 1− t).
Finally, suppose γ1 is homotopic to γ2 by F , γ2 is homotopic to γ3 by G.
Then consider

H =

{
F (s, 2t) 0 ≤ t ≤ 1

2

G(s, 2t− 1) 1
2 ≤ t ≤ 1

which is a homotopy from γ1 to γ3. This shows path homotopy is an equiv-
alence relation. □

Definition A.2.1 (reparametrization). A reparametrization of a path f : I →
X is of the form f ◦ ϕ for some continuous map ϕ : I → I fixing 0 and 1.

Lemma A.2.1. Any reparametrization of a path f is homotopic to f .

Proof. Suppose f ◦ϕ is a reparametrization of f , and let F : I×I → I denote
the straight-line homotopy from the identity map to ϕ, that is, F (s, t) =
tϕ(s) + (1− t)s. Then f ◦ F is a path homotopy from f to f ◦ ϕ. □

Definition A.2.2 (product of path). Let X be a topological space and f, g
be paths. f and g are composable if f(1) = g(0). If f and g are composable,
their product f · g : I → X is defined by

f · g(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1

Proposition A.2.2. Let X be a topological space and f, g be paths in X
such that f ' g. If f is the path obtained by reversing f , that is f(s) :=
f(1− s), then f ' g.

Proof. Suppose f is homotopic to g by homotopy F . Then G(s, t) := F (1−
s, t) is a homotopy from f to g since

G(s, 0) = F (1− s, 0) = f(1− s) = f(s)

G(s, 1) = F (1− s, 1) = g(1− s) = g(s)

□

Proposition A.2.3. Let X be a topological space and f0, f1, g0, g1 be paths
in X such that f0, g0 are composable and f1, g1 are composable. If f0 ' g0,
f1 ' g1, then f0 · g0 ' f1 · g1.

Proof. Suppose the homotopy from f0 to f1 is given by F and the homotopy
from g0 to g1 is given by G. Then the required homotopy H from f0 · g0 to
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f1 · g1 is given by

H(s, t) =

{
F (2s, t) 0 ≤ s ≤ 1

2 , 0 ≤ t ≤ 1

G(2s− 1, t) 1
2 ≤ s ≤ 1, 0 ≤ t ≤ 1

□

Remark A.2.1. With above propositions, it makes sense to define the com-
position of path homotopy classes by setting [γ1] · [γ2] := [γ1 · γ2], and use
the notation [γ].

Proposition A.2.4. Let X be a topological space and [f ], [g], [h] be homo-
topy classes of loops based at p ∈ X.
(1) [cp] · [f ] = [f ] · [cp] = [f ], where cp is constant loop based at p.
(2) [f ] · [f ] = [cp] and [f ] · [f ] = [cp].
(3) [f ] · ([g] · [h]) = ([f ] · [g]) · [h].

Proof. For (1). Let us show that cp · f ' f , and the other case is similar.
Define H : I × I → X by

H(s, t) =

{
p t ≥ 2s

f(2s−t
2−t ) t ≤ 2s

This map is continuous since f(0) = p, and it’s clear to see H(s, 0) = f(s)
and H(s, 1) = cp · f(s). Thus H gives the desired homotopy.

For (2). It suffices to show that f · f ' cp, since the reverse path of f is
f , the other relation follows by interchanging the roles of f and f . Define

H(s, t) =


f(2s) 0 ≤ s ≤ t

2

f(t) t
2 ≤ s ≤ 1− t

2

f(2− 2s) 1− t
2 ≤ s ≤ 1

It is easy to check that H is a homotopy from cp to f · f .
For (3). It suffices to show (f · g) · h ' f · (g · h). The first path follows f

and then g at quadruple speed for s ∈ [0, 12 ], and then follows h at double
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speed for s ∈ [12 , 1], while the second follows f at double speed and then g
and h at quadruple speed. The two paths are therefore reparametrizations
of each other and thus homotopic by Lemma A.2.1.

□

Definition A.2.3 (fundamental group). Let X be a topological space. The
fundamental group of X based at p ∈ X, denoted by π1(X, p), is the set of
path homotopy classes of loops based at p equipped with composition as its
group structure.

Theorem A.2.1 (base point change). Let X be a topological space, p, q ∈
X and g is any path from p to q. The map

Φg : π1(X, p) → π1(X, q)

[f ] 7→ [g] · [f ] · [g]

is a group isomorphism with inverse Φg.

Proof. It suffices to show Θg is a group homomorphism, since it’s clear
Φg ◦ Φg = Φg ◦ Φg = id. For [γ1], [γ2] ∈ π1(X, p), one has

Φg[γ1] · Φ[γ2] = [g] · [γ1] · [g] · [g] · [γ2] · [g]
= [g] · [γ1] · [cp] · [γ2] · [g]
= [g] · [γ1] · [γ2] · [g]
= Φg([γ1] · [γ2])

□

Corollary A.2.1. If X is a path-connected topological space, then its fun-
damental is independent of the choice of base point, and denoted by π1(X)
for convenience.

Definition A.2.4. If X is a path-connected topological space with π1(X) =
0, then it’s called simply-connected.

Theorem A.2.2. The fundamental group of a topological manifold M is
countable.
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Proof. Since M is second countable, there exists a countable cover U of M
consisting of coordinate balls, and for each U,U ′ ∈ U the intersection U ∩U ′

has at most countably many components. We choose a point in each such
component and let X denote the (countable) set consisting of all the chosen
points as U,U ′ range over all the sets in U . For each U ∈ U and x, x′ ∈ X
such that x, x′ ∈ U , choose a definite path hUx,x′ from x to x′ in U .

Now choose any point p ∈ X as base point. Let us say that a loop based
at p is special if it is a finite product of paths of the form hUx,x′ . Because both
U and X are countable sets, there are only countably many special loops.
Each special loop determines an element of π1(M,p). If we can show that
every element of π1(M,p) is obtained in this way, we are done, because we
will have exhibited a surjective map from a countable set onto π1(M,p).

So suppose f is any loop based at p. By the Lebesgue number lemma there
is an integer n such that f maps each subinterval [(k − 1)/n, k/n] into one
of the balls in U , which is called Uk. Let fk = f |[(k−1)/n,k/n] reparametrized
on the unit interval, so that [f ] = [f1] · · · · [fn].

For each k = 1, . . . , n− 1, the point f(k/n) lies in Uk ∩ Uk+1. Therefore,
there is some xk ∈ X that lies in the same component of Uk∩Uk+1 as f(k/n).
Choose a path gk in Uk ∩Uk+1 from xk to f(k/n), and set f̃k = gk−1 · fk · gk
(taking xk = p and gk to be the constant path cp when k = 0 or n ). It is
immediate that [f ] = [f̃1] · · · · [f̃n], because all the gk ’s cancel out. But for
each k, f̃k is a path in Uk from xk−1 to xk, and since Uk is simply connected,
f̃k is path-homotopic to hUk

xk−1xk
. This shows that f is path-homotopic to a

special loop and completes the proof. □
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Appendix B. Covering space

In this section, we assume9 all topological space are connected and lo-
cally path connected topological spaces, and all maps between them are
continuous. References for this section are [Hat02] and [Lee10].

Definition B.0.1 (covering space). A covering space of X is a map π : X̃ →
X such that there exists a discrete space D and for each x ∈ X an open
neighborhood U ⊆ X, such that π−1(U) =

∐
d∈D Vd and π|Vd

: Vd → U is a
homeomorphism for each d ∈ D.
(1) Such a U is called evenly covered by {Vd}.
(2) The open sets {Vd} are called sheets.
(3) For each x ∈ X, the discrete subset π−1(x) is called the fiber of x.
(4) The degree of the covering is the cardinality of the space D.

Definition B.0.2 (isomorphism between covering spaces). Let π1 : X̃1 → X

and π2 : X̃2 → X be two covering spaces. An isomorphism between covering
spaces is a homeomorphism f : X̃1 → X̃2 such that π1 = π2 ◦ f .

B.1. Proper map.

Definition B.1.1 (proper). Let f : X → Y be a continuous map between
topological spaces. f is called proper if preimage of any compact set in Y
is a compact subset in X.

Lemma B.1.1. Let p : X → Y be a proper map between topological spaces
and Y be locally compact and Hausdorff. Then p is a closed map.

Proof. Let C be a closed subset of X. We need to prove that p(C) is closed
in Y , that is to prove Y \ p(C) is open. Let y ∈ Y \ p(C). Then y has
an compact neighborhood V since Y is locally compact. Then p−1(V ) is
compact since f is proper. Let E = C ∩ p−1(V ). Then E is a compact and
hence so is p(E). Then p(E) is closed since compact set in Hausdorff space
is closed. Let U = V \ p(E). Then U is an open neighborhood of y and
disjoint from p(C). This shows Y \ p(C) is open as desired. □
Corollary B.1.1. Let p : X → Y be a proper map between topological
spaces and Y be locally compact and Hausdorff. If y ∈ Y and V is an open
neighborhood of p−1(y), then there exists an open neighborhood U of y with
p−1(U) ⊆ V .

Proof. Since V is open, one has X \ V is closed, and thus A := p(X \ V )
is also closed with y 6∈ A since p is a closed map by Lemma B.1.1. Thus
U := Y \A is an open neighborhood of y such that p−1(U) ⊆ V . □

9We are including these hypotheses since most of the interesting results (such as lifting
criterion) require them, and most of the interesting topological space (such as connected
topological manifold) satisfy them. In fact, it’s almost the strongest connected hypotheses,
since if a topological space is connected and locally path-connected, then it’s also path
connected.
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Theorem B.1.1. Let p : X → Y be a proper local homeomorphism between
topological spaces and Y be locally compact and Hausdorff. Then p is a
covering map.

Proof. For y ∈ Y , one has {y} is a compact set since Y is locally compact
and Hausdorff, and hence so is p−1(y) since p is proper. On the other hand,
p−1(y) is a discrete set since p is a local homeomorphism. Then p−1(y) is
a finite set, and we denote it by {x1, . . . , xn}. Since p is a local homeomor-
phism, for each i = 1, . . . , n, there exists an open neighborhood Wi of xi and
an open neighborhood Ui of y such that p|Wi is a homeomorphism. Without
lose of generality we may assume Wi are pairwise disjoint. Now W1∪· · ·∪Wn

is an open neighborhood of p−1(y). Thus by Corollary B.1.1 there exists an
open neighborhood U ⊆ U1 ∩ · · · ∩Un of y with p−1(U) ⊆W1 ∪ · · · ∪Wn. If
we let Vi =Wi ∩ p−1(U), then the Vi are disjoint open sets with

p−1(U) = V1 ∪ · · · ∪ Vn
and all the mappings p|Vi are homeomorphisms. This shows p is a covering
map. □

B.2. The lifting theorems.

Proposition B.2.1 (unique lifting property). Let π : X̃ → X be a covering
space and a map f : Y → X. If two lifts f̃1, f̃2 : Y → X̃ of f agree at one
point of Y , then f̃1 and f̃2 agree on all of Y .

Proof. Let A be the set consisting of points of Y where f̃1 and f̃2 agree. If
f̃1 agrees with f̃2 at some point of Y , then A is not empty, and we may
assume A 6= Y , otherwise there is nothing to prove. For y /∈ A, let Ũ1 and
Ũ2 be the sheets containing f̃1(y) and f̃2(y) respectively. By continuity of
f̃1 and f̃2, there exists a neighborhood N of y mapped into Ũ1 by f̃1 and
mapped into Ũ2 by f̃2. Since f̃1(y) 6= f̃2(y), then Ũ1 ∩ Ũ2 = ∅. This shows
f̃2 6= f̃2 throughout the neighborhood N , and thus Y \ A is open, that is
A is closed. To see A is open, for y ∈ A one has f̃1(y) = f̃2(y), and thus
Ũ1 = Ũ2. Since π|

Ũ1
is a diffeomorphism, one has f̃1 = π−1 ◦ f = f̃2 on Ũi.

This shows the set A is open, and thus A = Y since Y is connected. □

Theorem B.2.1 (homotopy lifting property). Let π : X̃ → X be a covering
space and F : Y ×I → X be a homotopy. If there exists a map F̃ : Y ×{0} →
X̃ which lifts F |Y×{0}, then there exists a unique homotopy F̃ : Y × I → X̃

which lifts F and restricting to the given F̃ on Y × {0}. Furthermore, if F
is stationary on A, so is F̃ .

Proof. Firstly, let’s construct a lift F̃ : N × I → X̃ for some neighborhood
N in Y of a given point y0 ∈ Y . Since F is continuous, every point (y0, t) ∈
Y × I has a product neighborhood Nt × (at, bt) such that F (Nt × (at, bt)) is
contained in an evenly covered neighborhood of F (y0, t). By compactness
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of {y0} × I, finitely many such products Nt × (at, bt) cover {y0} × I. This
implies that we can choose a single neighborhood N of y0 and a partition
0 = t0 < t1 < · · · < tm = 1 of I such that for each i, one has F (N× [ti, ti+1])

is contained in an evenly covered neighborhood Ui. Suppose F̃ has been
constructed on N × [0, ti], starting with the given F̃ on N × {0}. Since Ui

is evenly covered, there is an open set Ũi of X̃ projecting homeomorphically
onto Ui by π and containing the point F̃ (y0, ti). After replacing N by a
smaller neighborhood of y0 we may assume that F̃ (N × {ti}) is contained
in Ũi. Now we can define F̃ on N × [ti, ti+1] to be the composition of F
with the homeomorphism π−1 : Ui → Ũi since F (N × [ti, ti+1]) ⊆ Ui, After
a finite number of steps we eventually get a lift F̃ : N × I → X̃ for some
neighborhood N of y0.

Next we show the uniqueness part in the special case that Y is a point,
since in this case we can omit Y from the notation. Suppose F̃ and F̃ ′ are
two lifts of F : I → X such that F̃ (0) = F̃ ′(0). As before, choose a partition
0 = t0 < t1 < · · · < tm = 1 of I so that for each i, one has F ([ti, ti+1])
is contained in some evenly covered neighborhood Ui. Assume inductively
that F̃ = F̃ ′ on [0, ti]. Since [ti, ti+1] is connected, so is F̃ ([ti, ti+1]), which
must therefore lie in a single one of the disjoint open sets Ũi projecting
homeomorphically to Ui. Similarly, F̃ ′([ti, ti+1]) lies in a single Ũi, in fact
in the same one that contains F̃ ([ti, ti+1]) since F̃ ′(ti) = F̃ (ti). Because π is
injective on Ũi and π ◦ F̃ = π ◦ F̃ ′, it follows that F̃ = F̃ ′ on [ti, ti+1], and
the induction step is finished.

The last step in the proof of is to observe that since the F̃ constructed
above on sets of the form N × I are unique when restricted to each segment
{y} × I, they must agree whenever two such sets N × I overlap. So we
obtain a well-defined lift F̃ on all of Y × I. This F̃ is continuous since it is
continuous on each N×I, and F̃ is unique since it is unique on each segment
{y} × I. □
Corollary B.2.1 (path lifting property). Let π : X̃ → X be a covering
space. Suppose γ : I → X is any path, and x̃ ∈ X̃ is any point in the fiber of
π−1(γ(0)). Then there exists a unique lift γ̃ : I → X̃ of γ such that γ̃(0) = x̃.
Proof. Let Y be a point and F be the path γ in Theorem B.2.1. □
Corollary B.2.2 (monodromy theorem). Let π : X̃ → X be a covering
space. Suppose γ1 and γ2 are paths in X which are homotopic, and γ̃1, γ̃2
are their lifts with the same initial point. Then γ̃1 is homotopic to γ̃2.
Proof. Suppose F : I × I → X is the homotopy from γ1 to γ2 which is
stationary on {0, 1} and γ̃1, γ̃2 are lifts of γ1, γ2 with the same initial point.
Then by Theorem B.2.1 there exists a homotopy F̃ : I × I → X̃ from γ̃1 to
γ̃2 which is also stationary on {0, 1}, which shows γ̃1 is homotopic to γ̃2. □
Corollary B.2.3. Let π : (X̃, x̃0) → (X,x0) be a covering space. Then
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(1) The map π∗ : π1(X̃, x̃0) → π1(X,x0) is injective.
(2) π∗(π1(X̃, x̃0)) consists of the homotopy class of loops in X whose lifts

to X̃ are still loops.
(3) The index of π∗(π1(X̃, x̃0)) in π1(X,x0) is the degree of covering. In

particular, the degree of universal covering equals |π1(X,x0)|.

Proof. For (1). An element of kerπ∗ is represented by a loop γ̃0 : I → X̃
with a homotopy F of γ0 = π ◦ γ̃0 to the trivial loop γ1. By Theorem B.2.1
there is a lifted homotopy of loops F̃ starting with γ̃0 and ending with a
constant loop. Hence [γ̃0] = 0 in π1(X̃, x̃0) and π∗ is injective.

For (2). The loops at x0 lifting to loops at x̃0 certainly represent elements
of the image of π∗ : π1(X̃, x̃0) → π1(X,x0). Conversely, a loop representing
an element of the image of π∗ is homotopic to a loop having such a lift, so
by Theorem B.2.1, the loop itself must have such a lift.

For (3). For a loop γ in X based at x0, let γ̃ be its lift to X̃ starting at
x̃0. A product h · γ with [h] ∈ H = π∗(π1(X̃, x̃0)) has the lift h̃ · γ̃ ending at
the same point as γ̃ since h̃ is a loop. Thus we may define a function Φ from
cosets H[γ] to π−1(x0) by sending H[γ] to γ̃(1). The path-connectedness of
X̃ implies that Φ is surjective since x̃0 can be joined to any point in π−1(x0)
by a path γ̃ projecting to a loop γ at x0. To see that Φ is injective, observe
that Φ(H[γ1]) = Φ(H[γ2]) implies that γ1 · γ2 lifts to a loop in X̃ based at
x̃0, so [γ1][γ2]

−1 ∈ H and hence H[γ1] = H[γ2]. Thus the index of H is the
same as |π−1(x0)|, which is the degree of the covering. □

Proposition B.2.2 (lifting criterion). Let π : (X̃, x̃0) → (X,x0) be a cov-
ering space and f : (Y, y0) → (X,x0) be a map. A lift f̃ : (Y, y0) → (X̃, x̃0)

of f exists if and only if f∗(π1(Y, y0)) ⊆ π∗(π1(X̃, x̃0)).

Proof. The “only if” statement is obvious since f∗ = π∗ ◦ f∗. Conversely, let
y ∈ Y and let γ be a path in Y from y0 to y. By Corollary B.2.1, the path
fγ in X starting at x0 has a unique lift f̃γ starting at x̃0, and we define
f̃(y) = f̃γ(1).

To see it’s well-defined, let γ′ be another path from y0 to y. Then (fγ′) ·
(fγ) is a loop h0 at x0 with [h0] ∈ f∗(π1(Y, y0)) ⊆ π∗(π1(X̃, x̃0)). This
means there is a homotopy H of h0 to a loop h1 that lifts to a loop h̃1 in
X̃ based at x̃0. Apply Theorem B.2.1 to H to get a lifting H̃. Since h̃1 is a
loop at x̃0, so is h̃0. By Proposition B.2.1, that is uniqueness of lifted paths,
the first half of h̃0 is f̃γ′ and the second half is f̃γ traversed backwards, with
the common midpoint f̃γ(1) = f̃γ′(1). This shows f̃ is well-defined.

To see f̃ is continuous, let U ⊆ X be an open neighborhood of f(y) having
a lift Ũ ⊆ X̃ containing f̃(y) such that π : Ũ → U is a homeomorphism.
Choose a path-connected open neighborhood V of y with f(V ) ⊆ V . For
paths from y0 to points y′ ∈ V , we can take a fixed path γ from y0 to y
followed by paths η in V from y to points y′. Then the paths (fγ) ·(fη) in X
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have lifts (f̃γ) · (f̃η) where f̃η = π−1fη. Thus f̃(V ) ⊆ Ũ and f̃ |V = π−1f ,
so f̃ is continuous at y. □
Corollary B.2.4. Let π : X̃ → X be a covering space and Y be a simply-
connected space. Then every map f : Y → X has a lift.

Proof. It’s clear f∗(π1(Y, y0)) ⊆ π∗(π1(X̃, x̃0)) since π1(Y, y0) = 0. □
Theorem B.2.2. Suppose X is a topological manifold, E is a Hausdorff
space and π : E → X is a local homeomorphism with the path lifting prop-
erty. Then π is a covering space.
Proof. See Theorem 4.19 of [?]. □
B.3. The classification of the covering spaces.
Definition B.3.1 (universal covering). A simply-connected covering space
of X is called universal covering.
Definition B.3.2 (semilocally simply-connected). A topological space X
is called semilocally simply-connected if each x ∈ X has a neighborhood U
such that the inclusion induced map π1(U, x) → π1(X,x) is trivial.
Theorem B.3.1. If X is a semilocally simply-connected topological space,
then X has a universal covering X̃.
Proof. See construction in page 64 of [Hat02]. □
Proposition B.3.1. Suppose X is a semilocally simply-connected topolog-
ical space. Then for every subgroup H ⊆ π1(X,x0), there exists a covering
space π : XH → X such that π∗(π1(XH , x̃0)) = H for a suitably chosen
based point x̃0 ∈ XH .
Proof. See Proposition 1.36 of [Hat02]. □

Lemma B.3.1. Let π1 : X̃1 → X and π2 : X̃2 → X be two coverings. There
exists an isomorphism f : X̃1 → X̃2 taking a basepoint x̃1 ∈ π−1

1 (x0) to a
basepoint x̃2 ∈ π−1

2 (x0) if and only if π1∗(π1(X̃1, x̃1)) = π2∗(π1(X̃2, x̃2)).

Proof. If there is an isomorphism f : (X̃1, x̃1) → (X̃2, x̃2), then from the two
relations π1 = π2 ◦ f and π2 = π1 ◦ f−1 it follows that π1∗(π1(X̃1, x̃1)) =

π2∗(π1(X̃2, x̃2)). Conversely, suppose that π1∗(π1(X̃1, x̃1)) = π2∗(π1(X̃2, x̃2)).
By Proposition B.2.2, that is lifting criterion, we may lift π1 to a map
π̃1 : (X̃1, x̃1) → (X̃2, x̃2) with π2◦ π̃1 = π1. Similarly, one has π̃2 : (X̃2, x̃2) →
(X̃1, x̃1) with π1◦ π̃2 = π2. Then Proposition B.2.1, that is the unique lifting
property, π̃1 ◦ π̃2 = id and π̃2 ◦ π̃1 = id since these composed lifts fix the
basepoints. □
Lemma B.3.2. For covering π : (X̃, x̃0) → (X,x0), changing the basepoint
x̃0 within π−1(x0) corresponds exactly to changing π∗(π1(X̃, x̃0)) to a con-
jugate subgroup of π1(X,x0).
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Proof. Let x̃1 be another basepoint in π−1(x0) and γ̃ be a path from x̃0 to x̃1.
Then γ̃ projects to a loop γ in X representing some element g ∈ π1(X,x0). If
we denote Hi = π∗(π1(X̃, x̃i)) for i = 0, 1, there is an inclusion g−1H0g ⊆ H1

since if f̃ is a loop at x̃0, one has γ̃−1 · f̃ · γ̃ is a loop at x̃1. Similarly one has
gH1g

−1 ⊆ H0. This shows changing the basepoint from x̃0 to x̃1 changes
H0 to the conjugate subgroup H1 = g−1H0g. □

Theorem B.3.2. LetX be a semilocally simply-connected topological space.
Then there is a bijection between the set of basepoint-preserving isomor-
phism classes of covering spaces π : (X̃, x̃0) → (X,x0) and the the set of
subgroups of π1(X,x0) obtained by associating the subgroup π∗(π1(X̃, x̃0))

to the covering space (X̃, x̃0). If basepoints are ignored, this correspondence
gives a bijection between isomorphism classes of covering spaces π : X̃ → X
and conjugacy classes of subgroups of π1(X,x0).

Proof. Proposition B.3.1 and Lemma B.3.1 completes the proof of the first
half, and Lemma B.3.2 completes the proof of the last half. □

Corollary B.3.1. Let X be a semilocally simply-connected topological
space. Then the universal covering of X is unique up to isomorphism.

B.4. The structure of the deck transformation group.

Definition B.4.1 (deck transformation). Let π : X̃ → X be a covering
space. The deck transformation group is following set

Autπ(X̃) = {f : X̃ → X̃ is homeomorphism | π ◦ f = π}

equipped with composition as group operation.

Proposition B.4.1. Let π : X̃ → X be a covering space. The deck trans-
formation group Autπ(X̃) acts on X̃ freely.

Proof. Suppose f : X̃ → X̃ is a deck transformation admitting a fixed point.
Since π ◦ f = π, we may regard f as a lift of π, and identity map of X̃ is
another lift of π. By Proposition B.2.1, that is unique lifting property, one
has f is exactly identity map since it agrees with identity map at fixed
point. □

Definition B.4.2 (normal). A covering π : X̃ → X is called normal, if any
deck transformation acts transitively on each fiber of x ∈ X.

Proposition B.4.2. Let π : X̃ → X be a normal covering. Then X̃/Autπ(X̃)
is homeomorphic to X.

Proof. Let Φ: X̃/Autπ(X̃) → X be the map sending the orbit Ox̃ to π(x̃),
where x̃ ∈ X̃. It’s clear Φ is well-defined bijection since Autπ(X̃) acts on X̃
fiberwise transitive, and the following diagram commutes
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X̃

X̃/Autπ(X̃) X

p π

Φ

This diagram shows Φ is both continuous and open, since p is the quotient
map and π is continuous and open, which shows X̃/Autπ(X̃) is homeomor-
phic to X. □

Proposition B.4.3. Let π : (X̃, x̃0) → (X,x0) be a covering space and
H = π∗(π1(X̃, x̃0)) ⊆ π1(X,x0). Then
(1) π is a normal covering if and only if H is a normal subgroup of π1(X,x0).
(2) Autπ(X̃) is isomorphic to the quotient N(H)/H, where N(H) is the

normalizer of H in π1(X,x0).
In particular, Autπ(X̃) ∼= π1(X,x0) if X̃ is universal covering.

Proof. For (1). By proof of Lemma B.3.2 one has changing the basepoint
x̃0 ∈ π−1(x0) to x̃1 ∈ π−1(x0) corresponds precisely to conjugating H by an
element [γ] ∈ π1(X,x0) where γ lifts to a path γ̃ from x̃0 to x̃1. Thus [γ] is
in the normalizer N(H) if and only if π∗(π1(x̃, x̃0)) = π∗(π1(x̃, x̃1)), which
is equivalent to the existence of a deck transformation taking x̃0 to x̃1 by
Lemma B.3.1. Thus the covering space is normal if and only if N(H) =
π1(X,x0), that is, H ⊆ π1(X,x0) is a normal subgroup.

For (2). Define ϕ : N(H) → Autπ(X̃) by sending [γ] to the deck transfor-
mation τ taking x̃0 to x̃1, in the notation above. Let’s show ϕ is a homo-
morphism. If γ′ is another loop corresponding to the deck transformation τ ′
taking x̃0 to x̃′1, then γ·γ′ lifts to γ̃·(τ(γ̃′)), a path from x̃0 to τ(x̃′1) = ττ ′(x̃0),
so ττ ′ is the deck transformation corresponding to [γ][γ′]. By the proof of
(1) one has ϕ is surjective. The kernel of ϕ consists of classes [γ] lifting to
loops in x̃, which are exactly the elements of π∗(π1(X̃, x̃0)) = H. □

Corollary B.4.1. Let X be a topological space and π : X̃ → X be its uni-
versal covering space. Then the quotient space X̃/π1(X) is homeomorphic
X.

Proof. It follows from Proposition B.4.2 since π1(X) ∼= Autπ(X̃) if X̃ is the
universal covering. □

B.5. Covering of manifold.

Lemma B.5.1. Let X be a topological space admitting a countable open
covering {Ui} such that each set Ui is second countable in the subspace
topology. Then X is second countable.

Proof. Let Bα be a countable base for Uα. Its members are by definition
open in Uα, and as all Uα are open in X, these sets are also open in X. So
B =

⋃
α Bα is a countable family of open sets in X. Suppose that x ∈ X and
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V is open in X with x ∈ V . Then x ∈ Uβ for some index β. Now apply the
definition of a base to see that for some B ∈ Bβ we have x ∈ B ⊆ V ∩ Uβ.
This B ∈ B and x ∈ B ⊆ V . This shows that B is a countable base for
X. □

Theorem B.5.1. Suppose M is a topological n-manifold and let π : M̃ →
M be a covering map. Then M̃ is a topological n-manifold.

Proof. Since π is a local diffeomorphism and M is locally Euclidean, one has
M̃ is also locally Euclidean. Now let’s show M̃ is Hausdorff, let x̃1, x̃2 be two
distinct points in M̃ . If π(x̃1) = π(x̃2) and U ⊆M is an evenly covered open
subset containing π(x̃1), then the component of π−1(U) containing x̃1 and
x̃2 are disjoint open subsets of M̃ that separate x̃1 and x̃2. If π(x̃1) 6= π(x̃2),
there are disjoint open subsets U1, U2 ⊆M containing π(x̃1) and π(x̃2) since
M is Hausdorff, and then π−1(U1) and π−1(U2) are disjoint open subsets of
M̃ containing x̃1 and x̃2, and thus M̃ is Hausdorff.

To see M̃ is second countable, firstly note that each fiber of π is count-
able since by Corollary B.2.3 one has the degree of covering less than or
equal |π(M,x)|, and by Theorem A.2.2 one has the fundamental group of a
topological manifold is countable.

The collection of all evenly covered open subsets is an open covering of
M , and therefore has a countable subcover {Ui}. For any given i, each
component of π−1(Ui) contains exactly one point in each fiber over Ui, so
π−1(Ui) has countably many components. The collection of all components
of all sets of the form π−1(Ui) is a countable open covering of M̃ . Since
each such component is second countable, by Lemma B.5.1 one has M̃ is
also second countable. □

B.6. Orientable double covering.

B.6.1. Topological and homological orientation.

Definition B.6.1 (orientation preserving homeomorphism). Let U, V ⊆
Rn be open subsets. A homeomorphism f : U → V is called orientation
preserving if for each x ∈ U , the map

Hn(Rn,Rn \{0}) ∼= Hn(U,U\{x}) f∗−→ Hn(V, V \{f(x)}) ∼= Hn(Rn,Rn \{0})
is the identity map.

Definition B.6.2 (topological orientation). A topological orientation of a
topological n-manifold M is the choice of a maximal oriented atlas, where
an atlas {(Ui, ϕi)} is called oriented if all coordinate changes ϕi ◦ ϕ−1

j is
orientation preserving.

Definition B.6.3 (oriented topological manifold). A topological manifold
M is called orientable if it has a topological orientation, and M is called
oriented if M is equipped with an orientation.
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Definition B.6.4 (local homological orientation). A local homological ori-
entation of a topological n-manifold M is the choice of a generator [M ]x of
the local homology group Hn(M,M \ {x}) for each x ∈M .

Definition B.6.5 (homological orientation). A local homological orienta-
tion of a topological n-manifold M is called a homological orientation if for
each x ∈M , there is an open neighborhood U and a class α ∈ Hn(M,M \U)
such that the map induced by (M,M \U) → (M,M \ {x}) maps α to [M ]x
for each x ∈ U .

Theorem B.6.1. The topological orientation and homological orientation
are equivalent for topological manifold.

B.6.2. Existence of orientable double covering.

Theorem B.6.2. Every non-orientable topological manifold admits an ori-
entable double covering.
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Appendix C. Group action

C.1. G-set.
Definition C.1.1 (group action). Let G be a group and S be a set. A left
G-action on S is a function

θ : G× S → S

satisfying the following two axioms:
(1) θ(e, s) = s, where e ∈ G is the identity element.
(2) θ(g1, θ(g2, s)) = θ(g1g2, s), where g1, g2 ∈ G.

For convenience we denote θ(g, s) = gs for g ∈ G, s ∈ S.
Definition C.1.2 (G-set). Let G be a group. A set S endowed with a left
(or right) G-action is called a left (or right) G-set.
Definition C.1.3 (orbit). An orbit of a group action is the set of all images
of a single element under the action by different group elements.
Definition C.1.4. Let G be a group and S be a left G-set.
(1) For g ∈ G, if gs = s for some s ∈ S implies g = e, then the group action

is called free.
(2) For g ∈ G, if gs = s for all s ∈ S implies g = e, then the group action is

called effective.
(3) If for arbitrary s1, s2 ∈ S, there exists g ∈ G such that gs1 = s2, then

the group action is called transitive.
Remark C.1.1. If a group action is free, then it’s effective, but converse
statement may not hold.
Definition C.1.5 (isotropy group). Let G be a group and S be a right
G-set. For any s ∈ G, the isotropy group of s, denoted by Gs, is the set of
all elements of G that fix s, that is

Gs = {g ∈ G | gs = s}

Remark C.1.2. It’s clear to see the action is free if and only if the isotropy
group of every point is trivial.
C.2. Continuous action.
Definition C.2.1 (act by homeomorphisms). Let Γ be a group and X be
a topological space. The group Γ is calld acting X by homeomorphisms, if
Γ acts on X, and for every g ∈ Γ, the map x 7→ gx is a homeomorphism.
Definition C.2.2 (topological group). A group is called a topological group,
if it’s a topological space such that the multiplication and the inversion are
continuous.
Definition C.2.3 (continuous action). Let X be a topological space and G
a topological group. A continuous G-action on X is given by the following
data:



178 BOWEN LIU

(1) G acts on X by homeomorphisms.
(2) The map G×X → X given by (g, x) 7→ gx is continuous.

Lemma C.2.1. Let X be a topological space and Γ a group acting on X
by homeomorphisms. Then the quotient map π : X → X/Γ is an open map.

Proof. For any g ∈ Γ and any subset U ⊆ X, the set gU ⊆ X is defined as

gU = {gx | x ∈ U}

If U ⊆ X is open, then π−1(π(U)) is the union of all sets of the form gU as
g ranges over G. Since p 7→ gp is a homeomorphism, each set is open, and
therefore π−1(π(U)) is open in X. Since π is a quotient map, this implies
π(U) is open in X/Γ, and therefore π is an open map. □

C.2.1. Proper action.

Definition C.2.4 (proper). Let X be a topological space and G a topolog-
ical group. A continuous G-action on X is called proper if the continuous
map

Θ: G×X → X ×X

(g, x) 7→ (gx, x)

is proper, that is, the preimage of a compact set is compact.

Lemma C.2.2. Let X,Y be topological spaces and π : X → Y be an open
quotient map. Then Y is Hausdorff if and only if the set R = {(x1, x2) |
π(x1) = π(x2)} is closed in X ×X.

Proposition C.2.1. Let X be a topological space and G a topological group
acting on X continuously. If the action is also proper, then the orbit space
is Hausdorff.

Proof. Let Θ: G × X → X × X be the proper map Θ(g, x) = (gx, x) and
π : X → X/G be the quotient map. Define the orbit relation O ⊆ X×X by

O = Θ(G×X) = {(gx, x) | x ∈ X, g ∈ G}

Since proper continuous map is closed, it follows that O is closed in X ×X,
and since π is open by Lemma C.2.1, one has X/G is Hausdorff by Lemma
C.2.2. □

Proposition C.2.2. Let M be a topological manifold and G a topological
group acting on M continuously. The following statements are equivalent.
(1) The action is proper.
(2) If {pi} is a sequence in M and {gi} is a sequence in G such that both

{pi} and {gipi} converge, then a subsequence of {gi} converges.
(3) For every compact subset K ⊆M , the set GK = {g ∈ G | gK ∩K 6= ∅}

is compact.
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Proof. Along the proof, let Θ: G ×M → M ×M denote the map (g, p) 7→
(gp, p). For (1) to (2). Suppose Θ is proper, and {pi}, {gi} are sequences
satisfying the hypotheses of (2). Let U and V be precompact10 neighbor-
hoods of p = limi pi and q = limi gipi. The assumption implies Θ(gi, pi) all
lie in compact set U × V when i is sufficiently large, so there exists a sub-
sequence of {(gi, pi)} converges in G ×M since Θ is proper. In particular,
this means that a subsequence of {gi} converges in G.

For (2) to (3). Let K be a compact subset of M , and suppose {gi} is any
sequence in GK . This means for each i, there exists pi ∈ giK ∩K, which is
to say that pi ∈ K and g−1

i pi ∈ K. By passing to a subsequence twice, we
may assume both {pi} and {g−1

i pi} converge, and the assumption implies
there exists a convergent subsequence of {gi}. Since each sequence of GK

has a convergent subsequence, GK is compact.
For (3) to (1). Suppose L ⊆M×M is compact, and letK = π1(L)∪π2(L),

where π1, π2 : M ×M → M are the projections onto the first and second
factors, respectively. Then

Θ−1(L) ⊆ Θ−1(K ×K) = {(g, p) | gp ∈ K, p ∈ K} ⊆ GK ×K

By assumption GK ×K is compact, and thus Θ−1(L) is compact since it’s
a closed subset of a compact subset, which implies the action is proper. □
Corollary C.2.1. If G is a compact topological group, then every contin-
uous G-action on M is proper.
Proof. Since G is compact, then every sequence in G admits a convergent
subsequence, and thus the action is proper by (2) of Proposition C.2.2. □
C.3. Properly discontinuous action.
Definition C.3.1 (properly discontinuous). Let Γ be a group acting on
a topological space X by homeomorphisms. The action is called properly
discontinuous, if every point x ∈ X has a neighborhood U such that for each
g ∈ G, gU ∩ U = ∅ unless g = e.
Lemma C.3.1. Suppose Γ be a group acting properly discontinuous on a
topological space X. Then every subgroup of Γ still acts properly discon-
tinuous on X.
Lemma C.3.2. Let π : X̃ → X be a covering space. Then Autπ(X̃) acts
on X̃ properly discontinuous.

Proof. For x̃ ∈ x̃, let Ũ ⊆ X̃ be an open neighborhood of x̃ projecting
homeomorphically to U ⊆ X. If there exists g ∈ Autπ(X̃) such that g(Ũ) ∩
Ũ 6= ∅, then gx̃1 = x̃2 for some x̃1, x̃2 ∈ U . Since x̃1 and x̃2 lie in the same
set π−1(x), which intersects Ũ in only one point, we must have x̃1 = x̃2 = x̃.
Then x̃ is a fixed point of g, which implies g = e since deck transformation
acts freely (Proposition B.4.1). □

10A set is called precompact, if its closure is compact.
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Theorem C.3.1 (covering space quotient theorem). Let E be a topological
space and Γ be a group acting on E by homeomorphisms effectively . Then
the quotient map π : E → E/Γ is a covering map if and only if Γ acts on E
properly discontinuous. In this case, π is a normal covering and Autπ(E) =
Γ.
Proof. Firstly, assume π is a covering map. Then the action of each g ∈ Γ
is an automorphism of the covering since it’s a homeomorphism satisfying
π(ge) = π(e) for all g ∈ Γ, e ∈ E, so we can identify Γ with a subgroup of
Autπ(E). Then Γ acts on E properly discontinuous by Lemma C.3.1 and
Lemma C.3.2.

Conversely, suppose the action is properly discontinuous. To show π is a
covering map, suppose x ∈ E/Γ is arbitrary. Choose e ∈ π−1(x), and let
U be a neighborhood of e such that for each g ∈ Γ, gU ∩ U = ∅ unless
g = 1. Since E is locally path-connected, by passing to the component of U
containing e, we may assume U is path-connected. Let V = π(U), which is
a path-connected neighborhood of x. Now π−1(V ) is equal to the union of
the disjoint connected open subsets gU for g ∈ Γ, so to show π is a covering
space it remains to show π is a homeomorphism from each such set onto V .
For each g ∈ Γ, the restriction map g : U → gU is a homeomorphism, and
the diagram

U gU

V

g

π π

commutes. Thus it suffices to show π|U : U → V is a homeomorphism. It’s
surjective, continuous and open, and it’s injective since π(e) = π(e′) for
e, e′ ∈ U implies e′ = ge for some g ∈ Γ, so e = e′ by the choice of U . This
shows π is a covering map.

To prove the final statement of the theorem, suppose the action is a
covering space action. As noted above, each map e 7→ ge is a covering
automorphism, so Γ ⊆ Autπ(E). By construction, Γ acts transitively on
each fiber, so Autπ(E) does too, and thus π is a normal covering. If ϕ is
any covering automorphism, choose e ∈ E and let e′ = ϕ(e). Then there is
some g ∈ Γ such that ge = e′. Since ϕ and x 7→ gx are deck transformation
that agree at a point, so they are equal. Thus Γ = Autπ(E). □
Proposition C.3.1. Suppose G is a discrete topological group acting con-
tinuously and freely on a topological manifold M . The action is proper if
and only if the following conditions both hold.
(1) G acts on M properly discontinuous.
(2) If p, p′ ∈ M are not in the same orbit, then there exist a neighborhood

V of p and V ′ of p′ such that gV ∩ V ′ = ∅ for all g ∈ G.
Proof. Firstly, suppose that the action is free and proper and let π : M →
M/G denote the quotient map. By Proposition C.2.1, the orbit space M/G
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is Hausdorff. If p, p′ ∈ M are not in the same orbit, we can choose disjoint
neighborhoods W of π(p) and W ′ of π(p′), and then V = π−1(W ) and
V ′ = π−1(W ′) satisfy the conclusion of condition (2). To show G acts on
M properly discontinuous, we need to show for each p ∈ M , there exists
an open neighborhood U of p such that gU ∩ U = ∅ unless g = e. Let
V be a precompact neighborhood of p. By Proposition C.2.2, the set GV
is a compact subset of G, and hence finite because G is discrete, so we
write GV = {e, g1, . . . , gm}. Shrinking V if necessary, we may assume that
g−1
i p /∈ V for i = 1, . . . ,m. Consider open subset

U = V \ (g1V ∪ · · · ∪ gmV )

It’s clear gU ∩ U = ∅ unless g = e.
Conversely, assume that (1) and (2) hold. Suppose {gi} is a sequence in G

and {pi} is a sequence in M such that pi → p and gipi → p′. If p and p′ are
in different orbits, there exist neighborhoods V of p and V ′ of p′ as in (2),
but for large enough i, we have pi ∈ V and gipi ∈ V ′, which contradicts the
fact that giV ∩ V ′ = ∅. This shows p and p′ are in the same orbit, so there
exists g ∈ G such that gp = p′. This implies g−1gipi → p. Since G acts on
M properly discontinuous, there exists an open neighborhood U such that
gU ∩ U = ∅ unless g = e. For large enough i, one has pi and g−1gipi are
both in U , and by the choice of U one has g−1gi = e. So gi = g when i is
large enough, which certainly converges. By (2) of Proposition C.2.2, the
action is proper. □

Proposition C.3.2. Let M be a topological manifold and π : M̃ →M be a
normal covering space. If Autπ(M̃) is equipped with the discrete topology,
then it acts on M̃ continuously, freely and properly.

Proof. By Proposition B.4.1 one has Autπ(M̃) acts on M̃ freely and the
action is also continuously since Autπ(M̃) is equipped with discrete topology.
To see the action is properly, it suffices to show the action satisfies the two
conditions in Proposition C.3.1.

(a) By Lemma C.3.2, one already has Autπ(M̃) acts on M̃ properly discontin-
uous.

(b) Since π : M̃ → M is a normal covering, one has the orbit space is homeo-
morphic to M by Proposition B.4.2 and thus orbit space is Hausdorff. If
x̃1, x̃2 ∈ M̃ are in different orbits, we can choose disjoint neighborhoods W
of π(x̃1) and W ′ of π(x̃2) since orbit space is Hausdorff, and it follows that
V = π−1(W ) and V ′ = π−1(W ′) satisfy the second condition.

□
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Appendix D. Review of smooth manifolds

In this section we give a quick review of facts in differential geometry we
may use, and a good reference is [Lee03]

D.1. Submersions, Immersions, and Embeddings.

D.1.1. Immersions and embeddings.

Definition D.1.1 (immersion). A smooth map F : M → N between smooth
manifolds is called immersion if its differential is injective at each point.

Definition D.1.2 (embedding). A smooth map F : M → N between smooth
manifolds is called embedding if it’s an immersion and a topological embed-
ding, that is a homeomorphism onto its image F (M) ⊆ N in the subspace
topology.

Proposition D.1.1. Suppose M and N are smooth manifolds and F : M →
N is an injective immersion. If any of the following holds, then F is a smooth
embedding.
(1) F is an open or closed map.
(2) F is a proper map.
(3) M is compact.

Theorem D.1.1 (local embedding theorem). Let F : M → N be a smooth
map between smooth manifolds. Then F is an immersion if and only if
every point in M has a neighborhood U ⊆M such that F |U : U → N is an
embedding.

D.1.2. Submersions.

Definition D.1.3 (submersion). A smooth map F : M → N between smooth
manifolds is called submersion if its differential is surjective at each point.

Definition D.1.4 (local diffeomorphism). A smooth map F : M → N be-
tween smooth manifolds is called a local diffeomorphism if every p ∈M has
a neighborhood U such that F (U) is open in N and F |U : U → F (U) is a
diffeomorphism.

Proposition D.1.2. Let M,N be smooth manifolds, and π : M → N is a
submersion. Then π is an open map, and if it’s surjective it’s a quotient
map.

Proposition D.1.3. Suppose M and N are smooth manifolds and F : M →
N is a smooth map.
(1) F is a local diffeomorphism if and only if it’s both immersion and sub-

mersion.
(2) If dimM = dimN and F is either an immersion or a submersion, then

it’s a local diffeomorphism.
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Theorem D.1.2 (characteristic property of surjective smooth submersion).
Suppose M and N are smooth manifolds, and π : M → N is a surjective
smooth submersion. For any smooth manifold P , a map F : N → P is
smooth if and only if F ◦ π is smooth.

M

N P

π F◦π

F

Theorem D.1.3 (passing smoothly to the quotient). Suppose M and N
are smooth manifolds, and π : M → N is a surjective smooth submersion.
If P is a smooth manifold and F : M → P is a smooth map that is constant
on the fibers of π, then there exists a unique smooth map F̃ : N → P such
that F̃ ◦ π = F .

M

N P

Fπ

F̃

D.1.3. Rank theorem.

Definition D.1.5 (rank). Given a smooth map F : M → N between smooth
manifolds and p ∈M , rank of F at p is defined to be the rank of linear map
(dF )p : TpM → Tf(p)N .

Definition D.1.6 (constant rank). Given a smooth map F : M → N be-
tween smooth manifolds. F is called constant rank, if rank of F at any
p ∈M is the same.

Theorem D.1.4 (global rank theorem). Let F : M → N be a smooth map
between smooth manifolds with constant rank.
(1) If F is surjective, then it’s a submersion.
(2) If F is injective, then it’s a immersion.
(3) If F is bijective, then it’s a diffeomorphism.

D.2. Submanifold.

D.2.1. Embedded submanifold.

Definition D.2.1 (embedded submanifold). Suppose M is a smooth man-
ifold. An embedded submanifold of M is a subset S ⊆M that is a manifold
in the subspace topology, endowed with a smooth structure with respect to
which the inclusion map S ↪→M is an embedding.

Proposition D.2.1 (images of embeddings as submanifold). Suppose M is
a smooth manifold, N is a smooth, and F : M → N is an embedding. Let
S = F (N). With the subspace topology, S is a topological manifold, and it
has a unique smooth structure making it into an embedded submanifold of
M with the property that F is a diffeomorphism onto its image.
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Definition D.2.2 (properly embedded). An embedded submanifold S ⊆M
is said to be properly embedded if the inclusion S ↪→M is a proper map.

Proposition D.2.2. Suppose M is a smooth manifold and S ⊆ M is an
embedding submanifold. Then S is properly embedded if and only if it’s a
closed subset of M .

Theorem D.2.1 (Whitney embedding theorem). Every smooth n-manifold
admits a proper embedding into R2n+1.

Theorem D.2.2 (strongly Whitney embedding theorem). If n > 0, every
smooth n-manifold admits a smooth embedding into R2n.

D.2.2. Immersed submanifold.

Definition D.2.3 (immersed submanifold). Suppose M is a smooth mani-
fold. An immersed submanifold of M is a subset S ⊆M that is a manifold
in the subspace topology, endowed with a smooth structure with respect to
which the inclusion map S ↪→M is an immersion.

Definition D.2.4 (weakly embedded). If M is a smooth manifold and S ⊆
M is an immersed submanifold, then S is said to be weakly embedded in M
if every smooth manifold F : N → M whose image lie in S is smooth as a
map from N to S.

D.2.3. Regular value theorem.

Theorem D.2.3 (constant rank level set theorem). LetM andN be smooth
manifolds, and Φ: M → N be a smooth map with constant rank r. Each
level set of Φ is a properly embedded submanifold of codimension r in M .

Definition D.2.5 (regular/critical point). If Φ: M → N is a smooth map,
a point p ∈M is said to be a regular point of Φ is (dΦ)p : TpM → TΦ(p)N is
surjective; otherwise it’s a critical point of Φ.

Definition D.2.6 (regular/critical value). If Φ: M → N is a smooth map,
a point c ∈ N is said to be a regular value of Φ if every point of Φ−1(c) is a
regular point; otherwise it’s a critical value of Φ.

Theorem D.2.4 (Sard’s theorem). SupposeM andN are smooth manifolds
and F : M → N is a smooth map. Then the set of critical values of F has
measure zero in N .

Corollary D.2.1. Suppose M and N are smooth manifolds and F : M → N
is a smooth map. If dimM < dimN , then F (M) has measure zero in N .

D.3. Lie group.

Definition D.3.1 (Lie group). A Lie group G is a smooth manifold which
is also endowed with a group structure such that the multiplication map and
the inverse map are smooth.
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Proposition D.3.1. For any g ∈ G, Lg, Rg defined as follows
Lg(h) = gh

Rg(h) = hg

are diffeomorphisms.

Proof. It’s clear they’re smooth, since multiplication map is smooth. The
inverse maps are given by Lg−1 and Rg−1 , since inversion map of Lie group
is also smooth. □
Definition D.3.2 (Lie subgroup). A Lie subgroup of a Lie group G is a
subgroup H ⊆ G endowed with a smooth structure such that H is a Lie
group and an immersed submanifold.

Theorem D.3.1 (Cartan’s closed subgroup theorem). Any closed subgroup
of a Lie group is a Lie subgroup.

In the following statements of this section, G is a Lie group.

Definition D.3.3 (invariant vector field). A vector field X on a G is called
left-invariant, if

(Lg)∗X = X

for arbitrary g ∈ G.

Definition D.3.4 (Lie algebra). The vector space consisting of left-invariant
vector fields on G equipped with Lie bracket of vector fields is called Lie al-
gebra of G, and it’s denoted by g.

Remark D.3.1. There is an isomorphism between vector spaces
g = {left-invaraint vector fields on G} → TeG

X 7→ Xe

Thus TeG equipped with Lie bracket from g is also called Lie algebra of G.

Definition D.3.5 (adjoint representation). The adjoint representation is
defined as

Ad: G→ GL(g)

g 7→ (Lg)∗(Rg−1)∗

Theorem D.3.2. Let ad: g → GL(g) be the differential of adjoint repre-
sentation at identity element e. Then adX Y = [X,Y ].

Definition D.3.6 (integral curve). Let X be a vector field of G and g ∈ G.
Then an integral curve of X through the point p is a smooth curve γ : I ⊆
R → G such that

γ(0) = g

γ′(t) = X(γ(t))

Definition D.3.7 (complete vector field). A vector field X is called com-
plete, if its integral curve is defined for all t ∈ R.
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Proposition D.3.2. Every left-invariant vector field on G is complete.

Proof. Let X be a left-invariant vector field and γ the unique integral curve
for X defined on (−ε, ε) such that γ(0) = e. Then γg(t) := Lgγ(t) is an
integral curve for X such that γg(0) = g. Indeed,

γ′g(t) = (dLg)γ(t)(γ
′(t))

= (dLg)γ(t)(X(γ(t)))

= X(Lgγ(t))

= X(γg(t))

In particular, for t0 ∈ (−ε, ε), the curve t 7→ γ(t0)γ(t) is an integral curve
for X starting at γ(t0). By uniqueness, this curve coincides with γ(t0 + t)
for all t ∈ (−ε, ε) ∩ (−ε− t0, ε− t0). Define

γ̃(t) =

{
γ(t) t ∈ (−ε, ε)
γ(t0)γ(t) t ∈ (−ε− t0, ε− t0)

Repeat above operations to get our desired extension. □

Remark D.3.2. From this proof we can see integral curve of left-invariant
vector fields through identity e is just a Lie group homomorphism γ : R → G,
such homomorphism is called a one parameter subgroup.

D.4. Killing form.

Definition D.4.1 (Killing form). Let g be the Lie algebra of Lie group G.
The Killing form B : g× g → R is a bilinear symmetric form defined as

B(X,Y ) = tr(adX ◦ adY )

Lemma D.4.1. Let B be the Killing form on Lie algebra g of Lie group G.
For any g ∈ G and X,Y, Z ∈ g, one has
(1) B(AdgX,Adg Y ) = B(X,Y ).
(2) B(adZ X,Y ) = −B(X, adZ Y ).

Proof. For (1). For any X,Y ∈ g, one has
[AdgX,Y ] = [AdgX,Adg ◦Adg−1 Y ]

= Adg([X,Adg−1 Y ])

= Adg ◦ adX ◦(Adg)−1(Y )

If we use σ to denote Adg, then adσ(X) = σ ◦ adX ◦σ−1. Hence,

B(σ(X), σ(Y )) = tr(adσ(X) ◦ adσ(Y )) = tr(σ ◦ adX ◦ adY ◦σ−1) = B(X,Y )

For (2). For Z ∈ g, from (1) one has
B(Adexp(tZ)X,Adexp(tZ) Y ) = B(X,Y )
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By taking derivative with respect to t and set t = 0, one has
B(adZ X,Y ) +B(X, adZ Y ) = 0

□

Proposition D.4.1. Let g be a Lie algebra with Killing form B and h an
ideal of g. Then Killing form on h is exactly the restriction of B|h.

Proof. See Section 5.1 of [Hum12]. □

For convenience, we use φ to denote adX ◦ adY in the following computa-
tions.

Example D.4.1. Killing formB(X,Y ) on gl(n) is 2n tr(XY )−2 tr(X) tr(Y ).

Proof. There is a canonical basis of gl(n), that is {Eij}, where Eij is the
matrix such that

(Eij)kl =

{
1, (k, l) = (i, j)

0, otherwise
A direct computation shows

φ(Eij) =
n∑

k=1

(XY )jkEik + (XY )kiEkj −
n∑

k,l=1

(XkiYjl + YkiXjl)Ekl

which implies the trace of φ is
n∑

i,j=1

(XY )jj + (XY )ii −XiiYjj − YiiXjj = 2n tr(XY )− 2 tr(X) tr(Y )

□

Example D.4.2. Killing form B(X,Y ) on sl(n) is 2n tr(XY ).

Proof. Note that sl(n) is an ideal of gl(n), which implies the restriction of
Killing form on gl(n) to sl(n) is exactly the one on sl(n). Thus by Example
D.4.1 one has Killing form on sl(n) is 2n tr(XY ), since sl(n) consisting of
matrices with vanishing trace. □

Example D.4.3. Killing form B(X,Y ) on so(n) is (n− 2) tr(XY ).

Proof. There is a natural basis of so(n), that is {Eij −Eji}i<j . If we denote
φ(Eij) = aij,ijEij + aij,jiEji + . . .

The computation in Example D.4.1 shows
aij,ij = (XY )jj + (XY )ii −XiiYjj − YiiXjj

aij,ji = δij((XY )jj + (XY )ii)−XjiYji − YjiXji

Note that
φ(Eij − Eji) = (aij,ij − aij,ji)(Eij − Eji) + . . .
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Thus the Killing form on so(n) is

B(X,Y ) =
∑
i<j

((XY )jj + (XY )ii −XiiYjj −XjjYii +XjiYji + YjiXji)

=
1

2

∑
i ̸=j

((XY )jj + (XY )ii −XiiYjj −XjjYii +XjiYji + YjiXji)

= (n− 1) tr(XY ) +
1

2

∑
i ̸=j

(−XiiYjj −XjjYii +XjiYji + YjiXji)

(1)
= (n− 1) tr(XY )− tr(X) tr(Y )− 1

2

∑
i ̸=j

(XjiYij − YjiXij)

(2)
= (n− 1) tr(XY )− 1

2
(tr(XY ) + tr(Y X))

= (n− 2) tr(XY )

where
(1) holds from X,Y are skew-symmetric.
(2) holds from skew-symmetry matrix has vanishing trace.

□
D.5. Lie group action. In this section we assume M is a smooth manifold
and G is a Lie group.
Definition D.5.1 (smooth action). A smooth G-action on M is given by
the following data:
(1) For every g ∈ G, it gives a diffeomorphism θg of M .
(2) The map G×M →M given by (g, p) 7→ gp is smooth.
(3) For g1, g2 ∈ G and x ∈M , one has (g1g2)p = g1(g2p).
Theorem D.5.1. Let M and N be smooth manifolds and G is a Lie group.
Suppose F : M → N is a smooth map which is equivalent with transitive
smoothG-action onM and any smoothG-action onN . Then F has constant
rank.
Theorem D.5.2 (quotient manifold theorem). Let G be a Lie group acting
on M smoothly, freely and properly. Then topological manifold M/G ad-
mitting a unique smooth structure such that π : M →M/G is a submersion.
D.5.1. Homogeneous space.
Definition D.5.2 (G-homogeneous space). A smooth manifold M equipped
with a transitive smooth G-action is called a homogeneous G-space.
Theorem D.5.3. Let H be a closed subgroup of G. Then
(1) The left coset space G/H is a topological manifold of dimension dimG−

dimH.
(2) G/H admits a unique smooth structure such that the quotient map

π : G→ G/H is a smooth submersion.
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(3) The left action
G×G/H → G/H

(g1, g2H) 7→ (g1g2)H

turns G/H into a G-homogeneous space.

Proof. By Theorem D.5.2, it suffices to show H acting on G by left multi-
plication is smoothly, freely and properly, since it’s clear G acting on G/H
by left multiplication is transitive.
(1) It’s smooth: By Theorem D.3.1 one has H is a Lie subgroup, and thus

the action is smoothly, since multiplication of Lie group is smooth.
(2) It’s free: If hg = g for some g ∈ G, it’s clear h = e.
(3) It’s proper: Note that the inclusion H ×G ↪→ G×G is proper, since H

is closed and the intersection of a compact subset with a closed subset
is compact. On the other hand,

G×G→ G×G

(g1, g2) 7→ (g1g2, g2)

is proper, since it’s a diffeomorphism. Thus
K ×G→ G×G

(h, g) 7→ (hg, g)

is proper, since it’s the composition of proper maps.
□

Theorem D.5.4. Let M be a G-homogeneous space and p ∈M . Then the
isotropy group Gp is a closed subgroup of G and the map

F : G/Gp →M

gGp 7→ gp

is a G-equivariant diffeomorphism.

Proof. Let’s prove this by the following steps:
(1) For p ∈M , consider the following map

θ(g) : G→M

g 7→ gp

It’s smooth since G acting on M smoothly, and Gp = (θ(g))−1(p) implies
Gp is a closed subgroup of G.

(2) For g1, g2 ∈ G with g1g
−1
2 = g ∈ Gp, it’s clear g1p = g2gp = g2p, which

implies F is well-defined.
(3) If π : G → G/Gp is the projection map, then by Theorem D.5.3 there

exists a unique smooth structure on G/Gp such that π is a surjective
submersion. By Theorem D.1.2, F is smooth since F ◦ π = θ(p).
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(4) It’s clear F is G-equivariant, so Theorem D.5.1 shows F has constant
rank. By Theorem D.1.4, it suffices to check F is bijective to conclude
F is a diffeomorphism. Given any q ∈ M , there exists g ∈ G such that
gp = q since M is a G-homogeneous space, and thus F (gGp) = q. On
the other hand, if F (g1Gp) = F (g2Gp) for g1, g2 ∈ G, then g1p = g2p

implies g1g−1
2 ∈ Gp, and thus g1Gp = g2Gp.

□
D.6. Distributions and Foliations.
D.6.1. Distributions and Involutivity. Let M be a smooth manifold.

Definition D.6.1 (distribution). A (smooth) distribution on M of rank k
is a rank-k (smooth) subbundle of TM .

Definition D.6.2. Suppose D is a distribution on M . D is called involutive
if C∞(M,D) is a Lie subalgebra of X(M).

Definition D.6.3 (integral manifold). Suppose D is a distribution on M .
A non-empty immersed submanifold N ⊆ M is called an integral manifold
of D if TpN = Dp at each p ∈ N .

Definition D.6.4 (integrable). A distribution D on M is integrable if each
point of M is contained in an integral manifold of D.

Theorem D.6.1 (Frobenius). A distribution is integrable if and only if it’s
involutive.

Theorem D.6.2. Every integral manifold of an involutive distribution is
weakly embedded.

D.6.2. Foliations. Let M be a smooth manifold.

Definition D.6.5 (foliation). A foliation of dimension k on M to be a col-
lection F of disjoint, connected, non-empty, immersed k-dimensional sub-
manifolds of M , whose union is M , and such that in a neighborhood of each
point p ∈M there exists a flat chart for F .

Theorem D.6.3 (global Frobenius theorem). Let D be an involutive dis-
tribution on a smooth map M . The collection of all maximal connected
integral manifolds of D forms a foliation of M .

Theorem D.6.4. Every Lie subgroup is an integral manifold of an involu-
tive distribution, and therefore is a weakly embedded submanifold.

Theorem D.6.5. Suppose G is a Lie group and g is its Lie algebra. If h is
any Lie subalgebra of g, then there is a unique connected Lie subgroup of
G whose Lie algebra is g.
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